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SV-Rings and SV-Porings

Niels Schwartz
(1)

ABSTRACT. — SV-rings are commutative rings whose factor rings modulo
prime ideals are valuation rings. SV-rings occur most naturally in connec-
tion with partially ordered rings (= porings) and have been studied only in
this context so far. The present note first develops the theory of SV-rings
systematically, without assuming the presence of a partial order. Partic-
ular attention is paid to the question of axiomatizability (in the sense of
model theory). Partially ordered SV-rings (SV-porings) are introduced,
and some elementary properties are exhibited. Finally, SV-rings are used
to study convex subrings and convex extensions of porings, in particular
of real closed rings.

RÉSUMÉ. — Les SV-anneaux sont les anneaux commutatifs dont les quo-
tients modulo leurs idéaux premiers sont des anneaux de valuation. Les
SV-anneaux apparaissent de la façon la plus naturelle en connection avec
les anneaux partiellement ordonnés (= porings); ils ont été étudiés unique-
ment dans ce contexte so jusqu’à présent. Dans présent article, pour la
première fois nous developpons la théorie des SV-anneaux d’une manière
systématique, sans supposer la présence d’un ordre partiel. Une attention
particulière est consacrée à la question d’axiomatisabilit(́au sense de la
théorie des modèles). Nous introduisons les SV-anneaux partiellement or-
donnés (SV-porings) et nous démontrons quelques propriétés élémentaires
de ces anneaux. Finalement, SV-anneaux sont utilisés pour étudier les
sous-anneaux convexes et les extensions convexes des anneaux partielle-
ment ordonnés et, en particulier, des anneaux réels clos.

An SV-ring is a commutative ring whose factor rings modulo prime
ideals are always valuation rings. Originally the notion was introduced and
studied in connection with rings of continuous functions and f -rings (cf.
[15], [16], [13], [14]). In the introduction of [14] the authors noted that there
is no reason why the study of these rings should be restricted a priori to
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partially ordered rings (p. 195). The present note starts with the study of
SV-rings without partial orders. The second part of the paper deals with
SV-rings that are also porings.

The prime spectrum of an SV-ring is completely normal, which means
that the specializations of a prime ideal always form a chain with respect to
inclusion (or, specialization). Thus, SV-rings only occur in situations where
there are “many” minimal prime ideals. This means: If there is any set M ⊆
Spec(A) of mutually incomparable prime ideals then there are at least as
many distinct minimal prime ideals. Most rings in classical number theory or
algebraic geometry, e.g., Noetherian rings, do not have this property. On the
other hand, such a property is not uncommon in real algebra, e.g., in rings
of continuous functions, real closed rings and f -rings. From this perspective
it seems rather natural that SV-rings have been studied exclusively in real
algebra so far.

Valuation rings have a long and distinguished history; there are a large
number of standard texts about the subject, [7] being the most recent one
(where further references can be looked up). Cherlin and Dickmann were
first to ask for factor domains of rings of continuous functions that are val-
uation rings ([4], [5]). Most factor domains of rings of continuous functions
are not valuation rings; if they are valuation rings then they are convex
subrings of real closed fields. Cherlin and Dickmann called such rings real
closed; here they will be called real closed valuation rings. [35] is a study of
real closed valuation rings vs. the larger class of real closed domains.

Henriksen and Wilson continued this line of investigation by asking for
topological spaces for which every factor domain of the ring of continuous
functions is a valuation ring ([15], [16]). Such spaces are called SV-spaces;
their rings of continuous functions are called SV-rings. One class of SV-
spaces has been known for a long time: F -spaces ([8], 14.25). These spaces
arise naturally in connection with the Stone-Cech compactification. Every
zero set of βX that does not meet X is an F -space ([8], 140). There exist
other SV-spaces ([16]), but so far they seem to be artificial constructs and it
is not clear whether they arise anywhere in a natural way. Later the notion
of SV-rings was extended to f -rings ([13]). More studies of SV-rings may
be found in [14], [24], [25] and [32].

A completely different class of SV-rings arises in semi-algebraic geome-
try: The ring of continuous semi-algebraic functions on a real algebraic curve
is an SV-ring ([35], Corollary 2.6). This is a significant fact since the Curve
Selection Lemma ([6], §12) can be used to reduce many questions about
semi-algebraic functions to questions about functions defined on curves.
There is a potential for applications of SV-rings in semi-algebraic geometry.
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The present note starts with a definition and various examples of SV-
rings (without partial orders). Basic properties of SV-rings are explored in
section 1 and section 3. Section 3 is mostly devoted to the question whether
the class of all SV-rings, or some significant subclasses, is elementary (or
axiomatizable) with respect to the language of ring theory (cf. [3], p. 173, or
[18], p. 34). Reduced SV-rings are characterized by the fact that every pair of
elements satisfies some polynomial identity (Theorem 3.4). The identity, in
particular its degree, depends on the pair of elements. For axiomatizability
of the class of SV-rings one would need a uniform bound on the degree of
the identities. The degree of the polynomial identities is closely connected
with the rank of the ring. The rank is defined to be the supremum of the
numbers of minimal prime ideals that are contained in a single maximal
ideal. It has been shown in [14] that a ring of continuous functions has
finite rank if it is an SV-ring. Section 2 of the present paper studies rings
with bounded rank. In particular, it is shown that the class of reduced rings
with rank at most k is elementary (Corollary 2.3). In section 3 it is shown
that there is no hope for axiomatizability of any reasonable class of SV-rings
without bounding the rank of the rings in the class (Corollary 3.7). On the
other hand, the class of reduced local SV-rings with finite rank at most k
and with infinite residue field is elementary (Corollary 3.9). It remains open
whether this result can be extended to rings that are not necessarily local.
Partial results are: The class of reduced SV-rings with rank 1 is elementary
(Corollary 3.12); the class of real closed rings (cf. [29], [30] or [36]) with
rank at most k is elementary (Corollary 3.16).

The notion of SV-porings is introduced in section 4 (Definition 4.1).
These are porings that have compatible spectra ([34], Definition 3.1) and
are also SV-rings. The condition of compatibility establishes a connection
between the partial order and the valuations of the residue domains of the
SV-ring. Without such a condition the valuations and the partial order
can be completely unrelated. The integers provide a simple example: Any
localization of the ring of integers at a prime number is a valuation ring and
is totally ordered; but the valuation and the total order do not have anything
to do with each other. If the poring is an f -ring then compatibility of the
spectra is equivalent to bounded inversion ([34], Proposition 3.5). (Bounded
inversion means: If 1 � a then a ∈ A×, cf. [11], where this notion was
originally introduced, and [22], Definition 7.1.) It is shown that a reduced
poring is an SV-poring if and only if its f -ring reflection ([36], Proposition
6.5) is an SV-f -ring (Corollary 4.6). If this is the case then its real closure
([36], §12) is an SV-ring as well (Proposition 4.8).

Section 5 discusses SV-porings in connection with convex subrings of
porings. If (A,A+) is an SV-poring, if (B,B+) is a proper convex subring
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and if both porings have compatible spectra then, for each element s ∈
B ∩A×, the ring B/(s) is an SV-ring of rank 1 (Proposition 5.4). It follows
that the prime spectrum of B/(s) is a disjoint union of specialization chains.
The main question studied in section 5 is whether the presence of such
factor rings is also a sufficient condition for the existence of a proper convex
extension of a given poring. (A convex extension is a poring that contains
a given poring as a convex subring.) For rings of continuous functions the
answer is known to be affirmative: If C(X) has a factor ring C(X)/(a) whose
prime spectrum is a disjoint union of specialization chains then there is a
proper convex extension of C(X). Example 5.5 shows that the same result
is not true for real closed rings. For SV-porings of rank 1 there is a complete
answer: There exists a proper convex extension if and only if there is a non-
zero divisor that is not a unit (Proposition 5.6). Using this result one finds
a sufficient condition also for real closed rings. The real closed ring A has a
proper convex extension if there is a non-zero divisor s such that A/

√
(s) is

an SV-poring of rank 1 and has a proper convex extension (Corollary 5.10).

Notation and terminology. — All rings in this note are commutative and
have a unit element. The group of units of the ring A is denoted by A×.
The set of ideals is Id(A). If I ∈ Id(A) is an ideal then πI : A → A/I is the
canonical map. Ring constructions that occur frequently in this note are: the
formation of the quotient ring AS of A with respect to a multiplicative set
S; the formation of the quotient field qf(A) if A is a domain; the formation
of the factor ring Ared = A/Nil(A).

The prime spectrum of A is denoted by Spec(A), the set of minimal
prime ideals by Min(A), the set of maximal prime ideals by Max(A). If
a ∈ A then D(a) = {p ∈ Spec(A)|a �∈ p}. The sets D(a) are the basis

of the Zariski topology. Note that D(a1 · . . . · ak) =
k⋂

κ=1

D(aκ). The sets

V (S) = {p ∈ Spec(A)|S ⊆ p} are the closed sets of the Zariski topology,
where S varies in the set of subsets of A. In addition to the Zariski topology,
the set Spec(A) carries another topology that is important in this note. The
topology is generated by all the sets D(a) and V (a), where a varies in the
ring. This topology is called the constructible topology, or the patch topology.
The constructible topology makes Spec(A) a Boolean space. The closed
sets with respect to the constructible topology are called proconstructible
sets. Given p, q ∈ Spec(A) we say that q is a specialization of p, and p
is a generalization of q, if q ∈ {p}. A set is closed under specialization if
it contains all specializations of all its elements. It is generically closed,
or closed under generalization, if it contains all generalizations of all its
elements. The set of generalizations of a subset M ⊆ Spec(A) is denoted
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by Gen(M). If M is proconstructible, then so is Gen(M). Many other facts
about the prime spectrum of a ring can be found, e.g., in [17], or in [37].

A ring A together with a subset A+ ⊆ A is partially ordered if A++A+ ⊆
A+, A+ ·A+ ⊆ A+, A2 ⊆ A+, A+∩−A+ = {0}. A ring with a partial order
is a partially ordered ring (= poring). Basic facts about porings, in particular
about convex ideals, factor porings and quotient porings, can be found in
[1], [22] and [36]. A condition about porings that is particularly important in
this note is bounded inversion: The poring (A,A+) has bounded inversion if
1+a ∈ A× for all a ∈ A+. It is equivalent to say that all maximal ideals are
convex ([22], section 7). The real spectrum of a poring (A,A+) is denoted
Sper(A,A+). A description of its points and of its topology, as well as a
summary of its most important properties can be found in [36], section 4.

