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A remark on the action of the mapping class group
on the unit tangent bundle

J. Souto
(1)

ABSTRACT. — We prove that the standard action of the mapping class
group Map(Σ) of a surface Σ of sufficiently large genus on the unit tangent
bundle T 1Σ is not homotopic to any smooth action.

RÉSUMÉ. — On montre que l’action standard du groupe modulaire Map(Σ)
d’une surface Σ de genre assez grand sur le fibré unitaire tangent T 1Σ n’est
pas homotopique à une action lisse.

From now on let Σ be a closed orientable surface of genus at least 12
and consider its unit tangent bundle π : T 1Σ → Σ. The kernel of the
homomorphism π∗ : π1(T 1Σ)→ π1(Σ) is characteristic and hence π∗ induces
a homomorphism

Out(π1(T 1Σ))→ Out(π1(Σ))
between the corresponding groups of outer automorphisms. In particular,
any continuous action G � T 1Σ of a group on the unit tangent bundle
induces a homomorphism G→ Out(π1(Σ)).

By the Baer-Dehn-Nielsen theorem [5], Out(π1(Σ)) is isomorphic to the
mapping class group Map(Σ) of Σ, i.e. to the group of isotopy classes of
self-diffeomorphisms. In [13], Morita proved that there is no smooth action
Map(Σ)� Σ inducing the isomorphism Map(Σ) � Out(π1(Σ)). This result
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was extended by Markovic [10] who proved that there is also no such action
by homeomorphisms.

On the other hand, Map(Σ) acts on the (total space of the) unit tangent
bundle T 1Σ in such a way that the induced homomorphism

Map(Σ)→ Out(π1(T 1Σ))→ Out(π1(Σ))

agrees with the isomorphism Map(Σ) � Out(π1(Σ)). This standard action
Map(Σ) � T 1Σ is only Hölder, but we will deduce below from results due
to Deroin-Kleptsyn-Navas [4] and Sullivan [18] that it is conjugated to an
action by Lipschitz homeomorphisms. It follows from Theorem 0.1 below
that the standard action is not conjugated, and even not homotopic, to a
smooth action. Through out the whole paper, smooth means C∞; only at
the end of the paper, we will discuss briefly the degree of smoothness needed
in our argument.

Theorem 0.1. — Suppose that Σ is a closed orientable surface of genus
g � 12. Then there is no smooth action of Map(Σ) on T 1Σ which induces
the isomorphism Map(Σ)→ Out(π1(Σ)).

Observe that Theorem 0.1 gives, for the surfaces under consideration,
a different albeit quite inefficient proof of Morita’s non-lifting theorem. We
use the adjective inefficient because while Morita’s original argument [13]
applies for finite index subgroups as well, we will need here to work with the
full mapping class group. More concretely, orientation reversing elements in
the mapping class group will play a central role.

We sketch the proof of Theorem 0.1. Seeking a contradiction, suppose
that there is smooth action Map(Σ)� T 1Σ inducing the Baer-Dehn-Nielsen
isomorphism. We will use a topological trick to show that a certain subgroup
G of Map(Σ), isomorphic to the mapping class group of a surface with at
least genus 6, stabilizes a smooth circle S1 ⊂ T 1Σ. It follows from the work
of Parwani [15] that the so-obtained action G � S

1 is trivial. A result of
Thurston [19] and the fact that H1(G;Z) = 0 imply that G is in the kernel
of the action Map(Σ)� T 1Σ, contradicting the assumption that this action
induces the isomorphism Map(Σ) � Out(π1(Σ)).

The proof of Theorem 0.1 is slightly simpler if the genus of the surface is
even and through out most of this paper we will assume that this is the case.
The modifications needed to prove Theorem 0.1 for surfaces of odd genus
will be discussed after the proof in the even genus case has been completed.
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I would like to thank Andrés Navas and Jean-Pierre Otal for very inter-
esting conversations while I was enjoying the hospitality of the Université
Paul Sabatier in Toulouse and the CIRM in Luminy. Many thanks are also
due to the US Immigration and Naturalization Service for inviting me, in
the middle of my European holidays, to visit their offices in Detroit and give
them a finger print; it is during this excursion that this note was written.
Finally, I would like to thank the referee for his or hers very friendly report
and all the useful remarks therein.

1.

