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SV and related f-rings and spaces

Suzanne Larson
(1)

ABSTRACT. — An f -ring A is an SV f-ring if for every minimal prime
�-ideal P of A, A/P is a valuation domain. A topological space X is an SV
space if C(X) is an SV f -ring. SV f -rings and spaces were introduced in
[HW1], [HW2]. Since then a number of articles on SV f -rings and spaces
and on related f -rings and spaces have appeared. This article surveys
what is known about these f -rings and spaces and introduces a number
of new results that help to clarify the relationship between SV f -rings
and spaces and related f -rings and spaces.

RÉSUMÉ. — Un f -anneau A est un SV f-anneau si pour tout �-idéal
premier minimal P de A, A/P est un anneau de valuation. Un espace
topologique X est un SV espace si C(X) est un SV f -anneau. Les SV f -
anneaux et les SV espaces ont été introduits dans [HW1], [HW2]. Depuis
lors, plusieurs articles sur les SV f -anneaux et sur les SV espaces ainsi
que sur les f -anneaux et sur les f -espaces qui leurs sont apparentés ont
paru. Cet article expose les résultats connus sur les f -anneaux et sur les
f -espaces et donne des résultats nouveaux qui clarifient la relation entre
SV f -anneaux, SV f -espaces et f -anneaux, f -espaces.

1. Introduction

An f -ring A is an SV f-ring if for every minimal prime �-ideal P of A,
A/P is a valuation domain. A topological space X is an SV space if C(X)
is an SV f -ring. Mel Henriksen and Richard Wilson initiated the study of
SV rings and spaces with their 1992 papers ([HW1], [HW2]). Their work
in the area generated interest and inspired a number of authors to join the
investigation. This writing is designed to provide a survey of work on issues
related to SV f -rings and spaces. In trying to fully understand the landscape
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of SV f -rings and spaces, authors have often looked, on one hand at a little
more specialized type of ring and space, the finitely 1-convex f -rings and
spaces that are finitely an F-space, and on the other hand, at a little more
general type of ring and space, the f -rings of finite rank and the spaces of
finite rank. We will investigate these three types of f -rings and spaces, for
the most part from the most specialized to the most general. We will see
many, but not all, of the results concerning topological spaces have algebraic
analogues.

It should be noted that most of the papers currently in the literature
simply use the term SV ring to refer to what is here termed an SV f -ring.
N. Schwartz has recently introduced the notion of an SV ring as defined on
a ring with no lattice ordering, and we wish to be sure it is clear that here,
we are referring to the SV property as defined in an f -ring, and not just a
ring.

A section on open problems concerning SV f -rings and spaces is in-
cluded. Other papers that initiate interesting new directions for investigat-
ing matters relating to the SV property were presented at the Baton Rouge
conference. Henriksen and Banerjee have introduced almost SV f -rings and
quasi SV f -rings in [BH]. As mentioned a little earlier, N. Schwartz has
introduced SV rings as defined in rings with no lattice ordering, and Robert
Redfield has introduced SV �-groups.

We will provide proofs when a result has not appeared elsewhere, or
in order to correct an error in the literature. Proofs of results that appear
elsewhere will not be included here. A number of new results are included
that help to round out the picture.

2. Preliminaries

An f -ring is a lattice ordered ring that is a subdirect product of to-
tally ordered rings. For general information on f -rings see [BKW]. Given an
f -ring A, we let A+ = {a ∈ A : a � 0}, and for an element a ∈ A, we let
a+ = a∨0, a− = (−a)∨0, and |a| = a∨(−a). Two distinct positive elements
a, b of an f -ring are said to be disjoint if a ∧ b = 0. If A is an f -ring with
identity element, let A∗ = {a ∈ A : |a| � n · 1 for some positive integers n}.
Then A∗ is a sub-f -ring of A, and is called the subring of bounded elements.

A ring ideal I of an f -ring A is an l-ideal if |a| � |b|, and b ∈ I implies a ∈
I, or equivalently, if it is the kernel of a lattice-preserving homomorphism
(�-homomorphism). Given any element a of an f -ring A, there is a smallest
�-ideal containing a, and we denote this by 〈a〉.
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Suppose A is an f -ring and I is an ideal of A. The ideal I is semiprime
(resp. prime) if J2 ⊆ I (resp. JK ⊆ I) implies J ⊆ I (resp. J ⊆ I or K ⊆ I)
for ideals J, K. An �-ideal I of an f -ring is semiprime (resp. prime) if and
only if a2 ∈ I implies a ∈ I (resp. ab ∈ I implies a ∈ I or b ∈ I). The f -ring
A is called semiprime (resp. prime) if {0} is semiprime (resp. prime). It is
well known that in an f -ring, an �-ideal I is semiprime if and only if it is an
intersection of prime �-ideals which are minimal with respect to containing
I. If P is a prime �-ideal of the f -ring A, then A/P is a totally ordered prime
ring and all �-ideals of A containing P form a chain. In any semiprime f -ring,
it is shown in (9.3.2, [BKW]) that a minimal prime ideal is an �-ideal and so
in a semiprime f -ring, the collections of minimal prime ideals and minimal
prime �-ideals are the same. The following characterization of minimal prime
�-ideals in semiprime f -rings is well known.

Proposition 2.1. — Let A be a semiprime f-ring and P be a prime
�-ideal of A. Then P is minimal if and only if for every p ∈ P there is a
q /∈ P such that pq = 0.

If P is a proper prime �-ideal of a commutative semiprime f -ring A, we
let OP denote the set OP = {a ∈ A : there exists b /∈ P such that ab = 0}.
Then OP is a semiprime �-ideal contained in P and if P is a minimal prime
�-ideal, OP = P .

A commutative ring is a valuation ring if given any two elements, one
divides the other. If A is an f -ring with identity element in which every
element a � 1 is invertible, then A is said to be closed under bounded
inversion or to have bounded inversion. A commutative f -ring A is said to
satisfy the 1st-convexity condition, or to be 1-convex if for any u, v ∈ A such
that 0 � u � v, there is a w ∈ A such that u = wv.

Lemma 2.2. — A totally ordered domain with identity element is
1-convex if and only if it is a valuation domain with bounded inversion.

Proof. — Let A be a totally ordered domain with identity element. As-
sume first that A is 1-convex. Suppose a, b ∈ A. Then either (i) a, b � 0,
(ii) −a,−b � 0, (iii) −a, b � 0, or (iv) a,−b � 0. In the first case, we may
assume without loss of generality that 0 � a � b and it follows immediately
from A being 1-convex that b is a divisor of a. In the third case, we may
assume without loss of generality that 0 � −a � b and so there is a w ∈ A
such that −a = wb. This implies a = (−w)b and hence b is a divisor of a.
The other cases are similar and it follows that A is a valuation domain. If
a ∈ A and 1 � a, then the 1st-convexity property implies a−1 ∈ A. So A
has bounded inversion.
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Assume next that A is a valuation domain with the bounded inversion
property. Suppose 0 � a � b in A. By hypothesis, either a = wb or b = wa
for some w ∈ A. If a = wb, there is nothing we need prove, so suppose
b = wa. Then b = wa ∨ a = (w ∨ 1)a and since A has bounded inversion,
(w ∨ 1)−1 ∈ A and a = (w ∨ 1)−1b. �

Let X be a completely regular topological space, and C(X) denote the
f -ring of real-valued continuous functions defined on X. Also, let C∗(X)
denote the f -ring of all bounded real-valued continuous functions defined
on X. Recall that in X, a zeroset is a set of the form {x ∈ X : f(x) = 0} for
some function f ∈ C(X), and a cozeroset is the complement of a zeroset.
Given a function f ∈ C(X), we let Z(f) (resp. coz(f)) denote the zeroset
(resp. cozeroset) determined by f . For a completely regular space, we let
βX denote the Stone-Čech compactification of X.

It is well known that if X is a compact space, then every maximal ideal of
C(X) is of the form Mx = {f ∈ C(X) : f(x) = 0} and the intersection of all
of the prime ideals contained in a given maximal ideal Mx is the semiprime
ideal Ox = {f ∈ C(X) : Z(f) is a neighborhood of p}. For a given x ∈ X,
the ideal Ox = OMx

as was defined immediately after Proposition 2.1.

A subspace S of X is said to be C∗-embedded (resp. C-embedded) in
X if every function in C∗(S) (resp. C(S)) can be extended to a function
in C∗(X) (resp. C(X)). An F-space is a space in which every cozeroset is
C∗-embedded. A number of conditions, both topological conditions on X,
and algebraic conditions on C(X), are equivalent to X being an F-space
and appear in (14.25, [GJ]), (1, [MW]), and (2.4, [L1]). We repeat just a
few of these equivalent conditions.

Theorem 2.3. — For a completely regular space X the following are
equivalent.

1. X is an F-space.
2. For every p ∈ βX, the �-ideal Op = {f ∈ C(X) : clβXZ(f) is a

neighborhood of p} is prime.
3. Every finitely generated ring ideal of C(X) is principal.
4. Every ring ideal of C(X) is an �-ideal.
5. βX is an F-space.
6. C(X) is 1-convex.

If X is normal, (1) - (6) above are equivalent to

7. for every x ∈ X, the maximal ideal Mx contains just one minimal
prime �-ideal.
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A point x in the space X is a P-point if every Gδ containing x is a
neighborhood of x, and x is a βF-point if the �-ideal Ox = {f ∈ C(X) :
clβXZ(f) is a neighborhood of x} is prime. If x is a P-point or a βF-point,
then the maximal ideal Mx = {f ∈ C(X) : f(x) = 0} contains a unique
minimal prime ideal.

