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Annales de la Faculté des Sciences de Toulouse Vol. XIX, n◦ 3-4, 2010
pp. 539–565

A rigidity phenomenon for germs of actions of R2

Aubin Arroyo, Adolfo Guillot
(1)

ABSTRACT. — We study germs of Lie algebras generated by two commut-
ing vector fields in manifolds that are maximal in the sense of Palais (those
which do not present any evident obstruction to be the local model of an
action of R2). We study three particular pairs of homogeneous quadratic
commuting vector fields (in R2, R3 and R4) and study the maximal Lie
algebras generated by commuting vector fields whose 2-jets at the ori-
gin are the given homogeneous ones. In the first case we prove that the
quadratic algebra is a smooth normal form. In the second and third ones,
we prove that the orbit structure is, from a topological viewpoint, the one
of the quadratic part.

RÉSUMÉ. — On étudie les germes d’algèbres de Lie de champs de vecteurs
engendrées par deux champs de vecteurs commutants sur une variété qui
sont maximales au sens de Palais (qui ne présentent aucune obstruction
évidente pour être le modèle local d’une action de R2). On étudie trois
couples particuliers de champs de vecteurs commutants quadratiques et
homogènes (sur R2, R3 et R4) et on étudie les algèbres de Lie maxi-
males qui sont engendrées par des champs commutants dont le deuxième
jet à l’origine est donné par les champs homogènes. Dans le premier cas
on prouve que l’algèbre quadratique est une forme normale lisse pour
l’algèbre. Dans les deux derniers, on prouve que la structure des orbites
est, du point de vue topologique, celle de la partie quadratique.
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1. Introduction

The study of flows on manifolds passes naturally through the study of
vector fields. Understanding the singularities of vector fields has been a cen-
tral problem in the theory of differential equations. Several theorems prove
that the linearization of a vector field at a singular point preserves, under
certain circumstances, most of the properties of the original vector field.
For example, Hartman-Grobman’s Theorem states that any smooth vec-
tor field is topologically conjugate to its linear part in a neighborhood of
an equilibrium point whenever the linear part is hyperbolic. The regular-
ity of the conjugacy can be improved under extra assumptions. Poincaré’s
linearization theorem asserts that analytic vector fields with eigenvalues
in the Poincaré domain and without resonances are analytically lineariz-
able. Sternberg proved [11] that in the presence of resonances the conjugacy
can be as smooth as the order to which the linearization approximates the
original vector field. If, at an equilibrium point, a vector field is seen as a
perturbation of its linear part, these theorems can be seen as local rigidity
results.

The correspondence flows/vector fields is almost perfect: every flow is
given by integration of a vector field and every germ of smooth vector field is
the local model of some flow. The local theory of flows and the local theory
of vector fields coincide.

The infinitesimal counterpart of an action of R2 on a manifold is a pair
of commuting vector fields. Not every pair of germs of commuting vector
fields is the local model of an R2-action: the local theory of actions of R2

is different from the local theory of pairs of commuting vector fields.

To be precise, let A be the subspace of the vector space of vector fields in
the manifold M generated by the commuting vector fields X1 and X2. We
say that A is a (marked, commutative, two-dimensional) Lie algebra of vec-
tor fields. A solution of A with initial condition p ∈M is a mapping Φ : U →
M , defined on an open subset U of R2 containing 0 such that Φ(0) = p and
for every s ∈ U and every i, Xi(Φ(s)) = d/dtΦ(s + tei)|t=0, where (e1, e2)
is the usual basis of R2.

The existence of solutions and the uniqueness of their germs at 0 is guar-
anteed by the fact that the local flows of commuting vector fields commute.
However (unlike the case of flows) these local solutions cannot be, in general,
glued into a maximal solution. Palais proposes the following definition:

– 540 –



A rigidity phenomenon for germs actions of R2

Definition 1.1 (Palais [4]). — A commutative Lie algebra of vector
fields on M is maximal if for every p ∈ M there exists a solution
Φ : U → M with initial condition p such that for every sequence si ∈ U
such that limi→∞ si ∈ ∂U , the sequence Φ(si) leaves every compact subset
of M .

In other words, in a maximal commutative Lie algebra of vector fields,
the local solutions can be extended in a unique way (as it is the case for the
maximal solutions of a differential equation) to obtain a maximal solution.

For an action Ψ : R2 ×M → M , the induced commutative Lie algebra
of vector fields in M is maximal since the function Φp : R2 → M defined
by Φp(s) = Ψ(s, p) is a solution that trivially satisfies Palais’ condition
since ∂R2 = ∅.

The restriction of a maximal commutative Lie algebra of vector fields
in M (in particular, of the Lie algebra generating a given action) to an
open subset gives still a maximal Lie algebra. We can thus, as remarked
by Rebelo [6], speak of germs of maximal Lie algebras. Actions of R2 on
manifolds are locally modeled by germs of maximal Lie algebras and not by
arbitrary ones.

It appears thus as necessary to understand the obstructions that a germ
of Lie algebra of commuting vector fields must overcome in order to be
maximal.

To our knowledge, the property of maximality has not been studied
in the real setting, though the analogue property of semi-completeness of
holomorphic vector fields has been successfully dealt with in the last decade.
A holomorphic vector field X in the complex manifold M is said to be semi-
complete if its real and imaginary parts, as real commutative vector fields
on M , generate a maximal Lie algebra (Rebelo’s original definition [6] is
equivalent to this one).

Germs of singular holomorphic vector fields with non-degenerate linear
part are, at least if the dimension of the ambient space is small, essentially
semi-complete [7], [8]. As the linear part becomes more degenerate, germs
of semi-complete holomorphic vector fields become scarce and, in dimension
two, the rareness of these objects can be seen through the following rigidity
result of Ghys and Rebelo [2]: if X is a semi-complete holomorphic vector
field in a neighborhood of the origin in C2 with an isolated singularity at the
origin and vanishing first jet and if X2 is the quadratic homogenous vector
field given by its second jet, then X2 is a semi-complete vector field and
there exists a holomorphic function f such that the germs at the origin X
and fX2 are holomorphically conjugate.

– 541 –



Aubin Arroyo, Adolfo Guillot

Returning to the real setting, there exist some linearization results —
analogue to the ones for vector fields — concerning germs of commutative
Lie algebras of vector fields. Dumortier and Roussarie [1] proved that a
pair of germs of C∞ commuting vector fields in Rn in a neighborhood of a
common singular point are C∞-linearizable if the linear part (of the pair)
is hyperbolic and does not satisfy any resonance condition of finite order.
They also prove a result about Ck-linearization in the presence of certain
resonances. A corollary of the results of Dumortier and Roussarie is that
the pairs of germs of commuting vector fields at the origin of Rn satisfying
the hypotheses of their theorems generate a maximal Lie algebra, since they
are equivalent to their linear part (maximality is invariant under changes of
coordinates). In some sense, almost every pair of commuting vector fields
with non-degenerate linear part at a common singular point is maximal.

This article is about the maximality of Lie algebras generated by com-
muting vector fields without linear part. One cannot expect to have a unified
treatment of these algebras. We can, however, restrict this universe to those
commuting vector fields whose Taylor development starts with a given pair
of polynomial homogenous commuting vector fields. Pairs of (nonlinear)
homogenous commuting vector fields do not abound. A generic non-linear
homogenous polynomial vector field will only commute with its multiples
and only some, very special (or very trivial), vector fields will have a bigger
center.

