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A generic condition implying o-minimality
for restricted C∞-functions

Olivier Le Gal
(1)

ABSTRACT. — We prove that the expansion of the real field by a restricted
C∞-function is generically o-minimal. Such a result was announced by
A. Grigoriev, and proved in a different way. Here, we deduce quasi-analyti-
city from a transcendence condition on Taylor expansions. This then im-
plies o-minimality. The transcendance condition is shown to be generic.
As a corollary, we recover in a simple way that there exist o-minimal struc-
tures that doesn’t admit analytic cell decomposition, and that there exist
incompatible o-minimal structures. We even obtain o-minimal structures
that are not compatible with restricted analytic functions.

RÉSUMÉ. — On montre que génériquement, l’expansion du corps des
réels par une fonction C∞ restreinte est o-minimale. Un résultat du même
type utilisant d’autres d’arguments a été annoncé par A. Grigoriev. Ici,
nous utilisons une condition de transcendance sur les développements
de Taylor pour assurer la quasianalyticité de certaines algèbres diffé-
rentielles, ce qui implique la o-minimalité. On montre que cette condi-
tion de transcendance est générique. Comme corollaire de ce résultat, on
donne des preuves simples du fait qu’il existe des structures o-minimales
n’admettant pas de décomposition cellulaire analytique, et qu’il existe des
structures o-minimales incompatibles. On obtient même des structures
o-minimales non compatibles avec les fonctions analytiques restreintes.
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1. Introduction

The geometry of the zero set of a C∞-function may be very complicated,
since Whitney proves that any closed subset of Rn is such a zero set. René
Thom deep interest on genericity was driven by the expectation that the
objects coming from generic smooth mappings should have a tame geometry.
On the other hand, the axiomatic approch of o-minimality garantee such
a tame geometric behavior. In [Gri05], A. Grigoriev announces that in one
sense, these two approaches meet together : o-minimality is in a certain
meaning generic. This article aims to give another version of this result,
based on the notion of quasianalyticity.

Recall that an expansion RF = (R, 0, 1,+, ·, <,F) of the real field by
a family of maps F is o-minimal if any definable set has finitely many
connected component. Geometrically speaking, a set X ⊂ Rk is definable
in RF if it belongs to the smallest collection of subsets of Rn, for various
n, which contains semi-algebraic sets and all the graphs of maps in F , and
is closed under basic set theoretic operations : finite boolean combinations,
cartesian products and projections. A map is also said to be definable if
its graph is definable.

O-minimality provides many geometric properties for definable sets or
maps, such as Whitney stratifications. Some structures verify an addition-
nal tameness property, that imply, for instance, 8Lojaciewicz inequalities: RF
is polynomially bounded if for any definable function f : R → R, there
exists an integer n such that f(x)/xn is ultimately bounded. For a more pre-
cise introduction to o-minimal geometry, we refer to the books [Cos00] of
Coste and [vdD98] of van den Dries. Among others, the following are clas-
sical examples of o-minimal structures. Using the Gabrielov’s theorem of
the complement [Gab96], Denef and van den Dries prove that the structure
Ran generated by the family an of restricted analytic functions is o-minimal
and polynomially bounded [DvdD88]. The same holds for certain structures
generated by quasi-analytic Denjoy-Carleman classes, according to the re-
sult [RSW03] of Rolin, Speissegger and Wilkie. Wilkie also prove that the
structure RPfaff , generated by the so-called pfaffian functions, is o-minimal
[Wil99].

