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Lie Algebra bundles on s-Kähler manifolds,
with applications to Abelian varieties

Giovanni Gaiffi, Michele Grassi
(1)

ABSTRACT. — We prove that one can obtain natural bundles of Lie alge-
bras on rank two s-Kähler manifolds, whose fibres are isomorphic respec-
tively to so(s + 1, s + 1), su(s + 1, s + 1) and sl(2s + 2, R). These bundles
have natural flat connections, whose flat global sections generalize the
Lefschetz operators of Kähler geometry and act naturally on cohomology.
As a first application, we build an irreducible representation of a rational
form of su(s + 1, s + 1) on (rational) Hodge classes of Abelian varieties
with rational period matrix.

RÉSUMÉ. — Nous prouvons que on peut obtenir fibrés naturels des
algèbres de Lie so(s+1, s+1), su(s+1, s+1) et sl(2s+2, R) sur variétés
s-Kähler de rang 2. Ces fibrés ont connexions naturelles dont les sections
globales généralisent les opérateurs de Lefschetz de la géométrie de Kähler
et agissent d’une façon naturelle sur la cohomologie. Pour première ap-
plication nous construisons une représentation irréductible d’une forme
rationnelle de su(s + 1, s + 1) sur les classes de Hodge (rationelles) de
variétés abéliennes dont la matrice des periodes est rationelle.

1. Introduction

In this paper we prove that one can obtain natural bundles of Lie al-
gebras on rank two s-Kähler manifolds, with fibres isomorphic respectively
to so(s + 1, s + 1), to su(s + 1, s + 1) and to sl(2s + 2,R). These bundles
have natural flat connections, whose flat global sections act naturally on
cohomology.

An s-Kähler structure is a direct generalization (with s distinct degen-
erate ”Kähler forms”) of the notion of Kähler structure, to which it reduces
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when s = 1. The original motivation for the introduction in [G1] of s-
Kähler manifolds (and almost s-Kähler manifolds, which are geometrically
less rigid) was the geometric study of the analytical theory of maps from
(open subsets of) Rs to a given manifold. Then it was realized that this
theory in the case s = 2 is well suited for the study of Mirror Symmetry
(see [G2],[G3]). Starting from [GG1] we decided to embark in a systematic
study of the natural algebraic structures arising from this geometry.

In the paper [GG2] we found a natural Lie superalgebra bundle on rank
three (almost) 2-Kähler manifolds. In [G2] it was conjectured that precisely
this type of bundles could provide the natural background on which to
build Field Theories; these are rich from the representation theoretic point
of view and, once quantized using the language of [G1], were conjectured
to be the right playing field for the search of an M-theory (see for example
[DOPW] for a similar approach to the Standard Model in particle physics,
and [CDGP], [SYZ] and [KS] for some background on T-duality and its
mathematical implications). More specifically, the families of ”toric-type”
compact manifolds Xm

k1,k2
of [G3] (see Definition 3.11 on page 11 of that pa-

per) interpolate between mirror dual Calabi-Yau manifolds on the boundary
of their deformation space. To these manifolds, when m = 3 one can apply
the results of [GG2], while when m = 2 one can apply the constructions of
the present paper.

Another application of the algebraic bundles on s-Kähler manifolds is to
Higgs bundles and Hitchin systems (see for example [HT] and also [BMP]
and [KS]), which follows from the existence of semi-flat tori fibrations.

Beyond their intrinsic algebraic interest, the results which we obtain
are directly applicable to questions in Complex Geometry and in Algebraic
Geometry. The basic reason for this is that a rank two s-Kähler manifold
(or a naturally defined double cover of it, in some cases) has a canonical
complex structure, with which it becomes Kähler of complex dimension
s + 1. We prove that on these Kähler manifolds originating from s-Kähler
geometry there are natural bundles of unitary and orthogonal Lie algebras
of signature (s+1, s+1), which act in various ways on differential forms. It is
this natural way of representing ”large” and well known unitary Lie algebras
on differential forms which opens a wide range of geometric applications. For
comparison, one should recall that the corresponding constructions for plain
Kähler manifolds produce the ”Lefschetz” action of sl(2,C) on forms and
on cohomology, which has a lot of geometric applications and consequences.

The spirit of our investigations is similar to the one of Verbitsky (see e.g.
[V1],[V2]), who builds Lefschetz type operators, Lie algebra representations
and natural bundles on hyperkähler manifolds. Although the similarity is
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inspiring, notice that s-Kähler manifolds are 2s + 2 dimensional and hy-
perkähler only in very special cases, and our structure forms are never sym-
plectic. The algebras that one obtains are as one would expect different: for
example our operators Ljk,Λjk (see Definition 1.2 below) when s = 2 gener-
ate at every point an so(3, 3), while the algebra generated by the Verbitsky
operators Li, Λj (see [V1] pag. 229) is an so(1, 4).

Let us now introduce more in detail the geometric and algebraic char-
acters which will play a role.

Definition 1.1 ([G1], Definition 7.2). — A smooth manifold X of
dimension r(s + 1) + c together with a Riemannian metric g and 2-forms
ω1, ..., ωs is s-Kähler (of rank r) if for each point of X there exist an open
neighborhood U of p and a system of coordinates xi, y

j
i , zk, i = 1, ..., r,

j = 1, ..., s, k = 1, .., c on U such that:

1) ∀j ωj =
∑r

i=1 dxi ∧ dyji ,

2) g(x,y) =
∑r

i=1 dxi⊗dxi +
∑

i,j dy
j
i⊗dy

j
i +

∑c
k=1 dzk⊗dzk + O(2).

The coordinates x1, ..., zc are standard s-Kähler coordinates in a neigh-
borhood of p and the forms (dx1)p, . . . , (dxs)p, (dy1

1)p, . . . , (dyrs)p, (dz1)p, . . . ,
(dzc)p are an adapted coframe at p. The forms ω1, ..., ωs are the structure
forms.

For s = 1 and c = 0 one recovers the usual notion of Kähler manifold. As
in the case of Kähler manifolds or hyperkähler manifolds, one can use the
differential forms associated to the structure to build ”wedge” operators on
forms, and, using their adjoints, one gets natural Lie algebras. When s = 1
one obtains the classical sl(2,C) action on the forms of a Kähler manifold
(and on its cohomology using the Hodge identities). In the case s > 1
there is a qualitatively different situation, in that there are more natural
differential two-forms than one could initially guess. Indeed, in addition to
the structural forms ω1, ..., ωs which generalize directly the Kähler form,
there are also ”mixed” forms ωjk for any pair of distinct indices j, k ∈
{0, ..., s}, including the structural ones via the identifications

ωj = ω0j for j ∈ {1, ..., s}
The precise description of these derived natural forms will be given in the
next section. Here however we can already use them to build corresponding
”wedge” operators, Lefschetz style:

Definition 1.2. — For φ ∈ Ω∗
CX and j, k ∈ {0, . . . s} with j �= k,

Ljk(φ) = ωjk ∧ φ = − Lkj(φ)
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Some canonical mutually orthogonal distributions Wi (i = 0, 1, 2, . . . , s)
are induced on T ∗

pX by the forms ωjk (see Section 2). Therefore other natu-
ral operators, called Vi (i = 0, 1, 2, . . . , s) arise from wedging with the local
volume forms of these distributions.

One then uses all these operators, and their (pointwise) adjoints, to
build a natural bundle of real Lie algebras Ls

R (and its complexified bundle
Ls

C) acting on forms. The global sections of these bundles (which are flat
with respect to the naturally induced flat connections) act naturally on
cohomology. We use this construction in the rational case to build an action
of a rational form of su(s + 1, s + 1) on rational Hodge classes of Abelian
varieties with rational period matrix.

Coming to a more detailed description of the contents of the present
paper, in Section 2 we give the definiton of almost s−Kähler structure,
which is a weaker version of the defintion of s−Kähler structure. Then
we provide a first geometric description of an (almost) s−Kähler manifold
X: we discuss the existence of an (almost) complex structure, the natural
distributions on the cotangent space, the group of local structure-preserving
tranformations and the orientability properties.

Section 3 is devoted to the definition of the bundles of Lie algebras
Ls

R and Ls
C on X which constitute the main object to be studied in this

paper. We also point out two other real forms (sLs,uLs), defined in terms
of geometric generators, of the bundle Ls

C. We then define Lef s as the real
sub-bundle of Ls

C which is the direct (real) generalization of the classical
sl(2,C) Lefschetz bundle of Kähler geometry.

