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A Wong-Rosay type theorem
for proper holomorphic self-maps

Emmanuel Opshtein
(1)

ABSTRACT. — In this short paper, we show that the only proper holo-
morphic self-maps of bounded domains in Ck whose iterates approach
a strictly pseudoconvex point of the boundary are automorphisms of the
euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps
whose degrees are a priori unbounded.

RÉSUMÉ. — Dans cette note, nous prouvons que les seules auto-applica-
tions holomorphes propres des domaines bornés de Ck dont les itérées
accumulent un point de stricte-pseudoconvexité du bord sont des auto-
morphismes de la boule. Il s’agit d’un résultat de type Wong-Rosay pour
une suite d’applications dont les degrés sont à priori non bornés.

Introduction

In 1977, Wong proved that the only strictly pseudoconvex domain with
non-compact automorphism group is the ball [16]. This result was general-
ized by Rosay [12] (see also [11]).

Theorem [Wong-Rosay]. — Let Ω be a bounded domain in Ck and (fn)
a sequence of its automorphisms. Assume that the orbit of a point of Ω
under (fn) accumulates a smooth strictly pseudoconvex point of bΩ. Then
Ω is biholomorphic to the euclidean ball.
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This theorem remains valid for a sequence of correspondences provided
that their degrees remain bounded [10]. In this paper, we prove that the
theorem above also holds true in presence of unbounded degree, when the
sequence of automorphisms is replaced by the iterates of a proper holomor-
phic self-map.

Theorem 1. — Let Ω be a bounded domain in Ck with a proper holo-
morphic self-map f . If there is a point y of Ω whose orbit under the iter-
ates of f accumulates a smooth strictly pseudoconvex point a of bΩ (that is
fnk(y) −→ a), then Ω is biholomorphic to the euclidean ball and f is an
automorphism.

In [9], the question of wether a proper holomorphic self-map of a smoothly
bounded domain in Ck has to be an automorphism of the domain was con-
sidered. In C2 for instance, it was proved that non-injective proper self-maps
of such domains has a non-compact dynamics (all the limit maps of the dy-
namics have value on the boundary of Ω). Theorem 1 goes one step further in
this direction : the limit maps even take values in the weakly pseudoconvex
part of the boundary.

The main ingRedient for this result is a local version of Wong-Rosay’s
theorem concerning sequences of CR-maps. It was first obtained by Webster
in the wake of Chern-Moser’s theory of strictly pseudoconvex hypersurfaces
[15].

Theorem 2 (Webster). — Let (Σ, a) and S be two germs of strictly
pseudoconvex hypersurfaces. Assume there is a sequence of CR-embeddings
of S into Σ whose images converge to a. Then S is spherical, i.e. locally
CR-diffeomorphic to the euclidean sphere.

The idea behind the proof of theorem 1 is to consider the CR-maps
induced by fn on the boundary rather than the maps fn themselves. Using
techniques developped in [9], we study the way these CR-maps degenerate
and check that theorem 2 applies : around a, the boundary of Ω is spherical.
The local biholomorphism between our domain and the ball then extends
to the whole of Ω thanks to the dynamical situation.

The paper is organised as follows. We first collect some trivial dynamical
facts about f and the automorphisms of the ball which will allow us to
propagate the local sphericity to the whole domain. In section 2, we prove
theorem 1 modulo the central question of the local sphericity around a. In
section 3, we finally turn back to this problem.
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1. Preliminary remarks

Surprisingly enough, the convergence hypothesis on fnk(y0) in theorem
1 has very strong (though very classical) implications in the holomorphic
context. The aim of this section is to clarify some of them, as well as pointing
out the well-known properties of the dynamics of the automorphisms of the
ball which will be usefull to us. Henceforth, Ω, f and a are as in theorem 1.

First of all, this hypothesis may seem weaker than it actually is. Indeed,
the contracting property of holomorphic maps for the Kobayashi distance
(which is a genuine distance on bounded domains) leads to the following
classical fact :

Lemma 1.1. — Any sequence of holomorphic maps between bounded do-
mains Ω and Ω′, which takes a point y in Ω to a sequence converging to
a strictly pseudoconvex point of the boundary of Ω′, converges locally uni-
formly to this point on Ω. For instance, the sequence fnk converges locally
uniformly to a on Ω.