We fix some notations. Let h be a C∞-function in an open subset U of R.
The multi-jet jmn h(x) of order m of h at the n-tuple x = (x1, . . . , xn) ∈ Un
is the n(m + 1)-tuple of the values of h and its m first derivatives at the
points x1, . . . , xn : jmn h(x) = (h(x1), . . . , h(xn), . . . , h(m)(x1), . . . , h(m)(xn)).
We define h to be strongly transcendental if for any finite subset {x1, . . . ,
xn} of U , the values of h and all its derivatives at x1, . . . , xn verify with
x1, . . . , xn at most a finite number of integral algebraic relations. Precisely,
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if ∆n = {(x1, . . . , xn) ∈ Rn; ∃i 
= j, xi = xj} denotes the diagonals, h is
strongly transcendental if

∀n � 1, ∀x = (x1, . . . , xn) ∈ Un \∆n, ∃C ∈ N, ∀m ∈ N,

trdeg(x, jmn h(x)) � n(m+ 2)− C, (1.1)

where trdeg denotes the transcendence degree overQ. We say that a function
h : [0, 1]→ R is a restricted C∞-function – denoted by h ∈ C∞([0, 1]) –
if it is the restriction of some C∞-function h defined in a neighborhood of
[0, 1]. If h can be chosen to be strongly transcendental, we say that h is a
restricted strongly transcendental function.

We now set our main results. Recall that the weak Whitney topology –
induced by the family of seminorms supt∈K |h(k)(t)|, where K ranges in the
compact subsets of U – turns C∞(U) into a Baire space: any residual set
– meaning that it contains a countable intersection of open dense sets – is
dense.

Theorem 1.1. — The set st of restricted strongly transcendental func-
tions is residual in C∞([0, 1]).

The proof is presented in section 2. The interest of restricted strongly
transcendantal functions appears in the following.

Theorem 1.2. — Let h be a restricted strongly transcendental function.
Then, Rh is o-minimal, polynomially bounded and admits C∞-cell decom-
position.

The scheme of the proof of this theorem is merely an adaptation of
the methods developed in [LGR08] to construct an o-minimal structure
that does not admit C∞-cell decomposition, joint with the main theorem
of [RSW03], which asserts that o-minimality follows from quasi-analyticity.
We have devoted section 3 to this proof.

In the last section, we prove as corollaries that there exist o-minimal
structures that does not admit analytic cell decomposition, and that there
exists a pair of functions (h1, h2) such that Rh1 and Rh2 are o-minimal but
Rh1,h2 is not. Such results where first obtained in [RSW03], with the use
of quasi-analytic Denjoy-Carleman classes. Here, we can improve the last,
by imposing one of the two functions to be analytic. It gives rise to the
following, which seems to be actually unknown :

Corollary 1.3. — There exists an o-minimal expansion Rh of the real
field such that Rh,an is not o-minimal.
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We conclude with some questions that arise from this work. While they
are generic, we dont explicitly know any strongly transcendental function.
Is it possible to give the construction of such a function? On another hand,
one could easily enhance our result for expansions of (R,+, ·, <) by finitely
many functions, meaning that the k-tuples (h1, . . . , hk) of restricted C∞-
functions such that Rh1,...,hk is o-minimal are generic among k-tuples of
restricted C∞-functions. Does such a result hold for infinite families? The
question becomes complicated even to formulate, since it is not clear what
topology should be considered on the set of all families of restricted C∞-
functions.

Notations. — Throughout this paper, N denotes the set of natural num-
bers and R the real field. The letters i, j, k, �,m, n, p and q denote non nega-
tive integers, x the n-tuple (x1, . . . , xn), and t a single real variable. The let-
ters f and g denote maps or their germs, and h a one variable C∞-function.
We use the notation st for the set of restricted strongly transcendental func-
tions, and an for restricted analytic functions.

2. Genericity and Transcendence

In this section, we show the genericity of the transcendance condition
(1). Recall that the transcendence degree of a k-tuple (x1, . . . , xk) ∈ Rk is
the minimum of the dimension of any integral algebraic subsets of Rk that
contains the point (x1, . . . , xk). Let h be a C∞-function on a open bounded
subset U of R. Saying that h is strongly transcendental then means that for
any given x ∈ Un \∆n, the codimension of the integral algebraic subsets of
Rn(m+2) that contain the point (x, jmn h(x)) is ultimately bounded when m
tends to infinity. Actually, we will show a stronger result: the bound on this
codimension is generically n. The bound is in particular uniform in x.