Rings of continuous functions with values in R, as well as rings of contin-
uous semi-algebraic functions defined over some real closed field are exam-
ples of real closed rings. The notion of real closed rings and many important
properties can be found in [27], [30] and [36]. The class of real closed rings
is axiomatizable in first order model theory, cf. [27].

1. SV-rings

The first definition of SV-rings was given in [15], where rings of continu-
ous functions are studied. Some examples were also included. The definition
was extended to f -rings in [13], and in the introduction of [14] the authors
remark that the notion can be defined without reference to partial orders.
This section contains the definition, some examples and basic properties of
SV-rings without a partial order.

Definition 1.1. — A ring A is an SV -ring if all factor rings A/p, p ∈
Spec(A), are valuation rings.

To check whether a given ring is an SV-ring it is clearly sufficient to
consider factor rings modulo minimal prime ideals only.

Here are some examples:

Example 1.2. — SV-rings and constructions that produce SV-rings

(a) Valuation rings are SV-rings.

(b) Factor rings of SV-rings are SV-rings.

(c) A ring is an SV-ring if and only if its reduction modulo the nilradical
is an SV-ring.
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(d) A finite direct product of rings is an SV-ring if and only if each factor
is an SV-ring. This equivalence is not true for infinite direct products, cf.
Proposition 3.8.

(e) Every direct product of valuation rings is an SV-ring: If A =
∏
i∈I

Ai is

a product of valuation rings and if p ⊆ A is a minimal prime ideal then there
is an ultrafilter U on the set I such that A/p is the ultraproduct A/U . The
class of valuation rings is elementary; hence an ultraproduct of valuation
rings also belongs to the class (cf. [3], Theorem 4.1.12; [18], Corollary 9.5.10).
Thus A/p is a valuation ring.

(f) Suppose that A and B are SV-rings and that ϕ : A → C and ψ :
B → C are surjective homomorphisms. Then the fibre product A ×C B is
an SV-ring as well: Set I = kerϕ and J = kerψ. Then

A×C B = {(a, b) ∈ A×B|ϕ(a) = ψ(b)},

and I × {0}, {0} × J , I × J ⊆ A ×C B are ideals with factor rings A ×C

B/I×{0} = B, A×CB/{0}×J = A and A×CB/I×J = C. If p ⊆ A×CB
then I × {0} ⊆ p or {0} × J ⊆ p, and A×C B/p is a factor ring of A or of
B, hence is a valuation ring.

(g) Direct limits of SV-rings are SV-rings: Let I = (I,�) be a directed
partially ordered set, and let (Ai)i∈I be a diagram of SV-rings over I with
transition maps fji : Ai → Aj for i � j. Let A = lim→Ai with canonical
maps fi : Ai → A. Pick any prime ideal p ⊆ A and set pi = f−1

i (p). The
valuation rings Ai/pi are considered as a directed set of subrings of A/p. As
A/p =

⋃
i∈I

Ai/pi one concludes that A/p is a valuation ring as well.

(h) If A is an SV-ring and S ⊆ A is a multiplicative set then the quotient
ring AS is an SV-ring as well.

(i) Rings of continuous semi-algebraic functions on algebraic curves are
SV-rings. This has been shown in [35], Corollary 2.6.

(j) The ring of continuous functions of an F -space is an SV-ring ([8],
14.25). Pick a completely regular space X, and let βX be its Stone-Cech
compactification ([8], Chapter 6). If f ∈ C(βX) = C∗(X) and if the zero
set ZβX(f) is contained in the growth βX \X (cf. [38], 1.53), then ZβX(f)
is an F -space ([8], 140).

Example 1.3. — (a) Rings of continuous semi-algebraic functions on semi-
algebraic sets of dimension at least 2 have plenty of prime ideals whose
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residue domains are valuation rings (cf. [35], Corollary 2.5), but they are
never SV-rings (cf. [35], Example 2.9).

(b) Noetherian rings are not SV-rings if their dimension is greater than
1: Suppose that A is an SV-ring with dim(A) � 2. Then there is a prime
ideal p such that dim(p) � 2. The valuation ring A/p has dimension at least
2 and cannot be Noetherian. Thus, A is not Noetherian either.

If I ⊆ A is an ideal then the map J −→ π−1
I (J) is an isomorphism from

the partially ordered set of all ideals of A/I onto the set of ideals of A that
contain I. This map restricts to an isomorphism from Spec(A/I) onto the
subset V (I) ⊆ Spec(A). The set of ideals of a valuation ring is always totally
ordered, hence so is its prime spectrum. This proves in particular:

Proposition 1.4. — If A is an SV-ring then the specializations of any
prime ideal p ⊆ A form a chain, i.e., the prime spectrum is completely
normal.

The prime spectrum of an SV-ring is completely normal, hence is also
normal. Rings with normal prime spectrum are also called Gelfand rings (cf.
[19], p. 199). Other sources about Gelfand rings are [2], [37]. Normal spectra
have a specialization map onto the maximal prime spectrum; it sends every
prime ideal to the unique maximal ideal that contains it, σ : Spec(A) →
Max(A), p ⊆ σ(p). This is a continuous and closed map.

Proposition 1.5. — The ring A is an SV-ring if and only if Spec(A)
is normal and every localization Am at a maximal ideal is an SV-ring.

Proof. — If A is an SV-ring then the claim follows from Example 1.2
(h) and Proposition 1.4. Now assume that Spec(A) is normal and that the
localizations Am are SV-rings. Pick any prime ideal p ⊆ A. By normality
of the spectrum, there is a unique maximal ideal m that contains p. Then
A/p ∼= Am/p ·Am is a valuation ring. �

The condition that the prime spectrum is normal cannot be completely
omitted in the equivalence of Proposition 1.5: All localizations of the ring Z

of integers at maximal ideals are valuation rings, but Z is not an SV-ring.
(Note that a domain is an SV-ring if and only if it is a valuation ring.)

In real algebra the equivalence of Proposition 1.5 can sometimes be sim-
plified: The prime spectrum of every f -ring with bounded inversion is nor-
mal. Thus, an f -ring with bounded inversion is an SV-ring if and only if all
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localizations Am at maximal ideals are SV-rings (cf. [14]; [32], Proposition
7.2).

Proposition 1.5 suggests that, studying SV-rings, one should consider
local SV-rings first and then globalize the local results. The investigation of
local rings is a natural first step in the study of general SV-rings.

2. Counting minimal prime ideals – the rank of a ring

The rank of a ring at a prime ideal p, rk(A, p), is the number of distinct
minimal prime ideals that are contained in p (cf. [14], Definition 1.7). The
rank is either a positive integer or ∞. It is clear that rk(A, q) � rk(A, p)
if q ⊆ p, i.e., rk : Spec(A) → N ∪ {∞} is monotonic as a map of partially
ordered sets. The rank of the ring A is

rk(A) = sup
{
rk(A, p)|p ∈ Spec(A)

}
= sup

{
rk(A,m)|m ∈ Max(A)

}
.

One concludes easily that rk(A, p) = rk(Ap) and rk(A) = rk(Ared).

It is a remarkable fact that a ring of continuous functions has finite
rank if it is an SV-ring, [14], Corollary 4.2.1 (a). Most rings of continuous
functions do not have finite rank. So the result says that SV-rings are quite
rare in the class of rings of continuous functions.

The following discussion explores algebraic characterizations of rings
with finite rank. Particular attention will be paid to the question whether
rings with finite rank have a first order axiomatization.

A first and almost trivial observation relates the rank to sequences of
mutually orthogonal zero divisors. Two zero divisors are called orthogonal
if their product is 0.

Proposition 2.1. — If the ring A is reduced then the rank of a prime
ideal p is the supremum of the lengths of sequences of mutually orthogonal
zero divisors in p.

The next result generalizes [37], Proposition 7.4, where reduced rings of
rank 1, i.e., reduced rings whose spectrum is normal with respect to the
inverse topology, are characterized by the following statement:

∀a, b ∃c : a · b = 0 −→ c · a = 0 &(1 − c) · b = 0.

Other characterizations of this class of rings are given in [10], Theorem 4.2.2.
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Proposition 2.2. — The reduced ring A has rank at most k if and only
if the following condition holds: For all sequences a1, . . . , ak+1 of mutually
orthogonal zero divisors there are elements b1, . . . , bk+1, bκ ∈ Ann(aκ), with
(b1, . . . , bk+1) = A.

Proof. — Suppose that A has rank at most k. If a1, . . . , ak+1 ∈ A are
mutually orthogonal zero divisors then, for all distinct indices κ and λ,
D(aκ) ∩ D(aλ) = ∅ and D(aκ) �= ∅. Pick a maximal ideal m and let
p1, . . . , pr, r � k, be all minimal prime ideals that are contained in m.
Then there is some λ with D(aλ) ∩ Gen(m) = ∅, and there is some dλ ∈

Ann(aλ) such that Gen(m) ⊆ D(dλ). Thus,
k+1⋃
κ=1

Ann(aκ) �⊂ m, hence the

ideal generated by the annihilators is the full ring. There are bκ ∈ Ann(aκ),
κ = 1, . . . , k + 1, such that 1 = b1 + . . .+ bk+1.

Conversely, if there is a maximal ideal m that contains k + 1 distinct
prime ideals p1, . . . , pk+1 then there are mutually orthogonal zero divisors

aλ ∈
⋂
κ�=λ

pκ \ pλ. Because of Ann(aλ) ⊆ pλ this implies
k+1⋃
κ=1

Ann(aκ) ⊆ m.

�

The condition of Proposition 2.2 can be expressed as a first order state-
ment in the language of rings. Thus:

Corollary 2.3. — The class of reduced rings with rank at most k is
elementary with respect to the language of rings.

The next result is of a technical nature. It speaks about local rings with
rank at least k + 1. It will be applied in the next section to show that the
class of all SV-rings is not elementary in the language of rings.

Lemma 2.4. — Suppose that A is a reduced local ring with infinite residue
field. If there are k+1 distinct minimal prime ideals p1, . . . , pk+1 then there

are elements a, b ∈ A such that, given any polynomial Q(X,Y ) =
k∑

j=0

cj ·

Xk−j · Y j with (c0, . . . , ck) = A,

(a) Q(a, b) ·Q(b, a) �= 0, and

(b) Q(a, x · a+ b) �= 0 for all x ∈ A.
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Proof. — For each κ = 1, . . . , k + 1 there is an element aκ ∈
⋂
λ�=κ

pλ \ pκ.