Corollary 1.2. — The map f extends smoothly to a neighbourhood of
a in bΩ and f(a) = a. Moreover, f is a local biholomorphism (resp. CR-
automorphism) in a neighbourhood of a (resp. in bΩ).

Proof. — Call zk := fnk(y) and wk := f(zk). Since wk = f(fnk(y)) =
fnk(f(y)), both zk and wk tend to a because of the previous lemma. Since
a is a strictly pseudoconvex point, an observation of Berteloot ensures that
f extends continuously to a neighbourhood of a in bΩ [3], with f(a) =
lim f(zk) = limwk = a. Such an extension is automatically smooth because
a is a strictly pseudoconvex smooth point of bΩ [2]. Since we are close to a
strictly pseudoconvex point of the boundary, branching is prohibited and f
must be one-to-one (see [5]). �

Let us now discuss the dynamical type of the fixed point a. Although
it attracts part of the dynamics, it is not obvious at first glance that a is
not a repulsive fixed point. The orbit of y0 could in principle jump close to
a from time to time, then get expelled away from a. The following lemma
shows that such a behaviour does not occur in our holomorphic context.

Lemma 1.3. — The point a is a non-repulsive fixed point of f .

Proof. — Assume by contradiction that f is repulsive at a. By definition,
there is an open neighbourhood U of a on which the inverse f−1 of f is well
defined, takes values in U , and is even contracting : d(f−1

|U (z), a) < d(z, a)
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for any z ∈ U . By assumption, there is a point y0 ∈ Ω such that fnk(y0) ∈ U
as soon as k is large enough. Define then

n′k := min{n | f i(y0) ∈ U, ∀i ∈ [n, nk]},

so that fn
′
k−1(y0) /∈ U . Since f−1

|U is contracting, the point fn
′
k(y0) is closer

to a than fnk(y0), so it tends to a (in particular (n′k) is an extraction).
Equivalently fn

′
k−1(f(y0)) tends to a, so fn

′
k−1 converges locally uniformly

to a by lemma 1.1. This is in contradiction with fn
′
k−1(y0) /∈ U . �

Let us finally discuss the dynamics of the automorphisms of the ball.
Since there are very few of them (they form a finite dimensional group),
their dynamics is rather poor and any small piece of information on it may
give rise to strong restrictions. Recall the following well-known classification
(see [13], section 2.4).

Proposition 1.4. — Let g be an automorphism of the unit ball in Cn.
Then the dynamics of g is

• either hyperbolic (North-South) : there exist exactly two fixed points
N,S ∈ bB of g and gn converges locally uniformly to S on B\{N}.

• or parabolic (South-South) : there exists a unique fixed point S ∈ bB
of g and gn converges locally uniformly to S on B\{S}.

• or recurrent (compact) : the g-orbits remain at fixed distance from bB.
If g has a fixed point on bB then it has a whole complex pointwise
fixed line through this point (see also [6]).

What will be of interest for us in this classification is contained in the
following lemma, whose proof is straightforward from the classification.

Lemma 1.5. — Let g be a ball automorphism which has a non-repulsive
fixed point p on bB, and no interior fixed point near p. Then the dynamics
of g is either hyperbolic or parabolic, with south pole p (meaning that S is p
in the previous classification). Moreover, given any neighbourhood U of p,
there is a point z in U whose orbit remains in U and converges to p.
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2. Proof of theorem 1

In this section, we prove theorem 1 leaving aside the central question of
the sphericity of bΩ around a, which will be dealt with in the next section.
Let us first fix the notation. Let (Ω, f, a) be a triple as in theorem 1. By a
global change of coordinates in Ck, we can take a to the origin, the tangent
plane of bΩ at a to {Re z1 = 0}, and make Ω strictly convex locally near a.
For α small enough, define Uα and Ωα as being the connected components
of a in bΩ ∩ {Re z1 < α} and Ω ∩ {Re z1 < α}.