Lemma 2.1. — Let U be an open bounded subset in R, and X be an
algebraic set of codimension n+ 1 in Rn(m+2). Then, the set E(X) = {h ∈
C∞(U);∀x ∈ Un \∆n, (x, jmn h(x)) /∈ X} is residual.

Proof. — Fix an algebraic set X ⊂ Rn(m+2) of codimension n + 1. To
prove the lemma, we introduce the followings:

Ui = {x1 ∈ U ; d(x1,Fr(U) � 1
i
} , ∆n,i = {x ∈ Un; d(x,∆n) <

1
i
},

Ei(X) = {h ∈ C∞(U);∀x ∈ Uni \∆n,i, (x, jmn h(x)) /∈ X},
where d denote the euclidian distance and Fr(U) the frontier U \ U of U .
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Let us show that Ei(X) is a dense open subset of C∞(U). It is open
because of the compactness of Uni \∆n,i. Indeed, if (hi)i∈N is a convergent
sequence in the complement of Ei(X) with limit h, we can define a sequence
(xi)i∈N in Uni \∆n,i such that (xi, jmn hi(xi)) ∈ X. The sequence (xi) accu-
mulates to a point x in Uni \∆n,i. SinceX is closed, we have (x, jmn h(x)) ∈ X,
so that h is in the complement of Ei(X). So, the complement of Ei(X) is
closed, and Ei(X) is open.

In order to prove that Ei(X) is dense, we fix a function h ∈ C∞(U), and
we construct a small perturbation of h that belongs to Ei(X). We obtain this
perturbation by adding a polynomial to h. For ε = (ε1, ε2, . . . , εn(m+1)) ∈
Rn(m+1), we set

hε(t) = h(t) + ε1tn(m+1)−1 + ε2tn(m+1)−2 + . . .+ εn(m+1)−1t+ εn(m+1)

and we consider the map

ϕ : Uni \∆i,n × Rn(m+1) → Uni × Rn(m+1)

x ε �→ x, jmn hε(x)

With this notation, the function hε belongs to Ei(X) if for all x ∈ Uni \
∆i,n, the point ϕ(x, ε) does not belong to X. Hence, we require an ε as
small as desired such that ε lie in the complement of π(ϕ−1(X)), where
π : Rn(m+2) → Rn(m+1) denotes the projection π(x, ε) = ε.

Since X is an algebraic set of codimension n+1, it is the union of finitely
many smooth manifolds of codimension at least n + 1. Moreover, the map
ϕ is a diffeomorphism; it is bijective and has constant rank n(m+ 2). The
pre-image ϕ−1(X) is then the union of finitely many smooth manifolds of
codimension at least n+ 1. The projection of each of these manifolds by π
might be singular, but according to the Sard theorem, it has measure zero.
Hence π(ϕ−1(X)) is the union of finitely many sets of measure zero, then
has measure zero itself.

Let us return to the perturbation hε. We have shown that the set of ε
such that hε does not belong to Ei(X) has measure zero. This set cannot
contain any neighborhood of 0. Hence, there exists ε as small as desired
such that hε belongs to Ei(X), which shows that Ei(X) is dense.

Now, remark that E(X) =
⋂
i∈N∗ Ei(X). Since for all i ∈ N∗, Ei(X) is

an open dense set, E(X) is residual, which achieves the proof. �

We can now prove theorem 1.1.

Proof. — [Proof of Theorem 1.1] We first show that strongly transcen-
dantal functions are residual in C∞(U), where U denote a bounded open
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subset of R. Let E be the set

E = {h ∈ C∞(U); ∀(n,m) ∈ N2, for all integral algebraic X ⊂ Rn(m+2),
Codim(X) � n+ 1⇒ ∀x ∈ Un \∆n, (x, jmn h(x)) /∈ X}.

