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An elementary proof
of the Briançon-Skoda theorem

Jacob Sznajdman
(1)

ABSTRACT. — We give an elementary proof of the Briançon-Skoda the-
orem. The theorem gives a criterionfor when a function φ belongs to an
ideal I of the ring of germs of analytic functions at 0 ∈ Cn; more precisely,
the ideal membership is obtained if a function associated with φ and I is
locally square integrable. If I can be generated by m elements,it follows

in particular that Imin(m,n) ⊂ I, where J denotes the integral closure of
an ideal J .

RÉSUMÉ. — Nous proposons une démonstration élémentaire du théorème
de Briançon-Skoda. Ce théorème donne un critère d’appartenance d’une
fonction φ à un idéal I de l’anneau des germes de fonctions holomorphes
en 0 ∈ Cn ; plus précisement, l’appartenance est établie sous l’hypothèse
qu’une fonction dépendante de φ et I soit de carré localement sommable.

En partiulier, si I est engendré par m éléments, alors Imin(m,n) ⊂ I, où
J dénote la clôture intégrale d’un idéal J .

1. Introduction

Let On be the ring of germs of holomorphic functions at 0 ∈ Cn. The
integral closure I of an ideal I is the set of all φ ∈ On such that

φN + a1φ
N−1 + . . .+ aN = 0, (1.1)

for some integer N � 1 and some ak ∈ Ik, k = 1, . . . , N .
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By a simple estimate, (1.1) implies that there exists a constant C such
that

|φ| � C|f |, (1.2)

where |f | is defined as
∑
|fi| for any generators fi of I. It is easy to see

that the choice of generators fi does not affect whether φ satisfies (1.2) for
some C or not.

Conversely, (1.2) implies that φ ∈ I (however, we do not need this in
the present paper), which is a consequence of Skoda’s theorem, [S72] and
a well-known determinant trick, see for example [D07], (10.5), Ch. VIII.
Another proof is given in (the republication) [LTR08].

Theorem 1.1 (Briançon-Skoda). — Let I be an ideal of On gener-
ated by m germs f1, . . . , fm. Then Imin(m,n)+l−1 ⊂ I l for all integers l � 1.

As noted above, φ ∈ Imin(m,n)+l−1 implies that |φ| � C|f |min(m,n)+l−1.
Thus it suffices to show that any φ ∈ On that satisfies this size condition
belongs to I l, in order to prove Theorem 1.1.

Another ideal that is common to consider is Î(k) which consists of all
φ ∈ On such that ∫

U

|φ|2|f |−2(k+ε)dV <∞, (1.3)

for some neighbourhood U of 0 ∈ Cn and some (sufficiently small) ε > 0,
where dV is the Lebesgue measure.

Lemma 2.3 implies that Ik ⊂ Î(k). The following theorem is thus a
stronger version of Theorem 1.1:

Theorem 1.2. — For an ideal I as in Theorem 1.1, we have

Î(min(m,n)+l−1) ⊂ I l,

for all integers l � 1.

In 1974 Briançon and Skoda, [BS74], showed Theorem 1.2 as an imme-
diate consequence of Skoda’s L2-division-theorem, [S72]. Usually Theorem
1.1 is the one referred to as the Briançon-Skoda theorem.

An algebraic proof of Theorem 1.1 was given by Lipman and Tessier
in [LT81]. Their paper also contains a historical summary. An account of
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more recent developments and an elementary algebraic proof of the result
is found in Schoutens [Sc03].

Berenstein, Gay, Vidras and Yger [BGVY93] proved Theorem 1.1 for
l = 1 by finding a representation φ =

∑
uifi with ui as explicit integrals.

However, some of their estimates rely on Hironaka’s theorem on resolutions
of singularities.

In this paper, we provide a completely elementary proof along these
lines. The key point is an L1-estimate (Proposition 2.1), which will be used
in Section 4.

Acknowledgements. — I am greatful to Mats Andersson for introduc-
ing me to the subject and providing many helpful comments and ideas. I
also want to thank the referee who read the paper very carefully and gave
many valuable suggestions.

2. The Main Estimate

In order to state Proposition 2.1, we will first recall the notion of the
(standard) norm of a differential form in Cn. If xi and yi, 1 � i � n, are
standard coordinates for Cn = R

2n, this norm is uniquely determined by
demanding that the forms dxi1 ∧ . . . ∧ dxij ∧ dyij+1 ∧ . . . ∧ dyik constitute
an orthonormal basis (over C) of

∧k
T ∗pC

n.