We restrict our interest to three special maximal Lie algebras generated
by commuting quadratic homogenous vector fields (in R2, R3 and R4) and
study the smooth commuting vector fields whose Taylor development starts
with these homogenous ones and which, moreover, generate a maximal Lie
algebra. Our results are the following:

Theorem A. — Consider in R2 the maximal Lie algebra generated by
the commuting vector fields

X0 = (x2 − y2)
∂

∂x
+ 2xy

∂

∂y
, Y0 = −2xy

∂

∂x
+ (x2 − y2)

∂

∂y
. (1.1)

Let X1 and Y1 be Cn+α, (n � 2, 0 < α < 1), commuting vector fields
defined in a neighborhood of the origin of R2 and generating a Lie algebra
whose germ at the origin is maximal. Suppose that the n-jets of X1 and Y1

at the origin are X0 and Y0. Then there exists a C(n−1)+α map from (R2, 0)
to (R2, 0) that redresses X1 and Y1 into X0 and Y0.
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Theorem B. — Consider in R3 the maximal Lie algebra generated by
the commuting vector fields

X0 = (−3x2 + y2 + 2xz)
∂

∂x
+ 2y(−3x+ 2z)

∂

∂y
+ 2z(3x− z)

∂

∂z
, (1.2)

Y0 = 2y(−x+ z)
∂

∂x
+ (3x2 − y2)

∂

∂y
+ 2zy

∂

∂z
. (1.3)

Let X1 and Y1 be C3 commuting vector fields in a neighborhood of the origin
of R3, generating a maximal Lie algebra in some neighborhood of the origin
and such that their second jets at the origin are, respectively, X0 and Y0.
Then there exists an homeomorphism that redresses the foliation generated
by X1 and Y1 into the foliation generated by X0 and Y0.

Theorem C. — Consider in R4 the maximal Lie algebra generated by
the commuting vector fields

X0 = (x2
1 − x2

2)
∂

∂x1
+ 2x1x2

∂

∂x2
+ (x2

3 − x2
4)

∂

∂x3
+ 2x3x4

∂

∂x4
, (1.4)

Y0 = −2x1x2
∂

∂x1
+ (x2

1 − x2
2)

∂

∂x2
− 2x3x4

∂

∂x3
+ (x2

3 − x2
4)

∂

∂x4
. (1.5)

Let X1 and Y1 be C3 commuting vector fields in a neighborhood of the origin
of R4, generating a maximal Lie algebra in some neighborhood of the origin
and such that their second jets at the origin are, respectively, X0 and Y0.
Then there exists an homeomorphism that redresses the foliation generated
by X1 and Y1 into the foliation generated by X0 and Y0.

The commuting vector fields of the first two theorems are isolated in
the sense that any pair of quadratic commuting vector fields close to the
ones under consideration can be obtained from the original one by linear
combinations and linear changes of coordinates. The ones in the third ex-
ample come from a holomorphic vector field in C2 that is isolated as a
semi-complete quadratic homogenous one.

We thank Santiago López de Medrano. Conversations with him led us
to Example 3.6. We also thank Adriana Ortiz and Alberto Verjovsky.

2. An example in dimension 2

The holomorphic vector field z2∂/∂z in C is semi-complete since we
have a maximal local action given by Φ(z0, t) = z0/(1 − tz0). We owe the
following observation to Rebelo: a holomorphic semi-complete vector field
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X = (z2 + · · ·)∂/∂z in a neighborhood of the origin of C can be redressed, by
a holomorphic change of coordinates, to the vector field z2∂/∂z. In fact, the
unique 1-form ω such that ω ·X = 1 has a pole of order two at the origin,
and, up to biholomorphisms, its sole invariant is its residue at the origin.
Hence X can be redressed to one of the vector fields z2/(1+az)∂/∂z, a ∈ C
in a neighborhood of the origin. Integration by parts shows that the vector
field is semi-complete only in the case a = 0. The real and imaginary parts
of z2∂/∂z are generated by the commuting vector fields (1.1). Theorem A
extends Rebelo’s observation to the real setting.

Proof of Theorem A. — Let A0 be the Lie algebra generated by (1.1). A
maximal solution of A0 is given Φ : R2 \ {0} → R2 \ {0}

(u, v) Φ�→
(
− u

u2 + v2
,

v

u2 + v2

)
. (2.1)

The determinant of X0 and Y0 is given by (x2+y2)2, and vanishes exclusively
at the origin. Let D be a disk around the origin such that X1 and Y1 are
linearly independent in D∗ = D \ {0}. For c ∈ R∗, let hc : R2 → R2 be the
homothety given by (x, y) �→ (cx, cy). Consider the family of vector fields
in D parametrized by c ∈ (−1, 1) and given by

Xc =
{

1
cDhc(X1), if c �= 0;
X0, if c = 0. (2.2)

This family of vector fields depends continuously on c, since ifXc = fc∂/∂x+
gc∂/∂y then fc = c−2f1(cx, cy), which is continuous at c = 0. Define Yc sim-
ilarly and note that [Xc, Yc] = 0. Let Ac be the Lie algebra generated by Xc

and Yc. For any c �= 0, Ac is equivalent to and A1 and is thus maximal. For
each c, consider the pair of 1-forms (ωXc , ω

Y
c ) which are dual to Xc and Yc,

this is,
ωXc ·Xc ≡ 1, ωXc · Yc ≡ 0, ωYc ·Xc ≡ 0, ωYc · Yc ≡ 1.

This pair defines an R2-valued differential 1-form. The condition of max-
imality implies that integration of this form along an open path is never
zero. We will now prove that this integral vanishes along a closed path.

Let γ0 : [0, 1] → R2 \ {0} be a smooth closed curve that generates the
fundamental group of D∗. Let βX(t) and βY (t) be the functions such that

γ′0(t) = βX(t)X0|γ0(t) + βY (t)Y0|γ0(t).

The absence of periods in the solution (2.1) implies that∫ 1

0

βX(t)dt = 0,
∫ 1

0

βY (t)dt = 0. (2.3)
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For each c, let γc(t) be the solution to the differential equation

γ′c(t) = βX(t)Xc|γc(t) + βY (t)Yc|γc(t)

with initial condition γc(0) = γ0(0). These differential equations depend
continuously on the parameter c and thus, by the continuity of the solu-
tions of a differential equation with respect to parameters, for a sufficiently
small c, say −c0 � c � c0, we have that γc(t) is defined in the interval [0, 1].
Notice that the identities (2.3) imply that the integral of the form (ωXc , ω

Y
c )

vanishes along the curve γc([0, 1]). By the maximality of Ac, the curve is
closed. The mapping H : [0, 1] × [0, c0] → D∗ given by H(t, c) = γc(t)
gives an homotopy between γ0([0, 1]) and γc([0, 1]). This proves that the
forms ωXc and ωYc are exact. Let ũ and ṽ be the functions such that dũ = ωX1
and dṽ = ωY1 . Consider the mapping

Φ ◦ (ũ, ṽ), (2.4)

where Φ is the solution (2.1). Notice that, by construction, it maps the vector
fields X1 and Y1 to X0 and Y0. It is of class C(n+1)+α in D∗ and extends
continuously to the origin. Let Mi be the unique Riemannian metric on D∗

that makes Xi and Yi orthonormal. The redressing map (2.4) is an isometry
with respect to these metrics and, in particular, is conformal with respect
to the conformal structure which lies underneath. Let

X1 = X0 + p1
∂

∂x
+ p2

∂

∂y
, Y1 = Y0 + q1

∂

∂x
+ q2

∂

∂y
.

The functions pi and qi are of class Cn+α and have vanishing n-jets. Let

∆ = (x2 + y2)2 + (p1 + q2)x2 + 2(p2 − q2)yx− (p2 + q2)y2 + (p1q2 − p2q1).

Consider in D∗ the metric M ′1 = ∆2(x2 + y2)−2M1, conformally equivalent
to M1 on D∗. A straightforward computation shows that M ′1 is explicitly
given by

dx2 + dy2 +
1

(x2 + y2)2
[
Edx2 + 2Fdxdy +Gdy2

]
, (2.5)

for

E = 2x2q2 + 4p2xy + p2
2 − 2y2q2 + q2

2 ,

F = (p2 + q1)y2 − (p2 + q1)x2 + 2(q2 − p1)xy − (p2p1 + q2q1),
G = 2p1x

2 − 4xyq1 − 2p1y
2 + p2

1 + q2
1 .