First remark that any function in E is strongly transcendental. Indeed, if
h belongs to E, the transcendence degree of (x, jnmh(x)) is at least n(m+1)
for any point x in Un \∆n. The transcendence condition (1) is then satisfied
with C = n. Moreover, the set E is the intersection of all E(X), when X
ranges over all integral algebraic subsets of Rn(m+2) of codimension at least
n + 1, for all integers n,m. There are countable many such (n,m,X), and
according to lemma 2.1, any E(X) is residual. Then E is residual also. Since
it contains E, the set of strongly transcendental functions in U is residual.

Now, fix a bounded neighborhood U of [0, 1], and denote by r the re-
striction map r : h ∈ C∞(U) �→ h|[0, 1] ∈ C∞([0, 1]). The map r is surjective
(any restricted C∞ function can be extended to U), linear and continuous.
So, by the Open Mapping Theorem, r is an open map, then r concerves
genericity. Since r(E) ⊂ st, restricted strongly transcendental functions are
generic in restricted C∞-functions as well. �

Actually, the same ideas show a slightly different result. Let R be a
positive real number, and denote by AR the subset of analytic functions in
U given by:

AR = {f ∈ C∞(U); ∃C ∈ R, ∀k � 0,∀x ∈ U , |f (k)(x)| � CRkk!}.

The R-norm ||f ||R = supk∈N,x∈U |
f(k)(x)
Rkk!

| turns AR into a Banach space.
The following proposition claims that strongly transcendantal functions are
also generic in any affine subspace of C∞(U) of direction AR. It will be used
in the proof of corollary 1.3.

Proposition 2.2. — Let U be an open bounded set, h ∈ C∞(U), and
R > 0. Then strongly transcendental functions are generic in h+AR, with
respect to the topology induced on h+AR by the R-norm on AR.

Proof. — We associate to any algebraic setX ⊂ Rn(m+2) of codimention
at last n + 1 the set Eh(X) = E(X) ∩ (AR + h) = {g ∈ (AR + h);∀x ∈
U \ ∆n, (x, jmn g(x)) /∈ X}. Again, Eh(X) is residual in AR + h : since the
perturbation used in the proof of lemma 2.1 was obtained by adding a
polynomial – which belongs to AR and can be choosen to have an R-norm
as small as desired – the same proof holds. Now, since the set of strongly
transcendantal functions in AR + h contains the intersection of all Eh(X)
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when X ranges over all integral algebraic subsets of Rn(m+2) of codimention
n+ 1, for all n,m, strongly transcendantal functions are generic in AR + h.
�

3. Transcendence and o-minimality

This section is devoted to the proof of theorem 1.2. The principle is close
to a reasoning made in [LGR08] (see part A.). The o-minimality is obtained
as a consequence of the main theorem of [RSW03] : RF is o-minimal pro-
vided that the algebras generated by F are quasianalytic. Here generated
means with respect to compositions, implicit functions, monomial divisions
as well as algebraic operations. In a first step, we introduce a germified ver-
sion of those algebras, and a family of operators that act naturally on it –
namely, the operators corresponding to take implicit functions, to divide by
a monomial, to compose and to make algebraic operations. In a second step,
we recall two elementary lemmas, which make the action of these operators
on Taylor series more precise. Finally, we use those properties to deduce the
quasianalyticity of the algebras from strong transcendence.

3.1. Operators, algebras

Our goal is to introduce theorem 3.3, which is a slightly modified version
of theorem 5.2 of [RSW03]. It gives a sufficient condition for o-minimality.
We first define similar algebras than in [RSW03], together with similar op-
erators than in [LGR08]. Denote by Fn the algebra of the germs at 0 of
maps in C∞(Rn).