In this section we recall the construction of an action by homeomor-
phisms Map(Σ)� T 1Σ which induces the Baer-Dehn-Nielsen isomorphism
Map(Σ) � Out(π1(Σ)). Mostly, the material in this section is well-known;
we include it here for the sake of completeness. The interested reader can
find in Casson-Bleiler [3] all the needed facts on hyperbolic geometry.

Let Σ be a closed hyperbolic surface and identify its universal cover with
the hyperbolic plane H2. Let ∂H2 � S1 be the circle at infinity of H2 and
consider the space of (distinct) triples

{(a1, a2, a3) ∈ ∂H2 × ∂H2 × ∂H2|ai �= aj ∀ i �= j}

The group with 2 elements acts on the space of triples via the fixed-point
free involution

(a1, a2, a3) �→ (a2, a1, a3)

The quotient Θ3 of the space of triples under this involution is diffeomorphic
to the unit tangent bundle T 1

H
2 via the map (figure 1) which associates to

(a1, a2, a3) the unique unit tangent vector v normal to the geodesic in H2

with endpoints a1, a2 and pointing to a3. Here, pointing to a3 means that
a3 = limt→∞ exp(tv) where exp(·) is the geodesic exponential map of H2.

a1

a2

a3

v

Figure 1. — The diffeomorphism between Θ3 and T 1Σ
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The action by deck-transformations π1(Σ) � H
2 extends to an action

on the circle at infinity and hence on an action π1(Σ) � Θ3. At the same
time, the action π1(Σ) � H

2 induces, via the differential, an action on
T 1
H

2 in such a way that T 1Σ = π1(Σ)\T 1
H

2. It follows directly from the
construction that the diffeomorphism Θ3 → T 1

H
2 conjugates both actions

of π1(Σ). In particular, T 1Σ is diffeomorphic to π1(Σ)\Θ3.

Suppose now that φ : Σ → Σ is a homeomorphism and let φ̃ : H2 →
H

2 be a lift. It is well-known that the map φ̃ extends continuously to a
homeomorphism

∂φ̃ : ∂H2 → ∂H2

Moreover, if ψ : Σ→ Σ is homotopic to φ and ψ̃ : H2 → H
2 is any lift of ψ,

then the boundary extensions ∂φ̃ and ∂ψ̃ differ by the boundary extension
of a deck-transformation of the cover H2 → Σ.

More precisely, the subgroup G ⊂ Homeo(∂∞H2) formed by all the
boundary extensions of all possible lifts of self-homeomorphisms of Σ fits in
the following exact sequence:

1→ π1(Σ)→ G → Map(Σ)→ 1 (1.1)

Here, the normal subgroup π1(Σ) corresponds to the boundary extensions of
deck-transformations. It follows that the action G � ∂H2 induces an action

Map(Σ) � G/π1(S)� π1(S)\Θ3 � T 1Σ

The exact sequence (1.1) induces a homomorphism from Map(Σ) to
Out(π1(Σ)); this is the isomorphism between these two groups given by
the Baer-Dehn-Nielsen theorem. It follows that the action

Map(Σ)� T 1Σ (1.2)

induces the Baer-Dehn-Nielsen isomorphism Map(Σ) � Out(π1(Σ)), as de-
sired.

Before moving on observe that, up to conjugacy in Homeo(T 1Σ), the
action (1.2) does not depend on the a hyperbolic metric on Σ. However, for
any choice of metric, the standard action (1.2) is not better than Hölder [9].
We prove now that it is conjugated to a Lipschitz action:

Proposition 1.1. — The standard action (1.2) is conjugated to an ac-
tion by Lipschitz homeomorphisms.

The key tool in the proof of Proposition 1.1 is the following result due
to Deroin, Kleptsyn and Navas [4, Theorem D]: Every countable subgroup
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of Homeo(S1) is topologically conjugated to a group of Lipschtiz homeo-
morphisms. In [4], the Deroin-Kleptsyn-Navas theorem is only stated for
orientation preserving homeomorphisms of S1; the proof for subgroups of
Homeo(S1) remains the same.