Proposition 2.1. — Let f1, f2, . . . , fm be generators of an ideal
I ⊂ On, and assume that φ ∈ Î(k). Then for any integer 1 � r � m,

|φ| · |∂f1 ∧ . . . ∧ ∂fr|
|f |k+r

is locally integrable at the origin.

Remark 2.2. — Using a Hironaka resolution, the proof of Proposition 2.1
can be reduced to the case when every fi is a monomial, and then the proof
becomes much easier. We proceed however with elementary arguments.

Lemma 2.3. — For any ideal I = (f1, . . . , fm) �= (0), there is a positive
number δ such that 1/|f |δ is locally integrable at the origin.

Proof. — By considering F = f1 · f2 · . . . · fm (remove any fj that are
identically zero), it suffices to show that 1/|F |δ is locally integrable. We can
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assume that F is a Weierstrass polynomial and we consider the integral of
1/|F |δ on Ω = D × ∆, where D is a disk and ∆ = Dn−1. By choosing D
small enough, Rouché’s theorem gives that F has the same number of roots,
s, on each slice Sp = D × {p}, p ∈ ∆. We partition Sp into sets Epj , one
for each root αj(p) ∈ Sp, such that Epj consists of those points which are
closer to αj(p) than to the other roots. We have F (z, p) =

∏s
1(z − αj(p)),

so on Epj we get 1/|F |δ � |z − αj(p)|−δs. If δ is sufficiently small, we thus
get a uniform bound for the (one variable) integral of 1/|F |δ on Sp. Fubini’s
theorem then gives the integrability on Ω. �

Proof of Proposition 2.1. — We assume for the sake of simplicity that
r = m, but the proof works for the other cases as well. We begin by
applying Hölder’s inequality to the product of |φ|/|f |k+δ′/2 and
|∂f1 ∧ . . . ∧ ∂fm|/|f |m−δ

′/2. Assume that δ′ is small enough to make the
first factor L2-integrable. It thus suffices to show that

F =
|∂f1 ∧ . . . ∧ ∂fm|2∏m

1 |fj |2−δ

is locally integrable for any δ > 0. We will proceed to show that this is a
consequence of the Chern-Levine-Nirenberg inequalities. The special case
of these inequalities that is needed here will be proved without explicitly
relying on facts about positive forms or plurisubharmonic functions. For
a shorter proof of the Chern-Levine-Nirenberg inequalities, which involves
these notions, see [D07] (3.3), Ch. III.

Let us first set

β =
i

2
∂∂|ζ|2 =

i

2

∑
dζj ∧ dζj , and βk =

βk

k!
.

Then βn is the Lebesgue measure dV . A simple argument gives that for any
(1, 0)-forms αj ,

i

2
α1 ∧ α1 ∧ . . . ∧

i

2
αp ∧ αp ∧ βn−p = |α1 ∧ . . . ∧ αp|2dV. (2.1)

Fix a sufficiently small δ > 0 as in Lemma 2.3. We will need at least δ < 2
in the sequel. We now compute

∂∂(|fj |2 + ε)
δ/2

=
δ

2

(
1 +

(
δ
2 − 1

)
|fj |2

|fj |2 + ε

)
(|fj |2 + ε)

δ/2−1
∂fj ∧ ∂fj ,

which yields that

i∂fj ∧ ∂fj
(|fj |2 + ε)1−δ/2

= Gji∂∂(|fj |2 + ε)
δ/2

, (2.2)
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where

Gj =
2
δ

[
1 +

(
δ

2
− 1

)
|fj |2
|fj |2 + ε

]−1

.

Observe that (
2
δ

)
� Gj �

(
2
δ

)2

. (2.3)

We introduce forms F kε dV by setting

F kε dV =
|∂fk ∧ . . . ∧ ∂fm|2∏m
k (|fj |2 + ε)1−δ/2

dV =
∏m
k

(
i
2∂fj ∧ ∂fj

)
∧ βn+k−m−1∏m

k (|fj |2 + ε)1−δ/2

=
m∏
k

Gj
i

2
∂∂

(
|fj |2 + ε

)δ/2 ∧ βn+k−m−1. (2.4)