Throughout, we will assume all spaces are completely regular. When it
is necessary to explicitly indicate that we are considering a topological prop-
erty with respect to the space X, we use ”X-” as a prefix to the topological
property. For example, when we say a set is X-open, we simply mean that
it is an open set with respect to the topology on X.

3. The Initial Henriksen-Wilson Papers and a Little Background

In a 1986 paper ([CD]), G. Cherlin and M. Dickmann call a commutative
integral domain D real-closed if it (i) is totally ordered, (ii) is closed under
taking square roots of positive elements, (iii) has the property that each
monic polynomial of odd degree in D[X] has a zero in D, and (iv) has the
property that whenever a, b ∈ D, with 0 < a < b, then a divides b. They
show that for a prime ideal P of a C(X), the ring C(X)/P is real-closed if
and only if it is a valuation ring. So, they call a prime ideal P real-closed if
C(X)/P is real-closed. Every maximal ideal of C(X) is a real-closed prime
ideal and Cherlin and Dickmann investigate conditions on X in which there
are other (nonmaximal) real-closed ideals.

Mel Henriksen and Richard Wilson head in a different direction, taking a
more global approach to such matters. The first of their 1992 papers defines
a C(X) to be a survaluation ring or an SV ring if, for each of its prime ideals
P , C(X)/P is a valuation domain (and hence P is real-closed) and the space
X to be an SV space if C(X) is an SV f -ring. They initiate the study of SV
rings and spaces and investigate the interplay between topological properties
and the algebraically defined notion of an SV space.

An initial observation is made that simplifies the investigation: C(X) is
an SV ring if and only if for every minimal prime ideal P of C(X), C(X)/P
is a valuation domain. This observation follows from the fact that if P is
a prime ideal in a C(X) and Q a proper prime ideal containing P , then
C(X)/Q is a homomorphic image of C(X)/P and homomorphic images of
valuation domains are valuation domains.

An often used result that is established in [HW1] follows. Its proof de-
pends on the fact that the mapping P → P ∩ C∗(X) is a surjection of the
set of minimal prime ideals of C(X) onto the set of minimal prime ideals
of C∗(X), and the fact that P is a real-closed ideal of C(X) if and only if
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P ∩ C∗(X) is a real closed ideal of C∗(X).

Theorem 3.1 (2.3, [HW1]). — For any completely regular space X, the
following are equivalent.

1. X is an SV space

2. υX is an SV space

3. βX is an SV space.

The fact that X is an SV space if and only if βX is an SV space is a
key result that provides a basis for later work in which we often assume we
are dealing with compact spaces.

The initial Henriksen and Wilson paper proves that if a space X is a
finite union of C-embedded SV spaces, then X is an SV space. Their proof
can be summarized by the following. First, note that it is sufficient to assume
that X = X1 ∪ X2 where X1, X2 are C-embedded subspaces. Then for a
prime ideal P of C(X), if {g ∈ C(X) : g(X1) = {0} } ⊆ P then P1 = {g|X1 :
g ∈ P} is a prime ideal of C(X1). Then C(X)/P ∼= C(X1)/P1 which, by
hypothesis, is a valuation domain. Similarly for a prime ideal P of C(X), if
{g ∈ C(X) : g(X2) = {0} } ⊆ P then C(X)/P is a valuation domain. Since
every prime ideal of P must contain either {g ∈ C(X) : g(X1) = {0}} or
{g ∈ C(X) : g(X2) = {0}}, this then says for every prime ideal P of C(X),
C(X)/P is a valuation domain and X is an SV space. It is easy to see using
Lemma 2.2 and Theorem 2.3 that an F-space must be an SV space and so
it follows that

Theorem 3.2 (2.9, [HW1]). — A compact space that can be written as
a union of finitely many closed F-spaces is an SV space.

What has become a classic example of an SV space that is not an F-space
is now easy to describe.

Example 3.3. — Let X1, X2 each denote a copy of βN, the Stone-Čech
compactification of the natural numbers. Then X1, X2 are F-spaces. Let X
denote the space obtained by starting with the topological sum of X1, X2

and identifying each pair of corresponding points of βN\N. Clearly, X is
a compact space that can be written as the union of two closed F-spaces
and hence is an SV space by the previous result. It is also useful to see
directly why X is an SV space. Recall that every minimal prime ideal of
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a compact space is contained in the maximal ideal Mx for some x ∈ X.
For any x ∈ X that was contained in one of the copies of N, the point
x is isolated and the minimal prime ideal contained in Mx is Mx itself.
Then C(X)/Mx is a field and hence a valuation domain. For any x ∈ X
not contained in a copy of N, Mx contains just two minimal prime ideals:
P1 = {f ∈ C(X) : f |X1 ∈ Ox1} and P2 = {f ∈ C(X) : f |X2 ∈ Ox2}, where
for i = 1, 2, Oxi

= {g ∈ C(Xi) : Z(g) is an Xi-neighborhood of x}. Then
C(X)/Pi ∼= C(βN)/Ox, and C(βN)/Ox is 1-convex and hence a valuation
domain.

In their follow-up paper, Henriksen and Wilson consider almost discrete
spaces and characterize almost discrete spaces that are SV spaces. A Haus-
dorff space is an almost discrete space if it has a single non-isolated point.
When considering almost discrete spaces, we let ∞ denote the non-isolated
point. It is useful to note that an almost discrete space is normal and is per-
fectly normal if and only if ∞ is a Gδ point. A space X is basically discon-
nected if the closure of every cozeroset is open. Every basically disconnected
space is an F-space. The characterization of almost discrete spaces that are
SV spaces follows.

Theorem 3.4 (2.3, 3.1, [HW2]). — If X = D ∪ {∞} is an almost dis-
crete space, then the following are equivalent.

1. X is an SV space.

2. C(X)/P is a valuation domain for each minimal prime ideal P con-
tained in M∞.

3. M∞ contains only finitely many minimal prime ideals of C(X).

4. X is a finite union of closed basically disconnected subspaces.

Each of the Henriksen and Wilson papers also show that SV spaces share
some properties with F-spaces. For example, an infinite SV space contains
no nontrivial convergent sequences. They also show that C∗-embedded sub-
spaces of SV spaces are SV spaces and that finite unions of compact SV
spaces are SV spaces.

The two Henriksen and Wilson papers sparked further investigation re-
lated to SV spaces and SV rings. A number of the ideas that remain central
to this work can be seen in these two early papers, though not all were
”named” in these papers. We pause now to define several concepts using
terminology introduced in later papers, but whose roots can be seen in one
of the 1992 Henriksen and Wilson papers.
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Definitions 3.5. —

1. A space X is finitely an F-space if βX is a union of finitely many
closed F-spaces.

2. Suppose M is a maximal �-ideal of an f-ring A. The rank of M , is
the number of minimal prime ideals contained in M if the set of all
such minimal prime ideals is finite, and the rank of M is infinite
otherwise.

3. If A is an f-ring, then the rank of A is the supremum of the ranks of
the maximal �-ideals of A. The f-ring A is said to have finite rank if
the rank of A is finite.

4. The rank of the space X is the rank of the f-ring C(X). The rank of
the point x ∈ X is the rank of the maximal �-ideal Mx = {f ∈ C(X) :
f(x) = 0}.

The reader will note that the concepts of finite rank and (a version of)
finitely an F-space appear in Theorem 3.4. Most of the later work that
relates to SV matters revolves around the concepts of a space being finitely
an F-space, being an SV space, or having finite rank. So, throughout the
work that follows, we will investigate three classes of completely regular
topologies: spaces that are finitely an F-space, SV spaces, and spaces of
finite rank and the corresponding three classes of f -rings.

Because the rank of a maximal �-ideal plays a central role in our dealings
with the three classes of spaces to be studied, we conclude this section with
a few basics regarding a maximal �-ideal of finite rank. First, it should be
noted that if X has finite rank then every point x ∈ X has finite rank, but
the converse need not hold. It is possible for every point in X to have finite
rank, while the space X does not have finite rank since not every maximal
�-ideal of C(X) has the form Mx. An example where this happens is the
space U of Example 4.11. Since for a compact space X, every maximal
�-ideal of C(X) is of the form Mx, a compact space X will have finite rank
if and only if every x ∈ X has finite rank.

In a semiprime f -ring, the minimal prime subgroups are exactly the
minimal prime ideals (see Theorem 9.3.2 of [BKW]). This, and the Finite
Basis Theorem of Conrad (Theorem 46.12 of [D]) imply that the maximal
�-ideal M has finite rank n if and only if there is a set of n nonzero pairwise
disjoint elements in A/OM and there is no larger such set. It is straightfor-
ward to show that a set of n nonzero pairwise disjoint elements from A/OM
corresponds to a set of n pairwise disjoint elements of A, each contained in
M , but not in OM . The next theorem follows from these facts.
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Theorem 3.6. — Let A be a commutative semiprime f-ring with iden-
tity element. A maximal �-ideal M has finite rank n � 2 if and only if there
is a set of n pairwise disjoint elements in M\OM and there is no larger
such set.

It is straightforward to translate the result of the previous theorem into
topological terms as is recorded in the following theorem. This character-
ization of a point x having rank n � 2 has been an indispensable tool in
the literature. Since the following theorem is an application of the previous
theorem, no new proof is needed. However, it is instructive to construct a
direct proof since it reveals some of the interplay between the algebraic and
topological sides of the subject. For that reason, we present an outline of a
direct proof.

Theorem 3.7 (3.1, HLMW). — Let X be a completely regular space. A
point x ∈ X has finite rank n � 2 if and only if there is a collection of n
pairwise disjoint cozerosets such that x is in the closure of each cozeroset,
and there is no larger such collection.