The sections from 4 to 7 are a detailed study of the fibres of above men-
tioned Lie algebra bundles: in Section 4 the Lefschetz bundle Lef s is studied
in detail, by showing some fundamental relations among its generators; the
fibres of the bundle turn out to be isomorphic to the orthogonal algebra
so(s + 1, s + 1,R) and Serre generators are presented in terms of simple
brackets of geometric generators (Theorem 4.5).

In sections 5 and 6 we describe completely the main complex bundle Ls
C:

we use the Hodge decomposition on
∧∗

CT
∗
pX with respect to the (almost)

complex structure and Clifford algebra techniques to show that the fibres of
Ls

C are isomorphic to sl(2s + 2,C); furthermore, we characterize Ls
C as the

bundle of all quadratic elements of trace zero (compatible with the almost
complex structure) of a Clifford algebra bundle (Theorem 6.2). In the second
part of Section 6 we describe completely also the reals forms Ls

R and sLs. In
particular we show that the fibres of Ls

R are unitary Lie algebras isomorphic
to su(s + 1, s + 1). We observe that the complete description of Ls

R fully
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answers to the question (first rised in [G1] and then more precisely in the
rank two case in [GG1]) on the nature of the algebraic bundles generated
by the real canonical operators associated to an s-Kähler structure.

In Section 7 Ls
R and uLs are shown to be the real bundles of operators

which preserve two natural non degenerate hermitean inner products on∧∗
CT

∗
pX (Theorems 7.4 and 7.6) . A superHermitean variant of one of

these inner products was introduced in [GG2] to study rank three WSD
structures.

In Section 8 we show how one can pass from an action on forms to
an action on cohomology when the manifold is s-Kähler . In Section 9 we
put many nonequivalent s-Kähler structures on complex tori. When the
period matrix is rational we build in particular rational s-Kähler structures.
We then find a representation of a rational form of su(s + 1, s + 1) on
rational Hodge classed; this representation is then shown to be irreducible
in Theorem 10.2 of Section 10.

We would like to thank Fabrizio Catanese for various helpful discussions.

2. Introduction to the geometric setting

This section is again introductory in nature, but with a stronger em-
phasis on the geometric aspects of the theory. First, as will have been clear
already to the reader, one can isolate the pointwise aspects of the definition
of an s-Kähler manifold. The notion of almost s-Kähler manifold given be-
low is actually a hybrid between pointwise and local properties, which was
introduced in [G1] (in the nondegenerate case):

Definition 2.1. — A smooth manifold X of dimension r(s + 1) + c
together with a Riemannian metric g and 2-forms ω1, ..., ωs is almost s-
Kähler (of rank r) if for each point of X there exist an open neighborhood
U of p and a system of coordinates xi, y

j
i , zk, i = 1, ..., r, j = 1, ..., s,

k = 1, .., c on U such that:

1) ∀j ωj =
∑r

i=1 dxi ∧ dyji ,

2′) gp =
(∑r

i=1 dxi ⊗ dxi +
∑

i,j dy
j
i ⊗ dyji +

∑c
k=1 dzk ⊗ dzk

)
p
.

The forms (dx1)p, . . . , (dxs)p, (dy1
1)p, . . . , (dyrs)p, (dz1)p, . . . , (dzc)p are an

adapted coframe at p. The forms ω1, ..., ωs are the structure forms.

Definition 2.2. — Associated to an almost s-Kähler structure of rank
r on a smooth manifold X there are smooth two-forms ωjk for any pair of
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distinct indices j, k ∈ {0 . . . s}. We have ω1 = ω01, ..., ωs = ω0s and for any
point p ∈ X and any adapted coframe v01, . . . , v0s, v11, . . . , vrs, u1, ..., uc at
p

ωjk =
r∑

i=1

vij ∧ vik

The forms ωjk with j, k ∈ {1, ..., s} are called dualizing forms.

Remark 2.3. — It is easily verified that the dualizing forms do not de-
pend on the particular adapted coframe used to define them (see for example
[G1]).

Remark 2.4. — Since condition 2) of Definition 1.1 implies condition 2′)
of Definition 2.1, s-Kähler implies almost s-Kähler .

Clearly there are some redundancies in the definition given above: for
example, one has always ωjk = −ωkj . Observe also that an almost 1-Kähler
manifold is simply an almost Kähler manifold, and for this reason in this
paper we consider only the case s � 2 which is moreover the range where
our constructions do exist. Recall also that an almost 2-Kähler manifold in
which the structure forms are closed is a Weakly Self Dual manifold (see
[G2], Definition 2.6 and [G3], where one of the authors built families of
compact WSD manifolds of toric type by a quotient construction). In this
respect, in particular a 2-Kähler manifold is WSD. Notice that the term
”WSD” has been used by various authors (e.g. Apostolov et al.) in a very
different context.

The almost s-Kähler structure on a manifold X splits its cotangent space
as T ∗

pX = W0 ⊕W1 ⊕ · · ·⊕Ws where the Wj are s+ 1 mutually orthogonal
canonical distributions defined as:

Wj = {φ ∈ T ∗
pX | φ ∧ ωjk = 0 for k in 0, .., ĵ, .., s}

The almost s-Kähler structure also determines canonical pairwise linear
identifications among the spaces Wj , so that one can also write T ∗

pX
∼=

W0 ⊗R Rs+1 or more simply

T ∗
pX

∼= W ⊗R Rs+1

where W = W0
∼= W1

∼= · · · ∼= Ws.

Let us now come back to the canonical operators Ljk mentioned in the
Introduction.

We now choose an orientaion of W0 at a fixed point p ∈ X, and a
(non-canonical) orthonormal basis γ1, γ2 compatible with this orientation;
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this together with the standard identifications of the Wj determines an
orientation and an orthonormal basis for T ∗

pX, which we write as {vij =
γi⊗ej | i = 1, 2, j = 0, .., s}. We remark that the vij are an adapted coframe
for the almost s-Kähler structure as defined above, and therefore we have
the explicit expressions:

ωjk = v1j ∧ v1k + v2j ∧ v2k

A different choice of the γ1, γ2 would be related to the previous one by an
element in O(2,R). The Lie algebra of the group O(2,R) expressing the
change from one adapted basis to another is generated point by point by
the operator J , which is determined and determines a (pointwise, local or
global if possible) orientation of the distribution W0:

Definition 2.5. — The operator J ∈ EndR(
∧∗

T ∗
p (X)) associated to

the standard basis vij is defined as

J(v1j) = v2j , J(v2j) = −v1j for j ∈ {0, 1, . . . , s}

and J(v ∧ w) = J(v) ∧ w + v ∧ J(w) for v, w ∈ Λ∗T ∗
pX

Remark 2.6. — As J commutes with itself, and it is determined at every
point p ∈ X by an orientation of (W0)p ⊂ TpX, it is always well defined
locally. Of course, J admits a global determination if and only if W0 admits
a global orientation. This happens for example if X is orientable and s is
even.

Whenever we will need a local volume form on X, we will use the one
induced by a local choice of J which we will call Ωp over the point p ∈ X.

From the above considerations one gets the following fundamental re-
mark:

Remark 2.7. — An (almost) s-Kähler manifold of rank 2 is in particular
an (almost) complex manifold of complex dimension s+1, when there is a
global determination of J . This happens in particular when X is orientable
and s is even.

For this reason, rank two (almost) s-Kähler manifolds can be seen as a
chapter in (almost) complex geometry. This allows on one hand to ”import”
the techniques of complex geometry, and on the other hand allows one to
apply the results of rank two almost s-Kähler geometry to the complex
world.

– 425 –



Giovanni Gaiffi, Michele Grassi

The following direct construction of almost s-Kähler manifolds is used
in [G3] and [GG2] for the applications of the theory to Mirror Symmetry
and mathematical physics. Let M be a smooth Riemannian manifold with
metric h, and let

X = T ∗M ⊗M · · · ⊗M T ∗M︸ ︷︷ ︸
s times

The manifold X is naturally almost s-Kähler of rank dim(M). The metric
h induces naturally a Riemannian metric g on X and the differential forms
ωjk come in two sets, with different constructions: the ones in which j or k is
equal to zero and the other ones. If πj is the natural projection from X to the
j-th copy of T ∗M , then ω0j = π∗

jωst where ωst is the standard symplectic
form on the cotangent bundle T ∗M . Observe then that using the Levi-Civita
connection associated to the metric (induced by g on the cotangent bundle
of M) we have a natural identification at any point Q = (p, φ1, ..., φs) ∈ X

TQX ∼= TpM ⊕ T ∗
pM ⊕ · · · ⊕ T ∗

pM︸ ︷︷ ︸
s times

Let us call Wjk ⊂ TQX the direct sum of the jth and of the kth summands
among the copies of T ∗

pM in the identification above:

T ∗
pM ⊕ T ∗

pM
∼= Wjk ⊂ TQX

Using the metric, we can define ωij ∈
∧2

T ∗
QX simply by defining a natural

element in
∧2

W ∗
jk. To do so, it is enough to observe that the identity

(bundle) map from TpM to itself is an element Id ∈ T ∗
pM ⊗ TpM . This

space is naturally isomorphic (using the metric h) to TpM ⊗ TpM and this
last space maps naturally to

2∧
(TpM ⊕ TpM) ∼=

2∧
W ∗

jk ⊂
2∧
T ∗
QX

where the last inclusion is again induced by the use of the metric. For more
details see [G1] (Example 2.3), [G3] and [GG2].