The first step of the proof, postponed to the following section, consists
in showing that bΩ is spherical around a.

Lemma 2.1. — A neighbourhood of a in bΩ is spherical.

This means that there exists a CR-diffeomorphism Φ : Uε −→ V ⊂ bB. A
classical extension theorem even shows that Φ extends to a biholomorphism
Φ : Ωε −→ D where D is an open set of B whose boundary contains V (see
[4]). This biholomorphism allows to transport f to a local automorphism of
B, defined by

g : Φ(Ωε ∩ f−1(Ωε)) −→ Φ(Ωε)
x �−→ Φ ◦ f ◦ Φ−1(x).

The key point of the whole proof is the following extension phenomena
discovered by Alexander [1] (see also [11, 14] for the form of the result
we use here). The local biholomorphism g uniquely extends to a global
automorphism of the ball, again denoted by g.

The second step consists in using the dynamics of f and the injectivity
of g (which we got for free thanks to Alexander’s theorem) to propagate the
local sphericity, and produce a biholomorphism between Ω and B. Let us
first discuss the possible dynamics of g. By lemma 1.3, a is not a repulsive
fixed point of f so Φ(a) is neither one for g. Moreover, since f has no
fixed point inside Ω (because of lemma 1.1), g has also no fixed point in
V . By lemma 1.5, g is either hyperbolic with attractive fixed point Φ(a) or
parabolic with only fixed point Φ(a). From now on, we will denote S := Φ(a).
The same lemma also guarantees that there are points in D whose (positive)
orbits under g remain in D and tend to S. Since their whole orbits remain
in D, the conjugacy thus allows to get the following informations on f in
return.

– 517 –



Emmanuel Opshtein

Lemma 2.2. — The whole sequence of iterates (fn) (rather than only a
subsequence) converges to a on Ω. Moreover, the set

Ω′ε := {z ∈ Ωε , fn(z) ∈ Ωε ∀n ∈ N}

is a non-empty open invariant set of f .

Proof. — From the discussion above, we conclude that there is a point
y in Ωε such that fn(y) remains in Ωε (thus Ω′ε is not empty). Its orbit
also converges to a. By lemma 1.1, fn must therefore converge to a locally
uniformly on Ω. The set Ω′ε is obviously invariant by f . Finally, it is open
because the Kobayashi metric decreases under f . Indeed, if z is in Ω′ε, so
is a Kobayashi δ-neighbourhood of this point (take δ := dK

(
Ω ∩ {Re z1 =

ε} ,Orbit(z)
)
). �

Corollary 2.3. — The map Φ extends to a holomorphic map from Ω
to B.

Proof. — Let Oi denote f−i(Ω′ε). Because of the invariance of Ω′ε by f
and since fn converges to a on Ω, we conclude that (Oi)i is a growing
sequence of open sets which exhausts Ω. Define therefore

Φ : Ω = ∪Oi −→ B
z ∈ Oi �−→ g−i ◦ Φ|Ω′ε ◦ f

i(z).

This map is obviously holomorphic (because Ω′ε is open), and coincides with
Φ on Ω′ε. It is therefore an extension of Φ itself. �

The remaining point to prove is that Φ is a biholomorphism. Let us first
prove that it is proper.

Lemma 2.4. — The map Φ is a proper map from Ω to B.

Proof. — Recall that the dynamics of g is either hyperbolic or parabolic.
Moreover, Φ−1◦g(w) = f ◦Φ−1(w) for any w ∈ D such that g(w) belongs to
D (recall that Φ : Ωε −→ D is a biholomorphism). A basic consequence of
these two facts is that Φ(On\On−1) goes to bB with n. Indeed, the f -orbit
of a preimage by Φ of a point w in this set reaches O0 = Ω′ε only at time n,
so the g-orbit of w cannot remain in D before the same time (if gk(w) ∈ D
for k � N , then fk(Φ−1(w)) = Φ−1(gk(w)) is in Ωε for k � N also). If n
is large, Φ(z) has to be very close to some pole of the dynamics which is
either S if g is parabolic or another point of bB if g is hyperbolic. Anyway
Φ(z) is close to the boundary of B.
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For an arbitrary sequence (zi)i∈N ∈ Ω converging to bΩ, we must show
that Φ(zi) tends to the boundary of B. For this, fix a positive real number δ
and an integer n0 such that d(Φ(On\On−1), bB) � δ for all n � n0, meaning
that Φ(Ω\On0) is δ-close from bB. Split then (zi) into two subsequences,
one containing all the elements which belong to On0 , the other one those
which escape from On0 :