Outline of Proof. — ⇒ Suppose x has rank n. Suppose P1, P2, . . . , Pn are
n distinct minimal prime ideals contained in Mx. For each i = 1, 2, . . . , n,
let pi ∈ (∩j �=iPj)\Pi. Then for any i �= j, pipj ∈ P1 ∩ P2 ∩ · · · ∩ Pn = Ox.
So for each i, j with i �= j, there is a cozeroset neighborhood Vij of x such
that pipj(Vij) = {0}. It is not hard to see the collection of n cozerosets
{(∩i,jVij) ∩ coz(pi)} is pairwise disjoint and x is in the closure of each of
these cozerosets. We show there can be no larger such collection of cozerosets
indirectly. So suppose coz(f1), coz(f2), . . . , coz(fn+1) is a collection of n +1
pairwise disjoint cozerosets such that x ∈ cl(coz(fi)) for each i. Now for
each i, fi /∈ Pj for some j, or else fi would be in P1 ∩ P2 ∩ · · · ∩ Pn = Ox,
and x would not be in the closure of coz(fi). By the pigeonhole principle,
there is (at least) one of the minimal prime ideals, say P1, such that two of
the fi, say f1, f2, are not in P1. But then f1f2 = 0 ∈ P1, while f1, f2 /∈ P1,
and we have a contradiction. So there can be no larger such collection of
cozerosets.

⇐ Suppose f1, f2, . . . , fn ∈ C(X) and coz(f1), coz(f2), . . . , coz(fn) is a
collection of pairwise disjoint cozerosets such that x is in the closure of
each, and there is no larger such collection. For each i = 1, 2, . . . , n, define
Pi = {f ∈ C(X) : ∃ neighborhood V of x such that coz(fi) ∩ V ⊆ Z(f)}.
It is straightforward to check and see that Pi is an �-ideal. To see that it
is a prime ideal, suppose g1, g2 ∈ C(X) and g1g2 ∈ Pi. Then there exists
a cozeroset neighborhood V ′ of x such that coz(fi) ∩ V ′ ⊆ Z(g1g2). If
g1, g2 /∈ Pi, then coz(f1) ∩ V ′, coz(f2) ∩ V ′, . . . , coz(fi−1) ∩ V ′, coz(g1) ∩
coz(fi) ∩ V ′, coz(g2) ∩ coz(fi) ∩ V ′, coz(fi+1) ∩ V ′, . . . , coz(fn) ∩ V ′ is a
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collection of n + 1 pairwise disjoint cozerosets such that x is in the closure
of each, contrary to hypothesis. So g1 ∈ Pi or g2 ∈ Pi and Pi is prime.
Now Pi is in fact a minimal prime ideal and so x has rank at least n. The
point x cannot have rank greater than n since if it did, the argument in the
previous paragraph would show there is a collection of n+1 pairwise disjoint
cozerosets such that x is in the closure of each cozeroset, a contradiction. �

4. SV Spaces and Related Topological Spaces

In this, and later sections we will not present results as they appeared
chronologically; rather in what is (hopefully) a more efficient means. We
begin with the topological side – that is, we begin by studying topological
spaces and the corresponding ring of continuous functions for spaces that
are finitely an F-space, SV spaces, and spaces of finite rank. Along the way
we will show that the relationship between these three types of spaces and
F-spaces can be summarized by

F-space ⇒ finitely an F-space ⇒ SV space ⇒ space of finite rank,

where the first two arrows cannot be reversed and it is unknown if the third
arrow can be reversed.

Topological spaces that are finitely an F-space.

That an F-space is finitely an F-space follows immediately from the
definitions and there are many spaces that are finitely an F-space, but not an
F-space. Indeed, a common means of constructing a space that is finitely an
F-space, but not an F-space is to begin with the disjoint union of n (n > 1)
compact F-spaces X1, X2, . . . , Xn, closed nowhere dense subsets Ai ⊆ Xi

for i = 1, 2, . . . , n, and continuous bijections gi : A1 → Ai for i = 2, 3, . . . , n,
and then for each a ∈ A1, identify all n points a1, g2(a1), g3(a1), . . . , gn(a1)
as a single point. In the resulting space, every identified point a ∈ A will
have rank at most n, and all other points will have rank 1. Example 3.3 is
of this type of construction.

In [A], Aliabad investigates topological spaces X obtained by beginning
with a family of topological spaces {Xα}α∈Λ and specified points xα ∈ Xα

for each α ∈ Λ, and identifying all of the xα’s as a single point σ. Some
characterizations of ideals of C(X) are given that rely only on corresponding
ideals of the C(Xα)’s. If the Xα’s are F-spaces and Λ is finite, this construc-
tion results in a space that is finitely an F-space, with the identified point σ
being the only point that might have rank greater than 1. Then, the point σ

1. (4.1 of [A]) will be a P-point if and only if xα is a P-point in Xα for
each α.
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2. (4.1 of [A]) will be a βF-point if and only if xα is a βF-point in Xα

for one α and is a P-point in Xα for all other α.

3. will have rank m for m � 2 if and only if xα is a βF-point in Xα for
m of the α and is a P-point in Xα for all other α.

Suppose X is compact and finitely an F-space, then X can be written
as X = ∪ni=1Xi for some compact F-spaces Xi. Let BndryX(Xi) denote the
boundary of Xi in X, and let T = ∪ni=1BndryX(Xi). Every point of X − T
lies in the interior of a closed F-subspace of X, and so has rank 1. This leads
to the following observation:

Theorem 4.1 (5.16, [HLMW]). — If X is compact and finitely an
F-space, then X has an open and dense subset of points of rank 1.

By Theorems 3.2 and 3.1, a space that is finitely an F-space is an SV
space. In [L3], a construction is given of a type of SV space that is not finitely
an F-space. The construction begins with a collection of a certain type of
normal SV space for which the Stone-Čech compactification is SV and the
collection of points in the Stone-Čech compactification of rank greater than
1 is the closure of a countable set. Then an inverse limit space constructed
from this collection is shown to be a compact SV space in which there is a
dense set of points of rank n > 1 and by the previous theorem cannot be
finitely an F-space. This same construction also provided examples showing
that the set of points of rank greater than 1 is not necessarily closed in an
SV space, however, later constructions provide less complicated examples
showing that the set of points of rank greater than 1 is not necessarily closed.
One of these is found in [A]. The inverse limit construction still provides
the only known type of SV space that is not finitely an F-space.

SV spaces.

We begin our discussion in this subsection by giving characterizations of
SV spaces. Since it was known early in the development that a space is SV
if and only if its Stone-Čech compactification is SV, much of the search for
topological characterizations of an SV space has been restricted to compact
spaces.

It is well known that a space is an F-space if and only if every cozeroset
of the space is C∗-embedded. That is to say a space is an F-space if and only
if every bounded continuous real-valued function defined on a cozeroset can
be extended to a continuous function defined on X. Compact SV spaces do
not have this property, but compact SV spaces are characterized by contin-
uous real-valued functions defined on cozerosets having a finite number of
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continuous ”partial extensions” defined on X. The following theorem makes
this precise.

Theorem 4.2 (the equivalence of (1) and (2) is 4.6, [HLMW]). — Let
X be a compact space. The following are equivalent.

1. X is an SV space

2. For every x ∈ X, there is a k ∈ N such that for any cozeroset
Y ⊆ X and l ∈ C∗(Y ) there are l1, l2, . . . , lk ∈ C(X) and zerosets
Z1, Z2, . . . , Zk such that li|Zi∩Y = l|Zi∩Y for each i and ∪Zi is a
neighborhood of x

3. For every cozeroset Y ⊆ X and l ∈ C∗(Y ), there are l1, l2, . . . , ln ∈
C(X) such that (l − l1|Y )(l − l2|Y ) · · · (l − ln|Y ) = 0.

Proof of 2) ⇒ 3). — Suppose Y ⊆ X is a cozeroset and l ∈ C∗(Y ). It
follows from (2) that for each x ∈ X, there is kx ∈ N, lx1, lx2, . . . , lxkx

∈
C(X) and a neighborhood Vx of x such that (l|Vx∩Y − lx1|Vx∩Y )(l|Vx∩Y −
lx2|Vx∩Y ) · · · (l|Vx∩Y − lxkx |Vx∩Y ) = 0 on Vx∩Y . The collection of all the Vx
forms a neighborhood cover of X and since X is compact, there is a finite
subcover that we will denote by Vx1 , Vx2 , . . . , Vxm

. Then
∏m
i=1(l − lxi1|Y )

(l − lxi2|Y ) · · · (l − lxikxi
|Y ) = 0.

3) ⇒ 1): Let P be a minimal prime �-ideal of C(X). By Lemma 2.2,
it will suffice to show that C(X)/P is 1-convex. So suppose 0 � f + P �
g + P in C(X)/P . Then there exists p1, p2 ∈ P such that 0 � f + p1 �
g + p2. Let Y = coz(g + p2). By (3), there are l1, l2, . . . , ln ∈ C(X) such
that ( f+p1g+p2

− l1|Y )( f+p1g+p2
− l2|Y ) · · · ( f+p1g+p2

− ln|Y ) = 0 on Y . It follows that
(f +p1−l1(g+p2))(f +p1−l2(g+p2)) · · · (f +p1−ln(g+p2)) = 0. Since P is
a prime ideal, f +p1−li(g+p2) ∈ P for some i. Then f +P = (li+P )(g+P )
in C(X)/P . �

Here, each of the li are ”partial extensions” of l. The proof of the equiv-
alence of 1) and 2) employs the idea that in a compact space of finite
rank, every minimal prime ideal is contained in a maximal ideal of the form
Mx for some x ∈ X and is associated (as in the proof of Theorem 3.7)
with a cozeroset U that has x in its closure. Then for any u + P, v + P
in C(X)/P with 0 � u + P � v + P , there is a w + P ∈ C(X)/P such
that (u + P ) = (w + P )(v + P ) if and only if the bounded function u

v in
C(U ∩ coz(v)) can be extended to a function in C(X).