Note that F 1
ε dV is a regularization of FdV . From the equality |w ∧ w| =

2p|w|2, that holds for all (p, 0)-forms w, and 2.2, we get

F kε dV =

∣∣∏m
k

(
i
2∂fj ∧ ∂fj

)∣∣ dV∏m
k (|fj |2 + ε)1−δ/2

=

∣∣∣∣∣
m∏
k

Gj
i

2
∂∂

(
|fj |2 + ε

)δ/2∣∣∣∣∣ dV. (2.5)

Comparing (2.4) with (2.5), we get

Hk
ε dV :=

m∏
k

i∂∂
(
|fj |2 + ε

)δ/2 ∧ βn+k−m−1 =

∣∣∣∣∣
m∏
k

i∂∂
(
|fj |2 + ε

)δ/2∣∣∣∣∣ dV.
(2.6)

Let B be a ball about the origin and let χB be a smooth cut-off function
supported in a concentric ball of twice the radius. We now use (2.5), (2.6)
and (2.3) and integrate by parts (going from the second to the third line
below) to see that∫

B

F 1
ε dV � Cδ

∫
χB

∣∣∣i∂∂ (
|f1|2 + ε

) δ
2 ∧ . . . ∧ i∂∂

(
|fm|2 + ε

) δ
2

∣∣∣ dV
= Cδ

∫
χBi∂∂

(
|f1|2 + ε

)δ/2 ∧ . . . ∧ i∂∂ (
|fm|2 + ε

)δ/2 ∧ βn−m
= Cδ

∣∣∣∣
∫

(∂∂χB)
(
|f1|2 + ε

)δ/2 ∧ . . . ∧ i∂∂ (
|fm|2 + ε

)δ/2 ∧ βn−m
∣∣∣∣

� C1Cδ sup
2B
|f1|δ

∫
2B

∣∣∣i∂∂ (
|f2|2 + ε

) δ
2 ∧ . . . ∧ i∂∂

(
|fm|2 + ε

) δ
2

∣∣∣ dV
� C1Cδ sup

2B
|f1|δ

∫
χ2BH

2
εdV,
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where Cδ = 2m/δ2m and C1 = supχB . Should the reader have any doubts
about the integration by parts, note that d(α∧β∧γ) = ∂α∧β∧γ+α∧∂β∧γ,
for any function α and forms β and γ such that γ is a closed (n− 1, n− 1)-
form and β is a (0, 1)-form. A similar relation holds for the ∂-operator. Since
the second integral on the first line in the calculation above is nothing but∫
χBH

1
εdV , we can proceed by induction over k to obtain∫

B

|Fε|dV � C

δ2m
sup

2m+1B

|f1 · . . . · fm|δ <∞,

so if we let ε tend to zero, we get the desired bound. �

Remark 2.4. — It is not hard to see that essentially the same proof gives
that |∂f1 ∧ . . . ∧ ∂fr|/

∏r
1 |fi| is locally integrable.

3. Division by weighted integral formulas

We will use a division formula introduced in [B83],but for convenience,
we use the formalism from [A03] to describe it.

Consider a fixed point z ∈ Cn and define the operator ∇ζ−z = δζ−z − ∂̄,
where δζ−z is contraction with the vector field

2πi
n∑
1

(ζk − zk)
∂

∂ζk
.

Recall that δζ−z anti-commutes with ∂.We allow these operators to act on
forms of all bidegrees. In particular, the contraction of a function is zero.

A weight with respect to z is a smooth differential form g = g0,0 + g1,1 +
. . . + gn,n such that ∇ζ−zg = 0 and g0,0(z) = 1. The subscripts denote
bidegree.

Let s be any (1, 0)-form such that δζ−zs = 1 outside of {ζ = z}, e.g.,

s =
∂|ζ|2

2πi
(
|ζ|2 − ζ · z

) ,
where the dot sign denotes the pairing given by a · b =

∑
aibi. Next we set

u = s+ s ∧ ∂s+ . . .+ s ∧ (∂s)n−1,

which is defined whenever s is defined. We note that δζ−z∂s = −∂δζ−zs
= −∂1 = 0. Since s∧(∂s)n must vanish, we have (∂s)n = δζ−z(s∧(∂s)n) = 0.
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The reader may check that ∇ζ−zu = 1. In fact, this can be seen elegantly
by using functional calculus of differential forms; then u = s/∇ζ−zs =
s/(1− ∂s) = s ∧

∑n−1
1 (∂s)k,and ∇ζ−zu = ∇s/∇s = 1.