Proof of Proposition 1.1. — By the Deroin-Kleptsyn-Navas theorem,
there is a homeomorphism of ∂H2 � S1 conjugating the action G � ∂H2

to a Lipschitz action. This action induces a Lipschitz action on the space
of triples and hence Θ3. The quotient M of Θ3 under the restriction of this
Lipschitz action to the subgroup π1(Σ) is a Lipschitz 3-manifold on which
the mapping class group Map(Σ) acts by Lipschitz homeomorphisms. The
map Θ3 → Θ3 induced by the conjugating homeomorphism of S1 induces a
homeomorphism M → T 1Σ. Transporting the Lipschitz structure of M and
the action Map(Σ) � M we obtain a Lipschitz action of Map(Σ) on T 1M
for some Lipschtiz structure on T 1Σ. However, a theorem due to Sullivan
[18] asserts that every 3-manifold admits a unique Lipschitz structure up to
homeomorphism close to the identity. In other words, we can conjugate the
so constructed action Map(Σ) � T 1Σ by a homeomorphism close to the
identity to obtain an action Map(Σ)� T 1Σ which is Lipschitz with respect
to the standard smooth structure of T 1Σ. By construction, this action is
conjugated to the standard action (1.2). �

2.

Suppose that Σ has even genus and let σ : Σ→ Σ be a smooth orienta-
tion reversing involution on Σ fixing a single curve (figure 2).

σ

Figure 2. — The involution σ
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In this section we prove:

Proposition 2.1. — Suppose that F : T 1Σ→ T 1Σ is a smooth involu-
tion inducing the same element as σ in Out(π1(Σ)). Then the fixed point
set (F ) of F consists of one or two smooth disjoint circles.

Beginning with the proof of Proposition 2.1 we consider π : T 1Σ → Σ
as a circle bundle; this is a very particular, and particularly nice, type of
Seifert manifold. See [17] for classical facts on Seifert manifolds.

The center of the group π1(T 1Σ) is the cyclic subgroup Z represented
by the fiber. Since the involution F has to preserve the center of π1(T 1Σ),
we deduce that the image under F of the fibers of π : T 1Σ → Σ are freely
homotopic to fibers. In the terminology of Meeks-Scott [11], this means
that F preserves the fibration up to homotopy. The key tool in the proof of
Proposition 2.1 is the following result due to Meeks and Scott [11, Theorem
2.2]:

Theorem (Meeks-Scott). — Let M be a compact, RP 2-irreducible
Seifert fiber space with infinite fundamental group. If G is a finite group
acting on M which preserves the given Seifert fibration up to homotopy,
then M possesses a G-invariant Seifert fibration homotopic to the original
fibration.

Recall that a 3-manifold is RP 2-irreducible if every embedded 2-dimen-
sional sphere bounds a ball and if it does not contain any two sided real
projective plane RP 2. There are only two Seifert manifolds which are not
RP 2-irreducible, namely S2×S1 and the connected sum of 2 copies of RP 3.
In particular, T 1Σ is RP 2-irreducible and hence the Meeks-Scott theorem
applies.

Since a Seifert manifold with hyperbolic base orbifold has a unique
Seifert fibered structure up to isotopy [20, Lemma 3.5], there is some dif-
feomorphism f1 : T 1Σ → T 1Σ isotopic to the identity such that F1 =
f1 ◦ F ◦ f−1

1 maps fibers of the bundle π : T 1Σ → Σ to fibers. So far,
we have only used that F has finite order. We are now going to use the
remaining assumptions.

The diffeomorphism F1 induces a diffeomorphism F̂1 : Σ → Σ mapping
x ∈ Σ to the base point of the fiber F1(T 1

xΣ). Observe that F̂1 is an involu-
tion. The assumption that F induces the same element as σ in Out(π1(Σ)),
together with the Baer-Dehn-Nielsen theorem, imply that F̂1 and σ repre-
sent the same element in the mapping class group of Σ. Since F̂1 and σ
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have both finite order and are isotopic to each other, they are conjugated
by some f̂2 : Σ→ Σ isotopic to the identity:

σ = f̂2 ◦ F̂1 ◦ f̂−1
2

(See for example case 3 in the proof of Theorem 1.2 in [1] for a discussion
of this fact.) Let f2 : T 1Σ→ T 1Σ be any diffeomorphism mapping fibers to
fibers and inducing f̂2. For instance, such a f2 can be constructed choosing
a smooth connection on π : T 1Σ → Σ and lifting horizontally an isotopy
between the identity of Σ and f̂2.