We affirm that this Cn+α metric in D∗ extends as a C(n−2)+α metric on D.
It is sufficient to prove the following claims:
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1. If f is a Cn+α function with vanishing n-jet and P is a homogenous
polynomial of degree two, then (x2 + y2)−2Pf is C(n−2)+α.

2. If f and g are a Cn+α functions with vanishing n-jet, (x2 + y2)−2fg
is C(n−2)+α.

It can be easily seen inductively that if f is a Cn+α function with vanish-
ing n-jet and P is a polynomial of degree two, then every partial derivative
of (x2 + y2)−2Pf of the mth (0 � m � n− 2) order is the sum of terms of
the form

Q2+ifm−i
(x2 + y2)2+i

, 0 � i � m, (2.6)

where Q2+i is a homogenous polynomial of degree 2+i and fm−i is a Cn−m+i

function with vanishing n − m + i jet. On the other hand, by Taylor’s
Theorem (with integral form of the remainder), every Ck+α (k � 1) function
with vanishing k-jet can be written as the sum of terms of the form Sh,
where S is a homogenous polynomial of degree k and h a C0+α function
vanishing at the origin. In this way, a term of the form (2.6) can be written
as a sum of terms of the form (x2+y2)−(2+i)QSh, where, Q is a homogenous
polynomial of degree 2+i, S is a homogenous polynomial of degree n−m+i
and h is a C0+α function vanishing at the origin. Since (x2 +y2)−(2+i)QS is
homogenous of degree n−2−m � 0 (it is, in particular, bounded, though not
necessarily continuous at the origin), and the product of a C0+α function
times a bounded function is C0+α, we conclude that if f is a Cn+α function
with vanishing n jet and P is a polynomial of degree two, then (x2+y2)−2Pf
is in C(n−2)+α. In the same spirit, if f and g are Cn+α functions with
vanishing n jet, then every partial derivative of (x2 + y2)−2fg of the mth

(0 � m � n) order is the sum of terms of the form

Qifjgk
(x2 + y2)2+i

, i+ j + k = m, (2.7)

where Qi is a homogenous polynomial of degree i, fj is a Cn−j function with
vanishing (n−j)-jet and gk is a Cn−k function with vanishing (n−k)-jet. By
the same argument as before, any term of the form (2.7) can be written as
sums of terms of the form (x2+y2)2+iQiSjSkrjrk where Qi is a homogenous
polynomial of degree i, Sj is a homogenous polynomial of degree n−j, Sk is
a homogenous polynomial of degree n−k and rj and rk are C0+α functions
vanishing at the origin. The function (x2 + y2)2+iQiSjSk is homogenous
of degree 2(n − 2) − m � n − 2 � 0. We thus have that if f and g are
a Cn+α functions with vanishing n-jet, (x2 + y2)−2fg is in C(n−2)+α. We
conclude that the metric (2.5) is C(n−2)+α. According to the Theorem on
the existence of isothermal coordinates [10, Chapter 9, Addendum 1], any
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system of isothermal coordinates for a C(n−2)+α metric is of class C(n−1)+α.
Since the conformal structure induced by M0 is the one induced by the
metric dx2 + dy2, the map (2.4) gives isothermal coordinates for M ′1 and
has thus the sought regularity. �

Example 2.1. — The loss of regularity in the above Theorem is not (en-
tirely) an artifact of the proof, as this example will show. Consider the
commuting vector fields

X1 = X0 +
y
√
x2 + y2√

x2 + y2 − 1

(
y
∂

∂x
− x

∂

∂y

)
,

Y1 = Y0 +
x
√
x2 + y2√

x2 + y2 − 1

(
y
∂

∂x
− x

∂

∂y

)
,

defined in a neighborhood of 0 ∈ R2. They are higher order perturbations
of X0 and Y0 and are of class C2+α for every α ∈ (0, 1) — the second
partial derivatives of the coefficients are in fact Lipschitz —. The algebra is
maximal since the map

(x, y) �→
(

1

1−
√
x2 + y2

)
(x, y)

redresses X1 and Y1 onto the vector fields X0 and Y0. This change of co-
ordinates is, by the above Theorem, of class C1+α for every α (its partial
derivatives are in fact Lipschitz) but is not C2.

Remark 2.2. — We can use the previous example to construct an action
of R2 on the sphere S2 having only one fixed point. Consider a sufficiently
small neighborhood of the origin U together with the vector fields X1 and Y1.
Identify U \{0} with the coordinate vector fields of R2. The resulting surface
is S2 together with an action of R2. This action is C3 and is C1-conjugate
to the standard action of R2 on S2. However, it is not C2-conjugate to it.

We should not expect analogue rigidity results to hold for other pairs of
quadratic homogenous commuting vector fields. Consider the Lie algebra Ac

generated by the commuting vector fields

Xc = x2 ∂

∂x
, Yc = cx2y

∂

∂x
+ y2 ∂

∂y
. (2.8)

The algebra is maximal since the solution with initial condition (x0, y0) is

Φ(x0, y0;u, v) =
(

x0

1− ux0 + cx0 log[1− vy0]
,

y0

1− vy0

)
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Notice that if x0y0 �= 0, the restriction of the above solution to the one
parameter subgroup u = 0 converges, as v goes to infinity, to (x0, 0) if c = 0
and to (0, 0) if c �= 0. The solutions of an algebra Ac with c �= 0 cannot even
be topologically conjugate to the solutions of A0.

3. An example in dimension 3

Let A0 be the commutative two-dimensional Lie algebra of quadratic
homogenous vector fields in R3 generated by (1.2) and (1.3). We will prove
in §3.1 that this algebra is maximal. Although this follows from the results
in [3] (where it is shown that the complexifications of these fields integrate
into a maximal local holomorphic action of C2 on C3), we will give a full
proof of this fact (following the previous reference to some extent) in order
to get a deeper understanding of the real geometry of the action and, in
particular, of the nature of the maximal domains of definition of the solu-
tions. Theorem B will be proved in §3.2. For its proof, we will use standard
tools from the theory of hyperbolic vector fields, such as the Invariant Man-
ifold Theorem and the Grobman-Hartman Theorem (see [5]), as well as the
following well-known principle:

Proposition 3.1 (Kupka Phenomenon). — Let F be a singular foli-
ation in (Rn+1, 0) generated by two Ck vector fields and suppose that their
rank is 1 at the origin. Then the foliation is a product: there exist Ck co-
ordinates {xi} where the foliation is generated by two vector fields of the
forms ∂/∂xn+1 and

∑n
i=1 fi(x1, . . . , xn)∂/∂xi.

Proof of the Kupka Phenomenon. — Let X and Y be the vector fields
generating F and suppose that X does not vanish at the origin. Choose
Ck coordinates, {xi}, where X = ∂/∂xn+1. If, in these coordinates, Y =∑n+1
i=1 fi∂/∂xi, let Y1 = Y − fn+1X. Since Y1 and X generate a foliation,

there exists a function A such that [X,Y1] = AY1. If we set

g(x1, . . . , xn, xn+1) = exp
(
−

∫ xn+1

0

A(x1, . . . , xn, y)dy
)
,

we have [X, gY1] = g[X,Y1] + (X · g)Y1 = (Ag + X · g)Y1 = 0. The vector
fields X and gY1 are the required ones. �

3.1. Integrating the action

Let

Q = 9x4 + y4 − 4x3z + 6x2y2 + 4y2z2 − 12xy2z, g = −z2Q (3.1)
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and notice that g is a homogenous first integral common to X0 and Y0. The
leaves of the induced foliation are contained in its level surfaces. The zero
locus of Q is a cone over an irreducible rational quartic having three cusps
(the deltoid or tricuspid) that can be projectively parametrized by

κ �→ [4κ2(1 + κ2) : −8κ3 : (3κ2 + 1)2]. (3.2)

The three cusps appear at the directions [1 : 1 : 2], [1 : −1 : 2], [0 : 0 : 1],
when κ ∈ {−1, 0, 1}. The Lie algebra has rank two in the complement of
the union of these lines. Since Q(x, y, 0) = (3x2 + y2)2, the line {z = 0} is a
bitangent of the quartic having contact at two imaginary points. The linear
transformations

σ(x, y, z) = (x,−y, z), (3.3)
ρ(x, y, z) = −(x, y, z), (3.4)
η(x, y, z) = 1

2 (−x− y + z, 3x− y − z, 2z), (3.5)

preserve the first integral g and act upon the Lie algebra by

η∗X0 = − 1
2X0 + 3

2X1, η∗Y0 = − 1
2X0 − 1

2Y0,
σ∗X0 = X0, σ∗Y0 = −Y0,
ρ∗X0 = −X0, ρ∗Y0 = −Y0.