Definition 3.1. — We call elementary operators the following op-
erators:

1. Constant operators (of arity 0), defined for each polynomial P ∈ R[x]
by:

�→ P (x) ∈ Fn ;

2. Compositions, defined for (n,m) ∈ N2 on Fn × {(g1, . . . , gn) ∈ Fnm;
gi(0) = 0, i = 1, . . . , n} by :

f, g1, . . . , gn �→ f(g1, . . . , gn) ∈ Fm ;

3. Monomial divisions, defined for n ∈ N∗ on {f ∈ Fn; f(x1, . . . , xn−1, 0)
= 0} by:

f �→ g ∈ Fn, with g =
f

xn
if xn 
= 0, and g = ∂nf otherwise ;
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4. Implicit function operators, defined for n ∈ N∗ on {f ∈ Fn+1; f(0) =
0, ∂n+1f(0) = 1} by:

f �→ ϕ ∈ Fn, with f(x1, . . . , xn, ϕ(x1, . . . , xn)) = 0.

These operators can be composed ones to another as soon as the image
of the ones are in the definition set of the other. We call operator such a
composition.

We call Borel map – denoted by ̂ – the application that maps a C∞-
germ at 0 to its Taylor expansion. Remark that for any operator L, the Tay-
lor series of L(f) only depends on the Taylor series of f . We can then extend
the Borel map to operators: any operator L admits a formal conterpart
L̂ that verifies L̂(f̂1, . . . , f̂�) = (̂L(f1, . . . , f�)). For a given h ∈ C∞(U), we
now define the algebras generated by h, to be the collection of the germs
obtained by the action of the operators on the germ of h at some points of
U . Precisely :

Definition 3.2. — Let h be a C∞-function on an open set U . The al-
gebra generated by h is the collection A(h) = (An(h); n ∈ N) of the
smallest algebras An(h) ⊂ Fn such that:

1. For all a ∈ U , the germ at 0 of t �→ h(a+ t) belongs to A1(h);

2. If L : Fn1 × . . . × Fni → Fm is an operator, and if (f1, . . . , fi) ∈
An1(h) × . . . × Ani(h) belongs to the definiton set of L, then L(f1, . . . , fi)
belongs to Am(h).

Let us introduce a version of theorem 5.2 of [RSW03] convenient to our
propose. Recall that an algebra G ⊂ Fn is said to be quasi-analytic if the
Borel map restricted to G is injective.

Theorem 3.3 (Rolin, Speissegger, Wilkie. See 5.2 in [RSW03]). — Let
U ⊂ R be open and h ∈ C∞(U). Denote by H the collection of all the restric-
tions of h to a closed interval in U . If the algebras An(h) are quasi-analytic,
RH is o-minimal, polynomially bounded, and admits C∞-cell decomposition.

Proof. — Denote by C = {CB ; B compact box of Rn, n ∈ N} the col-
lection of the subalgebras CB of C∞(B) obtained by the following way.

1. For all compact box B ⊂ U , h|B belongs to CB ;

– 486 –



A generic condition implying o-minimality for restricted C∞-functions

2. For every compact box B ⊂ Rn, CB contains R[x1, . . . , xn];

3. If g = (g1, . . . , gn) ∈ CnB , f ∈ CB′ and g(B) ⊂ B′, then f ◦ g ∈ CB ;

4. If B′ ⊂ B and f ∈ CB , f |B′ ∈ CB′ ;

5. ∂f/∂xi ∈ CB for every f ∈ CB ;

6. If n > 1 and f ∈ CB is such that f(0) = 0 and (∂f/∂xn)(x) 
= 0 for all
x ∈ CB , then the map α given onB′ by f(x1, . . . , xn−1, α(x1, . . . , xn−1))
= 0 belongs to CB′ , where B′ is the canonical projection of B on Rn−1;

7. If f ∈ CB and f/xi admits a C∞ extension g on B, then g ∈ CB .

Remark that C verifies the conditions (C1)–(C4)(C6)(C7) of [RSW03]
(the extension part of condition (C3) holds because any compact box B ⊂ U
can be extended to a compact box B′ with B ⊂ Int(B′) ⊂ B′ ⊂ U).
Theorem 3.3 then holds provided that the condition C5 of [RSW03] holds,
this means that the quasianalyticity of An(h) implies the quasianalyticity
of the algebras Cn of [RSW03] (Cn is the algebra of the germs at 0 of the
maps in CB for all box B with 0 ∈ Int(B)). It then suffices to check that
the germ at 0 ∈ Rn of any function x �→ f(a+ x) belongs to An(h) for any
f ∈ CB and any a ∈ B ⊂ Rn.