Pick units u1, . . . , uk+1 ∈ A× such that they themselves and their inverses
are distinct modulo the maximal ideal m. Define bκ = uκ · aκ and set
a = a1 + . . . + ak+1, b = b1 + . . . + bk+1. Let Q be a polynomial as in
the statement of the Lemma. Define R(Y ) = Q(1, Y ) and note that the
reduction of R modulo the maximal ideal is not the zero polynomial since
there is at least one unit among the coefficients. The degree of R modulo m
is at most k, hence R has at most k distinct roots in A/m. Both (a) and (b)
will be proved by showing that the polynomial R has k+1 distinct roots in
A/m if one of (a) and (b) is false.

(a) Assume that Q(a, b) ·Q(b, a) = 0. Then, for each κ = 1, . . . , k + 1,

0 = Q(a+ pκ, b+ pκ) ·Q(b+ pκ, a+ pκ)

= Q(aκ + pκ, bκ + pκ) ·Q(bκ + pκ, aκ + pκ)

=


 k∑

j=0

(cj + pκ) · (aκ + pκ)k−j · (bκ + pκ)j




·


 k∑

j=0

(cj + pκ) · (bκ + pκ)k−j · (aκ + pκ)j




= (aκ + pκ)k ·


 k∑

j=0

(cj + pκ) · (uκ + pκ)j




·(bκ + pκ)k ·


 k∑

j=0

(cj + pκ) · (u−1
κ + pκ)j




and, as aκ + pκ, bκ + pκ �= 0 + pκ,

0 =


 k∑

j=0

(cj + pκ) · (uκ + pκ)j


 ·


 k∑

j=0

(cj + pκ) · (u−1
κ + pκ)j




= R(uκ + pκ) ·R(u−1
κ + pκ).

Reduction modulo the maximal ideal yields R(uκ + m) · R(u−1
κ + m) = 0.

The polynomial R has k + 1 distinct roots in A/m (namely one element
from each of the sets {uκ +m,u−1

κ +m}).
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(b) Assume that there is some x ∈ A such that Q(a, x · a+ b) = 0. Then

0 = Q(a+ pκ, x · a+ b+ pκ) = Q(aκ + pκ, x · aκ + bκ + pκ)

=
k∑

j=0

(cj + pκ) · (aκ + pκ)k−j · (x · aκ + bκ + pκ)j

= (aκ + pκ)k ·


 k∑

j=0

(cj + pκ) · (x+ uκ + pκ)j




Since aκ + pκ �= 0 + pκ it follows that R(x + uκ + pκ) =
k∑

j=0

(cj + pκ) ·

(x+uκ + pκ)j = 0. Reduction modulo m yields R(x+uκ +m) = 0 for each
κ. As the elements x+ uκ are all distinct modulo m, the polynomial R has
k + 1 roots modulo m. �

The behavior of the rank of a ring under some standard ring theoretic
constructions should be noted:

The rank of a factor ring A/I can be both larger and smaller than rk(A).
For an example, consider the polynomial ring A = Q[X,Y ], which has rank
1, its factor ring B = A/(X · Y ), which has rank 2, and the iterated factor
ring A/(X,Y ) = B/((X,Y )/(X · Y )), which has rank 1 again.

If S ⊆ A is a multiplicative set then rk(AS) � rk(A).

The next result is an algebraic version of [25], Lemma 2.1:

Proposition 2.5. — Suppose that f : A −→ B is a generalizing ho-
momorphism (i.e., the Going-down property holds, cf. [26], 5A) and that
f−1(B×) = A×. Then rk(B) � rk(A).

Proof. — The condition f−1(B×) = A× means that every maximal ideal
of A is the restriction of some prime ideal of B, hence also of a maximal
ideal of B. So, pick m ∈ Max(A) and n ∈ Max(B) with m = f−1(n). It
is claimed that rk(A,m) � rk(B,n). If p ∈ Min(A) ∩ Gen(m) then there is
some q ∈ Gen(n) with p = f−1(q) (as f is generalizing). One may replace q
by any minimal prime ideal that is contained in q, i.e., one may assume that
q ∈ Min(B). Thus, the restriction of prime ideals maps Min(B) ∩ Gen(n)
onto Min(A) ∩ Gen(m). �
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Here are some examples of rings with finite rank:

Example 2.6. — (a) Domains have rank 1. Rings of any given finite rank
can be constructed using fibre products: Let A and B be two local rings
with finite ranks k and l. Let I ⊆ A and J ⊆ B be dense ideals (i.e., ideals
that are not contained in any minimal prime ideal) with the property that
A/I ∼= B/J . Then the fibre product A×A/IB is a local ring with rank k+ l.

(b) The ring C(X) has rank 1 if and only if X is an F -space ([8], 14.25).

(c) The ring of continuous semi-algebraic functions on an algebraic curve
(Example 1.2 (i)) is an SV-ring of finite rank. The rank is the maximal
number of half branches of the curve that meet in a single point. So, if the
curve is non-singular then the rank is 2.

(d) Noetherian rings have finite rank: According to [26], section 7 a
Noetherian ring has only finitely many minimal prime ideals.

3. Axiomatizability of SV-rings

This section is devoted to the question whether the class of SV-rings is
elementary in the language of rings. The definition of SV-rings uses quan-
tification over the set of (minimal) prime ideals, hence the definition is not
in terms of first order statements. However, it is conceivable that the defi-
nition can be reformulated using only first order sentences. It will be shown
that the problem is closely related to the rank of the SV-rings: The class
of reduced local SV-rings with infinite residue field and rank at most k is
elementary. This result can be globalized only with additional substantial
hypotheses. Moreover, without a bound for the rank, axiomatizability also
fails for local rings.

To start with, an example shows that there are local SV-rings with
infinite rank. Note that all examples exhibited in the previous sections had
finite rank.

Example 3.1. — Local SV-rings with infinite rank

(a) Suppose that lim−→
i∈I

Ai is a direct limit of SV-rings with injective tran-

sition maps. Then rk(A) = sup{rk(Ai)|i ∈ I}, as one sees easily using the
description of rank by the length of sequences of mutually orthogonal zero
divisors. If all Ai are local rings and the transition maps are local homo-
morphisms then A is a local ring as well. Here is a construction that yields
such a situation.
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Define two linear maps fk, gk : Rk → Rk+1 by fk(x1, . . . , xk) = (x1, . . . ,
xk, 0), gk(x1, . . . , xk) = (x1, . . . , xk, x1). Consider Rk ⊆ Rk+1 as a subspace
via fk. A set of 2k−1 lines in Rk is defined recursively as follows: For k = 1,
let l1,1 = R. If the lines lk,1, . . . , l2k−1 ⊆ Rk have been defined, set lk+1,i =
fk(lk,i) and lk+1,2k−1+i = gk(lk,i). The union of the lines, Lk =

⋃
i

lk,i ⊆ Rk,

is a curve. Let Bk be the ring of continuous semi-algebraic functions on Lk,
Ak the localization at 0. The rings Ak are local SV-rings with rank 2k (as Lk

has 2k half branches that pass through the origin, cf. Example 2.6 (c)). The
orthogonal projection πk : Rk+1 −→ Rk induces a local homomorphism
π∗
k : Ak → Ak+1. The direct limit lim−→

1�k

Ak is a local SV-ring with infinite

rank.

(b) Suppose that V is a valuation ring with maximal ideal m, containing
a subfield K that is mapped isomorphically to the residue field; the local-
ization of the polynomial ring K[X](X) is such a valuation ring. The direct
product A = V N contains the direct sum m(N) as an ideal and contains an
isomorphic copy of K via the diagonal map. For each r ∈ N the sequence
(δrs)s∈N is denoted by δr (where the δrs are Kronecker symbols). The zero
set and the co-zero set of an element a ∈ A are denoted by Z(a) and Coz(a).
The subring B = K +m(N) ⊆ A is a local SV-ring with infinite rank.

Clearly, m(N) ⊆ B is an ideal, and B/m(N) ∼= K, hence the ring is local
with maximal ideal m(N). Suppose that p ⊆ B is a minimal prime ideal.
As m(N) is not a minimal prime ideal, there is some element x ∈ m(N) \ p,

say x =
R∑

r=0

xr with xr = x · δr. Since xr · xs = 0 for r �= s, all but one of

the summands belong to p, say xr �∈ p. If y = (yn)n∈N with yr = 0 then
y ·xr = 0, and y also belongs to p. Thus, p ⊇ q =

{
y = (yn) ∈ m(N)|yr = 0}.

Note that q is a prime ideal since it is the kernel of the projection onto
the r-th component. One concludes that p = q since p is minimal. The
factor ring modulo q is isomorphic to V . Thus, the minimal prime ideals
correspond bijectively with the natural numbers and the factor rings are
valuation rings. Altogether, B is an SV-ring with infinite rank. (It is also
possible to view this example as a direct limit construction of SV-rings with
finite rank.)

Now let I ⊆ A be any ideal with m(N) ⊂ I ⊆ mN. With an argument as
in the proof of [14], Theorem 4.1, it can be shown that C = K + I is not an
SV-ring if the field K is infinite: Pick an element x ∈ I \m(N), let z ∈ A be
a sequence that takes only values in K× and is injective as a map from N

to K, and define y = z · x ∈ I. Pick a free ultrafilter U on N that contains
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Coz(x). Then p = {c ∈ C|Z(c) ∈ U} is a prime ideal in C. If the factor ring
C/p is a valuation ring then one of the two elements x+p, y+p ∈ C/p must
divide the other one.

Suppose that y + p = a · x + p, a ∈ C. The set Z(y − a · x) ∩ Coz(x)
belongs to U , and zn · xn = yn = an · xn, hence an = zn �∈ m for all
n ∈ Z(y − a · x) ∩Coz(x). Thus, a �∈ I, and there is an element b ∈ K with
b−a ∈ I. It follows that zn = an ≡ b (mod m) for all n ∈ Z(y−a·x)∩Coz(x).
Pick two distinct elements k and l in the set Z(y − a · x) ∩ Coz(x). Then
zk �= zl, but zk = b = zl, a contradiction.