For a bounded continuous function h defined on a cozeroset U of X, we
say there is an h-rift at the point z if h cannot be extended continuously
to U ∪ {z}. It is easy to see that if there is an h-rift at the point z, then
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z must be on the boundary of U . To illustrate, consider the space X from
Example 3.3. There, X has two copies of N ”attached” to a single copy of
βN − N. Let U1 be the cozeroset consisting of the two copies of N. Define
h ∈ C∗(U1) by h(x) = 1 on the copy of N in X1 and h(x) = 0 on the
copy of N in X2. Then βN − N is the set of points with h-rift. On the
other hand if U2 is the cozeroset consisting only of the copy of N in X1 and
k(x) = 1 on U2, then there are no points with k-rift. In general, the set of
points with h-rift is a subset of the set of points of rank greater than 1 and
contains points that could ”prevent” a compact space of finite rank from
being SV. A compact space of finite rank in which there are finitely many
points with h-rift for each such h are SV spaces, so the mere existence of
some points with h-rift is not enough to prevent a compact space of finite
rank from being SV. Instead, whether or not a compact space of finite rank
is SV depends on a characteristic of the closure of the set of points with
h-rift for each such h as the next theorem will indicate.

Theorem 4.3 (2.7, [L4]). — Let X be a compact space of finite rank.
Suppose for a cozeroset U and h ∈ C∗(U), Yh denotes the set of all points
with h-rift. Then X is an SV space if and only if for every cozeroset U of
X and h ∈ C∗(U), clXYh contains no points of cl(U)-rank 1.

It can be hard to check whether this h-rift condition holds for a given
C(X). However, there are some situations in which this theorem is useful.

In 2.11 [L4], it is shown that for a compact space X of finite rank, if
for every cozeroset U and h ∈ C∗(U), the subspace of points with h-rift is
an F-space, then X is an SV space. It is also shown that for a compact SV
space X of rank n, a cozeroset U , and h ∈ C∗(U), the subspace of points
with h-rift is normal and has rank at most n − 1. In particular, if X is a
compact SV space of rank 2, then Yh, the subspace of points with h-rift, is
a normal F-space. So, for compact spaces of rank 2, this produces another
characterization of SV spaces.

Theorem 4.4 (2.12, [L4]). — A compact space of rank 2 is an SV space
if and only if for every cozeroset U and h ∈ C∗(U), the subspace of points
with h-rift is an F-space.

When the rank of a compact SV space is greater than 2, the subspace of
points with h-rift need not be an F-space (see 2.11, [L4]). This represents
one of just a few places in the literature where a result holds for a space of
a particular rank, but not necessarily for every space of finite rank.
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Let A be an f -ring with identity element. A sequence {an} in A is uni-
formly Cauchy if for each positive integer p, there is a positive integer Np so
that n, m � Np implies p|an − am| � 1. The sequence converges uniformly
to a if for every positive integer p, there is a positive integer Np for which
n � Np implies p|an − a| � 1. We say the f -ring A is uniformly complete
if every uniformly Cauchy sequence converges uniformly to a unique limit.
Every uniformly complete f -algebra with identity element is archimedean
(i.e. has the property that 0 � na � b for all positive integers n implies
a = 0), has bounded inversion, and possesses square roots of positive ele-
ments. Certainly then uniformly complete f -algebras are a fairly restricted
class of f -rings. However, for every space X, C(X) is a uniformly com-
plete f -algebra with identity element. A few fundamental results have been
proven for uniformly complete f -rings, two of which provide the following
characterizations of those uniformly complete f -algebras with identity ele-
ment that are SV f -rings. We state these results in this topological section
since their primary applications are for a C(X).

Note that a positive element of an �-group is called indecomposable if
it is not the sum of a pair of nonzero disjoint elements. A positive element
a of a semiprime f -ring A with identity element and bounded inversion is
indecomposable at the maximal ideal M if a+Ox is indecomposable in A/Ox.
For a compact space X and x ∈ X, this means f ∈ C(X) is indecomposable
at the maximal ideal Mx if f = g + h with gh zero on a neighborhood of x
implies g or h is zero on a neighborhood of x.

Theorem 4.5 (4.3, [HLMW]). — Suppose A is a uniformly complete
f-algebra with identity element. Then A is an SV algebra if and only if the
following conditions hold.

1. A has finite rank, and

2. for every maximal ideal M and every pair 0 < a � b, with b indecom-
posable at M , there is an x ∈ A such that a − xb ∈ OM .

In particular, note that the preceeding theorem implies every uniformly
complete SV algebra with identity element has finite rank and for every SV
space X, C(X) has finite rank. The fact that an SV space has finite rank is
used extensively in the literature.

An ideal I of an f -ring A is saturated if a + b ∈ I and ab = 0 imply a
and b are in I. One characterization of an F-space is that every ring ideal
of C(X) is an �-ideal. A similar characterization holds for SV spaces.
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Theorem 4.6 (6.2, [HLMW]). — A uniformly complete f-algebra is an
SV algebra if and only if each of its saturated ideals is an �-ideal.

We call an ideal I pseudoprime if ab = 0 implies a ∈ I or b ∈ I. In
a uniformly complete f -algebra, every pseudoprime ideal is saturated, but
not conversely. We will see in Theorem 5.9, a similar result holds for a
commutative semiprime f -ring A with bounded inversion: A is an SV f -
ring if and only if each of its pseudoprime ideals is an �-ideal.

Spaces of finite rank.

As we have seen, every SV space has finite rank. Whether or not the
converse holds is unknown. In order to better understand SV spaces and to
aid in finding an answer to the question of whether a space of finite rank is
SV, spaces of finite rank have been studied. The following theorem provides
a list of properties relating to rank.

Theorem 4.7. — Let X be a completely regular space.

1. (4.2, [HLMW]) Suppose every maximal �-ideal of C(X) has finite
rank. Then X has finite rank.

2. (3.4 [L2]) Suppose Y is a countable discrete subspace of X. If every
point of Y has X-rank greater than or equal to n, then every point of
clX(Y ) has X-rank greater than or equal to n.

3. (3.3, [L2]) If X is normal, y ∈ βX − X, rkβX(y) > 1, and Y de-
notes the subspace of points of X of X-rank greater than 1, then
y ∈ clβX(Y ). If the set of points of X of rank greater than one is
compact, then every point of βX − X has βX-rank 1.

4. (5.6, [HLMW]) If X is an infinite compact space of finite rank then
X contains a copy of βN.

5. (5.7, [HLMW]) If X is a compact space of finite rank then every
infinite closed subspace of X has at least 2c points.

6. (3.2, [HLMW]) X has finite rank if and only if βX has finite rank.

7. (5.10, [HLMW]) If X is a normal space, then rank(βX) = sup{X-
rank(p) : p ∈ X}.

8. (5.15, [HLMW]) If X, Y are infinite, compact F-spaces, then X × Y
has infinite rank.
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A few comments about this theorem are in order. Part 1) is true more
generally. If A is a uniformly complete f -algebra with identity element in
which every maximal �-ideal has finite rank, then A has finite rank. The idea
behind the proof of 2) is that because every point yi ∈ Y has rank greater
than or equal to n, there are n pairwise disjoint cozerosets Ui1, Ui2, . . . , Uin,
each having yi in its closure. Taking care in the choice of these Ui allows one
to define Uj = ∪∞

i=1Uij for j = 1, 2, . . . , n and then every point in clX(Y )
is in the closure of the n pairwise disjoint cozerosets Uj and hence has rank
greater than or equal to n. Part 3) implies that if X is locally compact and
the set of points of rank greater than one is compact, then βX − X is an
F-space. Parts 4) and 5) indicate that SV spaces also have some properties
known to hold in F-spaces (see 14N.5 of [GJ]). Part 6) is true more generally
- see 3.2 of [HLMW]. The hypothesis that X is normal cannot be left out
of part 7) since the space U of Example 4.11 is a space in which every
point has rank 1, while some points of βU have rank greater than 1. Part
8) emphasizes the fact that the product of two F-spaces is not an F-space.
In fact, the product of two F-spaces is not even of finite rank.

There is something of a gap between known properties of spaces of finite
rank and known characterizations of SV spaces. For example, suppose X is
a compact space of finite rank, U ⊆ X is a cozeroset, h ∈ C∗(U), and x ∈ X.
If rank(x) = n, then there are n pairwise disjoint cozerosets C1, C2, . . . , Cn,
each having x in its closure and having the property that h can be extended
continuously to (Ci ∩ U) ∪ {x}. But this falls short of ensuring the finite
number of continuous ”partial extensions” required for X to be SV by The-
orem 4.2. The proof of Theorem 4.5 requires finite rank and an additional
property when showing the space is SV. Still, no known example exists of
a space that is of finite rank and is not SV. A few theorems of the form ”a
space of finite rank and with property P is an SV space” have been proven.

Theorem 4.8. — Let X be a normal space.

1. (3.11, [L2]) Suppose every point of X has rank less than or equal to
some integer m. If the points of X of rank greater than 1 form a
countable discrete subspace, then X is an SV space.

2. Suppose X is a compact space of finite rank and the subspace consist-
ing of the points of X with rank greater than 1 is a P-space. Then X
is an SV space.