(z1
i ) := {zni ∈ {zn} | zni /∈ On0},

(z2
i ) := {zni ∈ {zn} | zni ∈ On0}.

By construction, d(Φ(z1
i ), bB) � δ. Since fn0(z2

i ) ⊂ O0 and since fn0 , Φ|O0

and g are proper maps, Φ(z2
i ) = g−n0 ◦ Φ|O0 ◦ fn0(z2

i ) is also δ-close to bB
for i large enough. �

Finally, we need to show that Φ is a biholomorphism. It is not yet clear
since there exist holomorphic coverings of the ball. Anyway we know that
any proper map to a bounded domain has a finite degree (see [13], chap. 15).
In particular, there is an integer d which bounds the numbers of preimages
of Φ :

#Φ−1(z) � d, ∀z ∈ B.
Notice now that the degree of Φ bounds this of fn for all n because Φ =
g−n ◦ Φ ◦ fn. The degree of fn is thus bounded on one hand and equal to
(degf)n on the other. So f is an automorphism of Ω. The injectivity of Φ
is now immediate since Φ|Oi = g−i ◦ Φ|O0 ◦ f i is a composition of injective
maps for all fixed i. �

3. Local sphericity near the attractive point

In this last section, we prove lemma 2.1, namely that a neighbourhood
of a in bΩ is spherical. We recall that all the results proved in the previous
section used this fact, so we have to go back to the general situation of
theorem 1. Nevertheless, remind that we can speak of the action of f on
bΩ, at least close to a, thanks to lemma 1.2. The idea behind this techni-
cal part of the proof is based on previous results concerning behaviours of
sequences of CR-maps (see [9, 8]). Unformally speaking, they explain that
non-equicontinuous sequences of CR-maps on strictly pseudoconvex hyper-
surfaces dilate a certain (anisotropic) distance. The proof of the sphericity
then goes as follows. Either fnk converges to a on SPC(bΩ) and theorem 2
gives the sphericity. Or fnk is not equicontinuous on SPC(bΩ) and it is dila-
ting. Then the inverse branches of fnk are contracting CR-diffeomorphisms
and theorem 2 gives the sphericity. Let us first fix the easy situation where
fnk converges to a on SPC(bΩ).
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Proposition 3.1. — Assume fnk converges locally uniformly to a on a
neighbourhood of a in bΩ. Then bΩ is spherical near a.

Proof. — Theorem 2 explains that it is enough to find a contracting
sequence of CR-automorphisms on a neighbourhood of a. We are assuming
here that (fnk) is a sequence of contracting CR-maps on a piece of SPC(bΩ).
Also, corollary 1.2 shows that f is a local diffeomorphism at a. We thus only
need to prove that there is a fixed neighbourhood of a on which all fnk are
injective. To see this, first assume that fn, and not only fnk , converges to a.
Fix then a neighbourhood U of a on which f is injective. Since fn converges
to a on U , fn(U) ⊂ U for all large enough integers n � n0. Consider now
a neighbourhood U ′ of a in U whose images U ′, f(U ′), . . . , fn0(U ′) are all
contained in U . Such a set exists because f is continuous and a is a fixed
point of f . By construction fn(U ′) ⊂ U for all n ∈ N, and the restriction of
fn to U ′ is injective as a composition of injective maps.