We will now investigate the nature of the domains where the solutions are
defined:

The plane {z = 0}

The algebra is maximal in restriction to this plane since the restriction of
the algebra is linearly equivalent to the algebra generated by (1.1). The
maximal solutions are defined in the complement of a point in R2.

The cone {Q = 0}

The mapping Φ : R2 \ {u(u+ v)(u− v) = 0} → R3 given by

(u, v) �→
(
− 2u[u2 + v2]

[3u2 + v2][u2 − v2]
,

4u2v

[3u2 + v2][u2 − v2]
,− [3u2 + v2]

2u[u2 − v2]

)
,

maps each connected component of its definition domain to each one of
the six two-dimensional orbits contained in the cone {Q = 0}, mapping,
respectively, the vector fields ∂/∂u and ∂/∂v to X0 and Y0. In restriction
to this cone, A0 is thus maximal.
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The generic orbits

Let Z0 = 1
2 (X0+Y0) and Z1 = 1

2 (X0−Y0). These vector fields are completely
integrable, for the polynomial functions given by

p0 = z(x+ y), q0 = z(3x2 + y2 + 2yz),
p1 = z(x− y), q1 = z(3x2 + y2 − 2yz), (3.6)

satisfy, for j = 2, 3,

Zj · p1−j = 0, Zj · pj = qj ,
Zj · q1−j = 0, Zj · qj = 6p2

j .
(3.7)

Moreover,
4p3
j − q2

j = −z2Q (3.8)

is independent of j. Hence, when restricted to the parametrized orbits of Zj ,
pj satisfies the Weierstrass differential equation (dξ/dt)2 = 4ξ3 − g. Define
the function φ : R×R∗ → R by

φ(x, c) =
3
√

2
3

∫ x

0

dξ

(ξ2 + c)2/3
.

For c ∈ R∗, let kc = limx→∞ φ(x, c). Observe that kc <∞ and that since

φ(x, β2c) =
3
√

2
3

∫ x/β

0

d(βξ)
([βξ]2 + β2c)2/3

= β−1/3φ

(
x

β
, c

)
,

kc = c−1/6k1, k−c = c−1/6k−1 (for c > 0). For c ∈ R∗ fixed, the function
φ(·, c) : R → (−kc, kc) is odd and is a diffeomorphism but for the points x
where x2 + c = 0 (if any). Let F : R3 \ {g = 0} → R3 be given by
F (x, y, z) = (φ(q0, g), φ(q1, g), g) and let (u, v, w) be the coordinates of the
target space. The identities (3.7) and the relation (3.8), imply that the
images of the vector fields Z0 and Z1 under F are given by the restriction to
the image (of the domain where F is differentiable) of the vector fields ∂/∂u,
∂/∂v. We will now investigate the nature of the image. The mapping F can
be decomposed as:

(x, y, z) F1�→ (q0, q1, g)
F2�→ (φ(q0, g), φ(q1, g), g).

The images of Z0 and Z1 under F1 are respectively given by the restriction
to the image of the vector fields

3
3
√

2
(q2

0 + g)2/3
∂

∂q0
,

3
3
√

2
(q2

1 + g)2/3
∂

∂q1
. (3.9)
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In RP2, the conics

Cτ = {(τq0 − q1)/z = 0; τ ∈ RP1, τ2 �= 1}

foliate the complement of {yz = 0}. If we set τ = tan(θ) then, for τ2 �= 1,
Cτ ⊂ RP2 can be parametrized by its intersection with the line x = αy
for α ∈ R:

α
γ�→

[
2α[sin(2θ) + 1] : 2[sin(2θ) + 1] : (3α2 + 1) cos(2θ)

]
.

Consider a lift γ̃ : R → R3 \ {0} of γ lying in the level surface {g = g0}.
The image under F1 is contained in the line q1 = τq0. Moreover, for r2 =
(q2

0 + q2
1) ◦ γ̃ we have

r2(θ, α) =
2g0(3α2 + 1)

cos(2θ)α3 − 3α2 + 3 cos(2θ)α− 1
,

which is a strictly monotone function of α since

d(r−2)
dα

=
3 cos(2θ)(α2 − 1)2

2g0(3α2 + 1)2
.

In the same fashion, when {y = 0} is parametrized by [β : 0 : 1], we
find r2(β) = 18βg0/(4− 9β) and hence the value r2 = −2g0 (corresponding
to β = ∞) is unattained. Since, in restriction to {z > 0}, q0 + q1 > 0, the
image of {g = g0} ∩ {z > 0} under F1 is given by

• {(q0, q1, g); q0 + q1 > 0, g = g0} \ {(
√−g0,

√−g0, g0)} if g0 < 0; by

• {(q0, q1, g); q0 + q1 > 0, g = g0} if g0 > 0.

The images of the vector fields (3.9) under F2 are, respectively, the vector
fields ∂/∂u and ∂/∂v. We thus have

Proposition 3.2. — The solution of A0 with initial condition (x0, y0, z0)
with z0 > 0 is defined in an open subset of R2 which is, if g(x0, y0, z0) > 0,
the interior of a triangle; if g(x0, y0, z0) < 0, the complement of the centroid
within the interior of a triangle.

These results are summarized in Figure 1.
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Figure 1. — Domains of definition of the solutions of A0

3.2. Proof of Theorem B

Let X1 and Y1 be vector fields defined in a neighborhood of the origin
of R3 satisfying the hypothesis of Theorem B and let A1 be the maximal
Lie algebra they generate.

3.2.1. On the holonomy of F1

We will blowup the origin of R3, (R̃3,∆) → (R3, 0) in order to under-
stand better the foliations. Consider the coordinates

(ζ1, ζ2, ζ3) = (x, y/x, z/x) (3.10)

for the blow-up. Observe that, by Taylor’s Theorem (in its integral remain-
der version), a Cr vector field in the origin of R3 with vanishing k-jet
(k � r − 1) becomes, after the blow-up, a Cr−1 vector field of the form

ζk1

[
ζ1f1(ζ1, ζ2, ζ3)

∂

∂ζ1
+ f2(ζ1, ζ2, ζ3)

∂

∂ζ2
+ f3(ζ1, ζ2, ζ3)

∂

∂ζ3

]
, (3.11)

where the functions fi are Cr−1−k.

In this chart, ∆ is given by {ζ1 = 0}. Let X̃i and Ỹi be the transforms
of the vector fields Xi and Yi. We have

X̃0 = ζ1

[
ζ1(ζ2

2 + 2ζ3 − 3)
∂

∂ζ1
− ζ2(3− 2ζ3 + ζ2

2 )
∂

∂ζ2
− ζ3(4ζ3 + ζ2

2 − 9)
∂

∂ζ3

]
,

Ỹ0 = ζ1

[
2ζ1ζ2(ζ3 − 1)

∂

∂ζ1
− (3 + ζ2

2 − 2ζ2
2ζ3)

∂

∂ζ2
+ 2ζ3ζ2(ζ3 − 2)

∂

∂ζ3

]
.
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The transform of the radial vector field E becomes Ẽ = ζ1∂/∂ζ1. The
foliation generated by ζ−1

1 X̃i and ζ−1
1 Ỹi extends to a foliation Fi in R̃3.

Since X1 − X0 is a C3 vector field with vanishing second jet, from the
observation preceding formula (3.11), X̃1 − X̃0 is a C2 vector field of the
form ζ2

1 [ζ1g1∂/∂ζ1 + g2∂/∂ζ2 + g3∂/∂ζ3]. Hence, the restrictions of ζ−1
1 X̃0

and ζ−1
1 X̃1 to the exceptional divisor agree (the same happens for ζ−1

1 Ỹ0

and ζ−1
1 Ỹ1).