3. Suppose X has finite rank and the subspace consisting of the points
of X with rank greater than 1 is a C∗-embedded P-space, then X is
an SV space.
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Proof of 2). — Let U be an X-cozeroset, and h ∈ C∗(U). The collection
of points with h-rift forms a subspace of the subspace consisting of the
points with rank greater than 1. Every subspace of a P-space is itself a
P-space, and hence an F-space. So the subspace of X of points with h-rift
is an F-space and so Theorem 2.11 of [L4] implies X is an SV space.

3): Let Y denote the set of all points of X-rank greater than 1. Since Y is
C∗-embedded, clβXY = βY (see 6.9a, [GJ]). Then because Y is a P-space,
βY = clβXY is a P-space. But by Theorem 4.7 (3), the set of points in βX
of βX-rank greater than 1 is contained in clβXY . We now know βX is a
compact space of finite rank and the subspace consisting of the points of
βX with rank greater than 1 is a P-space. By 2), βX is an SV space. Hence
X is an SV space. �

SV and related properties inherited.

The question of when is the SV property or a related property ”in-
herited” by a subspace or an image under a continuous function has been
addressed. Note that in a normal F-space, a closed subspace is itself an
F-space.

Theorem 4.9. — Suppose X is a normal space and Y a closed subspace
of X.

1. If X is finitely an F-space then Y is also finitely an F-space.

2. (2.5, [HW1] and 1.5.1, [HLMW]) If X is an SV space then Y is an
SV space.

3. (1.8.1, [HLMW]) If X has finite rank, then Y has finite rank and the
rank of Y is bounded by the rank of X.

Proof of (1). — Since X is finitely an F-space, there are finitely many
closed F-spaces Xi such that βX = ∪ni=1Xi. Since X is normal, Y is C∗-
embedded in X and so βY = clβXY = ∪ni=1(Xi ∩ clβXY ) (see 6.9a, [GJ]).
Each Xi ∩ clβXY is an F-space since it is a closed subspace of the normal
F-space Xi. This implies βY and Y are finitely an F-space. �

The extent to which the hypothesis of normality is required in the above
theorem is not known. However, in [HW2], Henriksen and Wilson present
an example of an F-space that under the assumption that the continuum
hypothesis holds, has a closed subspace that is not an SV space.

It is well known that if X is an F-space and C a cozeroset of X, then C
is itself an F-space. A similar situation holds for the other properties that
we have considered.
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Theorem 4.10. — Let X be a completely regular space and C a coze-
roset of X.

1. (3.2, [L5]) If X is finitely an F-space, then C is itself finitely an
F-space.

2. (3.3, [L5]) If X is an SV space, then C is itself an SV space.

3. If X is normal and has finite rank, then C also has finite rank.

Proof of (3). — Suppose the rank of X is n. Since C is a cozeroset, it
can be written as the union of countably many closed sets Ci. We show
that C is a normal subspace. Let A, B be disjoint C-closed subsets. Then
A = ∪∞

i=1(A ∩ Ci) and B = ∪∞
i=1(B ∩ Ci). Now each A ∩ Ci and B ∩ Ci is

closed in X; hence A, B are Fσ sets in X. If clXA∩B �= ∅, then since B ⊆ C,
we have A ∩ B = (clXA ∩ C) ∩ B = clXA ∩ B ∩ C �= ∅, a contradiction. So
clXA ∩ B = ∅ and similarly, A ∩ clXB = ∅. Thus, A, B are separated sets
in X. By Theorem 3 (p. 123) of [K], there are two disjoint open sets that
separate A, B. Hence C is a normal subspace. Because C is an X-open set,
every x ∈ C has C-rank at most n. Then by Theorem 4.7(7), βC has rank
at most n and by Theorem 4.7(6), C has finite rank. �

As is the case with F-spaces, an open subspace of an SV space does
not necessarily inherit the SV property. An example is given in [L5] of
a normal F-space in which there is an open subspace whose Stone-Čech
compactification does not have finite rank. This serves as an example of a
space of finite rank with an open subspace that does not have finite rank, as
an example of a space that is finitely an F-space with an open subspace that
is not finitely an F-space, and as an example of an SV space with an open
subspace that is not SV. We briefly describe this example and the reader is
refered to [L5] for the details.

Example 4.11 (3.4, [L5]). — Let L1 denote the space of all ordinals � ω1

under the topology in which neighborhoods of ω1 are as in the interval
topology and all other points are isolated and let L2 denote the space of
all ordinals � ω2 under the topology in which neighborhoods of ω2 are as
in the interval topology and all other points are isolated. Let p ∈ βN\N
and let B denote a copy of the space N∪{p} under the subspace (of βN)
topology. Let X1 = L2×L1 and X2 = B×L1. For each x ∈ L1, identify the
two points (ω2, x) and (p, x), and let X be the resulting topological space.
Then X is a normal F-space. Now let Z = B × {ω1}. Note that Z is closed
in X. Now U = X − Z is an open subspace of X. It can be shown that U
is non-normal, and not of finite rank.
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The image of an F-space (a space that is finitely an F-space, an SV
space, a space of finite rank, resp.) under a continuous and open function is
not necessarily an F-space (a space that is finitely an F-space, an SV space,
a space of finite rank, resp.) as is shown in [L4]. There, an example is given
of a normal F-space for which there is an open continuous image that is not
of finite rank and hence not an F-space, not an SV space, and not finitely
an F-space. However, the SV and related properties are inherited by open
images of compact spaces and by the image of a continuous z-open function.
A function f : X → Y is said to be a z-open function if for every cozeroset
neighborhood H of a zeroset Z in X, the image f(H) is a neighborhood of
clY (f(Z)) in Y .

Theorem 4.12 (section 2, [L5]), and (20, [L6]). — Suppose f : X → Y
is a continuous function mapping X onto Y . If f is open and X is compact,
or if f is z-open, then

1) If X is an F-space, then Y also is an F-space.

2) If X is finitely an F-space, then Y also is finitely an F-space.

3) If X is SV with rank at most 2, then Y also is SV with rank at most 2.

4) If X has finite rank, then Y also has finite rank.

Once more, we see a result about an SV space that may only apply for
spaces of rank 2. It is not known if this result holds for spaces of rank n,
where n is greater than 2. The proof of this result makes use of Theorem
4.4, which does not give a valid characterization of SV spaces for spaces of
rank n � 2. However, we do not know of an example showing that part (3)
of the previous result fails to hold for spaces of rank greater than 2.

Finally, we note that there is a borderline of sorts near F-spaces. The
F-space property and related, but weaker, properties generally are not pre-
served by open continuous functions, but are preserved by the stronger
continuous z-open functions. On the other hand, properties stronger than
the F-space property tend to be preserved by open functions.

5. SV f-Rings and Related f-Rings

We now turn our attention to finitely 1-convex f -rings, SV f -rings, and
f -rings of finite rank. These are the f -rings that satisfy an algebraic version
of the property that C(X) possesses when X is finitely an F-space, an SV
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space, or a space of finite rank respectively. We will see that many, but not
all, of the results involving C(X) for X a space that is finitely an F-space,
an SV space, or of finite rank have an analogue that holds for f -rings. In
particular, we will show f -rings that are finitely 1-convex are analogous to
C(X)s for X a space that is finitely an F-space and that finitely 1-convex
f -rings are SV f -rings and are f -rings of finite rank. However, an SV f -ring
is not necessarily of finite rank and an f -ring of finite rank is not necessarily
an SV f -ring in contrast to the situation for a C(X), where an SV C(X)
must have finite rank and it is not known whether a C(X) of finite rank
must be SV. We will be mainly concerned with f -rings that are semiprime,
commutative and have bounded inversion.

Finitely 1-convex f-rings.

One might think of a space X that is finitely an F-space as being the
union of finitely many F-spaces that have been ”glued” together on some
closed subspace(s). In a similar way, we define an f -ring to be finitely 1-
convex if it is the union of finitely many 1-convex f -rings ”glued” together
at some semiprime �-ideal. Proofs of the results stated in this subsection
will be provided since they do not appear elsewhere in the literature.

Given f -rings A1, A2, B and surjective �-homomorphisms φ1 : A1 → B
and φ2 : A2 → B, recall that the fibre product of A1 and A2, denoted A1×B
A2, is the sub-f -ring of A1 × A2 given by A1 ×B A2 = {(a1, a2) : φ1(a1) =
φ2(a2)}. We say an f -ring is a finite fibre product of 1-convex f-rings if it
can be constructed in a finite number of steps where every step consists of
taking the fibre product of two f -rings, each being either a 1-convex f -ring
or a fibre product obtained in an earlier step of the construction.

Definition 5.1. — An f-ring A is finitely 1-convex if it is either a 1-
convex f-ring or can be written as a finite fibre product of 1-convex f-rings.

Note that for any finitely 1-convex f -ring A, there are a finite number of
1-convex f -rings A1, A2, . . . , An such that A is �-isomorphic to a sub-f -ring
of A1 × A2 × · · · × An.

Example 5.2. — Let R[x] denote the ring of polynomials over the reals
in one indeterminate. Totally order R[x] lexicographically, so that 1 � x �
x2 � · · ·. Now let A1 = {pq : p, q ∈ R[x], q � 1} under the usual addition
and multiplication of quotients of polynomials and under the order induced
by the order on R[x]. That is, p1q1 � p2

q2
if and only if p1q2 � p2q1. Then A1

is a totally ordered 1-convex f -ring. Let A2 = {f ∈ C(N) : ∃ n0 ∈ N, r ∈
R such that f(n) = r ∀n � n0} under the usual addition, multiplication,
and partial order of functions. Then A2 is also a 1-convex f -ring. Define
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φ1 : A1 → R by φ1(pq ) = p(0)
q(0) and φ2 : A2 → R by φ2(f) = r where there

exists n0 ∈ N such that f(n) = r for all n � n0. Both φ1, φ2 are surjective
�-homomorphisms. Then the f -ring A1 ×R A2 = {(pq , f) ∈ A1 ×A2 : p(0)q(0) =
f(n0), where f(n) = f(n0) for all n � n0} is finitely 1-convex.