In the general setting, let us first check that in fact, the convergence of
the subsequence fnk to a implies the convergence of the whole dynamics of
an iterate h = fp to a. Pick again a small neighbourhood U of a in SPC(bΩ)
and an integer p = nk0 such that fp(U) ⊂ U . The map h := fp restricts
to U to a local diffeomorphism from U to itself, whose sequence of images
hn(U) is obviously decreasing (i.e. hi(U) ⊃ hi+1(U)). Observe then that the
subsequence (hn

′
k) defined by n′k := E(nk/p) + 1 converges uniformly to a

on U . Indeed, hn
′
k = fpn

′
k = fnk+i with i < p, so hn

′
k(U) ⊂ ∪i�pf i(fnk(U)).

Since fnk(U) is close to a by hypothesis (for k large enough) and a is a fixed
point of f , the continuity of f implies that hn

′
k(U) is also close to a. Since

the sequence hn(U) decreases, it thus converges to a. Replacing f by h, we
can therefore apply the above argument, so a neighbourhood of a is indeed
spherical. �

Consider now the situation when fnk does not converge to a on a neigh-
bourhood of a. Let us first describe the figure and notation. As in the
previous section, we assume that Ω is strongly convex in a neighbourhood
O of a, that a is the origin and that Ω ∩ O is contained in {Re z1 � 0}.
We put Ωε := Ω ∩ O ∩ {Re z1 � ε}, Uε := bΩ ∩ O ∩ {Re z1 � ε} and
we assume without loss of generality that Ω1 � O. Also since all the ar-
guments to come are purely local and occur in O, we will consider in the
sequel that f extends smoothly to the boundary (lemma 1.2), without ex-
plicitly mentionning any further the necessary restriction of f to O. The
non-convergence of fnk means the existence of a sequence of points zi ∈ bΩ
tending to a, and integers ki such that the points fnki (zi) lay out of a fixed
neighbourhood of a, say U1. Since a is fixed by fnki , we can even assume
that fnki (zi) ∈ bU1 = bΩ∩O∩{Re z1 = 1} by moving zi closer to a. Finally,
put fi := fnki and define εi by zi ∈ {Re z1 = εi}.
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Ω

zi

gi

{Re z1 = 1}

{Re z1 = εi}

{Re z1 = 0}
a = (0↪ 0)

O
Ω1

gi(zi)

The main point of this section is that fnk has a strong expanding be-
haviour.

Proposition 3.2 (see also [8]). — For all ε there exists an integer k =
k(ε) such that fk(Uε) ⊃ U1\Uε.

The sphericity near a is a direct consequence of this proposition :

Corollary 3.3. — If (fnk) does not converge to a in a neighbourhood
of a then bΩ is spherical near a.

Proof. — Fix an open contractible set V compact in U1\{a}. For ε small
enough, V ⊂ U1\Uε and there is an integer kε such that fkε(Uε) ⊃ V .
Moreover, there are no critical value of fkε |Uε inside V because both Uε and
V are strictly pseudoconvex (see [5]). Since V is simply connected, there
exists an inverse branch of fkε |Uε on V , which means a CR-diffeomorphism
hε : V −→ Uε with fkε ◦hε =Id. The sequence hε is therefore contracting on
V , and theorem 2 implies that V is spherical. We have thus proved the local
sphericity of U1\{a}, which even proves the sphericity of U1 because a is
a strictly pseudoconvex point. Indeed, Chern-Moser’s theory expresses the
sphericity of an open strictly pseudoconvex hypersurface by the vanishing
of a continuous invariant tensor. Since this tensor vanishes on U1\{a}, it
also vanishes on the whole of U1 so U1 itself is spherical. In the spirit of
[8], It would be pleasant to get a more down-to-earth argument for this last
point. �

The proof of proposition 3.2 relies on the following lemma.

Lemma 3.4. — For all ε there exists a diverging sequence ci −→ +∞
such that for all p ∈ U1 with fi(p) /∈ Uε we have :

‖f ′i(p)u‖ � ci‖u‖ ∀u ∈ TCp bΩ.
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Proof. — The idea is that Hopf’s lemma gives estimates on the normal
derivative of fi, which transfer automatically to complex tangential esti-
mates in strictly pseudoconvex geometry. For p ∈ U1, let !N(p) be the unit
vector normal to bΩ pointing inside Ω and

B+
δ (p) := B(p+ δ !N(p), δ) ∩ {〈 !N(p), ·〉 � δ}.