When the structure is s-Kähler , one has that all the structure forms are
covariant constant with respect to the Levi-Civita connection associated to
the metric. This allows one to perform many of the same constructions that
one usually performs in the Kähler case. In particular, one recovers (the
analog of) the Hodge identities, and the adjoints of the canonical operators
Ljk operate on cohomology (see Theorem 8.1 and Corollary 8.2). This is the
context in the case of Abelian varieties, which in our opinion will provide
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many interesting applications of the constructions to be detailed in the
present paper.

For a general rank of the structure r � 1, many of the above considera-
tions generalize; for example the group of pointwise transformations which
preserve the structure is O(r). As we have seen above, in the r = 2 case we
obtain O(2) whose algebra is generated by J , while the r = 3 case (in which
comes into play O(3)) was discussed in detail in [GG2]. Clearly however,
not everything generalizes to arbitrary rank: for example, a rank three s-
Kähler manifold may be of (real) dimension 9, which is odd and therefore it
is impossible to have an almost complex structure on such a manifold. Still
in case r = 3, one has natural operators also in odd degree, and therefore
the natural algebras which come out of the geometry are Lie superalgebras,
instead of Lie algebras (see [GG2]).

3. Construction of the natural algebras

In this section we fix a point p in an almost s-Kähler manifold X and
we mostly work on tensor powers of TpX.

As was mentioned in the previous sections, using the forms ωjk of the
almost s-Kähler structure, we can build corresponding operators on forms,
much in the way as the L operator is built on Kähler manifolds:

Definition 1.2. — For φ ∈ Ω∗
CX and j, k ∈ {0, . . . s} with j �= k,

Ljk(φ) = ωjk ∧ φ = − Lkj(φ)

The above operators restrict also to
∧∗

T ∗
pX for any p ∈ X where,

using the chosen (orthonormal) basis, one can define also corresponding
(non canonical) wedge and contraction operators:

Definition 3.1. — Let i ∈ {1, 2}, j ∈ {0, 1, . . . , s} and p ∈ X. The
operators Eij and Iij are respectively the wedge and the contraction operator
with the form vij on

∧∗
T ∗
pX (defined using the given basis); we use the

notation ∂
∂vij

to indicate the element of TpX dual to vij ∈ T ∗
pX:

Eij(φ) = vij ∧ φ, Iij(φ) =
∂

∂vij
⇀ φ

Proposition 3.2. — The operators Eij , Iij satisfy the following rela-
tions:

∀i, j, k, l EijEkl = −EklEij , IijIkl = −IklIij
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∀i, j EijIij + IijEij = Id

∀(i, j) �= (k, l) EijIkl = −IklEij

∀i, j E∗
ij = Iij , I∗ij = Eij

where ∗ is adjunction with respect to the metric.

Proof . — The proof is a simple direct verification, which we omit. �

It is then immediate to check that:

Proposition 3.3. — J can be expressed on the whole
∧∗

T ∗
pX as

J =
s∑

j=0

(E2jI1j − E1jI2j)

Remark 3.4. — From this expression and the previous proposition one
obtains that J∗ = −J , i.e. for every p the Lie algebra generated by J is a
subalgebra of o(

∧∗
T ∗
pX) isomorphic to so(2,R) ∼= R.

Using the (non canonical) operators Eij we can obtain simple expressions
for the pointwise action of the canonical wedge operators Vj associated to
the volume forms of the distributions Wj :

Definition 3.5. — For φ ∈
∧∗

T ∗
pX and j ∈ {0, . . . , s},

Vj(φ) = E1jE2j(φ)

Remember however that the operators Vj , being simply multiplication
by the volume forms of the spaces Wj , depend on the choice of a pointwise
orientation for these spaces, which is implied for example by the choice of
a determination for the operator J . Notice that when s is even, and X is
oriented, it is always possible to define J (and consequently Vj) globally on
X. On the opposite extreme situation, if X is non-orientable, it is certainly
not possible to orient globally any one of the distributions Wj (and a fortiori
you cannot determine J globally).

The Riemannian metric induces a Riemannian metric on T ∗
pX and on

the space
∧∗

T ∗
pX.

Definition 3.6. — For j �= k ∈ {0, 1, . . . , s}

Λjk = L∗
jk, Aj = V ∗

j
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By construction the canonical operators Ljk,Λjk on
∧∗

T ∗
pX are the

pointwise restrictions of corresponding global operators on smooth differen-
tial forms, which we indicate with the same symbols: for j �= k ∈ {0, 1, . . . , s},

Ljk,Λjk : Ω∗(X) → Ω∗(X)

In the study of Kähler geometry, a central role is played by the Lie algebra
generated by Lefschetz operator and its adjoint. The direct generalization of
that algebra to the setting of (almost) s-Kähler manifolds is the following:

Definition 3.7. — The smooth bundle of Lie algebras Lef s is the real
sub-bundle of Lie algebras of EndR (Ω∗(X)) generated locally by the opera-
tors

{Ljk,Λjk | for j = 0, 1, . . . , s}

The Vj , Aj instead can be always determined locally via a local deter-
mination of the operator J even when s is odd. Summing up:

Definition 3.8. — The smooth bundle of Lie algebras Ls
R is the real

sub-bundle of Lie algebras of EndR (Ω∗(X)) generated locally by the opera-
tors

{Ljk, Vj ,Λjk, Aj | for j = 0, 1, . . . , s}

for any fixed determination of J . The ∗-Lie algebra Ls
C is Ls

R ⊗R C. The
∗ operator on Ls

C is induced by the adjoint with respect to the Hermitean
metric induced by the Riemannian one via complexification.

As mentioned in the Introduction, in the present paper we will describe
completely the structure of the fibers of the bundles Lef s,Ls

R,Ls
C, and we

will further describe two other real forms of Ls
C, which are especially signif-

icant from a geometric point of view. Here are their definitions:

Definition 3.9. — The real form sLs of the complex bundle of ∗-Lie
algebras Ls

C is generated (as a bundle of real Lie algebras) by the local op-
erators:

Ljk, ıVj , Λjk, ıAj

Definition 3.10. — The real form uLs of the complex bundle of ∗-Lie
algebra Ls

C is generated (as a bundle of real Lie algebras) by the local oper-
ators:

ıLjk, ıVj , iΛjk, ıAj
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4. Clifford algebras and a natural presentation of Lef s as a
so(s+ 1, s+ 1,R) bundle

In this section we will show that Ls
R lies inside a (real) Clifford algebra

bundle over the (4s + 4)-dimensional real bundle TX ⊕ T ∗X; we will also
point out that the natural bundle of Lie subalgebras Lef s ⊂ Ls

R is isomorphic
to the constant bundle having as fibre the orthogonal algebras so(s+ 1, s+
1,R). Notice that the above considerations do not apply to the s = 1 (Kähler
) situation; Lef s in that case is simply a constant sl(2,R) bundle, as it is
well know classically. Notice also that this global trivialization of Lef s does
not depend on a determination of the (almost) complex structure J .

In the following we define some new operators, and in the meantime we
introduce a unifying notation which concerns the Ljk,Λjk. These operators
will be shown in Corollary 4.3 to be (global) sections of Ls

R.

Definition 4.1. — For j, k ∈ {0, . . . , s}

Ljk =
2∑

i=1

EijEik Ljk̄ =
2∑

i=1

EijIik

Lk̄j̄ = Λjk =
2∑

i=1

IikIij Lj̄k =
2∑

i=1

IijEik

In accordance with the notation introduced in [G2] Section 7, we will use
the shortcuts Lαβ with α, β ∈ {0, . . . , s, 0, . . . , s}, with the convention that
α = α.

Notice that with the above notation Lαα = 0 for any α ∈ {0, . . . , s, 0, . . . , s}.