Each function f in CB is obtained from (1) and (2) by applying finitely
many operations from (3)–(7). We proceed by induction on the number
of operations needed to construct f . If no operation is needed, the germ
of x �→ f(a + x) is in A(h) either by applying a constant operator, or
because of the first condition in the definition of A(h). If f is obtained by
(3) the claim holds by applying the composition operator. If f = ∂g/∂xi
is obtained by (5), the germ at 0 ∈ Rn of x �→ f(a + x) is obtained as
[Dxn+1(ga(x1, . . . , xi−1, xi+xn+1, xi+1, . . . , xn)−g′a]◦φ where ga is the germ
of x �→ g(a + x), g′a is the germ (x, xn+1) �→ ga(x), Dxn is the operator of
division by xn+1 and φ1 is the germ of x �→ (x1, . . . , xn, 0). If f is obtained by
(6), remark that A(h) is closed by taking implicit function with last partial
derivative not necessary 1, by multiplying by a constant before applying
the operator. Finally, the germ of a monomial division g(x)/xi is obtain at
xi = 0 by the corresponding operator, and at xi = ai 
= 0 by applying the
implicit function operator to (x, xn+1) �→ g(a+ x)− xn+1(ai + xi). �

3.2. Two Lemmas on operators

According to theorem 3.3, a restricted strongly transcendantal function
h is o-minimal as soon as the algebras An(h) are quasianalytic. In order to
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obtain this quasi-analyticity, we need two properties, that were introduced
in [LGR08]. The following express the algebraic behavior of the formal op-
erators. We denote by |β| = β1 + . . . + βk the norm of the muti-index
β = (β1, . . . , βk).

Lemma 3.4. — Let L : Fi1 , . . . ,Fim → Fn be an operator. Then, there
exists (a1, . . . , ak) ∈ Rk, and for all α ∈ Nn, � ∈ {1, . . . ,m}, there ex-
ist β�,α ∈ Ni� and Pα ∈ Q[x1, . . . , xk+|β1,α|+...+|βm,α|] such that, for all
(f1, . . . , fm) in the definition domain of L, we have

L̂(f̂1, . . . , f̂m) =
∑
α∈Nn

Pα(a1, . . . , ak, f1,0, . . . , f1,β1,α , . . . , fm,0, . . . , fm,βm,α)xα

where f̂p =
∑
β∈Nip fp,βx

β.

Proof. — One can check that the statement of the lemma is preserved
by composition: if L,M1, . . . ,Mj verify the conclusion of 3.4 then also does
L(M1, . . . ,Mj) (see [LGR08] for more details). Hence, by an induction on
the number of operators which appear in the definition of L, the lemma is
true if it holds for elementary operators. Now, the statement is obvious for
constant operators and monomial divisions (coefficients a1, . . . , ak appear
for constants operators. They are the coefficients of the polynomial). An
easy computation shows that it holds also for composition operators. At last,
if L is an implicit function operator, the coefficients of L̂(f̂) are obtained
from those of f̂ by solving a triangular system, with coefficients 1 on the
diagonal : recall that we define L only for maps f with ∂n+1f(0) = 1. Hence,
the maps Pα of the statement are actually polynomials, and not rational
maps. �

The following is a quasi-analyticity property for operators.

Lemma 3.5. — Let L be an operator. Then, L̂ = 0 imply L = 0.

Proof. — This is lemma 2.4 in [LGR08]. We recall the main steps.

First remark that the operators are continuous. Precisely, let L : Fi1 ×
. . .×Fim → Fn be an operator, F = (f1, . . . , fm) be maps whose germs at 0
belong to the definition set of L. Then there exist a compact neighborhood
U of 0 ∈ Ri1+...+im , a compact neighborhood V of 0 ∈ Rn, a neighborhood
W of F in C∞(U ,Rk) and a well defined operator L′ on W, continuous for
the C∞-topology on C∞(U) and C∞(V), which acts on the elements of W
as L does on germs. This is obtained by an induction on the number of
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elementary operators which are involved in L. Continuity remains true by
induction, and is a well known fact for each elementary operators.