Next assume that x+p = a·y+p with a ∈ C. The set Z(x−a·y)∩Coz(x)
belongs to U , and xn = an · yn = an · zn · xn, hence an = z−1

n �∈ m for all
n ∈ Z(y − a · x) ∩ Coz(x). From here on the argument is identical to the
one in the first case. �

Remark 3.2. — Concerning SV-rings with finite rank, the construction
of fibre products exhibited in Example 1.2 (f) is particularly significant. In
connection with Example 2.6 (a) one sees that there exist local SV-rings
with arbitrary finite rank. Now suppose that A is any reduced SV-ring with
finite rank. Then each localization at a maximal ideal m is a factor ring of A
(since the prime spectrum is normal, cf. [37], Theorem 5.4). The localization
Am is an SV-ring of finite rank as well. If the rank is 1 then the ring is a
valuation ring. If the rank is larger, then one partitions the set of minimal
prime ideals of Am into two non-empty subsets, Min(Am) = E ∪ F . With
I =

⋂
E and J =

⋂
F the factor rings Am/I and Am/J have finite rank

|E| and |F |. The canonical homomorphisms πI+J,I : Am/I → Am/I + J
and πI+J,J : Am/J → Am/I + J are surjective. The fibre product of Am/I
and Am/J over Am/I + J is an SV-ring and is canonically isomorphic to
Am. One concludes that Am can be constructed from valuation rings using
iterated fibre products.

The remark can be used to give a criterion for an SV-ring to have rank
1. This requires the notion of valuation ideals: Suppose A is an SV-ring. An
ideal I ⊆ A is called a valuation ideal if there are a prime ideal p and an
ideal J in the valuation ring A/p such that I = π−1

p (J). Clearly, valuation
ideals are those ideals that contain some prime ideal.

Proposition 3.3. — Suppose that A is an SV-ring. If A has rank 1 then
every ideal of A is an intersection of valuation ideals. If A contains a field
K with |K| > 2 then the converse is also true.

Proof. — First suppose that rk(A) = 1. Given an ideal I, one forms the
ideal I =

⋂
p∈Spec(A)

I + p =
⋂

p∈Min(A)

I + p, which is the smallest intersection
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of valuation ideals that contains I. One must prove that I = I. So, pick an
element a ∈ I and write a = ap+xp with ap ∈ I, xp ∈ p for p ∈ Min(A). The
sets Cp = {q ∈ Spec(A)|a−ap ∈ q} are closed constructible and contain {p}.
The hypothesis about the rank implies that {p} is also generically closed. It
follows from [37], Corollary 2.4 (iv) that there are open constructible sets
Up such that {p} ⊆ Up ⊆ Cp. Altogether the open sets Up cover Spec(A),
hence there is a finite subcover: Spec(A) = U1 ∪ . . . ∪ Ur. By [37], Lemma
4.2 one may assume that Ui = D(ui) is a basic open set. As the ring A is
reduced one obtains equalities ui ·(a−ai) = 0 with ai ∈ I. As the sets D(ui)
cover the spectrum there is an equality 1 = v1 · u1 + . . . + vr · ur. Now it
follows that

a = 1 · a = v1 · (u1 · a) + . . .+ vr · (ur · a)

= v1 · (u1 · a1) + . . .+ vr · (ur · ar) ∈ I,

hence I = I.

For the converse, suppose that every ideal is an intersection of valuation
ideals. Then each reduced factor ring of A has this property as well. Now
assume by way of contradiction that rk(A) > 1. There is a maximal ideal
m that contains two distinct minimal prime ideals p and q. The factor ring
A/p∩q is a local SV-ring with rank 2. One may assume that A = A/p∩q. As
explained in Remark 3.2, A is canonically isomorphic to the fibre product of
A/p and A/q over A/p+q. The valuations corresponding to A/p and A/q are
denoted by vp and vq. Pick any unit u ∈ A×, u+(p+q) �= 1+(p+q), and two
elements x ∈ p\q and y ∈ q\p. The unit exists because of the assumption
about the field K ⊆ A. Consider the elements x + y and u · x + y. As
vp(x + y + p) = vp(u · x + y + p) and vq(x + y + q) = vq(u · x + y + q) it
follows that u · x+ y belongs to the smallest intersection of valuation ideals
that contains x+y. By hypothesis, every ideal is an intersection of valuation
ideals; therefore, u · x+ y = z · (x+ y) for some z ∈ A. One concludes that
u · x + q = z · x + q, hence z + q = u + q, and that y + p = z · y + p, hence
z+p = 1+p. But then u+(p+q) = z+(p+q) = 1+(p+q), a contradiction.
�

The arguments proving, or disproving, axiomatizability of classes of SV-
rings rely mostly on arithmetic properties of SV-rings and involve polyno-
mials. The key result is the following characterization of reduced SV-rings.

Theorem 3.4. — The reduced ring A is an SV-ring if and only if for any

two elements a, b ∈ A there is a polynomial P (X,Y ) =
r∏

i=1

(X − ci · Y ) such

that P (a, b) · P (b, a) = 0.
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Proof. — First suppose that A is an SV-ring, and pick two elements
a, b ∈ A. For each prime ideal p ⊆ A there is an element cp ∈ A such that
a − cp · b ∈ p or b − cp · a ∈ p. The constructible sets Cp =

{
q ∈ Spec(A)|

(a − cp · b) · (b − cp · a) ∈ q
}

cover the entire spectrum. By compactness

there is a finite subcover Spec(A) =
r⋃

i=1

Ci. The elements ci that define the

sets Ci are now used to define the polynomial P as in the statement of the
Theorem. Then the product P (a, b) · P (b, a) belongs to every prime ideal,
hence is 0 by reducedness of A.

Conversely, suppose that for all elements a, b ∈ A a polynomial P exists

as stated. If p ∈ Spec(A) then
r∏

i=1

(a− ci · b) · (b− ci · a) ∈ p, and one of the

factors belongs to p. This means that a is a multiple of b modulo p or that
b is a multiple of a modulo p. Thus A/p is a valuation ring. �

Corollary 3.5. — The class of reduced SV-rings is pseudo elementary

(cf. [37], Definition 3.1) with witnesses φr(x1, x2, y1, . . . , yr) ≡
r∏

i=1

(x1 − yi ·

x2) ·
r∏

i=1

(x2 − yi · x1) = 0.

Theorem 3.4 does not imply that the class of SV-rings is elementary.
One would need a bound on the degree of the polynomial P , independently
from the elements a and b. Indeed, Lemma 2.4 will be used to show that no
bound exists if the rank is infinite. Then it follows that the class of reduced
local SV-rings with infinite residue field is not an elementary class in the
language of rings, which also implies that the class of all SV-rings is not
elementary.

The proof of non-axiomatizability uses ultraproducts. Recall that an el-
ementary class is always closed under formation of ultraproducts ([3], The-
orem 4.1.12; [18], Corollary 9.5.10).

Example 3.6. — An ultraproduct of reduced local SV-rings that is not an
SV-ring

Let (An)1�n∈N be a sequence of local SV-rings with infinite residue fields
such that rk(An) � n+1. The maximal ideals are denoted by mn, the residue
fields by Kn, and A =

∏
n

An. Let U be any free ultrafilter on the set of

integers � 1. It is claimed that A/U is not an SV-ring.
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First note that the class of reduced rings and the class of local rings with
infinite residue field are both elementary. Thus, the ultraproduct is reduced
and local with infinite residue field. Let mU be the maximal ideal of A/U
and KU its residue field.

If A′
n is a factor ring of An then A′ =

∏
n

A′
n is a factor ring of A as

well, and A′/U is a factor ring of A/U . If A′/U is not an SV-ring then A/U
is not an SV-ring either (Example 1.2 (b)). For each n, let pn,1, . . . , pn,n+1

be distinct minimal prime ideals in An and define A′
n = An/pn,1 ∩ . . . ∩

pn,n+1. This is an SV-ring with exact rank n+1. It suffices to show that the
ultraproduct of these rings is not an SV-ring. Thus, one may assume that
rk(An) = n + 1 and that pn,1, . . . , pn,n+1 are the distinct minimal prime
ideals of An.

For each n there are elements an, bn ∈ An such thatQn(an, bn)·Qn(bn, an)
�= 0 for all polynomials

Qn(X,Y ) = Xn +
n∑

j=1

cn,j ·Xn−j · Y j ∈ An[X,Y ]

(Lemma 2.4). Consider the sequences a = (an)n, b = (bn)n ∈ A; the residue
classes in A/U are denoted by aU and bU . Assume by way of contradiction
that A/U is an SV-ring. Then there is a polynomial

QU (X,Y ) = Xr +
r∑

j=1

cU,j ·Xr−j · Y j ∈ A/U [X,Y ]

with QU (aU , bU ) ·QU (bU , aU ) = 0 (Theorem 3.4). There is a set U ∈ U such
that Qn(an, bn) ·Qn(bn, an) = 0 for all n ∈ U , where

Qn(X,Y ) = Xr +
r∑

j=1

cn,j ·Xr−j · Y j ∈ An[X,Y ]

and cU,j = (cn,j)n. As the set U is infinite it contains numbers n > r. For
such n the condition that Qn(an, bn) ·Qn(bn, an) = 0 contradicts the choice
of the elements an and bn, and the proof is finished.

Corollary 3.7. — The following classes of rings are not elementary:

• all SV-rings;

• reduced SV-rings;

• local reduced SV-rings with infinite residue field.
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The next result shows that unboundedness of the rank is indeed the
essential obstruction for first order axiomatizability of local SV-rings with
infinite residue field:

Theorem 3.8. — Let A be a reduced local ring with maximal ideal m
and infinite residue field. Then the following conditions are equivalent:

(a) A is an SV-ring with finite rank at most k.

(b) For all a, b ∈ A there is a polynomial P (X,Y ) =
k∏

κ=1

(X − cκ · Y )

such that P (a, b) · P (b, a) = 0.

(c) For all a, b ∈ A there is an element u ∈ A× ∪ {0} and a polynomial

P (X,Y ) =
k∏

κ=1

(X − cκ · Y ) such that P (a, u · a+ b) = 0.

(d) Factor domains modulo minimal prime ideals are integrally closed,
and for all a, b ∈ A there is an element u ∈ A× ∪ {0} and a polynomial

Q(X,Y ) = Xk +
k∑

κ=1

dκ ·Xk−κ · Y k such that Q(a, u · a+ b) = 0.