One can construct a weight gz(ζ) with respect to z, compactly supported
in the ball of radius r + ε, such that (z, ζ) �→ gz(ζ) is holomorphic in z in
the ball of radius r − ε. This is accomplished by setting

gz(ζ) = χ− ∂χ ∧ u,

where χ is a cut-off function that is 1 whenever |ζ| � r− ε and 0 whenever
|ζ| > r+ε. Note that u is well-defined on the support of ∂χ. We see that gz is
a weight since∇ζ−z is an anti-derivation;∇ζ−zgz = −∂χ+∂δζ−zχ∧u+∂χ =
0 (as χ is a function, we have δζ−zχ = 0).

Proposition 3.1. — If g is a weight with respect to z which has compact
support, and if φ is holomorphic in a neighbourhood of the support of g, then

φ(z) =
∫
φ(ζ)g(ζ). (3.1)

Proof. — As in the construction of a weight with compact support
above, we define forms

b =
∂|ζ − z|2

2πi|ζ − z|2

and u = b ∧
∑(

∂b
)k

such that δζ−zb = 1 and ∇ζ−zu = 1 hold outside of
{ζ = z}. The highest degree term of u is the Bochner-Martinelli kernel. We
now want to determine the residue R = 1−∇ζ−zu (where ∇ζ−z is taken in
the sense of currents) at {ζ = z}. The (k, k−1) bidegree component uk,k−1 of
u isO(|ζ−z|−2k+1), so only the highest component, ∂un,n−1 = ∂(b∧(∂b)n−1)
of ∇ζ−zu will contribute to the residue. Using Stokes’ theorem, it is easy to
check that R = [z], the point evaluation current at z. Clearly ∇ζ−z(φg) = 0,
so ∇ζ−z(u ∧ φg) = φg − [z] ∧ φg. Taking highest order terms, we get

d(u ∧ φg)n,n−1 = ∂(u ∧ φg)n,n−1 = [z] ∧ φg0,0 − φgn,n = [z] ∧ φ− φgn,n,

so by Stokes’s theorem∫
φ(ζ)g(ζ) =

∫
φ(ζ)gn,n(ζ) = [z].φ = φ(z).

�
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4. Finishing the proof of Theorem 1.2

We now begin constructing a weight associated with Berndtsson’s divi-
sion formula for an ideal I ⊂ On. Take h = (hi) to be an m-tuple of so called
Hefer forms with respect to the generators fi of I; these (germs of) (1, 0)-
forms are holomorphic in 2n variables, and satisfy δζ−zhi = fi(ζ) − fi(z).
To see that h exists, write

fi(ζ)− fi(z) =
∫ 1

0

d

dt
fi(z + t(ζ − z))dt,

and compute the derivative inside the integral. Define σi = f̄i/|f |2 and let
χε = χ(|f |/ε) be a smooth cut-off function, where χ is approximatively
the characteristic function for [1,∞). Recall that the dot sign refers to the
pairing a · b =

∑
aibi.We now set

µ = min(m,n+ 1)

and define the weight

gB = (1−∇ζ−z (h · χεσ))µ

=
(
1− χε + f(z) · χεσ + h · ∂ (χεσ)

)µ
(4.1)

= f(z) ·Aε +Bε,

where

Aε =
µ−1∑
k=0

Ckχεσ[f(z) · χεσ]k
[
1− χε + h · ∂ (χεσ)

]µ−k−1
(4.2)

and
Bε =

(
1− χε + h · ∂ (χεσ)

)µ
. (4.3)

For convenience, we assume that l = 0 in Theorem 1.2. The proof goes
through verbatim for general l byjust replacing µ with µ+ l in the definition
of gB .

Let g be any weight with respect to z which has compact support and
is holomorphic in z near 0. Substitution of the last line of (4.1) into (3.1)
applied to the weight gB ∧ g yields

φ(z) = f(z) ·
∫
φ(ζ)Aε ∧ g +

∫
φ(ζ)Bε ∧ g. (4.4)

To obtain the division we will show two claims:
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Claim 4.1. — The second term in (4.4),
∫
φ(ζ)Bε ∧ g,

converges uniformly to zero for small |z|.

Claim 4.2. — If m � n, the tuple of integrals in (4.4),
∫
φ(ζ)Aε ∧ g,

converges uniformly as ε→ 0.

We give an argument for the case m > n of Theorem 1.2 at the end of
the paper. Letting ε go to zero in (4.4), these claims give that φ ∈ I.