Suppose A′ is a 1-convex f -ring and Q a semiprime �-ideal of A′. One
type of finitely 1-convex f -ring that is particularly nice to work with can
be constructed as the sub-f -ring of

∏n
i=1 A′ given by A = {(a1, a2, . . . , an) :

ai − aj ∈ Q for each i, j}. Indeed, the f -ring A could be written as a finite
fibre product of n copies of A′ in the form

(
[(A′×A′/QA′)×A′/QA′] · · ·×A′/Q

A′).

Suppose A1, A2, B are f -rings and φ1 : A1 → B and φ2 : A2 → B are
surjective �-homomorphisms. Let A = A1 ×B A2. If we let φ∗

1 = φ1|A∗
1

and
φ∗

2 = φ2|A∗
2
, then φ∗

1, φ∗
2 are surjective �-homomorphisms mapping onto B∗

and it is not hard to show that A∗ = A∗
1 ×B∗ A∗

2. It is also the case that
if A is a 1-convex f -ring then A∗ is a 1-convex f -ring. It follows that if A
is a finitely 1-convex f -ring, then A∗ is also a finitely 1-convex f -ring. We
will use this fact when we show that f -rings that are finitely 1-convex are
analogous to C(X)s where X is finitely an F-space.

Theorem 5.3. — For a completely regular space X, if C(X) is finitely
1-convex then X is finitely an F-space. If X is normal, C(X) is finitely
1-convex if and only if X is finitely an F-space.

Proof. — ⇒ Suppose C(X) is finitely 1-convex. We will show X is finitely
an F-space. First note that if C(X) is 1-convex, then by Theorem 2.3, X
is an F-space, and hence finitely an F-space. We may now assume C(X)
is isomorphic to a finite fibre product constructed from n 1-convex f -
rings A1, A2, . . . , An. It follows that C(X) is isomorphic to a sub-f -ring
of

∏n
i=1 Ai. Let ψ : C(X) →

∏n
i=1 Ai denote the �-embedding. For each i,

let πi denote the projection mapping of ψ(C(X)) onto Ai.

Assume first that X is compact. For each i = 1, 2, . . . , n, define Qi =
π−1
i ({0}) and let Yi = ∩{Z(f) : ψ(f) ∈ Qi}. Since the Yi are intersections

of zerosets, each Yi is closed in X. We will show X = ∪ni=1Yi. Suppose not;
suppose that there is an x ∈ X such that x /∈ ∪ni=1Yi. Then for each i, there
is an fi ∈ C(X) such that ψ(fi) ∈ Qi and fi(x) �= 0. Then f1f2 · · · fn(x) �= 0
and yet ψ(f1f2 · · · fn) = ψ(f1)ψ(f2) · · ·ψ(fn) ∈ Q1 · Q2 · · ·Qn = {0}. Since
ψ is an �-embedding, this implies that f1f2 · · · fn = 0, a contradiction.
Thus, X = ∪ni=1Yi. Next we will show that Y1 is an F-space. Suppose
0 � f � g with f, g ∈ C(Y1). Since Y1 is closed in X, there are extensions
f̄ , ḡ ∈ C(X) of f, g respectively. We may assume that 0 � f̄ � ḡ. Sup-
pose ψ(f̄) = (a1, a2, . . . , an) and ψ(ḡ) = (b1, b2, . . . , bn). Then 0 � a1 � b1
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in A1. Since A1 is 1-convex, there is a w1 ∈ A1 such that a1 = w1b1.
Since π1 is surjective, there is an element (w1, w2, . . . , wn) ∈ ψ(C(X))
with w1 being the first coordinate. Now let w̄ ∈ C(X) such that ψ(w̄) =
(w1, w2, . . . , wn). Then ψ(f̄ − w̄ḡ) = ψ(f̄) − ψ(w̄)ψ(ḡ) = (a1, a2, . . . , an) −
(w1, w2, . . . , wn)(b1, b2, . . . , bn) = (0, a2−w2b2, a3−w3b3, . . . , an−wnbn). So
ψ(f̄ − w̄ḡ) ∈ Q1 and hence Y1 ⊆ Z(f̄ − w̄ḡ). Thus f −w|Y1g = 0 and hence
Y1 is an F-space. Similarly, Yi is an F-space for all i. We have, X = ∪ni=1Yi,
and each Yi is a closed F-space. Thus X is finitely an F-space.

Now assume that X is not compact and C(X) is finitely 1-convex. The
results mentioned just prior to the statement of this theorem imply C∗(X)
is finitely 1-convex. Since C∗(X) ∼= C(βX), then C(βX) is finitely 1-convex,
and our work in the last paragraph shows that βX is finitely an F-space.
This says that X is finitely an F-space.

⇐ Suppose that X is normal and is finitely an F-space. We will show that
C(X) is finitely 1-convex. By Theorem 2.3, if X is an F-space, then C(X) is
1-convex and is therefore finitely 1-convex. So now suppose X is finitely an
F-space, but not an F-space. Then βX = ∪ni=1Yi, where the Yi are compact
F-spaces. First, note that we may assume that for each j �= k, Yj ∩ Yk �= ∅,
since if for some j �= k, Yj ∩ Yk = ∅, then we could let Y ′

j = Yj ∪ Yk and
then write βX as the union of fewer F-spaces: βX = Y ′

j ∪ (∪i �=j,kYi).

For each i, let Ai = C(Yi ∩ X). First we show that each Ai is 1-convex.
So suppose 0 � u � v in Ai. Since Yi ∩ X is closed in X and X is normal,
Yi ∩ X is C∗-embedded in X. So, there exists a u′, v′ ∈ C(X) such that
u′|Yi∩X = u and v′|Yi∩X = v. We may assume that 0 � u′ � v′ in C(X).
Then 0 � u′ ∧ 1 � v′ ∧ 1 and there must exist u′′, v′′ ∈ C(βX) such that
u′′|X = u′ ∧ 1 and v′′|X = v′ ∧ 1. Then since 0 � u′′|Yi

� v′′|Yi
in Yi and

since C(Yi) is 1-convex, there exists w′′ ∈ C(Yi) such that u′′|Yi
= w′′v′′

Yi
. We

may assume w′′ � 1 in C(Yi). Let w′ ∈ C(βX) such that w′|Yi
= w′′. Since

(v′ ∨ 1)−1 ∈ C(X) and (v′ ∨ 1)−1|Yi∩X = (v ∨ 1)−1, we have (v ∨ 1)−1 ∈ Ai.
Then

u = u′|Yi∩X = (u′ ∧ 1)|Yi∩X(u′ ∨ 1)|Yi∩X

= u′′|Yi∩X(u′ ∨ 1)|Yi∩X

= w′′|Yi∩Xv′′|Yi∩X(u′ ∨ 1)|Yi∩X

= w′′|Yi∩X(v ∧ 1)(u′ ∨ 1)|Yi∩X

= w′′|Yi∩X(v ∧ 1)(v ∨ 1)(v ∨ 1)−1(u′ ∨ 1)|Yi∩X

= w′′|Yi∩Xv(v ∨ 1)−1(u′ ∨ 1)|Yi∩X

= [w′′|Yi∩X(v ∨ 1)−1(u′ ∨ 1)|Yi∩X ]v.

Thus Ai is 1-convex for each i.
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If Y is a normal space and Y = Y ′ ∪ Y ′′ where Y ′, Y ′′ are closed sets,
then by defining φ′ : C(Y ′) → C(Y ′ ∩ Y ′′) by φ′(f) = f |Y ′∩Y ′′ and defining
φ′′ : C(Y ′′) → C(Y ′ ∩ Y ′′) by φ′′(f) = f |Y ′∩Y ′′ , it is not difficult to show
that C(Y ) = C(Y ′)×C(Y ′∩Y ′′)C(Y ′′). Using the fact that X = ∪ni=1(Yi∩X)
and for each i, Yi ∩ X is closed and C∗-embedded in X, a straightforward
induction argument will show that C(X) is a finite fibre product constructed
from the 1-convex f -rings Ai = C(Yi ∩ X). �

Lemma 5.4. — Suppose A is a commutative semiprime finitely 1-convex
f-ring with identity element. Suppose A is isomorphic to a finite fibre prod-
uct constructed from the 1-convex f-rings A1, A2, . . . , An and ψ : A →
A1 × A2 × · · · × An is an �-embedding. Let πj : ψ(A) → Aj denote the pro-
jection mapping. Define Qj = π−1

j ({0}). Then Qj is a semiprime �-ideal of
ψ(A) and ψ(A)/Qj ∼= Aj and hence ψ(A)/Qj is 1-convex.

Proof. — Without loss of generality, we may assume that j = 1. It is
easy to see that Q1 is a semiprime �-ideal. Define φ : ψ(A)/Q1 → A1 by
φ((a1, a2, . . . , an)+Q1) = a1. If φ((a1, a2, . . . , an)+Q1) = φ((b1, b2, . . . , bn)+
Q1) then a1 = b1 and so (a1, a2, . . . , an)− (b1, b2, . . . , bn) = (0, a2 − b2, a3 −
b3, . . . , an − bn) ∈ Q1. So (a1, a2, . . . , an) + Q1 = (b1, b2, . . . , bn) + Q1, and
we can conclude that φ is injective. Also, φ is surjective since the projec-
tion from ψ(A) to A1 is surjective. It is now easy to show that ψ is an
�-isomorphism. �

An algebraic analogue of the topological statement that a space that is
finitely an F-space is also an SV space follows.