Proof. — (a) → (b) One may assume that the rank of A is exactly k.
Let p1, . . . , pk be the distinct minimal prime ideals. For each κ = 1, . . . , k
pick an element cκ ∈ A such that a − cκ · b ∈ pκ or b − cκ · a ∈ pκ.

Then
k∏

κ=1

(a − cκ · b) · (b − cκ · a) ∈
k⋂

κ=1

pκ = {0}, and the polynomial

P (X,Y ) =
k∏

κ=1

(X − cκ · Y ) has the desired properties.

(b) → (a) Theorem 3.4 and Lemma 2.4 prove the claim immediately.

(b) → (c) For each minimal prime ideal pκ, let vκ : qf(A/pκ) → Γκ ∪
{∞} be the valuation associated with the valuation ring A/pκ. Pick a, b ∈ A
and consider their residues modulo the minimal prime ideals: Suppose that
there is some u ∈ A× ∪ {0} with vκ(a + pκ) � vκ(u · a + b + pκ). Then
a − cκ · (u · a + b) ∈ pκ for all κ and suitable elements cκ. The polynomial

P (X,Y ) =
k∏

κ=1

(X − cκ · Y ) satisfies (c). It is only necessary to show that

there is an element u ∈ A×∪{0} that satisfies vκ(a+pκ) � vκ(u ·a+b+pκ)
for all κ. Suppose that u ∈ A× ∪ {0} fails to satisfy this condition. Then
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there is some κ such that vκ(a + pκ) < vκ(u · a + b + pκ). This implies

that the quotient
u · a+ b+ pκ

a+ pκ
, which belongs to qf(A/pκ) to start with,

is an element of the valuation ring A/pκ and belongs to the maximal ideal
m/pκ. Moreover, one also concludes that vκ(a + pκ) � vκ(b + pκ), hence

u + pκ +
b+ pκ
a+ pκ

=
u · a+ b+ pκ

a+ pκ
∈ m/pκ, and u is uniquely determined

modulo m. As the residue field is infinite, almost all elements modulo m
yield units that are suitable.

(c) → (b) Pick a, b ∈ A, and suppose that the element u ∈ A×∪{0} and

the polynomial P (X,Y ) =
k∏

κ=1

(X−cκ ·Y ) satisfy (c). For each κ at least one

of the elements cκ and 1−cκ ·u is a unit. If 1−cκ ·u ∈ A×, set dκ =
cκ

1 − cκ · u ;

otherwise set dκ =
1 − cκ · u

cκ
. The polynomial Q(X,Y ) =

k∏
κ=1

(X − dκ · Y )

satisfies the requirements of (b): Suppose that p is a minimal prime ideal
of A. Then there is some index κ(p) such that a − cκ(p) · (u · a + b) ∈ p,
and (1 − cκ(p) · u) · a ≡ cκ(p) · b (mod p). This implies a − dκ(p) · b ∈ p or
b− dk(p) · a ∈ p.

(a) → (d) The factor domains are valuation rings, hence they are inte-
grally closed. Pick a polynomial as in (c) and expand it to bring it into the
form needed for (d).

(d) → (c) First note that A has at most k minimal prime ideals (Lemma
2.4 (b)); one may assume that there are exactly k minimal prime ideals, say
p1, . . . , pk. Pick a, b ∈ A and choose an element u ∈ A× ∪ {0} and the
polynomial Q as specified in (d). If pκ is a minimal prime ideal then either

u ·a+b ∈ pκ, or
a+ pκ

u · a+ b+ pκ
∈ qf(A/pκ) is a root of the monic polynomial

Q(X, 1). In the first case it follows that a+pκ = 0+pκ, and one defines cκ =

1. In the second case one concludes that
a+ pκ

u · a+ b+ pκ
∈ A/pκ since A/pκ is

integrally closed, i.e., there is an element cκ ∈ A with a−cκ · (u ·a+b) ∈ pκ.

The polynomial P (X,Y ) =
k∏

κ=1

(X − cκ · Y ) satisfies condition (c). �

Both conditions (b) and (c) of Theorem 3.8 can be phrased as first order
statements. Thus:
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Corollary 3.9. — The class of reduced local SV-rings with finite rank
at most k and with infinite residue field is elementary.

Note that, given two elements a, b ∈ A there are at most k units modulo
m that do not satisfy the conditions (c) and (d) of Theorem 3.8.

Example 3.6 gave a negative answer to the question whether the class of
SV-rings is closed under the formation of direct products. More information
about direct products of SV-rings can be obtained using Theorem 3.8:

Proposition 3.10. — Suppose that (Ai)i∈I is an infinite family of re-
duced F-algebras, F an infinite field. Consider the following conditions:

(a) The direct product A =
∏
i∈I

Ai is an SV-ring.

(b) Each Ai is an SV-ring, and there is some N ∈ N such that the set
{i ∈ I|rk(Ai) � N} is finite.

Condition (a) always implies (b). If all SV-rings are local then (b) also
implies (a).

Proof. — (a) → (b) Each component Ai of the product is a factor ring
of A, hence is an SV-ring. Assume by way of contradiction that all sets
I(n) = {i ∈ I|rk(Ai) � n} are infinite. Then there is a sequence (in)2�n

of distinct elements of I with in ∈ I(n). The ring A′ =
∏
2�n

Ain is a factor

ring of A, hence is an SV-ring. Let min ⊆ Ain be a maximal ideal with
rk(Ain ,min) � n. As each ring Ain has normal spectrum, the localizations
at the maximal ideals min are factor rings ([37], Proposition 5.4), which will
be denoted by Bn, and are therefore SV-rings. The product B =

∏
2�n

Bn is

a factor ring of A′, hence is an SV-ring. But Example 3.6 shows that such a
product cannot be an SV-ring. This contradiction finishes the first part of
the proof.

(b) → (a) The product A can be written in the form
∏

i∈I(N)

Ai×
∏

i �∈I(N)

Ai

(with the same notation as in the proof of (a) → (b)). This is an SV-ring
if and only if both factors are SV-rings. The first factor is a finite direct
product of SV-rings, hence is an SV-ring. Thus, it remains to prove that the
second factor is an SV-ring. Hence one may assume that all components of
the product have rank at most N .
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The Boolean algebra B(A) of idempotents is isomorphic to the Boolean
algebra 2I of subsets of I via e = (ei)i∈I → Coz(e) = {i ∈ I|ei = 1}.
If p ∈ Spec(A) then the set p ∩ B(A) is a prime (= maximal) ideal of
B(A). The set F(p) = {Z(e)|e ∈ p ∩ B(A)} ⊆ 2I is an ultrafilter (where
Z(e) = I \ Coz(e)). If p ⊆ q are two prime ideals then their ultrafilters
coincide. The ideal (p∩B(A)) ·A ⊆ A is contained in p, and the factor ring
A/(p ∩ B(A)) · A coincides with the ultraproduct A/F(p). One concludes
that A/(p ∩B(A)) ·A is an SV-ring (as the class of reduced local SV-rings
with infinite residue field and rank at most N is elementary, Corollary 3.9).
Thus the factor ring A/p ∼=

(
A/(p ∩ B(A)) · A

)/(
p/(p ∩ B(A)) · A

)
is a

valuation ring. �

The next few results are concerned with the question whether the equiv-
alence of Theorem 3.8 can be globalized in some form, i.e., whether it can be
extended to rings that are not necessarily local. This is indeed possible with
regard to the equivalence of conditions (a) and (d); the question remains
undecided concerning conditions (b) and (c). The special case of SV-rings
of rank 1 is considered first. The following result is an adaptation of [37],
Proposition 7.4 (cf. the comments before Proposition 2.2) to SV-rings. Note
that the prime spectrum of an SV-ring of rank 1 is the disjoint union of a
collection of totally ordered sets of prime ideals (by Proposition 1.4). This
is the same situation that one meets in rings of continuous functions on
F -spaces.

Proposition 3.11. — If A is a reduced ring then the following conditions
are equivalent:

(a) A is an SV-ring of rank 1.

(b) For all a, b ∈ A there are elements c1, c2, d1, d2 ∈ A such that 1 =
c1 + c2 and c1 · (a− d1 · b) = 0, c2 · (b− d2 · a) = 0.

Proof. — (a) → (b) If p ∈ Min(A) then a+p = xp·b+p or b+p = yp·a+p
with suitable elements xp, yp ∈ A. There is a partition Min(A) = Mx ∪My

such that a+ p = xp · b+ p for p ∈ Mx and b+ p = yp ·a+ p for p ∈ My. For
p ∈ Min(A) one defines Zp = V (a− xp · b) or Zp = V (a− yb · b) according
as p ∈ Mx or p ∈ My. The set Zp is closed and constructible and contains
the closed irreducible and generically closed set {p}. There are constructible
sets Up, Vp,Wp such that

• {p} ⊆ Up ⊆ Vp ⊆ Wp ⊆ Zp,

• Up is open and Wp = D(zp) for some zp ∈ A,

• Vp is closed.
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The sets Up cover Spec(A), hence there is a finite subcover Spec(A) =⋃
j∈J

Upj
. One defines Jx = {j ∈ J | pj ∈ Mx}, Jy = {j ∈ J | pj ∈ My} and

Ux =
⋃

j∈Jx

Upj
, Uy =

⋃
j∈Jy

Upj
. Also define Vx =

⋃
j∈Jx

Vpj
, Wx =

⋃
j∈Jx

Wpj
,

Vy =
⋃

j∈Jy

Vpj , Wy =
⋃

j∈Jy

Wpj . Since Spec(A) is normal there are elements

c1, c2 ∈ A such that 1 = c1 + c2 and D(c1) ⊆ Ux, D(c2) ⊆ Uy ([37],
Proposition 5.1). The set Gen(Vx) is closed and generically closed (loc.cit.)
and is contained in the open constructible set Wx. Therefore there exists an
element zx with Vx ⊆ V (zx) ⊆ Wx (loc.cit., Lemma 4.2). Similarly, there is
an element zy with Vy ⊆ V (zy) ⊆ Wy. As Spec(A) = D(zx) ∪Wx one can
write 1 = αx · zx +

∑
j∈Jx

αpj
· zpj

. (Recall that Wx is the union of the sets

Wpj
= D(zpj

) with j ∈ Jx.) For each j, zpj
· (a−xpj

· b) = 0 and c1 · zx = 0.
This implies

0 = c1 · zx · αx · a+ c1 ·
∑
j∈Jx

αpj
· zpj

· (a− xpj
· b)

= c1 ·





αx · zx +

∑
j∈Jx

αpj
· zpj


 · a−


 ∑

j∈Jx

αpj
· zpj

· xpj


 · b




= c1 ·


a−


 ∑

j∈Jx

αpj
· zpj

· xpj


 · b




Now set d1 =
∑
j∈Jx

αpj
· zpj

· xpj
. The same argument (with y instead of x)

produces the element d2.