The singularities of F0 (and hence those of F1) within ∆ are given by its
intersection with the plane {z = 0} and with the cone {Q = 0} (the vector
fields ζ−1

1 X0 and ζ−1
1 Y0 are not linearly independent along these curves).

On the complement of these curves, Fi has two two-dimensional leaves. One
of them, La, is bounded by {z = 0} and by {Q = 0} (it is topologically an
annulus). The other, Lb, is bounded by {Q = 0} and is simply connected.
From our previous results, the holonomy of F0 along La is trivial.

Proposition 3.3. — The holonomy of F1 along La is trivial.

Proof . — We will use Rebelo’s renormalization principle [7]. On ev-
ery two-dimensional orbit of Fi not contained in ∆ we have the natural
parametrization given by a solution of Ai. Through the solutions of Ai, these
two-dimensional leaves are locally modeled in R2 with changes of coordi-
nates in the group of translations of R2: in Thurston’s terminology [12], the
leaves have an (R2,R2) or translation structure. Since the group of trans-
lations of R2 is naturally contained in the group Sim(R2) of similarities
(homotheties and isometries) of R2, these leaves are also naturally endowed
with a a (Sim(R2),R2) or similarity structure. The translation structure
does not extend to the leaves of Fi contained in ∆, where the vector fields X̃i

and Ỹi vanish. However, the similarity structure does. Let Π : R̃3 → ∆ be
the natural projection, whose fibers contain the orbits of Ẽ. By the homoge-
nous nature of A0, two solutions of A0 induce, through Π, parametrizations
of L that differ by precomposition with an homothety and a translation: the
similarity structure of the leaves is invariant by the homotheties of R3 and,
in consequence, it extends to the two-dimensional orbits of F0 within ∆.
By Proposition 3.2, the component La is, as a surface with a similarity
structure, equivalent to the complement of the centroid in a triangle; the
component Lb, the interior of a triangle.

We claim that the similarity structure of the leaves of F1 also ex-
tends continuously to La and Lb, inducing in them the very same simi-
larity structure. Once again, let hc : R3 → R3 be the homothety given
by hc(x) = cx. Define Xc, Yc and Ac like in formula (2.2). Let p ∈ R3,
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p /∈ ∆. Let φ0 : D → R3 be a solution of A0 with initial condition p for
some disk D ⊂ R2. If D is small enough then, for small values of c, we
have solutions φc : D → R3 of Ac with the same initial condition. These
solutions depend continuously on c. If φc : U → R3 is a solution of Ac

then the function hc ◦ φc(cs, ct) is a solution of A1 through hc(p). We have:
limc→0 h

c ◦ φc(s, t) = Π ◦ φ0(s, t). This implies the following: If ψc is the
solution of A1 with initial condition hc(p) then, as c → 0, ψc(c−1s, c−1t)
converges pointwise to Π ◦ φ0(s, t). This proves our claim.

Let γ be a closed curve in La generating its fundamental group. Since,
through the solutions of A0, La is isometric, in this geometry, to the com-
plement of the centroid in the interior of a triangle (the key point here being
that it is an open subset of R2), the image of γ under the developing map
of the similarity structure is a closed curve. In order to define the holonomy
of F1 along γ, we can lift it to a neighboring leaf L /∈ ∆ of F1 by an isometry
of similarity structures. The lift γ′ of γ to L is such that the image of (a lift
of) γ under the developing map of the similarity structure (which can be
chosen to be the same as the developing map of the translation structure)
is a closed curve. Hence, the integral of the natural R2-valued form in L
vanishes along γ′. Since A1 is maximal, γ′ must be closed. This proves the
Proposition. �

Let G be foliation by curves transverse to ∆ given by the field of direc-
tions induced by the radial vector field. The foliation G is transverse to F0

and F1 in La. Let ρ be a leaf of G intersecting La. Let Φ be a diffeomor-
phism unto its image that is the identity in restriction to ∆ and ρ, that
preserves G, and that maps the leaves of F0 into the leaves of F1. Its germ
at La is unique and it is well-defined since the holonomies of F0 and F1

along A are trivial. A similar construction can be done for Lb.

3.2.2. Deformations of the invariant plane

After blowing-up the origin, the invariant plane {z = 0} of F0 inter-
sects ∆ along a circle <. We will prove that there is an invariant surface
for F1 intersecting ∆ transversely along < and that the conjugacy Φ can be
extended to a neighborhood of <.

We will now analyze Fi in a neighborhood of <. Let θ = arctan(y/x). It
is a parameter for <. Notice that along this curve, the vector fields ζ−1

1 X̃i

and ζ−1
1 Ỹi have rank 1 and that the level surfaces of θ are planes that

intersect < transversely. By the Kupka Phenomenon, at every point of <,
F1 is generated by a vector field which is tangent to dθ and one which is
transverse. Let Zi be a vector field defined in a neighborhood of <, tangent
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to Fi, and transverse to dθ (such a vector field can be constructed, for
example, by gluing the local ones by means of a partition of unity). Let T
be the plane θ−1(0) = {ζ2 = 0}, FTi the foliation that Fi induces in T
and hi : (T, p) → (T, p) be the first return map of the flow of Zi (when
following θ positively). In a neighborhood of <, Fi is the suspension of FTi
by hi.

The vector field ζ−1
1 X̃0 is tangent to T and its restriction to the lat-

ter is given by ζ1(2ζ3 − 3)∂/∂ζ1 − ζ3(4ζ3 − 9)∂/∂ζ3. In particular, FT0 is
generated by this vector field. It is not difficult to see that FT1 is gener-
ated by a vector field of the form ζ−1

1 X̃0 + ζ1(ζ1f1∂/∂ζ1 + f3∂/∂ζ3) for
some functions fi. The linear part of this field at the origin is given by
−3ζ1∂/∂ζ1 + (f3(0)ζ1 + 9ζ3)∂/∂ζ3. Thus, by the Invariant Manifold Theo-
rem for hyperbolic vector fields of saddle type, we have two invariant curves
of FTi . The first one is necessarily T ∩ ∆. The second one intersects ∆
transversely (it corresponds to the invariant plane {z = 0} for i = 0). These
curves must be preserved by hi and are associated to two invariant surfaces
of Fi that intersect transversely along <. The triviality of the holonomy
of Fi along La implies that hi not only preserves the foliation Fi but, in
a neighborhood of the leaf T ∩ ∆, its square induces the identity map in
the leaf space of Fi (a curve generating the fundamental group of A that is
sufficiently close to < intersects T ∩∆ at two points).

We have all the ingredients to extend Φ to a neighborhood of <: the
foliations that F0 and F1 induce in T are, by the Theorem of Grobman-
Hartman, topologically equivalent at the origin and the maps hi induce the
same map at the level of the leaf spaces.

Let H(x, y, z) = z4/Q. It is a homogenous function such that La is
the subset of ∆ where it is strictly positive and such that < is the zero
locus of H. Choose for Z0 the oriented field of lines defined by the vector
field Z0 = yX0 + (z − 3x)Y0. It is transverse to the level sets of θ and,
since Z0 ·H = 0, it is tangent to the one-dimensional foliation given by the
intersection of F0 and dH (whenever they are transverse). Let h0 be the
corresponding holonomy. Let

(ζ̂1, ζ̂2, ζ̂3)(ζ1, ζ2, ζ3) (3.12)

be coordinates around 0 such that Z0 is tangent to the vector field ∂/∂ζ̂2
and such that ζ̂i|T = ζi. Let U ⊂ T be a subset such that these coordinates
are defined for all (ζ1, ζ3) ∈ U and all ζ2 ∈ (−ε3, ε3) for some ε3 > 0.