Consider now the smooth involution F2 = f2 ◦ F1 ◦ f−1
2 of T 1Σ and

observe that for every x ∈ Σ we have T 1
σ(x)Σ = F2(T 1

x (Σ)). It follows that
the fixed-point set of F2 is contained in the pre-image under π of the unique
curve point-wise fixed by σ

Fix(F2) ⊂ π−1(Fix(σ))

The orientation of Σ induces an orientation on the fibers of T 1Σ. Since π :
T 1Σ→ Σ is a circle bundle with Euler-number e(T 1Σ) = χ(Σ) = 2−2g �= 0
(see [12]), every homeomorphism of T 1Σ is orientation preserving; compare
with [14, p.189]. In particular, F2 : T 1Σ → T 1Σ is orientation preserving.
Since the induced map on the base F̂2 = σ reverses the orientation, it follows
that F2 has also to reverse the orientation of the fibers.

In particular, the restriction of F2 to the torus π−1(Fix(σ)) is an orien-
tation reversing involution which maps every fiber of

π−1(Fix(σ))→ Fix(σ) (2.3)

to itself. Hence, the restriction of F2 to any of the fibers of (2.3) is an
orientation reversing involution, which therefore has exactly two fixed points
on each fiber. Being a the fix set of a smooth element of finite order, Fix(F2)
is a submanifold. It follows now that Fix(F2) ⊂ π−1(Fix(σ)) consists of one
or two smooth curves in T 1Σ. Since F and F2 are conjugated, the claim of
Proposition 2.1 follows.

3.

Before moving any further we need a little bit more of notation. The
(full) mapping class group Map(X) of a compact surface X with boundary
∂X is the group of isotopy classes of homeomorphisms (or equivalently, dif-
feomorphisms) of X. Here we do not assume that isotopies fix point-wise the
boundary of X. We denote by Map+(X) the subgroup of the full mapping
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class group consisting of those mapping classes represented by orientation
preserving diffeomorphisms of X which fix as a set every boundary compo-
nent of X. In the course of the proof of Theorem 0.1 we will need several
times the following vanishing theorem for the homology of Map+(X).

Theorem (Powell [16], Korkmaz [8]). — If X is a compact surface with
possibly non-empty boundary and at least genus 3 then

H1(Map+(X),Z) = 0

We deduce now Theorem 1 from Proposition 2.1 and from previous re-
sults due to Parwani [15], Thurston [19] and an argument taken from Franks-
Handel [7].

Theorem 1. — Suppose that Σ is a closed orientable surface of genus
g � 12. Then there is no smooth action of Map(Σ) on T 1Σ which induces
the isomorphism Map(Σ)→ Out(π1(Σ)).

We assume for the time being that g is even. The case that g is odd will
be discussed in the end of this section.

As above, let σ be an orientation reversing involution of Σ fixing exactly
one curve. The quotient Σ/〈σ〉 is a surface Z with at least genus 6 and a
boundary component. We identify Z with the closure in Σ of one of the two
connected components of Σ \ Fix(σ). Every homeomorphism f : Z → Z
induces a homeomorphism

f̂ : Σ→ Σ

by f̂(x) = f(x) for x ∈ Z and f̂(x) = σ(f(σ(x))) for x /∈ Z. The map f → f̂
induces a homomorphism

ι : Map(Z)→ Map(Σ) (3.4)

We denote by G the image of Map+(Z) under the doubling homomorphism
(3.4). Observe that by construction the image of (3.4) centralizes σ. Notice
also that the image ι(f) ∈ Map(Σ) of f ∈ Map(Z) preserves the π1-injective
surface Z; since the induced mapping class of Z is equal to the original f
we deduce that (3.4) is injective. In other words we have:

Lemma 3.1. — The doubling homomorphism (3.4) is injective and its
image is contained in the centralizer of σ.
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Seeking a contradiction to the claim of Theorem 0.1, suppose that there
is a smooth action Map(Σ)� T 1Σ inducing the Baer-Dehn-Nielsen isomor-
phism. In particular, the associated homomorphism

Φ : Map(Σ)→ Diff(T 1Σ), γ �→ Φγ

is injective. Since G = ι(Map+(Z)) centralizes σ we have Φγ ◦Φσ = Φσ ◦Φγ
and hence

Φγ(Fix(Φσ)) = Fix(Φσ)

for all γ ∈ G. By Proposition 2.1, Fix(Φσ) consists of one or two smooth
circles. Taking into account that G is isomorphic to Map+(Z) we have that
H1(G;Z) = 0 by the homology vanishing theorem above. It follows that
for all γ ∈ G the diffeomorphism Φγ preserves each one of the connected
components of Fix(Φσ).