(b) → (a) To show that A has rank 1, assume that there are distinct
minimal prime ideals p and q that are both contained in the same maximal
ideal m. There are elements a ∈ p \ q and b ∈ q \ p with a · b = 0. Condition
(b) yields elements c1, c2, d1, d2 with 1 = c1 + c2 and c1 · (a − d1 · b) = 0,
c2 · (b − d2 · a) = 0. Since a − d1 · b �∈ q and b − d2 · a �∈ p it follows that
c1 ∈ q ⊆ m and c2 ∈ p ⊆ m. This implies 1 = c1 + c2 ∈ m, a contradiction.

It remains to prove that A is an SV-ring: Pick p ∈ Min(A) and consider
two elements a+ p, b+ p ∈ A/p. It is claimed that one of them is a multiple
of the other. Condition (b) is applied to a and b: There are elements c1, c2,
d1, d2 such that 1 = c1 + c2, c1 · (a−d1 · b) = 0, c2 · (b−d2 ·a) = 0. Let m be
some maximal ideal that contains p, and suppose without loss of generality
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that m ∈ D(c1). Then c1 �∈ p, and one concludes that a− d1 · b ∈ p. Thus,
a+ p is a multiple of b+ p. �

Condition (b) of Proposition 3.11 can be expressed as a first order state-
ment, hence:

Corollary 3.12. — The class of reduced SV-rings of rank 1 is an ele-
mentary class.

If A is an SV-ring with rank 1 then the specialization map from Min(A)
to Max(A) is a bijection. It is also continuous (since the spectrum is normal),
but it is not a homeomorphism in general. However, if Min(A) is compact
then it is homeomorphic to Max(A). From [12], Theorem 3.4 one obtains

Corollary 3.13. — The class of reduced SV-rings A with rank 1, with
compact minimal prime spectrum and with the property that the set
{D(a) ∩ Min(A) | a ∈ A} is closed under finite unions is an elementary
class. An axiomatization is provided by the axioms for reduced rings, condi-
tion (b) of Proposition 3.11 and the statement: ∀a ∃b ∀c : a·b = 0 &

[
(a+b)·c

= 0 → c = 0
]
.

Now the discussion turns to SV-rings with arbitrary finite rank.

Proposition 3.14. — Let A be a reduced F -algebra, where F is an in-
finite field. Pick a set of k + 1 distinct elements u1, . . . , uk+1 ∈ F×. The
following conditions are equivalent:

(a) A is an SV-ring with rank at most k.

(b) The prime spectrum of A is normal, the factor domains of A modulo
minimal prime ideals are integrally closed, and for all elements a, b ∈ A there
are elements c1, . . . , ck+1 ∈ A and polynomials Q1, . . . , Qk+1, Qk = Xk +
k∑

j=1

cκ,jX
k−j ·Y j such that (c1, . . . , ck+1) = A and cκ ·Qκ(a, uκ ·a+ b) = 0.

Proof. — (a) → (b) The prime spectrum of an SV-ring is completely
normal, hence normal (Proposition 1.4). Factor rings modulo (minimal)
prime ideals are valuation rings, hence they are integrally closed. Now
pick elements a, b ∈ A and some maximal ideal m. The local ring Am

is an SV-ring. Thus Theorem 3.8 shows that there is a unit vm ∈ A×
m

and a polynomial Rm = Xk +
k∑

j=1

dm,j · Xk−j · Y j ∈ Am[X,Y ] such that
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Rm

(
a

1
, vm · a

1
+

b

1

)
= 0. Note that there are at most k units v ∈ A×

m that

do not satisfy this condition. Thus, one may choose vm to be one of the
units u1, . . . , uk+1.

Since Spec(A) is normal, the canonical homomorphism A → Am is sur-
jective ([37], Proposition 5.4). The polynomial Rm can be lifted to a poly-

nomial Qm = Xk +
k∑

j=1

cm,j · Xk−j · Y j ∈ A[X,Y ]. The set Cm = {q ∈

Spec(A) |Qm(a, vm · a+ b) = 0} is closed constructible and contains the set
Gen(m) of generalizations of m. There is a basic open set D(em) and an-
other closed constructible set Dm such that Gen(m) ⊆ Dm ⊆ D(em) ⊆ Cm.
Note that em · Qm(a, vm · a + b) = 0. The sets Dm cover Spec(A), and,

by compactness, there is a finite subcover Spec(A) =
s⋃

σ=1

Dmσ . For each

κ = 1, . . . , k + 1, one defines Σ(κ) =
{
σ ∈ {1, . . . , s}|vmσ

= uk

}
. The

set Gκ = Gen


 ⋃

σ∈Σ(κ)

Dmσ


 =

⋃
σ∈Σ(κ)

Gen(Dmσ
) is closed and generi-

cally closed and is contained in the open constructible set
⋃

σ∈Σ(κ)

D(emσ
).

[37], Proposition 4.3 yields elements cκ, dκ with Gκ ⊆ D(cκ) ⊆ V (dκ) ⊆⋃
σ∈Σ(κ)

D(emσ
), and one concludes that there are xσ, σ ∈ Σ(κ), and yκ such

that 1 = yκ · dκ +
∑

σ∈Σ(κ)

xσ · emσ . With

Qκ = yκ · dκ ·Xk +
∑

σ∈Σ(κ)

xσ · emσ ·Qmσ = Xk +
k∑

j=1

cκ,j ·Xk−j · Y j

it follows from cκ · dκ = 0 and emσ
·Qmσ

(a, uκ · a+ b) = 0 (with σ ∈ Σ(κ))
that

cκ·Qκ(a, uκ·a+uκ·b) = cκ·yκ·dκ·ak+cκ·
∑

σ∈Σ(κ)

xσ ·emσ
·Qmσ

(a, uκ·a+b) = 0

Finally note that Spec(A) =
k+1⋃
κ=1

Gκ =
k+1⋃
κ=1

D(cκ), hence (c1, . . . , ck+1) = A.

(b) → (a) The prime spectrum is normal. Therefore A is an SV-ring if
and only if every localization at a maximal ideal is an SV-ring (Proposition
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1.5). So it suffices to show that every localization Am, m a maximal ideal,
satisfies condition (d) of Theorem 3.8. If p ⊆ m is a minimal prime ideal

then A/p is integrally closed by hypothesis. Pick elements
a

s
,
b

t
∈ Am. The

hypothesis is applied to a·t, b·s ∈ A: There are elements c1, . . . , ck+1 ∈ A and

polynomials Q1, . . . , Qk+1 as in condition (b). Since Spec(A) =
k+1⋃
κ=1

D(cκ),

there is some κ such that m ∈ D(cκ). Then

cκ
1

·


(

a · t
1

)k

+
k∑

j=1

cκ,j

1
·
(
a · t
1

)k−j

·
(
uκ · a · t

1
+
b · s
1

)j

 = 0

in Am. As
cκ
1

,
s

1
,
t

1
∈ A×

m, the equation can be multiplied by
1
cκ

· 1
sk

· 1
tk

,

which yields (a
s

)k

+
k∑

j=1

cκ,j

1
·
(a
s

)k−j

·
(
uκ · a

s
+
b

t

)j

= 0. �

Condition (b) of Proposition 3.14 is not a first order statement. But
it is conceivable that it can be transformed into such a statement. Note
that normality of the prime spectrum is an axiomatizable property, cf. [37],
Proposition 4.3. Assume for a moment that the condition about factor do-
mains modulo minimal prime ideals (in condition (b) of Proposition 3.14)
is equivalent to a first order statement. Then one can conclude immediately
that the class of reduced SV-algebras over infinite fields and with rank at
most k is elementary. The same is true if either of the following statements
can be expressed in a first order form:

• All factor rings modulo arbitrary prime ideals are integrally closed, or

• all factor rings modulo minimal prime ideals are integrally closed with
regard to polynomials of degree at most k (i.e., if P ∈ A/p[X] is a monic
polynomial of degree at most k and if P (α) = 0 with α ∈ qf(A/p) then
α ∈ A/p).

It is highly unlikely, but seems to be unknown, whether it is possible to
reformulate any of these statements as first order sentences. However, there
is a local result in this direction:

Proposition 3.15. — Suppose that A is a reduced local ring with finite
rank k. Let p1, . . . , pk be the minimal prime ideals. Let a1, . . . , ak be a max-
imal set of mutually orthogonal zero divisors, aλ ∈

⋂
κ�∈λ

pκ \ pλ. Then the

following conditions are equivalent:
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(a) For each p ∈ Min(A), A/p is integrally closed with regard to polyno-
mials of degree at most l.

(b) If a, b ∈ A and if Q(a, b) = 0, where Q(X,Y ) = X l+
l∑

j=1

cj ·X l−j ·Y j,

then a · aκ ∈ (b · aκ) for each κ = 1, . . . , k.

Proof. — (a) → (b) Pick a, b ∈ A and suppose that Q(a, b) = 0, where
Q is a polynomial as in (b). Then either b + pκ = 0 + pκ (which also
implies a + pκ = 0 + pκ, hence a · aκ = 0 and b · aκ = 0), or b �∈ pκ and

Q

(
a+ pκ
b+ pκ

, 1
)

= 0 in qf(A/pκ). Condition (a) implies that
a+ pκ
b+ pκ

∈ A/pκ,

hence there is some dκ ∈ A with a−dκ ·b ∈ pκ. But then (a−dκ ·b) ·aκ = 0,
and this proves the claim.

(b) → (a) Suppose that P (X) = X l +
l∑

j=1

(cj + pκ) ·X l−j ∈ A/pκ[X]

and let
a+ pκ
b+ pκ

∈ qf(A/pκ) be a root of P . Then, setting Q(X,Y ) = X l +∑l
j=1 cj · X l−j · Y j ∈ A[X,Y ] one sees that Q(a, b) ∈ pκ, which implies

Q(a ·aκ, b ·aκ) = al
k ·Q(a, b) = 0. By (b), a ·a2

κ = dκ ·(b ·a2
κ) for some dκ ∈ A.