Let ψ : (T, 0) → (T, 0) be a germ of homeomorphism that maps FT1
to FT0 . Suppose, without loss of generality, that it is the identity in re-
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striction to ∆ and choose a representative taking values in a subset of the
form {|H| < ε2, |ζ1| < c1} for ε2 < ε3. Let R = H−1(ε1) for some ε1 < ε2.
Let RT = R ∩ T (its connected components are two arcs that intersect
transversely ∆ ∩ T ). Modify ψ by post-composing it with a homeomor-
phism preserving FT1 in such a way that it is the identity in restriction
to RT . This can be done by shearing along the orbits of F1 while preserving
the arc length in each one of them.

We claim that the mapping Φ can be modified in such a way that, in a
neighborhood of R ∩∆, θ ◦ Φ = θ and H ◦ Φ = H, while still mapping the
leaves of F0 into the leaves of F1. In fact, the foliations F0, dH and dθ have <
as an isolated component of their locus of non-transversality and thus, close
to ∆ but away from <, θ and H are coordinates when restricted to a leaf
of Fi. For a < b, let fa,b : R→ [0, 1] be smooth function such that f(s) = 0
if s < a and f(s) = 1 if s > b. Let Φ† be function that maps leaves of F0 to
leaves of F1 and that is defined by the conditions H ◦ Φ† = H ◦ Φ and

θ ◦ Φ† = [1− fε6,ε7 ◦H ◦ Φ]θ + [fε6,ε7 ◦H ◦ Φ]θ ◦ Φ

for suitable ε6 and ε7, ε7 > ε6 > ε3. Notice that Φ† is the identity in
restriction to ∆; that if H(p) < ε4, θ ◦Φ† = θ(p); and that, if H(p) > ε5, Φ†

agrees with Φ. Modify Φ by declaring it equal to Φ† whenever Φ and Φ† do
not agree. In an analogue way, we can define Φ‡ in such a way that θ ◦Φ‡ =
θ ◦ Φ and

H ◦ Φ‡ = [1− fε4,ε5 ◦H ◦ Φ]H + [fε4,ε5 ◦H ◦ Φ]H ◦ Φ,

for suitable ε4 and ε5, εi < εi+1. Once again, modify Φ by replacing it
by Φ‡ whenever they do not agree. In this way, in a neighborhood of R∩∆,
θ ◦ Φ = θ and H ◦ Φ = H.

Modify φ by post-composing it by an F1-preserving homeomorphism
that preserves RT and such that, along R, Φ = φ. This can be done by
permuting the leaves of F1 as required while preserving RT and mapping
one leaf to another preserving arc-length.

Modify Z1 in such a way that, in a neighborhood of ∆∩R, it induces the
unique field of directions tangent to dH and F1. Let h1 be the corresponding
holonomy. In the coordinates (3.12), the holonomy transformation of F0

induced by Z0 from θ−1(0) to θ−1(π− δ) is exactly h0 (since the holonomy
from θ−1(π − δ) to θ−1(π) is the identity). Let η : [−δ, 0] × T → T be a
homotopy (through homeomorphisms) connecting h0 (at t = −δ) to φ−1 ◦
h1 ◦ φ (at t = 0) and fixing RT . This can be done by interpolating on each
leaf h0 and φ−1 ◦ h1 ◦ φ by arc length. Modify Z0 in the interval θ ∈ [−δ, 0]
such a way that the holonomy from θ−1(−δ) to θ−1(t) equals η(t, ·). After
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this modification we obtain a new h0 that, by definition, is conjugate to h1

via φ.

Finally, extend Φ to a neighborhood of < by declaring it, beyond R, equal
to φ on T = θ−1(0) and by defining it on {θ = c} by following positively Z0

to T , applying φ and then following Z1 negatively to {θ = c}.

3.2.3. Deformations of the cone over the smooth part of the deltoid

We will now consider the chart {z �= 0} of the blow-up in the coordi-
nates (ξ1, ξ2, ξ3) = (x/z, y/z, z). The vector fields are now

X̃0 = ξ3

[
(4ξ1 − 9ξ2

1 + ξ2
2)

∂

∂ξ1
+ 6ξ2(1− 2ξ1)

∂

∂ξ2
− 2ξ3(1− 3ξ1)

∂

∂ξ3

]
,

Ỹ0 = ξ3

[
2ξ2(1− 2ξ1)

∂

∂ξ1
+ 3(ξ2

1 − ξ2
2)

∂

∂ξ2
+ 2ξ2ξ3

∂

∂ξ3

]
.

If we let Q̃(ξ1, ξ2) = 6ξ2
2ξ

2
1 − 12ξ2

2ξ1 + 4ξ2
2 + 9ξ4

1 + ξ4
2 − 4ξ3

1 , then ξ6
3Q̃ is

now a primitive common first integral of X̃0 and Ỹ0. The foliation F0 is
given by the contraction of

∧
i dξi by ξ−1

3 X0 and ξ−1
3 Y0 which, up to a

constant factor, is the form α0 = ξ3 dQ̃ + 6Q̃ dξ3. Its singularities are the
sets Σ = {Q̃ = 0}∩{ξ3 = 0}— the deltoid within the exceptional divisor —
and {Q̃ = 0}∩ {dQ̃ = 0} — the three one-dimensional orbits corresponding
to the cusps —. In an analogue way, F1 is given by a C1 form

α1 = 6Q̃dξ3 + ξ3dQ̃+ ξ2
3(g1dξ1 + g2dξ2) + ξ3g3dξ3, (3.13)

for some continuous functions gi.

The deltoid Σ is contained in the singular locus of F1. Parametrize it
by (3.2). Let σ1, σ2 and σ3 be the arcs given, respectively, by κ ∈ (0, 1), κ ∈
(1,−1) and κ ∈ (−1, 0). The restriction of the vector field ξ−1

3 Y1 to Σ equals
that of ξ−1

3 Y0 and is 2κ2(κ2−1)(3κ2+1)−1∂/∂κ, which does not vanish along
the smooth arcs σi. By the Kupka Phenomenon, the foliation F1 along σ2

may be studied through the foliation it induces, say, in the plane P =
{ξ2 = 0}, which intersects σ2 transversely at the point p = (4/9, 0, 0),
corresponding to κ = ∞. The vector field ξ−1

3 X̃0 is tangent to P and in
restriction to it has an equilibrium point at p, where its linear part is, up to a
constant factor, L = 6ξ1∂/∂ξ1−ξ3∂/∂ξ3. Arguing like before, the restriction
of F1 to P has a singularity at p and is given by a C1 vector field with
linear part L+ cξ3∂/∂ξ1 (in particular, the foliations induced by F1 and F0

at (P, p) are topologically conjugate). By the Kupka Phenomenon and the
Invariant Manifold Theorem there exists a smooth surface S2, invariant
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by F1, intersecting transversely the exceptional divisor along σ2, more or
less in the same way the smooth part of the cone {Q̃ = 0} does for F0 (in
particular, F1 and F0 are topologically conjugate in a neighborhood of any
compact subset of σ2). Thanks to the symmetries (3.4), the foliation F1

along the other arcs has an analogue description: there exist surfaces Si
intersecting ∆ along σi etc.

3.2.4. Deformations of the cone over the cusps of the deltoid

We will study the foliation in a neighborhood of the point p where
(ξ1, ξ2, ξ3) = (0, 0, 0), corresponding to the intersection of a one-dimensional
orbit of A0 with ∆. We will consider the family of two-dimensional folia-
tions Fε1 given by the foliation (by curves, with singularities) that F1 induces
in the plane {ξ3 = ε}. A form giving this foliation is the C3 form (varying
continuously with ε)

αε1 = dQ̃+ ε[g1(ξ1, ξ2, ε)dξ1 + g2(ξ1, ξ2, ε)dξ2],

for dQ̃ = 3(ξ1ξ2
2 + 3ξ3

1 − ξ2
1 − ξ2

2)dξ1 + ξ2(3ξ2
1 − 6ξ1 + 2 + ξ2

2)dξ2.