Lemma 4.2. — Given α, β, γ ∈ {0, . . . , s, 0, . . . , s} with α �= β, α �=
γ, γ �= β :

[Lαβ , Lβγ ] = Lαγ

Given α �= β ∈ {0, . . . , s, 0, . . . , s}:

[Lαβ , Lβ α] = Lαα + Lββ

Given α, β, γ, δ ∈ {0, . . . , s, 0, . . . , s} with {α, β} ∩ {γ, δ} = ∅ :

[Lαβ , Lγδ] = 0

Proof . — We prove the first relations with α = i, β = j, γ = k. The other
cases are proved similarly. The third set of relations is straightforward due
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to the anticommutativity of the degree one operators which appear in the
expressions of Lαβ , Lγδ .

For the first set of relations, a direct computation which is based on the
fundamental relations 3.2 among the operators Eij and Irs proves:

[Lij , L j k ] =
∑
r

EriErj

∑
s

IsjIsk −
∑
s

IsjIsk
∑
r

EriErj =

=
∑
r

EriErj

∑
s

IsjIsk −
∑
s �=r

EriErjIsjIsk −
∑

s (s=r)

IsjIskEsiEsj =

=
∑
r

EriErj

∑
s

IsjIsk −
∑
s �=r

EriErjIsjIsk +
∑

s (s=r)

EsiIsjEsjIsk =

=
∑
r

EriErj

∑
s

IsjIsk−
∑
s �=r

EriErjIsjIsk+
∑
s

EsiIsk−
∑
s

EsiEsjIsjIsk =

=
∑
s

EsiIsk = Li k

�

Corollary 4.3. — Given any choice of indices j �= k, the elements
L j k, Lj k belong to Γ(X,Lef s) ⊂ Γ(X,Ls

R ∩ sLs). Furthermore, for every
j = 0, 1, 2, . . . , s, the elements Lj j belong to Γ(X,Lef s) ⊂ Γ(X,Ls

R ∩ sLs).

Proof . — For any fixed p ∈ X, the values of the elements Ljk and L j k at
p are (maybe up to a sign) among the generators of the fibre of Ls

R ∩ sLs

at p. To show that Lj k is a section of Ls
R ∩ sLs we notice that, since s � 2,

we can find an index i ∈ {0, 1, 2, . . . , s} which is different from both j and
k. Then we can use the lemma above and construct Lj k as:

[Lji, L i k ] = Lj k

The element L j k is equal to −L∗
j k

and therefore also is a section of Ls
R∩sLs.

As for the last assertion, it follows from the first one and the fact that
(according to the above lemma) [Lij , L j i ] = Li i + Lj j and [Li j , Lj i ] =
Li i − Lj j . �

The operators defined below give rise to a set of Serre generators for
Γ(X,Lef s), as shown in the following Theorem.

Definition 4.4. — Let us define:

e1 = L10, e2 = L21, e3 = L32, ....., es−1 = Ls−1s−2, es = Lss−1, es+1 = Ls−1s

Moreover, for every i = 1, 2, . . . , s+ 1, let fi be the adjoint of ei.
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Theorem 4.5. — The global operators ei, fj and hi = [ei, fi] restrict to
a set of Serre generators of Lef sp for any p ∈ X, and Lef s is (canonically)
a trivial Lie algebra bundle with fibre isomorphic to so(s+ 1, s+ 1,R).

Proof . — From the previous corollary, the global operators ei , fj and
hi = [ei, fi] are sections of Lef s. It is immediate, using Lemma 4.2, to check
that these elements are also enough to produce a set of linear generators of
Lef sp. We are left with the verification of the Serre relations for a root system
of type Ds+1. We consider a basis of simple roots α1, α2, . . . , αs−2, αs−1, αs,
αs+1 indexed according to the labelled Dynkin diagram of type Ds+1, where
the bifurcation node is associated to αs−1 and α1, ..., αs are consecutive
roots forming a diagram of type As−1. The Serre relations are actually all
consequence of Lemma 4.2. For instance, [h1, e1] = 2e1 follows from the
observation that h1 = [L1,0, L0,1] = L1,1 − L0,0 and then

[h1, e1] = [L1,1 − L0,0, L1,0] = L1,0 − [L0,0, L1,0] = 2L1,0 = 2e1

Two other examples:

[hs+1, es] = [[Ls−1s, Ls(s−1)], Lss−1] = −[Ls−1s−1+Lss, Lss−1] = Lss−1−Lss−1 = 0

[hs+1, es−1] = −[Ls−1s−1 + Ls,s, Ls−1s−2] = −[Ls−1s−1, Ls−1s−2] − 0

= −Ls−1s−2 = −es−1

�

Remark 4.6. — We notice that Theorem 4.5 is in accordance with [GG1]
and [GG2] where the specialization of these computations to the case of
WSD manifolds of rank two and three led us to the description of a natural
subalgebra isomorphic to sl(4,R) ∼= so(2, 2,R).

An alternative interpretation of the relations in Lemma 4.2 and of the
appearance of Ds+1 is thruough the use of two different Clifford Algebras,
which will play a prominent role in the rest of this paper. For the first one,
generalizing to arbitrary s the s = 2 case considered in [GG1], we define:

Definition 4.7. — For p ∈ X, the Clifford algebra Cp is

Cp = Cl(TpX ⊕ T ∗
pX, q)

with the quadratic form q induced by the metric

∀i, j, h, k < vij , vhk >= 0
∀i, j, h, k < ∂

∂vij
, ∂
∂vhk

>= 0
∀(i, j) �= (h, k) < vij ,

∂
∂vhk

>= 0
∀i, j < vij ,

∂
∂vij

>= − 1
2
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Remark 4.8. — The Clifford algebras Cp for varying p define a Clifford
bundle C on X, as the definition of Cp is independent on the choice of a
basis. Indeed, the quadratic form used to define it is simply induced by − 1

2
times the natural bilinear pairing TpX ⊗ T ∗

pX → R.

Proposition 4.9. — The Clifford algebra Cp has a canonical represen-
tation ρp on

∧
T ∗
pX, induced by the wedge and contraction operators Eij

and Iij via the map

ρp(vij) = Eij , ρp

(
∂

∂vij

)
= Iij

Proof . — The Clifford relations

φψ + ψφ = −2 < φ,ψ >

are precisely the content of Proposition 3.2. �

Abusing slightly the notation, we will identify Cp with its (faithful) image
inside EndR

(∧∗
T ∗
pX

)
, and we will omit any reference to the map ρp when it

will not be necessary. Actually, as the representation above is a real analogue
of the Spinor representation, it is easy to check that the map ρp is an
isomorphism of associative algebras. One then has:

Definition 4.10. — The linear subspace C2
p of Cp is the image of the

natural map
∧2(TpX ⊕ T ∗

pX) → Cp. The linear subspace C0
p of Cp is the

subspace generated by 1.

Recall (see for instance [LM]) that C2
p is a Lie subalgebra of Cp (with the

commutator bracket).

Proposition 4.11. — The bundle of Lie algebras Ls
R is a sub-bundle of

C2. Any local determination of the operator J is a (local) section of C2.

Proof . — Let us fix p ∈ X. We consider the pointwise values of the
operators Lαβ , the Vj and the Aj ; they all lie inside C2

p ⊕C0
p by Proposition

3.2 and by the fact that the forms ωij restrict to elements of
∧2

T ∗
pX.

The space < J > lies inside C2
p ⊕ C0

p by Proposition 3.3. By definition
the elements C2

p are commutators, and therefore have trace zero in any
representation, and hence also in the ρp. Moreover, again by inspection all
the generators of the fibre in p of Ls

R have trace zero once represented via ρp
(they are nilpotent), and therefore they must lie inside C2

p . Both pointwise
determinations of operator J are in the Lie algebra of the isometry group,
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and therefore they too have trace zero and hence sit inside C2
p . As C2

p is
closed under the commutator bracket of Cp, and this commutator coincides
with the composition bracket of operators, we have the conclusion. �

Remark 4.12. — For any p ∈ X, the Clifford algebra Cp is isomorphic to
the standard Clifford Algebra Cl2s+2,2s+2, as the metric used to define it
has signature (2s+2, 2s+2). The previous proposition therefore shows that
all the fibres of Ls

R are Lie subalgebras of Cl22s+2,2s+2
∼= spin2s+2,2s+2.

Remark 4.13. — For any fixed p ∈ X, giving degree 1 to the operators
Eij and degree −1 to the operators Iij , we induce a Z-degree on Cp. This
degree coincides with the degree of the operators induced from the grading
on the forms from

∧∗
T ∗
pX.