Reduction modulo pκ yields (a+pκ)·(aκ+pκ)2 = (dκ+pκ)·(b+pκ)·(aκ+pκ)2,

hence
a+ pκ
b+ pκ

= dκ + pκ ∈ A/pκ. �

Lacking an analogous global result, axiomatizability of the class of SV-
rings with bounded rank remains undecided. However, there are elementary
classes of rings whose residue domains are integrally closed, e.g., real closed
rings (cf. [29], [27]). It is an immediate consequence of Proposition 3.14 that,
in such a class of rings, the SV-rings with bounded rank form an elementary
subclass. The following corollary is a result of this type.

Corollary 3.16. — The real closed SV-rings with rank at most k form
an elementary class.

Explicitly, an axiomatization of the class of real closed SV-rings with
rank at most k is given by the axioms of real closed rings ([27], Theorem
2.1), together with the statement:

For all a, b ∈ A there are c1, . . . , ck+1 ∈ A and polynomials Q1, . . . , Qk+1,

Qκ = Xk +
k∑

j=1

cκ,j ·Xk−j · Y j ∈ A[X,Y ] such that (c1, . . . , ck+1) = A and

cκ ·Qκ(a, a · uκ + b) = 0.

– 184 –



SV-Rings and SV-Porings

The same statement singles out the SV-rings of rank at most k among
the class of rings of continuous functions.

4. Partially ordered SV-rings

In [13], at the beginning of section 2, the authors define an f -ring to be an
SV-ring if each factor ring modulo a prime ideal is a valuation ring. They do
not assume any connection between the valuations and the partial order. But
they conclude that their SV-rings have bounded inversion (loc.cit., Theorem
2.9). This is clearly false: Pick any totally ordered field and a valuation ring
that is not convex. Then the maximal ideal is not convex, hence bounded
inversion fails. But factor rings of valuation rings modulo prime ideals are
always valuation rings. (The mistake in their arguments is in the proof of
the implication (b) → (c) of Lemma 2.2.)

In the present paper the definition of partially ordered SV-rings includes
the condition of compatibility between the real spectrum and the prime spec-
trum. This means: Given α ∈ Sper(A,A+) and a maximal ideal m that
contains supp(α), the support of α, then m/supp(α) is a convex ideal of
the totally ordered ring A/α. This notion is introduced and studied in [34],
section 3. Spectral compatibility is stronger than bounded inversion, cf.
loc.cit. The condition strengthens the connection between the valuations of
the residue domains and the order structure.

This section contains basic properties of partially ordered SV-rings. The
next section is concerned with applications to convexity.

Definition 4.1. — A poring (A,A+) is a partially ordered SV-ring
(= SV-poring) if the underlying ring is an SV-ring and the spectra are
compatible. If (A,A+) is an f-ring and an SV-poring then it is called an
SV-f -ring.

The class of porings is elementary in the language {+,−, ·, 0, 1,�}.
Therefore, a class of SV-porings is elementary whenever its elements are

• porings of some elementary class,

• SV-rings of an elementary class (e.g., reduced SV-rings of rank 1,
Corollary 3.12), and

• if compatibility of the spectra can be expressed with first order state-
ments (e.g., if the compatibility condition is equivalent to bounded inver-
sion).
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If the underlying ring of a poring is an SV-ring then the prime spectrum
is completely normal (Proposition 1.4). Therefore, given an SV-ring that is
also a poring, compatibility of the spectra is equivalent to the condition that
the support map from the real spectrum to the prime spectrum restricts
to a surjective map from maximal prime cones to maximal ideals ([34],
Proposition 3.2). For an f -ring, compatibility and bounded inversion are
equivalent conditions ([34], Proposition 3.5). Moreover, if one considers a
class of f -rings with bounded inversion (such as real closed rings or rings of
continuous functions) then compatibility of the spectra is always satisfied
and is not an additional condition.

The following characterization of SV-porings is useful:

Theorem 4.2. — Suppose that (A,A+) is a poring. Then the following
conditions are equivalent:

(a) (A,A+) is an SV-poring.

(b) If p ∈ Spec(A) then A/p is convex in qf(A/p) with respect to every
total order defined by a prime cone α ∈ Sper(A,A+) with support p.

If the equivalent conditions hold then the support map supp: Sper(A,A+)
→ Spec(A) is surjective, i.e., every prime ideal of A is convex.

Proof. — (a) → (b) Pick any prime ideal p and any prime cone α with
support p. There is a unique maximal ideal m that contains p (Proposition
1.4). Compatibility implies that m is α-convex. The maximal ideal m/p of
the valuation ring A/p is convex in qf(A/α). This is equivalent to convexity
of the valuation ring ([20], p. 55, Satz 3).

(b) → (a) Note that every minimal prime ideal of A is convex ([36],
Proposition 4.4), hence is the support of some prime cone. Pick any prime
ideal p. There is some q ∈ Min(A), q ⊆ p, and some α ∈ Sper(A,A+) with
support q. Being a convex subring of qf(A/α), A/q is a valuation ring. Then
every ideal of A/q is convex, in particular the prime ideal p/q. The factor
ring A/p is a valuation ring as well, and one concludes that A is an SV-ring.

The prime ideal p of A is convex; hence it is the support of a prime
cone β. According to condition (b), A/p is convex in qf(A/β). Let m be the
unique maximal ideal of A that contains p (Proposition 1.4). Then m/p is
the maximal ideal of the convex valuation ring A/p, hence it is convex as
well, and m is convex with respect to β.

The above arguments also prove surjectivity of the support map. �
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It is immediately clear from the definition that a factor poring of an
SV-poring modulo a convex ideal is an SV-poring: The SV property is pre-
served under homomorphic images (Example 1.2 (b)); the same is true for
compatibility of the spectra ([34], section 3). In particular, the reduction of
an SV-poring modulo the nilradical is an SV-poring. The converse of this
implication is true as well: Example 1.2 (c) shows that A is an SV-ring
if A/Nil(A) is an SV-ring. The poring (A,A+) has compatible spectra if
and only if the same is true for

(
A/Nil(A), πNil(A)(A+)

)
([34], section 3).

Because of this remark it is frequently possible to assume without loss of
generality that SV-porings are reduced.

The next result speaks about quotient rings of SV-porings. Note that,
in general, compatibility of spectra is not preserved under the formation of
quotient rings ([34], section 3).

Corollary 4.3. — If (A,A+) is an SV-poring and if S ⊂ A is a multi-
plicative set then the quotient poring (AS , A

+
S ) is an SV-poring as well.

Proof. — Quotient rings of SV-rings are SV-rings (Example 1.2 (h)). The
questionable condition is compatibility of the spectra. However, condition
(b) of Theorem 4.2 is clearly preserved under passage to quotient rings.
�

Many rings carry various different partial orders. If (A,A+) is an SV-
poring and if P ⊆ A+ is a weaker partial order, then it may happen that
one of the two porings (A,A+) and (A,P ) is an SV-poring and the other
one is not an SV-poring. But if Sper(A,A+) = Sper(A,P ) then either both
porings satisfy condition (b) of Theorem 4.2, or both don’t. In particular, in
the case of a reduced poring, the saturation (A, Â+) is an SV-poring if and
only if (A,A+) is an SV-poring. (The underlying ring of the saturation is
A, but the partial order is stronger than A+, namely Â+ =

⋂
α∈Sper(A,A+)

α,

cf. [22], p. 42, Definition 2. The saturation can be formed also without the
assumption that the ring is reduced. However, if the ring is not reduced
then Â+ is only a preordering, not a partial order.)

Theorem 4.2 shows that all prime ideals in an SV-poring are real. There-
fore the sets D(a) ⊆ Spec(A) form a lattice: It is always true that the set of
sets D(a) is closed under finite intersections (namely D(a1)∩ . . .∩D(ar) =
D(a1 · . . . · ar). Moreover, D(a1) ∪ . . . ∪D(ar) = D(a2

1 + . . . + a2
r) holds in

an SV-poring.

Theorem 4.2 establishes a close connection between the factor valuation
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rings of an SV-poring on the one hand and the partial order on the other
hand. The relationship is not nearly so close for porings that are SV-rings
with bounded inversion, but without compatible spectra:

Example 4.4. — Let K be a real field that has two non-Archimedean
total orders α and β with natural valuation rings Vα and Vβ . Suppose that
Vα · Vβ = K. The maximal specialization of β in Sper(Vβ) is denoted by
β1. Then V +

β = Vβ ∩ α ∩ β1 is a partial order on Vβ . The poring (Vβ , V
+
β )

has bounded inversion and is an SV-ring. The real spectrum has two points,
namely α′ = α ∩ Vβ and β′

1 = β1 ∩ Vβ . The prime cone α′ is completely
unrelated to the valuation ring.

The connection between real spectrum and prime spectrum is particu-
larly close in the case of an SV-f -ring. Then the support map is a homeo-
morphism. For, the support map is always a spectral map. It is injective in
the case of f -rings, surjective for SV-porings (Theorem 4.2). To see that it is
a homeomorphism one only needs to note that α ⊆ β if supp(α) ⊆ supp(β)
(where α, β ∈ Speer(A,A+)).

The f -ring reflection
(
ϕ(A), ϕ(A)+

)
of a reduced poring (A,A+) has

been introduced and studied in [36]. According to [34], Proposition 3.2, a
reduced poring has compatible spectra if and only if its f -ring reflection has
compatible spectra (which is equivalent to bounded inversion). This result
is supplemented by

Proposition 4.5. — Suppose that (A,A+) is a reduced poring with f-
ring reflection

(
ϕ(A), ϕ(A)+

)
. Then A is an SV-ring if and only if ϕ(A) is

an SV-ring.

Proof. — The functorial map Sper
(
ϕ(A), ϕ(A)+

)
→ Sper(A,A+) is a

homeomorphism (because
(
ϕ(A), ϕ(A)+

)
is contained in the real closure(

ρ(A), ρ(A+)
)
, and the real closure is the strongest reflector of reduced

porings that preserves the real spectrum, cf. [36], Theorem 12.12). The
real spectra will be identified. If α ∈ Sper(A,A+) then the codomain of
the canonical map πα : (A,A+) → A/α is a reduced f -ring, hence it fac-
tors through

(
ϕ(A), ϕ(A)+

)
, and the totally ordered residue rings A/α and

ϕ(A)/α are canonically isomorphic.