When δ is small enough but fixed, B+
δ (p) is in Ω and its image by fi for

i large is in Ω ε
2

(fi converges to a inside Ω). Thus if fi(p) /∈ Uε, the non-
positive p.s.h function ϕ := −〈 !N(fi(p)), fi(·)−fi(p)〉 vanishes at p while it
is less than −cε2 on B+

ε (p) (c is a constant depending only on the curvature
of bΩ at a). Hopf’s lemma then asserts that

ni(p) := 〈f ′i(p) !N(p), !N(fi(p))〉 = ‖!∇ϕ(p)‖ � c′ε2

δ
.

Since δ was arbitrary, we could take it much smaller than ε2, so that the
radial escape rate ni(p) is large. To transfer this radial estimate on the
derivatives of fi to complex tangential ones, consider the Levi form L of bΩ
defined by

L(p, u) := 〈[u, iu], i !N(p)〉, u ∈ TCp bΩ,

where u stands for the vector in TCp bΩ as well as any extension of it to
a vector field of TCbΩ. The smoothness and strict pseudoconvexity of U1

implies the existence of geometric constants c1, c2 such that

c1‖u‖2 � L(p, u) � c2‖u‖2 ∀p ∈ U1, ∀u ∈ TCp bΩ.

Easy computations show that :

c2‖f ′i(p)u‖2 � L(fi(p), f ′i(p)u) = ni(p)L(p, u) � c1ni(p)‖u‖2.

Since ni(p) is large when i is, this serie of inequalities implies lemma 3.4.
�

The previous lemma asserts that fi dilates the complex tangential direc-
tions of bΩ if fi(p) is not close to a. The last observation we need to make
in order to prove proposition 3.2 is that this “complex tangential dilation”
property implies a genuine dilation.

A path γ in bΩ will be called a complex path if γ̇(t) ∈ TCγ(t)bΩ for all
t. Its euclidean length will be denoted by &(γ). For x, y ∈ U1, define the
CR-distance dCR(x, y) between x and y as the infimum of the lengths of
complex paths joining x to y. The point is that the strict pseudoconvex-
ity condition means that the complex tangential distribution is contact so
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complex paths can join any two points. Even more, the open set U1\Uε is
dCR-bounded (see theorem 4 of [7], or [9]).

Proof of proposition 3.2. — Fix τ > 0 such that BCR(zi, τ) ⊂ Uε for all
i large enough. Since U1\Uε is dCR-bounded, it is enough to prove that

bfi(BCR(zi, τ)) ∩BCR(fi(zi), ciτ) ∩
(
U1\Uε

)
= ∅

because ciτ can be made greater than the CR-diameter of U1\Uε. Take a
point x ∈ bfi(BCR(zi, τ)) ∩ U1\Uε and let us prove that

dCR(fi(zi), x) � ciτ. (3.1)

Consider an arc-length parameterized complex path γ in U1\Uε joining
fi(zi) to x. Since fi is a local CR-diffeomorphism at each point of BCR(zi, τ)
whose image lies in the strictly pseudoconvex part of bΩ, the connected
component of fi(zi) in γ ∩ fi(BCR(zi, τ)) can be lifted to a complex path γ̃
through fi. Thus there exists l � &(γ) and γ̃ : [0, l] −→ BCR(zi, τ) joining
zi to bBCR(zi, τ) such that fi ◦ γ̃(t) = γ(t) for all t ∈ [0, l]. Since γ̃(t) ∈ U1

and fi(γ̃(t)) ∈ U1\Uε for all t, the estimates obtained in lemma 3.4 yield :

&(γ) � l =
∫ l

0

‖γ̇(t)‖dt =
∫ l

0

‖f ′i(γ̃(t)) ˙̃γ(t)‖dt � ci

∫ l

0

‖ ˙̃γ(t)‖dt � ci&(γ̃).

This proves (3.1) since γ̃ joins zi to bBCR(zi, τ) (so &(γ̃) � τ) and γ is any
complex path joining fi(zi) to x. �
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