Theorem 5.5. — Suppose A is a commutative semiprime f-ring with
identity element. If A is finitely 1-convex then A is an SV f-ring.

Proof. — Suppose A is finitely 1-convex. Suppose A is isomorphic to
a fibre product constructed from the 1-convex f -rings A1, A2, . . . , An and
ψ : A → A1 × A2 × · · · × An is an �-embedding. Let πj : ψ(A) → Aj
denote the projection mapping and define Qj = π−1

j ({0}). Then each Qj
is a semiprime �-ideal of ψ(A). Let P be a minimal prime ideal of ψ(A).
Note that Q1 ·Q2 · · ·Qn = {0} ⊆ P . Since P is prime, there is a j such that
Qj ⊆ P . Now ψ(A)/P = (ψ(A)/Qj)/(P/Qj) and by the previous lemma,
ψ(A)/Qj is 1-convex. So ψ(A)/P is the �-homomorphic image of the 1-
convex f -ring ψ(A)/Qj . Thus ψ(A)/P is 1-convex and also is a totally
ordered domain with identity element and hence it is a valuation domain
by Lemma 2.2. �

The reader will recall that an F-space has rank 1. The corresponding al-
gebraic statement for commutative semiprime f -rings with identity element
follows.
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Theorem 5.6. — Suppose A is a commutative semiprime 1-convex
f-ring with identity element. Then A has rank 1.

Proof. — Suppose M is a maximal �-ideal of A and P1, P2 are two distinct
minimal prime �-ideals contained in M . Then there are elements p1, p2 such
that p1 ∈ P+

1 \P2, p2 ∈ P+
2 \P1. Then 0 � p1, p2 � p1 + p2 and since

A is 1-convex, there are w1, w2 ∈ A such that p1 = w1(p1 + p2) and p2 =
w2(p1+p2). Since P1, P2 are prime and p1+p2 /∈ P1∪P2, we have w1 ∈ P1 and
w2 ∈ P2. Now p1 +p2 = (w1 +w2)(p1 +p2). Then (1− (w1 +w2))(p1 +p2) =
0 ∈ P1 while p1 + p2 /∈ P1 implies 1 − (w1 + w2) ∈ P1 ⊆ P1 + P2. Because
w1 + w2 ∈ P1 + P2, we have 1 ∈ P1 + P2 ⊆ M , a contradiction. Hence there
cannot be two distinct minimal prime �-ideals contained in M . �

Next we give an algebraic statement for commutative semiprime f -rings
with identity element that corresponds to the topological statement that a
space that is finitely an F-space has finite rank.

Theorem 5.7. — Suppose A is a commutative semiprime finitely
1-convex f-ring with identity element. Then A has finite rank.

Proof. — Suppose A is a commutative semiprime finitely 1-convex
f -ring with identity element. Suppose A is isomorphic to a fibre prod-
uct constructed from the 1-convex f -rings A1, A2, . . . , An and ψ : A →
A1 ×A2 × · · · ×An is an �-embedding. Let πj : ψ(A) → Aj denote the pro-
jection mapping and define Qj = π−1

j ({0}). Then each Qj is a semiprime
�-ideal of ψ(A). Let M be a maximal �-ideal of ψ(A). We will show there is
at most 1 minimal prime ideal contained in M that contains Q1. Suppose
not; suppose there are two minimal prime ideals P1, P2 contained in M ,
each containing Q1. By Lemma 5.4 and Theorem 5.6, ψ(A)/Q1 is 1-convex
and the maximal �-ideal M/Q1 of ψ(A)/Q1 contains just one minimal prime
ideal. Suppose P ′/Q1 is the single minimal prime ideal contained in M/Q1

in ψ(A)/Q1. Then in ψ(A)/Q1, P ′/Q1 ⊆ P1/Q1 and P ′/Q1 ⊆ P2/Q1. Since
the prime ideals containing P ′/Q1 are totally ordered (see 14.3(c), [GJ]),
P1/Q1 ⊆ P2/Q1 or P2/Q1 ⊆ P1/Q1 in ψ(A)/Q1. Since Q1 ⊆ P1, P2, this
implies P1 ⊆ P2 or P2 ⊆ P1 in ψ(A), which is a contradiction to P1, P2

being distinct minimal prime ideals. So there is at most 1 minimal prime
ideal contained in M that contains Q1 and similarly for each j = 2, 3, . . . , n,
there is at most 1 minimal prime ideal contained in M that contains Qj .

Now if P is a minimal prime ideal contained in M , then because Q1 ·
Q2 · · ·Qn = {0} ⊆ P and P is prime, there is a j such that Qj ⊆ P . So
every minimal prime ideal contained in M contains Qj for some j, and it
follows that there can be at most n minimal prime ideals contained in M .
�
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SV f-rings.

We begin our look at SV f -rings with a lemma that provides an often
used algebraic test for an f -ring being an SV f -ring. If P is a (proper)
prime ideal of an f -ring A with identity element and bounded inversion,
then A/P is a totally ordered domain with identity element and bounded
inversion and so the next lemma follows from Lemma 2.2.

Lemma 5.8. — Suppose A is a commutative f-ring with identity element
and bounded inversion. Then A is an SV f-ring if and only if for every
minimal prime ideal P of A, A/P is 1-convex.

In [HL], SV f -rings are studied. Parts of [HL] do not assume that an
f -ring is commutative and semiprime and the paper contains some errors
relating to those cases. Here, we provide a corrected statement of a theorem
and its proof. Recall that an ideal I is pseudoprime if ab = 0 implies a ∈ I
or b ∈ I and an ideal I is primal if it contains a prime ideal.

Theorem 5.9. — Suppose A is a commutative f-ring with identity ele-
ment. Consider the following properties of A.

1. Every pseudoprime ideal of A is an �-ideal

2. Every primal ideal of A is an �-ideal

3. A is an SV f-ring.

Then (1) implies (2) implies (3). If A is semiprime, (1) and (2) are
equivalent. and if A has bounded inversion then (2) and (3) are equiva-
lent. If A is semiprime and has bounded inversion, all three properties are
equivalent.

Proof. — (1) ⇒ (2): This follows from the fact that every primal ideal is
pseudoprime.

(2) ⇒ (3): Suppose P is a minimal prime ideal of A and let a+P, b+P ∈
A/P such that 0 � a + P � b + P . Then P + (b) is a primal ideal and by
hypothesis, it is an �-ideal. Then a ∈ P + (b) which implies a − rb ∈ P for
some r ∈ A. So a + P = (r + P )(b + P ) in A/P . Since A/P is a totally
ordered domain, Lemma 2.2 implies A is an SV f -ring.

(2) ⇒ (1) when A is semiprime: In this case, every pseudoprime ideal is
primal.
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(3) ⇒ (2) when A has bounded inversion: Let Q denote a primal ideal.
We first show Q is convex; suppose 0 � a � b with b ∈ Q. Now Q contains
a prime ideal P and by hypothesis, A/P is a valuation domain. By the
previous lemma, A/P is 1-convex and hence there is a w ∈ A such that
a−wb ∈ P ⊆ Q. Since b ∈ Q, we have a ∈ Q and Q is convex. Now for any
element a ∈ A, (a − |a|)(a + |a|) = 0 and since Q contains a prime ideal, it
follows that a ∈ Q if and only if |a| ∈ Q. �

In [S2], Schwartz looks at real closed rings and rings of continuous func-
tions in the context of real closed rings. As is pointed out in this paper,
elementary algebraic manipulations of a ring of continuous function (such
as taking a quotient ring) often lead outside the realm of rings of continuous
functions, and, it is desirable to look at a category of rings that contains
rings of continuous functions and the rings obtainable from rings of contin-
uous functions by basic algebraic operations. This paper makes the case for
considering rings of continuous functions within the category of real closed
rings. See [S1] for further background and definitions. In section 7 of [S2],
SV f -rings are considered within the context of real closed rings and the
following result gives a characterization of local SV f -rings in that context.

Theorem 5.10 (7.7, [S2]). — Let A be a local real closed ring, and
1 � k ∈ N. Then the following statements are equivalent.

1. A is an SV f-ring having rank k.

2. Every finitely generated ideal of A can be generated by k elements,
and there is one ideal which cannot be generated by fewer elements.

Corollaries follow that give sufficient conditions for a real closed ring to
be an SV f -ring.

Corollary 5.11 (7.8, 7.9 [S2]). — Let A be a real closed ring.

1. If every finitely generated �-ideal of A is finitely generated as an ideal,
then A is an SV f-ring.

2. If every finitely generated ideal of A can be generated by k elements
(k � 1), then A is an SV f-ring and every maximal ideal of A has
rank at most k.

f-Rings of finite rank.

In this subsection, we give characterizations of commutative semiprime
f -rings with identity element in which every maximal �-ideal has finite rank.
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Three examples will then be given showing that (i) an SV f -ring does not
necessarily have finite rank, (ii) an f -ring of finite rank is not necessarily an
SV f -ring, and (iii) it is possible for commutative semiprime f -rings with
identity element to have the property that every maximal �-ideal has finite
rank while the f -ring does not have finite rank. All three of these examples
reflect a difference in the situation for f -rings and for C(X)s.

Theorem 5.12 (2.2, [L2]). — Let A be a commutative semiprime f-ring
with identity element. The following are equivalent.

1. Every maximal �-ideal of A has finite rank.

2. For any maximal �-ideal M , OM is the intersection of a finite number
of minimal prime �-ideals.

3. Every �-ideal I containing OM for some maximal �-ideal M is the
intersection of a finite number of pseudoprime �-ideals.