Similarly to Definition 4.7, for any p ∈ X one could define a Clifford
Algebra

Cl(Rs+1 ⊕ (Rs+1)∗, qnat)

where qnat is the quadratic form induced by (− 1
2 times) the natural paring

and
Rs+1 =< Ẽ0, ..., Ẽs >, (Rs+1)∗ =< Ĩ0, ..., Ĩs >

One has also a natural representation on
∧∗

TpX of the operators [Ẽj , Ẽk],
[Ẽj , Ĩk], [Ĩj , Ĩk] generating the degree two part of this Clifford Algebra, in-
duced by the map which acts as follows:

[Ẽj , Ẽk] → 2Ljk

[Ẽj , Ĩk] → 2Lj k

[Ĩj , Ĩk] → 2L j k

This gives directly the bundle Lef s as a quotient of the spins+1,s+1 Lie
Algebra bundle of this Clifford bundle, proving again that its fibre is indeed
so(s+ 1, s+ 1,R).

5. Quadratic invariants and Hodge decomposition

Fixing p ∈ X and a determination J at p, the complex structure J acts
on all the Clifford algebra Cp by adjunction with respect to the commutator
bracket, and sends its quadratic part C2

p to itself from Proposition 4.11.

Definition 5.1. — We call quadratic invariants the elements in C2
p which

commute with J . For varying p, we obtain a bundle of quadratic invariants.
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As usual, to decompose the representation
∧∗

T ∗X with respect to the
weight induced by J , it is necessary to consider complexified forms (and
algebras). The weight decomposition of the space T ∗

pX ⊗ C is obtained
introducing a new basis for each Wj ⊗ C =< v1j , v2j >C:

wj =
1√
2
(v1j + ı v2j), wj =

1√
2
(v1j − ıv2j)

To describe explicitely the space of (complex) quadratic invariants in the
Clifford algebra Cp, let us introduce the following notation, which gives a
basis of eigenvectors for the (adjoint) action of J :

Definition 5.2. —

Ewj =
1√
2
(E1j + ıE2j), Ewj

=
1√
2
(E1j − ıE2j)

Iwj
=

1√
2
(I1j − ıI2j), Iwj

=
1√
2
(I1j + ıI2j)

Lemma 5.3. — The adjoint action of the complex structure operator J
on Ewj

, Iwj
, Ewj

, Iwj
is:

[J,Ewj ] = −ıEwj , [J, Iwj ] = ıIwj

[J,Ewj
] = ıEwj

, [J, Iwj
] = −ıIwj

Proof . — It is enough to consider the corresponding J-weights of the
wj , wj . �

As Ls
C ⊂ C2⊗C from Proposition 4.11, in the following we show that Ls

C

lies inside the bundle of quadratic invariants. Immediately after we will give
a basis for the space of quadratic invariants, thus providing a first upper
bound for Ls

C (which will be later shown to be off by only 1).

Proposition 5.4. — The operator J commutes with all the elements in
the fiber at p of Ls

C.

Proof . — We prove the statement by a direct computation. Since

ωjk = v1j ∧ v1k + v2j ∧ v2k =
1
2

(wj ∧ wk + wj ∧ wk)

we have
Ljk =

1
2

(
[Ewj , Ewk

] − [Ewk
, Ewj

]
)
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The vanishing [J, Ljk] = 0 then follows immediately from Lemma 5.3. Sim-
ilarly, to show that [J, Vk] = 0 one uses

Vk =
ı

2
[Ewk

, Ewk
]

The corresponding commutation relations for the adjoint operators follow
from the fact that J∗ = −J , as noticed in Remark 3.4. �

The following proposition will show that, except for a toral part which
will be discussed later, all the quadratic invariants of the Clifford bundle C
lie inside sLs ⊂ Ls

C. It will follow therefore that

4(s+ 1)2 − 2(s+ 1) � dimR sLs � dimC Ls
C � 4(s+ 1)2

Proposition 5.5. — The following 4(s+1)2 operators are a linear basis
for the quadratic J-invariants:

(1) [Ewi
, Ewj

] with i �= j (2) [Iwi
, Iwj

] with i �= j
(3) [Ewi

, Ewi
] where i = 0, 1, . . . , s (4) [Iwi

, Iwi
] where i = 0, 1, . . . , s

(5) [Ewi , Iwj ] with i �= j (6) [Ewi
, Iwj

] with i �= j
(7) [Ewi

, Iwi
] where i = 0, 1, . . . , s (8) [Ewi

, Iwi
] where i = 0, 1, . . . , s

The 4(s+ 1)2 − 2(s+ 1) operators of type (1), (2), (3), (4), (5), (6) belong to
the bundle of real algebras sLs ⊂ Ls

C.

Proof . — In this proof, we fix p ∈ X and all the bundles and operators
will be considered at this point. To be J-invariant means simply to have
weight zero, and the computation of the J-weight of the quadratic mononials
follows immediately from those of Ewj , Iwj , Ewj

, Iwj
, which are respectively

−ı, ı, ı,−ı.

It remains to be shown that the monomials of type (1), (2), (3), (4), (5), (6)
belong to sLs. By adjunction it is enough to deal with types (1), (3), (5).
From the proof of Proposition 5.4 we know that the monomials of type (3)
are (up to a scalar) the generators ıVj . The proof for types (1) and (5) is
similar. Let us consider for instance a monomial of type (1) [Ewi , Ewj

] with
i �= j. Since Ewi and Ewj

anticommute, this is equal to 2EwiEwj
. Then

2Ewi
Ewj

= (E1i+ıE2i)(E1j−ıE2j) = E1iE1j+E2iE2j+ı(E2iE1j−E1iE2j)

= Lij + ı(E2iE1j − E1iE2j)

We have therefore to show that ı(E2iE1j − E1iE2j) belongs to sLs.
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We recall that, by Corollary 4.3, the elements Li j belong to sLs and
notice that

[Li j , ıVj ] = ı(E1iI1j + E2iI2j)E1jE2j − ıE1jE2j(E1iI1j + E2iI2j)

= ı(E1iE2j−E1iE1jI1jE2j−E2iE1j+E2iE1jE2jI2j−E1jE2jE1iI1j−E1jE2jE2iI2j)

= ı(E1iE2j − E2iE1j)

�

6. The fibres of the bundles Ls
C
, Ls

R
and sLs

In this section we fix once and for all a determination of J at the point
p and consider the Hodge decomposition of

∧∗
C

T ∗
p X with respect to the

(almost) complex structure J . We will use this information to first study the
complex algebra formed by the fibers at the point p of the bundle Ls

C
. In the

second part of this section we will concentrate on its real forms associated to
the bundle Ls

R
and to the bundle sLs generated by the Lefschetz operators

Lαβ and by the ıVj , ıAk.

The Hodge (type) decomposition of forms on X with respect to the
complex structure J can be described as usual explicitely as follows, using
the J-homogeneous basis wj , wk:

r,t∧
T ∗

CXp =< wi1 ∧ · · · ∧wir
∧wj1 ∧ · · · ∧wjt

| i1, ..., jt ∈ {0, 1, 2, . . . , s} >C

Definition 6.1. — At a given point p ∈ X, and with the chosen a deter-
mination of J at p, we indicate with Iα the subspace (isotypical component)
of forms of J-weight ıα (−s − 1 � α � s + 1).

Theorem 6.2. — Let X be a (almost, pointwise) s-Kähler manifold or
rank two.

a) The Lie algebra bundle Ls
C

has fibre isomorphic to sl(2s + 2, C).

b) At a given point p ∈ X, the direct sum of Ls
C,p with the space spanned

by the operator Jp is the set of all quadratic invariants of Cp.

c) At a given point p ∈ X, the restriction of Ls
C

to the 2s+2 dimensional
space I−s of forms of J-weight −s is faithful.
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Proof . — We work at a fixed point p.

The isotypical component I−s has dimension 2s+2 and has a basis {bi}
(0 � i � 2s+ 2) given by the following monomials:

• bi = w0 ∧ . . . ∧ ŵi ∧ · · · ∧ ws, for i ∈ {0, 1, 2, . . . , s}, where ŵi means
that wi is omitted and therefore the monomial has degree s.

• bs+1+i = w0∧· · ·∧ws∧wi, where i ∈ {0, 1, 2, . . . , s} and the monomial
has degree s+ 2.

It is then immediate to check that, for instance:

[Ew0 , Iw1 ](b0) = [Ew0 , Iw1 ](w1∧· · ·∧ws) = 2w0∧ŵ1∧· · ·∧ws = 2b1

[Ews , Ew0 ](bs) = [Ews , Ew0 ](w0∧· · ·∧ws−1) = 2w0 · · ·∧ws∧w0 = 2bs+1

Completely analogous computations show that, when we represent the
action of Ls

C,p on the isotypical component I−s using the above mentioned
basis, all the elementary matrices eij (where i �= j and eij is the matrix
with all the entries equal to 0 except for the entry (i, j) which is 1) are ob-
tained using the quadratic invariants of type (1), (2), (3), (4), (5), (6) which
in Proposition 5.5 were shown to lie in Ls

C,p.