Let from now on S be a connected component of Fix(Φσ) and recall
that S is a smooth circle. So far, we have found out that the smooth action
Map(Σ) � T 1Σ induces a smooth action G � S. The following theorem
due to Parwani [15, Theorem 1.1] implies that the action G� S is trivial.

Theorem (Parwani). — Let Z be a connected surface with finitely many
punctures, finitely many boundary components and genus at least 6. Then
any C1 action of Map+(Z) on the circle is trivial.

Fix from now on a point x ∈ S and a basis v1, v2, v3 of the tangent space
Tx(T 1Σ) such that v1 is tangent to S; using this basis, identify Tx(T 1Σ)
with R3. Since x is fixed by every element of G we obtain a representation

G→ GL3R, γ �→ D(Φγ)x (3.5)

We claim:

Lemma 3.2. — The representation (3.5) is trivial.

Proof. — To begin with we observe that for all γ ∈ G we haveD(Φγ)xv1 =
v1. In particular, the matrix D(Φγ)x has the following form

D(Φγ)x =
(

1 bγ
0 Aγ

)

with Aγ ∈ GL2R and bγ ∈ R2. The map

G→ GL2R, γ �→ Aγ
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is a group homomorphism. We claim first that this representation is trivial.
To begin with, the homomorphism

G→ R
∗ = R \ {0}, γ �→ det(Aγ)

must be trivial because H1(G;Z) = 0. In particular, Aγ ∈ SL2R for all
γ. In oder to prove that a matrix A ∈ SL2R is the identity it suffices to
show that it acts trivially on the circle S1 = (R2 \ {0})/R+. Composing the
representation γ �→ Aγ with the action SL2R � S

1 we obtain a smooth
action of G on the circle S1. By Parwani’s theorem, this action is trivial.
This proves that Aγ = Id2 for all γ ∈ G.

Summing up, we have that for all γ ∈ G the matrix D(Φγ)x has the
following form

D(Φγ)x =
(

1 bγ
0 Id2

)

with bγ ∈ R2. The map γ �→ bγ is a group homomorphism with image in R2.
Using again that H1(G;Z) = 0 we deduce that this group homomorphism is
trivial, meaning that bγ = (0, 0) for all γ. We have proved thatD(Φγ)x = Id3

for all γ ∈ G as claimed. �

We can now conclude the proof of Theorem 0.1 using the following result
due to Thurston [19, Theorem 3]:

Theorem (Thurston). — Let G be a finitely generated group acting on
a connected manifold with a global fixed point x. If the action is C1 and Dgx
is the identity for all g ∈ G, then either there is a nontrivial homomorphism
of G into R or G acts trivially.

It follows from Lemma 3.2 that the action G � T 1Σ satisfies the as-
sumptions of Thurston’s theorem. In particular, using again the assumption
that H1(G;Z) = 0, we deduce that the action G � T 1Σ must be trivial.
This implies that for each γ ∈ G the element in Out(π1(T 1Σ)) induced by
Φγ is trivial as well. Hence, the element of Out(π1(Σ)) = Out(π1(T 1Σ)/Z)
induced by Φγ is also trivial. By assumption, γ and Φγ induce the same
element of Out(π1(Σ)). It follows now from the Baer-Dehn-Nielsen theorem
that every γ ∈ G is trivial in Map(Σ). This contradiction to Lemma 3.1
concludes the proof of Theorem 0.1 if Σ has even genus.

We discuss now briefly the proof of Theorem 0.1 for surface of odd genus.
To begin with we let σ : Σ→ Σ be an orientation reversing involution with
two fixed curves γ1, γ2 and identify the quotient Z = Σ/σ with a connected
component of Σ \ (γ1 ∪ γ2).
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Suppose that Map(Σ) � T 1Σ is a smooth action inducing the Baer-
Dehn-Nielsen isomorphisms and, with the same notation as above, let Φσ
be the diffeomorphism of T 1Σ corresponding to σ. Using the same argument
as in Proposition 2.1 we obtain for every one of the curves γ1, γ2 one or two
fixed curves of Φσ. Moreover, the fixed curves corresponding to γ1 (resp. γ2)
have the property that they project to curves in Σ homotopic to a power of
γ1 (resp. γ2).