To prove Claim 4.1, we will soon find a function F (ζ) integrable near
ζ = 0, such that |φ(ζ)Bε| � F . Now we note that the integrand of Claim 4.1
has support on the set Sε = {|f | � 2ε}; outside of Sε, we have that χε = 1,
so Bε =

(
h · ∂σ

)µ
, which vanishes regardless of whether µ = n+1 or µ = m.

In the latter case apply ∂ to f · σ = 1 to see that ∂σ is linearly dependent.
Thus for small |z|, we get

lim
ε→0

∣∣∣∣
∫
φ(ζ)Bε ∧ g

∣∣∣∣ � C lim
ε→0

∫
Sε

F = 0,

where we used that g is smooth.

The existence of F is a consequence of the main estimate of the previous
chapter and a little bookkeeping that we will now carry out. Straightforward
calculations, based on the fact that χ′ is bounded, give that

∂χε = O(1)|f |−1
∑

∂fj and ∂σi = O(1)|f |−2
∑

∂fj , (4.5)

since |f | ∼ ε on the support of ∂χε. Note also that |σ| = |f |−1. It is easy to
see that O(1) actually represents a function that does not depend on ε.

Using these facts, as we binomially expand (4.3), we get that φ(ζ)Bε is
a linear combination ofterms that are given by

φ(ζ)
(
∂χεh · σ

)a ∧ (
χεh · ∂σ

)b
(1− χε)c = φ(ζ)|f |−2(a+b)∂fJ ∧ O(1), (4.6)
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where a+ b+ c = µ, J ⊂ {1, 2 . . .m}, |J | = a+ b and ∂fJ =
∧
i∈J

∂fi. Since

∂fJ = 0 whenever a+b > n we can assume that a+b � min(m,n). We now
set F to be the sum of the right hand side of (4.6) over all possible J , i.e.

F =
∑

|J|�min(m,n)

φ(ζ)|f |−2|J|∂fJ ∧ O(1). (4.7)

Clearly |φ(ζ)Bε| � F . Applying Proposition 2.1 with k = min(m,n) to
(4.7), it follows that F is indeed locally integrable. �

Before dealing with Claim 4.2, we note that there is a way around it;
clearly, the integrals in the claim are holomorphic for each ε > 0, so the first
termin (4.4) belongs to I for fixed ε > 0. Thus, due to Claim 4.1, φ is in
the closure of I with respect to uniform convergence. All ideals are however
closed under uniform convergence, see [H90] Chapter 6, so φ belongs to I.

The proof of Claim 4.2 is similar to the proof of Claim 4.1. Since we
have assumed m � n, we have µ = min(m,n+ 1) = m. Expanding φ(ζ)Aε,
displayed in (4.2), we get a linear combination of terms that are given by

φ(ζ)σ(f(z) · χεσ)k
(
∂χεh · σ

)a ∧ (
h · ∂σ

)b
= φ(ζ)|f |−(1+k+2a+2b)∂fJ ∧O(1),

where a+ b � µ− k− 1, k � µ− 1 and |J | = a+ b. The sum 1 + k+ 2a+ 2b
is at most 2µ − 1, and this happends when k = 0 and a + b = µ − 1. By
an argument almost identical to the one proving that F was integrable, we
get an integrable upper bound for φAε independent of z and ε. This is, of
course, an upper bound also for the limit

A := lim
ε→0

Aε =
µ−1∑
k=0

Ckσ[f(z) · σ]k
[
h · ∂σ

]µ−k−1
.

As in the beginning of the proof of Claim 4.1, one sees that
∫
φ(ζ)Aε ∧ g

converges uniformly to
∫
φ(ζ)A ∧ g. �

The case m > n presents an additional difficulty as our upper bound
fails to be integrable. Also, φA ∧ g will not be integrable. A remedy is to
consider a reduction of the ideal I, that is, an ideal a ⊂ I generated by n
germs such that a = I, see for example Lemma 10.3, Ch. VIII in [D07]. If
ai generate a we have that |a| ∼ |f |, so â(k) = Î(k) for any integer k � 1.
Thus we have reduced to the case m � n, which has already been proved.
�
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de fonctions holomorphes en un point de Cn, C. R. Acad. Sci. Paris Sér. A
278, p. 949-951 (1974).

[D07] Demailly (J.-P.). — Complex analytic and differential geometry, Available
at http://www-fourier.ujf-grenoble.fr/ demailly/ (2007).
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