More precisely, we have the following identifications for the “positive”
set of Serre generators ej+1,j :

• ej+2,j+1 = 1
2 [Ewj

, Iwj+1 ] for 0 � j � s− 1;

• es+2,s+1 = 1
2 [Ews

, Ew0 ];

• es+3+j,s+2+j = 1
2 [Ewj+1 , Iwj

] for 0 � j � s− 1.

Therefore Ls
C,p acts as sl(2s+2,C) on I−s (notice that, as the generators

Lij , Λij = L j i , Vi, Ai of Ls
C,p are nilpotent, they still have trace zero when

restricted to I−s ).

Summing up, the algebra Ls
C,p has a quotient isomorphic to the simple

algebra sl(2s + 2,C) and is embedded in the 4(s + 1)2-dimensional space
of the quadratic invariants; now, since the quadratic invariant Jp doesn’t
belong to Ls

C,p (in fact the trace of its restriction to I−s is different from
0, since Jp acts on I−s as multiplication by −ıs), we conclude that Ls

C has
dimension 4(s + 1)2 − 1. Therefore the restriction to I−s provides us with
an isomorphism of Ls

C,p with sl(2s+ 2,C). �
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We want now to characterize explicitely the matrices of Ls
R,p. Notice

that the basis that we use is not real, but we will show that the matrices
are nevertheless in the standard form for su(s+ 1, s+ 1).

Theorem 6.3. — The algebra Ls
R,p is isomorphic to su(s + 1, s + 1).

With respect to the basis {ci} of I−s defined below, Ls
R,p is faithfully pre-

sented as the algebra of matrices(
D H2

H1 −Dt

)

with D an (s+1)× (s+1) complex matrix and H1, H2 two (s+1)× (s+1)
complex antihermitean matrices.

Proof . — We start by noticing that the operators of degree zero Lj k

(j �= k) (which lie in Lef sp ⊂ Ls
R,p) can be expressed in terms of the basis of

quadratic invariant monomials as:

2Lj k = [Ewj , Iwk
] + [Ewj

, Iwk
]

It is convenient to use a basis {cr} of I−s which differs from the basis {br}
provided in the proof of Theorem 6.2 only for some signs. This same basis
will be used in the proof of Theorem 7.4 below.

Namely, {cr} (0 � r � 2s+ 2) is given by the following monomials:

• cr = br = w0 ∧ . . . ∧ ŵr ∧ · · · ∧ ws, for r ∈ {0, 1, 2, . . . , s};

• cs+1+r = w0 ∧ · · · ∧ wr ∧ wr ∧ · · · ∧ ws, for r ∈ {0, 1, 2, . . . , s}.

This allows us to compute, for i = 0, 1, 2, . . . , s:

Lj k (ci) = 0 if i �= j

Lj k (cj) =
1
2
[Ewj , Iwk

](cj) = −Iwk
Ewj (cj) = −(−1)j+kck

and
Lj k (cs+1+i) = 0 if i �= k

Lj k (cs+1+k) =
1
2
[Ewj

, Iwk
](cs+1+k) = Ewj

Iwk
(cs+1+k) = (−1)j+kcs+1+j

This means that the matrices of the degree 0 subalgebra generated by
the operators Lj k have real coefficients and, more precisely they are all the
matrices with the following block-form:(

A 0
0 −At

)
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where A is a real (s + 1) × (s + 1) matrix with trace zero. This explicitely
establishes an isomorphism between < Lj k >R and sl(s+ 1,R).

The computation of the matrices of the operators Vj is made easier by
the use of the relation contained in the proof of Proposition 5.4:

Vj =
ı

2
[Ewj

, Ewj
]

We can now observe that, for i = 0, 1, 2, . . . , s:

Vj(ci) = 0 if i �= j

Vj(cj) =
ı

2
2Ewj

Ewj
(cj) = ıcs+1+j

This, together with the observation that

Vj(cs+1+i) = 0 ∀i = 0, . . . , s

implies that the matrix of Vj has the following block-form:(
0 0
ıB 0

)

where B is a real and symmetric (actually diagonal) (s+1)×(s+1) matrix.

It follows that all the matrices of the above form are in Ls
R,p since they

provide an irreducible representation for the adjoint action of < Lj k >R
∼=

sl(s + 1,R): notice that the action of a matrix with upper diagonal A over
one with lower left block ıB is as follows:

ıB → −ı(BA + tAB)

As for the operators Ljk (j �= k) of degree two, as it has been shown in
Proposition 5.4:

2Ljk = [Ewj
, Ewk

] − [Ewk
, Ewj

]

Therefore,
Ljk(ci) = 0 if i �= j, k

and
Ljk(cj) = −Ewk

Ewj (cj) = (−1)j+kcs+1+k

Ljk(ck) = Ewj
Ewk

(ck) = −(−1)j+kcs+1+j

This, together with the observation that

Ljk(cs+1+i) = 0 ∀i = 0, . . . , s
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implies that the matrix of Ljk has the block-form:

(
0 0
C 0

)

where C is a real and antisymmetric (s+ 1) × (s+ 1) matrix. Then all the
matrices of the above form are in Ls

R,p since they provide an irreducible
representation for the action of < Lj k >R

∼= sl(s+ 1,R) similarly as before.

In the same way, acting with < Lj k >R
∼= sl(s + 1,R) on the adjoint

operators Λjk and Aj , we can show that Ls
R,p contains all the matrices of

the form (
0 H
0 0

)

where H is a complex antihermitean (s+ 1) × (s+ 1) matrix.

It is now immediate to check that the matrices constructed above gen-
erate the matrix algebra as in the claim. To conclude it is enough to use
point c) of Theorem 6.2, which states that the restriction of Ls

R,p to I−s is
faithful. �

Remark 6.4. — By inspection of the proof above one checks that the
matrices of the generators are actually in Q[ı], the structure constants of
the algebra Ls

R,p turn out to be in Q, and the algebra generated over Q

is a rational form of su(s + 1, s + 1). This form is explicitely exhibited as
the algebra of matrices described in the statement of the Theorem, with
coefficients in Q[i].

Theorem 6.5. — The bundle of real Lie algebras sLs has fibre isomor-
phic to the Lie algebra sl(2s+ 2,R).

Proof . — From the proofs of Theorem 6.2 and of Proposition 5.4 it fol-
lows that sLs is included in the real sl(2s + 2,R) bundle generated by the
quadratic monomials of types (1), (2), . . . , (5), (6). We conclude observing
that this bundle is a real form of Ls

C, and therefore coincides with the real
form sLs. �

Remark 6.6. — An explicit computation (based on the matrix represen-
tations of the algebras Ls

R,p and sLs
p with respect to the basis {cr} of I−s)

shows that the orthogonal algebra Lef sp ∼= so(s+1, s+1) coincides with the
intersection Ls

R,p ∩ sLs
p.
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7. Invariant quadratic forms

In the previous section we described completely the complex bundles of
Lie algebras Ls

C, Ls
R and sLs. Here, we will construct two natural quadratic

forms, and we will show that the natural bundles of real Lie algebras uLs

and Ls
R are precisely the bundles of their respective invariant sections. This

will show that the fibre of uLs is isomorphic at every point to su(s+1, s+1).

On the complex bundle of vector spaces
∧∗

C T
∗X there is a natural her-

mitean inner product < , >, obtained from the wedge operation on forms
(cf. [GG2] where we used a superHermitean variant of this product for
the rank 3 case), and defined below. Associated to this pairing, there is a
natural notion of antihermitean operator. We will prove that the set of anti-
hermitean operators inside Ls

C is a real form for Ls
C, generated by operators

naturally derived from the geometry and coinciding with uLs.

Definition 7.1. — For every p ∈ X there is a natural non degenerate
Hermitean inner product < , >p on

∧∗
C T

∗
pX, defined using the natural

(standard) Hermitean inner product ( , )p associated to the metric g and
the (pointwise) volume form Ω associated to the metric g and to the chosen
determination of J at p:

< α, β >p= ıdeg(α)deg(β)(α ∧ β,Ω)p

We indicate with < , > the corresponding form with values in smooth
functions.

Let us denote with ∗ the (complex linear) operator obtained composing
conjugation with the Hodge star associated to the metric.