4. Every semiprime �-ideal I containing OM for some maximal �-ideal
M is the intersection of a finite number of prime �-ideals.

5. Given any collection {Pi}∞i=1 of distinct minimal prime �-ideals of A,
there exists an n such that

∑n
i=1 Pi = A.

6. For every collection {Pα } of minimal prime �-ideals contained in a
given maximal �-ideal M and ideal I, I ⊆ ∪Pα implies I ⊆ Pα for
some α.

In contrast to the case for a C(X), an SV f -ring is not necessarily an
f -ring of finite rank as the following example shows.

Example 5.13 (3.7, [HLMW]). — Let R[[x]] denote the ring of formal
power series over the reals, in one indeterminate. Totally order R[[x]] lexi-
cographically, so that 1 � x � x2 � · · ·. Let R0[[x]] denote the collection
of series with 0 constant term. For each n ∈ N let An denote a copy of
R0[[x]] and let A be the direct sum of the An with a coordinatewise order-
ing. Now let B = {(a, r) : a ∈ A, r ∈ R}, with coordinatewise addition, and
multiplication and partial ordering defined as follows:

(a, r)(b, s) = (ab + rb + as, rs)

and
(a, r) > 0 if r > 0, or r = 0 and a > 0.

It can be shown that the unique maximal �-ideal of B is M = {(a, 0) ∈ B :
a ∈ A}, that the minimal prime ideals of B are Pn = {(a, 0) ∈ B : an = 0}
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for each n ∈ N, and that B/Pn ∼= R[[x]] for each n. Then B is an SV algebra
with bounded inversion and infinite rank.

By part 1) of Theorem 4.7, we know that in C(X), if every maximal
�-ideal has finite rank, then there is a positive integer that is an upper bound
to the collection of ranks of the maximal �-ideals. The following example
shows that this does not hold in general in f -rings.

Example 5.14 (2.3, [L2]). — Let α ∈ βN\N. For each n ∈ N and i � n,
let Xn,i =N∪{α} under the relative topology. For each n, let Xn denote
the space obtained from ∪ni=1Xn,i by identifying the copies of α. We let
αn denote the identified point in Xn. Let X be the disjoint union of the
Xn. Now let A = {f ∈ C(X) : f |Xn,i

is eventually constant for all but
finitely many n, i, and there is a k ∈ R such that f(αi) = k for all but
finitely many i}. Then A is an f -algebra with identity element. In A, let
M = {f ∈ A : f(αi) = 0 for all but finitely many i}. For each n, let
Mn = {f ∈ A : f(αn) = 0}. Then every maximal �-ideal of A is one of
M, Mn, or is simultaneously a maximal �-ideal and a minimal prime �-ideal.
The maximal �-ideal M has rank 1, while Mn has rank n for each n. It follows
that every maximal �-ideal of A has finite rank, and yet there obviously is
no upper bound for the ranks of the maximal �-ideals.

The ring Z of integers is an f -ring of finite rank that is not an SV f -ring.
The next example shows that even an f -ring of finite rank with bounded
inversion need not be an SV f -ring.

Example 5.15 (3.6, [HLMW]). — Let X = {(0, 0)} ∪ {(1/n, 1/nn) : n ∈
N} with the subspace topology inherited from R2. Define A to be the sub-
f -ring of C(X) where A = {f ∈ C(X) : ∃ n0 ∈ N, p, q ∈ R[x, y], with
q(0, 0) �= 0 such that f((1/n, 1/nn)) = p((1/n, 1/nn))/q((1/n, 1/nn)) ∀ n �
n0}. In A, the �-ideal Q = {f ∈ A : ∃ n0 ∈ N such that f((1/n, 1/nm)) = 0
∀ n � n0} is the only minimal prime �-ideal of A which is not also maximal.
It follows that A has rank 1. However, A is not an SV f -ring since if f, g
are defined by f(a, b) = b and g(a, b) = a for all (a, b) ∈ X, then 0 <
f + Q < g + Q in A/Q, and yet there is no w + Q ∈ A/Q such that
f + Q = (w + Q)(g + Q).

6. Open Problems

The principal classes of spaces whose relationship to SV spaces that
have been studied are F-spaces, spaces that are finitely an F-space, and
spaces of finite rank. The relationship between these types of spaces can be
summarized by
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F-space ⇒ Finitely an F-space ⇒ SV space ⇒ Space of finite rank,

where neither of the first two arrows can be reversed. Whether the third
arrow can be reversed is the first in our list of open problems. This problem
was posed in [HW2]. Recall that there is a known f -ring of finite rank that
is not an SV f -ring, but it is not a C(X).

Problem 1. — If X is a space of finite rank, must X be an SV space?

A compact space that is finitely an F-space has an open and dense subset
of points of rank 1 by Theorem 4.1. Every known SV space contains points
of rank 1, but is this necessary? The same can be asked about spaces of
finite rank.

Problem 2. — If X is a (compact) SV space, must it contain a point
of rank 1? Must an SV space contain a dense set of points of rank 1?

A quasi-F space is a space in which every dense cozeroset is C∗-embedded.
A continuous surjection f : X → Y is irreducible if no proper closed subset
of X is mapped by f onto Y . If X is compact, there is an essentially unique
quasi-F space QF (X), called the quasi-F cover of X, that maps irreducibly
onto X and any continuous surjection of a compact quasi-F space factors
through QF (X). See [DHH] for details. It is shown in 5.1 of [HLMW] that
if a compact space has finite rank, then so does its quasi-F cover. Does the
corresponding result hold for SV spaces?

Problem 3. — If X is a compact SV space, must the quasi-F cover of
X be an SV space?

The quasi-F cover of a compact space X can be realized as an inverse
limit space of a collection of spaces, each of which is the Stone-Čech com-
pactification of an intersection of countably many X-cozerosets, as shown
in [DHH]. In [L3] it is shown that the inverse limit space of a countably di-
rected collection of SV spaces is itself an SV space. It follows that, to show
that the quasi-F cover of a compact SV space X is SV, it would suffice to
show that the intersection of countably many X-cozerosets in an SV space
is itself an SV space. Of course it may be that the intersection of countably
many X-cozerosets in an SV space is not necessarily an SV space.

We know that for a normal space, closed subspaces inherit the three
properties we have studied, but do not know if these properties are inherited
by closed subspaces in non-normal spaces. In [HW2], an example is given
showing that under the assumption that the continuum hypothesis holds, a
closed subspace of an SV space is not necessarily an SV space. Is there such
an example that does not require assuming the continuum hypothesis?
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Problem 4. — Is a closed subspace of a space that is finitely an F-space,
(SV space, space of finite rank, respectively) finitely an F-space (SV space,
space of finite rank, respectively)?

The rank of a normal space provides an upper bound for the rank for its
closed subspaces. Our last open problem asks if this is true for non-normal
spaces.

Problem 5. — Is there a closed subspace of a (non-normal) space of
finite rank whose rank is greater than the rank of the space?
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Lecture Notes in Mathematics 608; Springer-Verlag: New York (1977).

[CD] Cherlin (G.), Dickmann (M.). — Real-closed rings I. Fund. Math., 126, p. 147-
183 (1986).

[D] Darnel (M.). — Theory of Lattice-Ordered Groups; Marcel Dekker, Inc: New
York (1995).

[DHH] Dashiell (F.), Hager (A.), Henriksen (M.). — Order-Cauchy completions of
rings and vector lattices of continuous functions. Canad. J. Math., 32 (3), p.
657-685 (1980).

[GJ] Gillman (L.), Jerison (M.). — Rings of Continuous Functions; D. Van Nostrand
Publishing: New York (1960).

[HL] Henriksen (M.), Larson (S.). — Semiprime f -rings that are subdirect prod-
ucts of valuation domains. Ordered Algebraic Structures (Gainesville, FL 1991),
Kluwer Acad. Publishing: Dordrecht, p. 159-168 (1993).

[HLMW] Henriksen (M.), Larson (S.), Martinez (J.), Woods (R. G.). — Lattice-
ordered algebras that are subdirect products of valuation domains. Trans. Amer.
Math. Soc., 345, p. 193-221 (1994).

[HW1] Henriksen (M.), Wilson (R.). — When is C(X)/P a valuation ring for every
prime ideal P? Topology and Applications, 44, p. 175-180 (1992).

[HW2] Henriksen (M.), Wilson (R.). — Almost discrete SV-spaces. Topology and Ap-
plications, 46, p. 89-97 (1992).

[K] Kuratowski (K.). — Topology, vol. 1; Academic Press; New York, (1966).

[L1] Larson (S.). — Convexity conditions on f -rings. Canad. J. Math., 38, p. 48-64
(1986).

[L2] Larson (S.). — f -Rings in which every maximal ideal contains finitely many
minimal prime ideals. Comm. in Algebra, 25 (12), p. 3859-3888 (1997).

– 140 –



SV and related f -rings and spaces

[L3] Larson (S.). — Constructing rings of continuous functions in which there are
many maximal ideals with nontrivial rank. Comm. in Algebra, 31 (5), p. 2183-
2206 (2003).

[L4] Larson (S.). — Rings of continuous functions on spaces of finite rank and the
SV property. Comm. in Algebra, 35 (8), p. 2611-2627 (2007).

[L5] Larson (S.). — Images and open subspaces of SV spaces. Comm. in Algebra,
36, p. 1-13 (2008).

[L6] Larson (S.). — Functions that map cozerosets to cozerosets. Commentationes
Mathematicae Universitatis Carolinae, 48 (3), p. 507-521 (2007).

[MW] Martinez (J.), Woodward (S.). — Bezout and Prüfer f -Rings. Comm. in Al-
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