Fix now an operator L, and F = (f1, . . . , fk) in its definition domain.
By the continuity of L, we find a compact neighborhood U of 0 and a
neighborhood V of 0 such that L is well defined and continuous on a neigh-
borhood W of F in C∞(U ,Rk). Remark that, if G ∈ W is analytic, L(G)
is analytic also : each elementary operator preserves analyticity. Suppose
now that L̂ = 0. Then, for any analytic G ∈ W, L̂(G) = 0, that means,
since L(G) is analytic, that L(G) = 0. Remind us that analytic functions
are dense in C∞(U). Being continuous and vanishing on a dense subset, L
vanishes on all W. Hence, if L̂ = 0, L vanishes on a neighborhood of any F
in its definition domain, then everywhere. �

3.3. Quasi-analyticity

The two previous lemmas are the main tools to prove that the algebras
An(h) are quasi-analytic provided that h is strongly transcendental.

Lemma 3.6. — Let h ∈ C∞(U) be strongly transcendental. Then, for all
n ∈ N, the algebra An(h) is quasi-analytic.

Proof. — Fix h ∈ C∞(U) a strongly transcendental function, n ∈ N,
and g ∈ An(h) with ĝ = 0. We need to show that g = 0.

By the definition of An(h), there exists an operator L such that g is the
image by L of the germs of h at some points b1, . . . , b� of U :

∃(b1, . . . , b�) ∈ U� \∆�, g = L(hb1 , . . . , hb�)

where hbp denote the germ at 0 of t �→ h(bp + t). According to lemma
3.4, there exist (a1, . . . , ak) ∈ Rk, a family Pα of polynomials with integral
coefficients, and a family of indexes βp,α ∈ N such that

∀(f1, . . . , fj), L̂(f̂1, . . . , f̂j) =
∑
α∈Nn

Pα(a1, . . . , ak, j
β1,α
1 f1(0), . . . , jβj,α1 fj(0))xα.

Applying this formula to (hb1 , . . . , hb�), we obtain

0 = ĝ =
∑
α∈Nn

Pα(a1, . . . , ak, j
βα
� h(b))x

α, (3.2)

where βα = maxp=1,...,�(βp,α) and b = (b1, . . . , b�).

Now recall that h is strongly transcendental, and let us make a remark
on the algebraic independence of (a1, . . . , ak, j

m
� h(b)): there exists an integer
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N such that the family {h(p)(bq); p � N + 1, q = 1, . . . , j} is algebraically
independent over Q(a1, . . . , ak, j

N
� h(b)). Indeed, denote by dm the transcen-

dence degree
dm = trdeg(a1, . . . , ak, j

m
� h(b)),

and recall that there exists C such that,

trdeg(jm� h(b)) � (m+ 1)�− C.

Since dm � trdeg(jm� h(b)), we get dm � m� − C. On the other hand, we
have dm − dm−1 � �. Hence, there are at most C + d0 indexes m such that
dm−dm−1 < �. The researched integer N is the maximum of these indexes.

Let us now express the equality (2) in another way : we set

Qα(y1, . . . , y(βα−N)�) = Pα(a1, . . . , ak, j
N
� h(b), y1, . . . , y(βα−N)�),

where the coefficients of the polynomials Qα belong to Q[a1, . . . , ak, j
N
� h(b)].