Proposition 7.2. — For every p ∈ X, the pairing < , >p satisfies the
following properties:

a) < α, β >p= ı(deg(α)+2)deg(β))(α, ∗β)p

b) < , >p is preserved by the the operator J in derived sense, namely

∀αβ < Jα, β > + < α, Jβ >= 0

c) < , >p is preserved by the operator ∗, namely

∀αβ < ∗α, ∗β >=< α, β >

d) The pure weight components Ik are mutually < , >p-orthogonal
and < , >p is nondegenerate when restricted to any one of them.
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Proof . — The first three facts are standard. For the orthogonality state-
ment in part d), we observe that, if α ∈ Ih and β ∈ Ik with deg(α) +
deg(β) = dim(X) then

< α, β >p Ω = (α ∧ β)p

is a complex number times a form of J-weight zero, but from the right hand
side it also must have J-weight equal to (h−k)ı. Therefore if h �= k, it must
be zero.

Restricting to a single Ik, notice that ∗ sends this component to itself
(as it commutes with J), and then if α �= 0 in Ik, < α, ∗α > is a power of ı
times (α, α) by point a), and is therefore nonzero. �

We want now to characterize the operators inside Ls
C,p which preserve

the form < , >p. First we observe that, since the dimension of T ∗
pX is

even, ∗∗ is equal to the identity on the forms of even degree while ∗∗ = −I
when restricted to the odd forms. Then, for fixed p ∈ X, using the expression
< α, β >p= (α, ∗β)p, we see that the “differential” condition for preservation
of the form by the operator φ

∀α∀β < φ(α), β >p + < α, φ(β) >p= 0

is equivalent to φ∗ = −∗φ ∗ on the even forms and to φ∗ = ∗φ ∗ on the odd
forms.

The next two theorems show that the bundle uLs (generated at any
point by the value of the operators ıLj,k (j �= k), ıVi and their adjoints, see
Definition 3.10) is precisely the bundle of Lie subalgebras given point by
point by the operators which preserve the form < , >:

Theorem 7.3. — The Lie algebra bundle uLs preserves the form <,>.

Proof . — As we observed before, the statement is equivalent to the fact
that the condition φ∗(α) = (−1)deg α+1∗φ ∗(α) holds for all the sections φ
of uLs and all the homogeneous elements α ∈

∧∗
C T

∗X.

It is enough to check these equations for the generators of uLs, at a fixed
point p ∈ X, which as usual we omit from the notation for the operators
when not strictly necessary.

Let Ψ be one of the generators ıLij or ıVk; this means that Ψ is the
operator given by the wedge with an even form ıψ, where ψ is real. One
has, given v homogeneous of degree h and w in

∧∗
C T

∗
pX with degree of the

same parity (which is the only possibly non-vanishing case):
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(Ψ(v), w)p = (ıψ ∧ v ∧ ∗w,Ω)p = −(v ∧ ıψ ∧ ∗w,Ω)p =

= −(−1)h(v ∧ ∗∗(ıψ ∧ ∗w),Ω)p = −(−1)h(v ∧ ∗(∗Ψ∗)(w),Ω)p

On the other hand, (Ψ(v), w)p = (v,Ψ∗(w))p = (v ∧ ∗Ψ∗(w),Ω)p. This
implies ∗Ψ∗ = −(−1)h∗(∗Ψ∗) which is equivalent to Ψ∗ = −(−1)h∗Ψ∗ that
is the relation we wanted to check. The adjoint of this equation immediately
proves the relation also for the generators ıL k , j , (j �= k) and ıAi. �

Theorem 7.4. — The Lie algebra bundle uLs is the full real Lie subal-
gebra bundle of Ls

C
of operators which preserve the form < , >, and its

fibre is isomorphic to su(s+ 1, s+ 1).

Proof . — As usual, let us fix once and for all a point p ∈ X, which will be
omitted from the notation when not strictly necessary.

In view of part c) of Theorem 6.2, to compute the signature of the form
< ,>p we can restrict to I−s. We use here the basis {cr} (0 � r � 2s+ 2)
defined in Theorem 6.3. By construction, for every r < j, < cr, cj >p= 0
unless j = s+ 1 + r and in this case we have that

< cr, cs+1+r >p= ıs(s+2)(w0∧. . .∧ŵr∧· · ·∧ws∧w0 ∧ · · · ∧ wr ∧ wr ∧ · · · ∧ ws, Ω)p

= ıs(s+2)(−1)s+1(−1)s · · · (−1)0(w0 ∧ w0 ∧ . . . ∧ wr ∧ wr ∧ · · · ∧ ws ∧ ws, Ω)p

= ıs(s+2)(−1)s+1(−1)s · · · (−1)0(−ı)s+1 = ı2s2+1

Thus we notice that < cr, cs+1+r >p does not depend on the index r, being
equal to ı when s is even and to −ı when s is odd. If follows that

for every s the signature of < , >p is (s+1, s+1). From Theorem 7.3 and
the above remark on the signature one deduces that the fibre of uLs at p
can be identified with a subalgebra of su(s+1, s+1) ⊆ sl(2s+2,C) ∼= Ls

C,p.
Since, by construction, uLs is a real form of Ls

C
, we can replace ⊆ with =

in the inclusion above and the claim follows. �

The theorem above also provides us the key ingredient to build and in-
variant quadratic form for Ls

R
, which is the most natural real Lie algebra

bundle associated to the (almost) s-Kähler structure. Indeed, Ls
R

is gener-
ated at every point by the values of the operators Lij , Vk and their pointwise
adjoints. The main tool will be a new hermitean inner product << , >>
defined starting from < ,> on the complex bundle of vector spaces

∧∗
C
T ∗X

which we now introduce:
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Definition 7.5. — For every p ∈ X there is a natural non degenerate
Hermitean inner product << , >>p on

∧∗
C T

∗
pX, defined, on homogeneous

elements α, β, as:

<< α, β >>p= ıs+1+deg β < α, β >p

We indicate with << , >> the corresponding form with values in smooth
functions.

Theorem 7.6. — The Lie algebra bundle Ls
R is the full real Lie subal-

gebra bundle of Ls
C of operators which preserve the form << , >>, which

has signature (s+ 1, s+ 1).

Proof . — Let Γ be any one of the generators Ljk, Vj ,Λjk, Aj of Ls
R. Since

ıΓ preserves < , >, a direct computation reducing << , >> to < , >
shows that Γ preserves << , >>. A dimensional argument concludes the
proof of the first statement.

For the second part of the claim, it suffices to compute the signature
of the form << ,>>p when restricetd to I−s. Using the basis {cr} of I−s

introduced in the proof of Theorem 7.4 we have:

<< cr, cs+1+r >>p= ı2s+3 < cr, cs+1+r >p= ı2s
2+2s+4 = ı2s(s+1) = 1

which shows that the total signature is (s+ 1, s+ 1). �

Notice that the theorem shows again (in accordance with Theorem 6.3)
that the fibre of Ls

R is isomorphic to su(s+ 1, s+ 1).

8. Action on cohomology

Up to this point all the geometric and algebraic constructions applied
to almost s-Kähler manifolds. From this section onwards we concentrate on
s-Kähler manifolds, and on their global geometric properties.

On an s-Kähler manifold the (local) sections Ljk,Λjk, Vi, Ai are all co-
variant constant with respect to the (Levi-Civita) connection induced by
the metric, which therefore determines a flat connection on all the bundles
of Lie algebras Ls

C, Ls
R, sLs, uLs, Lef s.

We now show that we have a representation of the flat sections of the
bundles of Lie algebras Ls

C,Ls
R, sLs,uLs,Lef s on the cohomology of an s-

Kähler manifold, induced by the representation on the space of forms. This
will be done showing that the Laplacian ∆d commutes with the action of
generators of these spaces of sections, as in Theorem 10.1 on page 46 of
[G1].

– 445 –



Giovanni Gaiffi, Michele Grassi

Theorem 8.1. — Let (X,ω1, ..., ωs,g) be a compact orientable s-Kähler
manifold, and let U ⊂ X be an open set with a determination of J . We have
that if φ ∈ {Ljk} ∪ {Vj}, and d is the de Rham differential:

1) [φ, d] = 0

2) If we define dc := [φ, d∗], we have that ddc + dcd = 0;

3) [φ,∆d] = [φ∗,∆d] = 0, where ∆d is the d-Laplacian relative to the
metric g and to the orientation.

Proof . — We adapt the proof of Theorem 10.1 of [G1]. We omit the
details of the computations, which are however standard.

1) This equation follows immediately from the fact that the forms ωjk

and the volume forms V ol(Wj) of the distribtions Wj are covariant constant
with respect to the Levi-Civita connection, and therefore closed.

2) If we write down the expression for dc in standard s-Kähler coordi-
nates centered at a point p ∈ X, we see that no derivative of the metric
appears. Therefore, when we write down the expression for ddc + dcd, only
the first derivatives of the metric are involved. We skip the details, as they
are completely analogous to those of, for example, [GH, pages 111-115].
It follows, as in the classical case of Kähler manifolds, that to prove the
equation it is enough to reduce to the case of a constant metric. When the
metric is flat, however, the equation is easily seen to be equivalent (using
1)) to [φ,∆d] = 0, which with a flat metric follows immediately from the
fact that the two-form corresponding to φ is constant in flat (orthonormal)
coordinates.