Let B(ε0, δ0, η0) be the box — diffeomorphic to a cube — delimited

• at the top, by the plane {ξ3 = ε0}, at the bottom by ∆;

• at the left and right, by the planes {ξ2 = η0} and {ξ2 = −η0};

• at the front (resp. back), by the surface that contains the line ρ−
(resp. ρ+) parametrized by s �→ (−δ0, 0, s) (resp. s �→ (δ0, 0, s)) and
whose intersection with the plane {ξ3 = ε} is an integral curve of Fε1 .

The faces of the box other than ∆ will be denoted by Ftop, Fleft, Fright,
Ffront and Fback. The box is well-defined if ε0, δ0 and η0 are small enough,
for dQ̃∧dξ2 has an isolated singularity at p and, if X̃1 = X̃0 + ξ2

3(f1∂/∂ξ1 +
f2∂/∂ξ2 + ξ3f3∂/∂ξ3), then ξ−1

3 X̃1 · ξ3 = 2ξ3(3ξ1 − 1) + ξ3
3f3 which, after

dividing by ξ3, does not vanish at p. Up to shrinking the box, we may
suppose that, in restriction to B, dξ3(X̃1) = 0 only in ∆.

The surface S1 constructed at the end of §3.2.3 intersects Fleft trans-
versely. Up to shrinking the box, we can suppose that this intersection goes
from Fleft ∩ ∆ to Fleft ∩ Ftop. Except for the curve induced by S1, all the
curves of the foliation that F1 induces in Fleft go from Fleft ∩ Ftop to either
Fleft ∩ Ffront or Fleft ∩ Fback. We have an analogue situation in Fright with
respect to the surface S3. On Ffront and Fback, by construction, F1 induces
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the same foliation as dξ3. Only two-dimensional orbits of F1 intersect the
interiors of Fleft, Fright, Ffront and Fback.

The linear part of 1
2ξ
−1
3 X0 at p is 2ξ1∂/∂ξ1 + 3ξ2∂/∂ξ2 − ξ3∂/∂ξ3. The

linear part of 1
2ξ
−1
3 X1 at p is that of 1

2ξ
−1
3 X0 plus ξ3(c1∂/∂ξ1 + c2∂/∂ξ2)

for some constants ci. By the Invariant Manifold Theorem there exists a
unique C1 curve ω containing p, transverse to ∆ and invariant by X̃1.
Since Ỹ1 commutes with X̃1, its flow preserves the foliation induced by X̃1

and preserves thus the curve ω. We conclude that ω is a one-dimensional
leaf of F1. We can suppose, up to shrinking the box B, that ω is transverse
to Ftop and does not intersect the other faces.

For small ε, the intersection ofB with the plane {ξ3 = ε} is a rectangle Bε

bounded by two integral curves of Fε1 (the intersections with Ffront and Fback)
and by two lines (the intersections of Fleft and Fright with {ξ3 = ε}, denoted
by Fεleft and Fεright) which are transverse to Fε1 . In the interior of Bε, Fε1 has
a singularity corresponding to its intersection with ω. A partial holonomy
relation is induced by Fε1 between Fεleft and Fεright. By our description of the
foliation induced in Fleft and Fright, the holonomy relation identifies in a
one-to-one way the complement of S1 ∩ Fleft in Fleft with the complement
of S3 ∩ Fright in Fright.

The situation is portrayed in Figure 2.

Figure 2. — The foliation F1 in a neighborhood of a cusp of the deltoid
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Let q be a point in the interior of Bε such that the orbit of Fε1 through q

does not intersect Fεleft and Fεright. Let γq be the orbit of X̃1 through q
parametrized by ε. Follow γq(ε) towards ∆. It cannot leave B, since the
leaves of F1 that intersect Fleft, Fright, Ffront and Fback intersect either Fεleft
or Fεright. This remains true if we shrink B: we must conclude that γq(ε)
tends to p as ε tends to 0 and thus γq = ω. In this way, within Bε, the
curves of Fε1 corresponding to S1 and S3 meet at the singularity induced
by ω. Besides the orbits corresponding to S1 and S3, and the singularity
induced by ω, all the orbits of Fε1 go from Fεleft to Fεright.

As a consequence, F0 and F1 are topologically equivalent in a neighbor-
hood of p (without resorting to the maximality assumption concerning F1).
This, together with our previous results (equivalence of F1 and F0 in a
neighborhood of < and of the arcs σi), finishes the Proof of Theorem B.

As a by-product of the proof, we obtain:

Corollary 3.4. — Let (X1, Y1) and (X2, Y2) be two pairs of C3 com-
muting vector fields defined in a neighborhood of the origin of R3 whose 2-jet
at the origin is given by the vector fields (1.2)–(1.3). For each pair there is
a C2 surface tangent to {z = 0} at the origin and invariant by the corre-
sponding foliation. The corresponding foliations are topologically conjugate
if and only if the holonomies around these surfaces are.

3.3. Other maximal algebras in R3

We will hereby present other examples of maximal commutative Lie al-
gebras of quadratic homogenous vector fields in R3. Apart from the one
we already studied, they are the only interesting examples we know of. We
ignore if they present some kind of rigidity.

Example 3.5. — The vector space underlying the Lie algebra generated
by (1.2)–(1.3) can be characterized in the following way: It is formed by those
quadratic homogenous vector fields that have in the sextic polynomial g a
first integral. This first integral is the product of the equation of the deltoid
and the square of its unique bitangent. Other real forms of the deltoid will
yield other commutative Lie algebras.

From a complex viewpoint, there is, up to projective equivalence, a
unique plane quartic having three cusps. It is rational and has only one
bitangent. Its dual is the unique rational cubic having one node (arising
from the bitangent) and has three inflection points coming from the cusps.
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Following [9], there are two real forms of this cubic, according to the real
nature of the singular point:

• if the node is a conjugate point, the rational cubic is the dual of the
deltoid;

• if the node is real, the rational cubic is the dual of the cardioid.

The present example will come from the second case. The cardioid may be
written, in homogenous coordinates, as the zero locus of the polynomial

Q = 3x2y2 − 18xyz2 − 6x2yz + 6xy2z − 9x2z2 − 9y2z2 − 4x3z + 4y3z,

its bitangent being the line {z = 0}. The vector space of quadratic vector
fields having in z2Q a first integral is spanned by the vector fields

(x2 + 2yz + 3xz)
∂

∂x
− xz

∂

∂y
− z(x+ z)

∂

∂z
,

yz
∂

∂x
+ (y2 − 2xz − 3yz)

∂

∂y
+ z(z − y)

∂

∂z
,

which commute. This Lie algebra is maximal by the results in [3].

Example 3.6. — Consider in R3 the commuting vector fields

X = y

[
x
∂

∂x
+ (x− z)

∂

∂y
− z

∂

∂z

]
, Y = x

[
(y − z)

∂

∂x
+ y

∂

∂y
− z

∂

∂z

]
.

They are linearly independent in the complement of {xyz = 0} and have
the common first integral Q = x2 + y2 + z2− 2xy− 2yz− 2zx. The surfaces
{Q = −4}, {Q = 4} and {Q = 0} can be respectively parametrized by

(u, v) �→
(

sin(u)
sin(v) sin(u+ v)

,
sin(v)

sin(u) sin(u+ v)
,

sin(u+ v)
sin(u) sin(v)

)
,

(u, v) �→
(

sinh(u)
sinh(v) sinh(u+ v)

,
sinh(v)

sinh(u) sinh(u+ v)
,

sinh(u+ v)
sinh(u) sinh(v)

)
,

(u, v) �→
(

u

v(u+ v)
,

v

u(u+ v)
,
u+ v

uv

)
.