The equality (2) becomes:

0 =
∑
α∈Nn

Qα(( ˜h(p)(xq))α)xα,

where ˜(h(p)(xq))α stands for the (βα − N)�-tuple formed by all h(p)(bq)
with p = N + 1, . . . , βα and q = 1, . . . , j. Since the families ˜(h(p)(xq))α
are algebraically independent over the coefficients of the polynomials Qα, it
shows that for all α, Qα = 0. In other word, L̂(f̂1, . . . , f̂j) vanishes as soon
as jN1 fi(0) = jN1 h(bi), for i = 1, . . . , �. Hence, if we set N to be the operator

N (f1, . . . , f�) = L(HN
b1 + tN+1f1, . . . , H

N
b�

+ tN+1f�),

where HN
bi

denote the Taylor expansion of h to the order N at bi , we have
N̂ = 0. According to lemma 3.5, it follows that N = 0. Hence we have

g = L(hb1 , . . . , hb�) = N ((hb1 −HN
b1 )/tN , . . . , (hb� −HN

b�
)/tN ) = 0.

Since for any g ∈ An(h), ĝ = 0 imply g = 0, the algebra An(h) is quasi-
analytic. �

We now prove that Rh is o-minimal if h is a restricted transcendantal
function.

Proof. — [Proof of theorem 1.2] Let h be a restricted strongly transcen-
dental function. Then there exists h̃ a strongly transcendantal function de-
fined in an open neighborhood U of [0, 1], such that h̃|[0, 1] = h. The algebras
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An(h̃) are quasi-analytic by lemma 3.6, so, according to theorem 3.3, RH is
o-minimal, polynomially bounded and admits C∞-cell decomposition, where
H is the collection of all restrictions of h̃ to closed intervals included in U .
Since Rh is a reduct of RH, theorem 1.2 holds. �

4. Corollaries

In this section, we apply the above theorems to give new proofs of some
results on o-minimality. In [LGR08], it is asked if the method developed
there allows to construct an o-minimal structure that does admit smooth
cell decomposition, but not analytic cell decomposition, the main interest of
such a proof would be to circumvent the use of the Mandelbrojt’s theorem
needed in [RSW03]. In one sense, we answer here by the positive. Actually,
we do not construct such a structure, but prove its existence.

Corollary 4.1. — There exists a residual subset T of restricted C∞-
function such that, for all function h in T, Rh is o-minimal, admits C∞-cell
decomposition, but does not admit analytic cell decomposition.

Proof. — It suffices to recall that the set of restricted C∞-functions
that are nowhere analytic is residual. Hence, its intersection T with re-
stricted strongly transcendental functions is residual, and has the required
propreties. �

We also obtain the existence of non compatible o-minimal structures.
The interest of this new proof is again to circumvent the use of the Man-
delbrojt’s theorem needed in [RSW03].

Corollary 4.2. — There exist h1 and h2 such that Rh1 and Rh2 are
o-minimal, but Rh1,h2 is not o-minimal.

Proof. — Fix h a restricted C∞-function. We claim that there exist two
restricted strongly transcendental functions h1, h2 such that h = h1 + h2.
Indeed, let ψ denotes the map, defined on C∞([0, 1]) by ψ(g) = h− g. This
map conserves genericity. Hence, the intersection ψ(st)∩ st is residual, then
non empty. A function h1 belongs to this intersection if there exists h2 in st

such that ψ(h2) = h1, this means h = h1 +h2. The corollary then stands by
choosing an h such that Rh is not o-minimal : Rh1 and Rh2 are o-minimal,
since h1 and h2 are strongly transcendantal, while Rh1,h2 is not, since it
defines h. �

One can improve the last, asking h2 to be analytic. It gives the following.
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Corollary 4.3. — There exists a function h such that Rh is o-minimal,
while Rh,an is not o-minimal.

Proof. — Choose an R > 0, and a C∞-function f on a neighborhood
U of [0, 1], such that Rf |[0,1] is not o-minimal. According to proposition
2.2, the set of strongly transcendental functions is residual in f + AR, in
particular not empty. So, there exists a strongly transcendantal function
h ∈ C∞(U) such that f − h is analytic. Define h = h|[0, 1]. The structure
Rh is o-minimal, since h is strongly transcendental, but Rh,an is not, since
it defines f |[0, 1]. �
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