As above we denote by G the image of the group Map+(Z) into Map(Σ)
under the doubling homomorphism. Again, the image of G in Diff(T 1Σ)
under the homomorphism

Φ : Map(Σ)→ Diff(T 1Σ)

centralizes Φσ. Hence, G acts on the fixed point set of Φσ. Noting that the
elements in Map+(Z) fix the homotopy class of γ1, we deduce that G acts
on the fixed curve, or the union of the two fixed curves, of F corresponding
to γ1. Now the argument proceeds word-by-word as above.

This concludes the proof of Theorem 0.1.

Before moving on, observe that in the course of the final step of the
proof of Theorem 0.1 we have actually shown:

Proposition 3.3. — Suppose that Z is a connected surface with at least
genus 6 and that M is a connected 3-manifold. Any smooth action

Map+(Z)�M

which preserves a smooth circle in M is trivial.

Notice that the assumption that the action is C1 is necessary. An exam-
ple of a non-trivial continuous action preserving a curve can be, for example,
given as follows. Start with the action Map+(Σ) � T 1Σ provided in section
1 and, with the same notation as in the proof of Theorem 0.1, restrict it to
the subgroup ι(Map+(Z)) � Map+(Z) where ι is the homomorphism (3.4).

We conclude with a few mussings which may be of interest to the reader:

• In the proof of Theorem 0.1, it plays a crucial role that we considered
the whole mapping class group; not even the group of orientation preserving
mapping classes would have sufficed. In fact, we used the involution σ to
ensure that some subgroup G ⊂ Map(Σ) isomorphic to the mapping class
group Map(Z) of the surface Z = Σ/〈σ〉 acts on a smooth circle S ⊂ T 1Σ.
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• Another reason why the proof of Theorem 0.1 does not apply to fi-
nite index subgroup of the mapping class group is that we used several
times that H1(G;Z) = 0. It is conjectured that for a sufficiently large sur-
face Z, the group Map+(Z) does not contain finite index subgroups Γ with
H1(Γ;Z) �= 0.

• Theorem 0.1 asserts that certain smooth actions do not exist; we dis-
cuss now briefly the degree of smoothness needed in the proof. In the final
steps of the proof, it would have sufficed to have a C1-action; for instance,
in the statement of Proposition 3.3 we could replace smooth by C1 leaving
the proof unchanged. However, smoothness was also used in the proof of
Proposition 2.1. The key step of the proof was the Meeks-Scott theorem
whose proof makes use of the theory of minimal surfaces for some invari-
ant metric on T 1Σ. The needed facts on minimal surfaces do not need the
metric to be smooth; probably C2 suffices. However, if the involution F is
only C1, it is not clear why should there be any F -invariant metric which
is better than C0.

• The statement of Theorem 0.1 can be easily extended to cover surfaces
of genus 6, 8 and 10 as well. The reason for this is that, instead of using
Parwani’s theorem one could refer to the following result of Farb-Franks [6,
Theorem 1.2]: If Z is a compact surface of genus at least 3 and at most a
puncture, then every C2-action Map+(Z)� S

1 is trivial.

• Observe that there is a different argument to prove Proposition 2.1,
namely the classification of 3-dimensional orbifolds: consider the orbifold
(T 1Σ)/F and use that it is geometrizable to prove that it is homeomorphic
to (T 1Σ)/dσ where dσ : T 1Σ→ T 1Σ is the differential of the original invo-
lution σ : Σ → Σ. Perhaps using this approach one can prove Proposition
2.1 for F only C1; as mentioned above, this would show that Theorem 0.1
remains true replacing smooth by C1. However, the author of this note is
not even sure that under this assumption the quotient (T 1Σ)/F is an orb-
ifold; observe for instance that the uniqueness and existence theorem for
geodesics does not hold for C0-metrics. When considering this problem, one
should keep in mind that Bing [2] constructed continuous involutions of the
sphere S3 whose fixed point set is the Alexander sphere and which thus are
not conjugated to the standard involution.
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