3) The second equation is the adjoint of the first. The first one, once
written down explicitely in terms of d and d∗, follows immediately from
points 1) − 2). �

Corollary 8.2. — Let (X,ω1, ..., ωs,g) be a compact orientable
s-Kähler manifold. Then there is a canonical representation of the Lie alge-
bras of flat global sections of the bundles Ls

C,Ls
R, sLs,uLs,Lef s on H∗(X,C).

9. Complex tori and rational structures

The following example is a direct generalization of Example 2.7 of [G2],
in the special case of rank equal to two. Let Γ ⊂ Cs+1 be any (not necessarily
maximal rank) lattice, and let

X = Cs+1/Γ
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As it is immediate to check, X has a natural structure of s-Kähler manifold
of rank 2. Indeed, the (flat) metric is determined by the natural global
coordinates induced by the projections, giving at every point an orthonormal
(co)frame: {

yji |i ∈ {1, ..., 2} , j ∈ {0, ..., s}
}
.

Using these coordinates one can give directly the expressions for the forms:

ωjk =
r∑

i=1

dyji ∧ dyki

The metric being flat, condition 2) of Definition 1.1 is satisfied everywhere
exactly (without the term O(2)).

As the lattice Γ varies, we obtain different (and in general not isomor-
phic) s-Kähler structures all compatible with the complex structure (i.e.
such that the J coming from the s-Kähler strucure coincides with the com-
plex structure of the manifold).

Remark 9.1. — One can think of these s-Kähler structures as ”decora-
tions” or ”enrichments” of the underlying Kähler structure. As such, one can
use them to study the moduli problems for complex tori by first studying
the moduli problems of related s-Kähler manifolds.

Definition 9.2. — An s-Kähler structure on a manifold X is integral
(resp. rational) if the standard operators Ljk, Vh and their adjoints act on
integral (respectively rational) cohomology.

In view of the following proposition and of the results of the next section,
we are interested in studying rational structures on complex tori and Abelian
varieties:

Proposition 9.3. — Any rational s-Kähler structure compatible with
the complex structure on an Abelian variety is such that the structure forms
and the canonical volume forms belong to Im(cl) ⊗ Q ⊂ H ·,·

Hodge(X) ⊗ Q

Proof . — As all the forms of the statement lie in H1,1(X) ∩H2(X,Q),
the proposition follows from Lefschetz 1-1 theorem. �

In the remaining part of this section we will give a sufficient condition
for the existence of rational s-Kähler structures on complex tori.

Let X be a complex torus as above. We indicate with J = Jp the com-
plex structure(s) on the tangent spaces TpX for varying p ∈ X and we fix a
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basis λ1, ..., λg, µ1, ..., µg for Λ such that the matrix associated to E = ImH
(where H is the Hermitean form associated to the polarization) is ”symplec-
tic” with integral elementary divisors. Let Π be the period matrix, express-
ing the λ1, ..., µg in terms of the λ1, ..., λg. We indicate with B the righthand
side of Π

Π = ( I B )

We will show that if B is rational then X admits rational s-Kähler structures
compatible with its complex structure.

Proposition 9.4. — A form φ ∈ Ωs(X,R) harmonic with respect to a
translation invariant metric represents a rational cohomology class if and
only if it assumes rational values on the lattice Λ, when considered as a
multilinear form.

Proof . — Let φ be a translation invariant (and hence harmonic) form
of Ω1(X,R) representing the cohomology class [φ] ∈ H1

DR(X,R), and let
λ ∈ Λ, representing the loop [λ] ∈ π1(X). The integration isormorphism∫

: H1
DR(X,R) → Hom(π1(X),R)

is compatible (via De Rham’s theorem) with the finer H1(X,Z) ∼=
Hom(π1(X),Z), and can be read directly as∫

[λ]

[φ] = φ(λ)

Taking iterated exterior powers one obtains the statement of the proposi-
tion. �

We define
v1j = λ∗

j+1, v2j = Jv1j = −v1j ◦ J

with the dual taken with respect to the real basis λ1, ..., λg, Jλ1, ..., Jλg.

Proposition 9.5. — The (g − 1)-Kähler structure determined by the
above adapted coframe is rational on X, i.e. all the operators Ljk, Vj ,Λjk, Aj

for varying and different j and k act on rational cohomology.

Proof . — We start by proving that the structure forms ωjk and the V olj
have rational cohomolgy classes. From the previous proposition, it is enough
to prove that for all r, if λp, µq are elements of this basis,

{λ∗
r(λp), λ

∗
r(ıλp), λ

∗
r(µr), λ∗

r(ıµr)} ⊂ Q
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The first family is made up of delta functions, and the second one is zero.
The third and the fourth can be expressed as rational linear combinations
of the real and imaginary parts of the entries of the period matrix B.

From this and the linear independence of the vij it follows that

H∗(X,Q) =
∗∧

Q
< vij | i = 1, 2 j = 0, ..., g − 1 >

We observe finally that the pointwise adjoints Λij , Aj of the Ljk, Vj are
covariant constant, and therefore commute with the Laplacian (see Theorem
8.1). Moreover, they send rational harmonic forms (which are represented by
rational polynomials in the vij by the previous proposition) into polynomials
in the vij which have again rational coefficients. �

The construction above works when the period matrix is rational. We
conjecture that it should be possible to perform a similar construction also
when B has higher transcendence degree, and more precisely:

Conjecture 9.6. — On any complex torus there exist rational s-Kähler
structures compatible with the complex structure, with g− trdeg(B)− 1 � s
(and of course s � g − 1).

Definition 9.7. — Given a rational s-Kähler structure on the manifold
X, we indicate with Ljk,Vj ,Λjk,Aj the classes of the corresponding global
sections of operators of Ls

R when acting on rational cohomology H∗(X,Q).
We indicate with Ls

Q the Lie algebra over Q generated by the operators above
inside EndQ(H∗(X,Q)).

10. The irreducible module of rational Hodge classes

Recall from Theorem 6.3 that the algebra Ls
R = Ls

Q ⊗R is isomorphic to
su(s+ 1, s+ 1).

Let X be an abelian variety with a rational period matrix and a fixed
rational s-Kähler structure compatible with the complex structure (guar-
anteed to exist from the previous section). In this section we are going to
show that the Hodge classes of X constitute an irreducible Ls

Q-module (see
Theorem 10.2 below). Let us indicate with V the standard representation of
Ls

C = Ls
R ⊗R C ∼= sl(2s + 2,C) (i.e. the irreducible complex highest weight

module of weight (1, 0, . . . . , 0)).
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Proposition 10.1. — For every i = 0, 1, . . . , 2s+ 2 we have the follow-
ing isomorphism of Ls

C irreducible modules:

I−s−1+i =
⊕
r

Hr,−s−i−1+r ∼=
i∧
V

Proof . — When i = 0 or i = 2s+2 the spaces involved are 1-dimensional.
When 1 � i � s+ 1, the form

vi = w0w1 · · ·wsws−i+1ws−i+2 · · ·ws

is a highest weight vector for the Ls
Q representation I−s−1+i and it generates

an irreducible representation isomorphic to
∧i

V with weight (0, . . . , 0, 1, 0,
. . . , 0) (1 is in the i-th position).

To see this, it suffices to consider the identification of Ls
Q with sl(2s +

2,C) provided by the faithful representation I−s and the set of “positive”
Serre generrators described in the proof of Theorem 6.2. We can then con-
clude by a dimensional argument.

The case when s + 2 � i < 2s + 2 follows by considering the action of
the ∗ operator. �

Theorem 10.2. — Let X be an abelian variety with rational period ma-
trix and a rational s-Kähler structure compatible with the complex struc-
ture. Then the algebra Ls

Q acts irreducibly on the rational Hodge classes
Hodge·,·(X) ⊗ Q .

Proof . — First of all, we observe that all the generators of Ls
Q are J-

invariant and rational, and therefore send rational Hodge classes to rational
Hodge classes. Then, the previous proposition shows that if we complexify
the representation on rational Hodge classes and the algebra we obtain the
irreducible module I0 over Ls

C. Therefore, a fortiori, Hodge·,·(X) ⊗ Q is
irreducible over Q. �

Remark 10.3. — From Theorem 6.3 and the subsequent remark one im-
mediately deduces an explicit matrix presentation of Ls

Q, via its faithful
representation on the forms of I−s at any given point.
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