In all cases, the parametrization maps the vector fields ∂/∂u and ∂/∂v to
the restriction to the corresponding surface of the vector fields X and Y .
This algebra is thus maximal.
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Example 3.7. — Another pair of quadratic commuting vector fields in R3

is given by

(x2 − y2 − z2)
∂

∂x
+ 2xy

∂

∂y
+ 2xz

∂

∂z
,

2xy
∂

∂x
− (x2 − y2 + z2)

∂

∂y
+ 2yz

∂

∂z
.

Through stereographic projection, R3 acts in S3. Restricting this action
to R2 yields, in a neighborhood of the point at infinity, the above pair. It
is naturally maximal.

4. An example in R4

We will now investigate the perturbations of the algebra generated by the
commuting vector fields (1.4) and (1.5) in R4, in order to prove Theorem C.
If we set u = x1 +

√
−1x2 and v = x3 +

√
−1x4, these vector fields are the

real and imaginary parts of the semicomplete holomorphic vector field

Z = u2 ∂

∂u
+ v2 ∂

∂v

in C2. Let us briefly describe the complex geometry of this vector field.
Semicompleteness of the latter is a consequence of the fact that the vector
field extends holomorphically when we compactify C×C into CP1×CP1.
The solution with initial condition (u0, v0) is

τ �→
(

u0

1− τu0
,

v0

1− τv0

)
. (4.1)

In the complement of the cone {uv(u − v) = 0}, the vector field is trans-
verse to the foliation by complex lines G given by the level surfaces of the
meromorphic function G(u, v) = v/u. The vector field has the meromorphic
first integral

uv

u− v
. (4.2)

The solutions are defined in the complement of two points in C. As we ap-
proach these points, a solution goes to infinity but the function G evaluated
in the solution tends either to 0 or∞. As the complex time goes to infinity,
the solution converges to the origin of C2 and G tends to 1. The orbits of Z
define a global holonomy function between the level curves of G. Since the
restriction of the first integral (4.2) to the line v = αu is αu/(1 − α), this
holonomy is trivial.
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The proof of Theorem C follows the same strategy used in §3.2 to prove
part of Theorem B.

In the coordinates {xi} of R4, the foliation G is generated by the vector
fields

E =
4∑
i=1

xi
∂

∂xi
, R = x2

∂

∂x1
− x1

∂

∂x2
+ x4

∂

∂x3
− x3

∂

∂x4
.

From (4.2), we obtain the homogenous (of degree 0) function

J =
(x2

1 + x2
2)x3 − (x2

3 + x2
4)x1

(x2
1 + x2

2)x4 − (x2
3 + x2

4)x2

which is a common first integral of X0 and Y0. Let R̃4 be the blow-up of the
origin of R4 and denote the exceptional divisor by ∆. Let <z = G−1(z)∩∆.
In the coordinates y1 = x1 and yi = xi/x1 for i > 1, the vector fields become

X̃0 = y1

[
y1(1− y2

2)
∂

∂y1
+ y2(y2

2 + 1)
∂

∂y2
+

+(y2
3 − y2

4 − y3 + y3y
2
2)

∂

∂y3
+ y4(2y3 − 1 + y2

2)
∂

∂y4

]
,

Ỹ0 = y1

[
− 2y1y2

∂

∂y1
+ (y2

2 + 1)
∂

∂y2
+ 2y3(y2 − y4)

∂

∂y3

+(y2
3−y2

4+2y4y2)
∂

∂y4

]
.

For i = 0, 1, let Fi be the foliation in R̃4 generated in this chart by y−1
1 X̃i

and y−1
1 Ỹi. The foliation F0 has no singularities away from ∆. In restriction

to ∆, F0 has no singularities away from the circles <0, <1 and <∞. The vector
fields y−1

1 X̃0 and y−1
1 Ỹ0 do not vanish simultaneously along the lines <0 —

parametrized in this chart by s �→ (0, s, 0, 0) — and <1 — parametrized in
this chart by s �→ (0, s, 1, s) —. In restriction to ∆, F1 and F0 are identical.

In restriction to ∆ ≈ RP3, the level surfaces of J form a pencil of cubic
surfaces whose base locus is given by <0, <1 and <∞. Each two-dimensional
leaf of F0 is the complement, within one of these level surfaces, of the lines of
the base locus of J̃ — and is homeomorphic to a thrice punctured sphere —.
The vector field R becomes

R̃ = y1y2
∂

∂y1
− (1 + y2

2)
∂

∂y2
+ (y4 − y3y2)

∂

∂y3
− (y3 + y4y2)

∂

∂y4
.
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Its solutions with initial condition in ∆ have period π and correspond to the
intersection of the leaves of G with ∆. Since R̃ · J = J2 + 1 (and tan′(z) =
tan(z)2 + 1), all the surfaces of the pencil intersect once, transversely, each
one of these circles.

The solution (4.1) gives L the similarity structure of the complement of
two points in R2 (in particular, of an open subset of R2). By following an
argument completely analogous to that of Proposition 3.3, we conclude that
for every two-dimensional leaf L ⊂ ∆ of F1, the holonomy of F1 along L is
trivial.

We have a projection G̃ : R̃4 → CP1 realizing the leaf space of G.
The values {0, 1,∞} ⊂ CP1 correspond to three planes — intersecting ∆
along <0, <1 and <∞ — in the complement of which F0 and G are transversal.
Let ρ = G−1(1). Define Φ as the identity in an open subset of ρ contain-
ing <−1. Extend Φ by holonomy: Φ(p) is the unique point in G−1(G(p)) such
that the leaf of F1 through Φ(p) intersects ρ at the point that the orbit of F0

through p intersects ρ.

In order to extend this identification to neighborhoods of <0, <1 and
<∞, we need to study F1 in a neighborhood of these curves. We will do it
for <0 and <1. By the symmetry of the original system, the study of F1 in a
neighborhood of <∞ is completely analogous to that of <0.

Let θ = arctan(x2/x1) = arctan(y2). Let T = θ−1(0). It its transverse
to both <0 and <1. It intersects the first at p0 = (0, 0, 0, 0) and the latter
at p1 = (0, 0, 1, 0). Let Zji be an oriented field of lines tangent to Fi defined
in a neighborhood of <j and transverse to dθ. Let hji : (T, pj) → (T, pj) be
first return map induced by Zji . It preserves the foliation induced by Fi in
a neighborhood of pj within T .

The vector field y−1
1 X̃0 is tangent to T . The linear part of its restriction

to T at pj is y1∂/∂y1−(−1)jy3∂/∂y3−(−1)jy4∂/∂y4. The foliation by curves
induced by F1 in a neighborhood of pj in T is induced by a vector field whose
linear part is the latter plus a vector field of the form y1(aj∂/∂y3+bj∂/∂y4).

The germs of foliations that F0 and F1 induce in (T, pj) are, by the
Grobman-Hartman Theorem, topologically conjugate. The maps hj0 and hj1
induce the same map at the level of the leaf spaces since the holonomy is
trivial. As we did in §3.2.2, this allows us to extend Φ to a neighborhood
of <j . This finishes the proof of Theorem C.
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Remark 4.1. — The holomorphic vector field studied in this section be-
longs to the family of semi-complete vector fields x2∂/∂x+ y(y + nx)∂/∂x
(with n ∈ Z) appearing in the work of Ghys and Rebelo [2] and accounting
for almost every quadratic homogenous semi-complete vector field in C2.
All these vector fields share essentially the same properties and analogue
arguments to the ones given here can be given to extend our rigidity results
to every vector field in this family.

Bibliography

[1] Dumortier (F.) and Roussarie (R.). — Smooth linearization of germs of R2-
actions and holomorphic vector fields. Ann. Inst. Fourier (Grenoble), Vol. 30 no. 1,
p. 31-64 (1980).

[2] Ghys (E.) and Rebelo (J.-C.). — Singularités des flots holomorphes. II. Ann. Inst.
Fourier (Grenoble), Vol. 47 no. 4, p. 1117-1174 (1997).

[3] Guillot (A.). — Sur les exemples de Lins Neto de feuilletages algébriques. C. R.
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