If q is a minimal prime ideal of ϕ(A) then q is convex ([36], Proposition
4.4), and q ∪ ϕ(A)+ is the unique prime cone with support q.

For the proof of the equivalence, first suppose that A is an SV-ring. If
q ⊆ ϕ(A) is a minimal prime ideal then β = p∪ ϕ(A)+ is a prime cone; the
restriction to A is denoted by α. One concludes that ϕ(A)/q = ϕ(A)/β ∼=
A/α = A/supp(α) is a valuation ring.
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Conversely, let ϕ(A) be an SV-ring. Pick a minimal prime ideal p ⊆ A.
Since A ⊆ ϕ(A) is an extension of rings there is a minimal prime ideal
q ⊆ ϕ(A) with p = q ∩A. With the same notation as above, A/p ∼= ϕ(A)/q
is a valuation ring.

Corollary 4.6. — The reduced poring (A,A+) is an SV-poring if and
only if the f-ring reflection is an SV-f-ring.

The next example shows that the rank of an SV-poring and its f -ring
reflection are different in general. Either rank can be larger than the other
one:

Example 4.7. — (a) Let K be a non-trivially valued field with valuation
ring V and residue field k. The valuation ideal is denoted by m. Suppose
that k carries two different total orders, say α and β. Then there are total
orders α and β on V that induce α and β ([20], p. 72, Theorem). One defines
the ring A to be the fibre product V ×k V . The projections p1, p2 : A → V
yield prime cones γ = p−1

1 (α) and δ = p−1
2 (β) of A. The closure {γ} is

the image of Sper(V, α) under Sper(p1), and {δ} is the image of Sper(V, β)
under Sper(p2). Setting A+ = γ ∩ δ, one checks easily that Sper(A,A+) is
the disjoint union of {γ} and {δ}. The ring A is local with maximal ideal
n = m×m and residue field k. If γ1 and δ1 are the maximal specializations
of γ and δ then supp(γ1) = n = supp(δ1), and γ1 and δ1 define α and β on
k.

The description of (A,A+) shows that this is an SV-poring with rank
2. The f -ring reflection

(
ϕ(A), ϕ(A)+

)
is an SV-f -ring. Its real spectrum is

homeomorphic to Sper(A,A+) and also to Spec(ϕ(A)), which implies that
rk(ϕ(A)) = 1.

(b) With the same notation as in part (a), suppose that k carries a
unique total order, but the set C of total orders of K that are compatible
with V is infinite. Define V + =

⋂
α∈C α. Then (V, V +) is an SV-poring

with rk(V ) = 1. The real spectrum has one closed point and infinitely
many generic points. The f -ring reflection

(
ϕ(A), ϕ(A)+

)
is an SV-f -ring.

It follows from Spec(ϕ(A)) ∼= Sper
(
ϕ(A), ϕ(A)+

) ∼= Sper(A,A+) that
rk(ϕ(A)) = ∞.

It has been shown above that the f -ring reflection of an SV-poring is an
SV-f -ring (Corollary 4.6). The same is true for the real closure reflector:

Proposition 4.8. — Suppose that (A,A+) is a reduced SV-poring. If
ρ : PO/N → RCR denotes the real closure reflector (cf. [36], section 12),
then the reflection ρ(A,A+) is an SV-poring as well.
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Proof. — The real closure of (A,A+) coincides with the real closure of(
ϕ(A), ϕ(A)+

)
([36], Proposition 8.1). So one may assume that (A,A+)

is an f -ring. The spectra Sper(A,A+), Sper
(
ρ(A), ρ(A)+

)
, Spec(A) and

Spec
(
ρ(A)

)
are all homeomorphic to each other via the canonical maps. Let

q ⊆ ρ(A) be any prime ideal and write p = q ∩A. The real closure reflector
is H-closed ([36], Definition 12.2), hence the map ρ(πp) : ρ(A) → ρ(A/p) is
surjective ([36], Proposition 10.8), and ρ(A)/q ∼= ρ(A/p). Thus, it suffices
to prove that the real closure of a totally ordered convex valuation ring
is a valuation ring (necessarily totally ordered and convex). This has been
proved in [35], Corollary 1.3. �

The converse of Proposition 4.8 is not true – if the poring (A,A+) is not
an SV-ring it may happen that the real closure is an SV-ring. For example,
let (A,A+) be a totally ordered domain with totally ordered quotient field
(K,K+). Suppose that A is cofinal in K. Then ρ(A,A+) is the real closure
of the totally ordered field (K,K+). This is an SV-ring, but there are many
such porings (A,A+) that are not SV-rings.

The following example exhibits a reduced SV-poring (A,A+) and an H-
closed monoreflector r : PO/N → C that is weaker than the real closure
reflector (cf. [36]) such that the reflection r(A,A+) is not an SV-ring. Thus,
not every reflection of an SV-poring by a monoreflector is an SV-ring.

Example 4.9. — In this example, the reflector r of the category PO/N
is the differentiable functions reflector introduced in [35], Theorem 3.9. The
field of real algebraic numbers is denoted by R0. Let A be the valuation
ring R0[X](X), totally ordered by the condition that 0 < X � 1. Then A
is the convex hull of R0 in its totally ordered quotient field. Let R be the
real closure of qf(A,A+). The real closure ρ(A,A+) is the convex hull of R0

in R. It is a one-dimensional real closed valuation ring. It contains R0 as
a maximal subfield, hence R0 is a field of representatives ([35], Proposition
2.1). The corresponding valuation v : R → Q ∪ {∞} is normalized such
that v(X) = 1. The set I1 = {a ∈ R | v(a) � 1} is a convex ideal in
ρ(A,A+). Then R0 +I1 is a proper subring of ρ(A,A+), which is dominated
by ρ(A,A+) and has the same quotient field. It contains the convex valuation
ring (A,A+) and is contained in the convex valuation ring ρ(A,A+), but is
not a valuation ring itself. The reflection r(A,A+) coincides with R0 + I1.

The section ends with some thoughts about SV-porings of rank 1. First
there is a connection between convex ideals in SV-porings and valuation
ideals:

Lemma 4.10. — Suppose that (A,A+) is an SV-poring. If the ideal I is
an intersection of valuation ideals then I is convex.
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Proof. — For each minimal prime ideal p the ideal I + p/p ⊆ A/p is
convex (as all ideals in the valuation ring A/p are convex, cf. Theorem
4.2). Thus the inverse image I + p ⊆ A under the canonical homomorphism
πp : A → A/p is convex as well. Since intersections of convex ideals are
convex it follows that I =

⋂
p∈min(A)

I + p is convex. �

The converse of Lemma 4.10 is not true, as the following example shows:

Example 4.11. — A convex ideal in an SV-poring that is not an inter-
section of valuation ideals

Let V be a proper convex subring in some totally ordered field. The
maximal ideal is denoted by m. The fibre product A = V ×V/m V is an SV-
ring. If A+ is the partial order induced by the total order on the two copies
of V then (A,A+) is an SV-poring. Pick any element 0 < x ∈ m. Then the
principle ideal generated by (x,−x) is convex in A: For, if (p, q), (r, s) ∈ A+

and if (p, q) + (r, s) = (α, β) · (x,−x) then, in the convex valuation ring V ,
p+r = α ·x implies that p = α′ ·x, r = α′′ ·x for some α′ and α′′. Moreover,
q + s = β · (−x) implies that β � 0, and there are β′, β′′ � 0 such that
q = β′ · (−x), s = β′′ · (−x). It is clear that β � β′, β′′ � 0 � α′, α′′ � α. By
definition of the ring A, α + m = β + m. Since α ∈ A+ and β ∈ −A+

it follows that α, β ∈ m. By convexity of m, all the other factors also
belong to m. Therefore (α′, β′), (α′′, β′′) ∈ A, and (p, q) = (α′, β′) · (x,−x),
(r, s) = (α′′, β′′) · (x,−x).

The ideal A · (x,−x) is not an intersection of valuation ideals: The el-
ement (x, x) belongs to the smallest intersection of valuation ideals that
contains the ideal, but is not a multiple of (x,−x).

Proposition 4.12. — Suppose that (A,A+) is a reduced poring with
compatible spectra. The following conditions are equivalent:

(a) (A,A+) is an SV-poring of rank 1.

(b) Every ideal of A is convex.

(c) (A,A+) satisfies the 1st convexity condition (cf. [23]), i.e., if 0 �
a � b then there is some c ∈ A such that a = c · b.

Proof. — (a) ⇒ (b) Proposition 3.3 says that every ideal of A is an
intersection of valuation ideals. According to Lemma 4.10 these are always
convex. – The equivalence (b) ⇔ (c) is trivial.
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(b) ⇒ (a) If p ⊆ A is a minimal prime ideal then it is convex. Every
ideal of the factor ring A/p is convex as well. It follows immediately that
A/p is convex in its quotient field (which is partially ordered with positive
cone P =

{a
s
|∃t ∈ A+/p : a · s · t ∈ A+/p

}
). For, if 0 � a

s
� b ∈ A/p then

there is an element t ∈ A+/p such that 0 � a · s · t � b · s2 · t in A/p.
As the principle ideal (b · s2 · t) is convex there is some c ∈ A/p such that
a · s · t = c · b · s2 · t, and this implies

a

s
= c · b ∈ A/p.

The convex subring A/p of qf(A/p) is the intersection of all P -convex
valuation rings that contain it. Thus A/p contains the real holomorphy ring
of qf(A/p), which implies that it is a Prüfer domain ([28], section 1). The
domain A/p is local since its prime spectrum is normal ([34], Proposition
3.2). Local Prüfer domains are valuation rings, hence A/p is a valuation
ring, and it has been proved that A is an SV-poring.

It remains to prove that rk(A) = 1: If this is false then there is a maximal
ideal m that contains two distinct minimal prime ideals p and q. The ideals
of A/p∩ q are convex as well. So, to derive a contradiction one may assume
that A = A/p∩ q. Pick a unit u ∈ A× and two elements x ∈ p \ q, y ∈ q \ p.

Replacing u by
u2

1 + u2
(note that (A,A+) has bounded inversion because

of compatibility, cf. [34], section 3), x by x2 and y by y2 one may assume
that 0 < u < 1, 0 < x and 0 < y. It follows that 0 < u · x + y < x + y, but
u · x+ y �∈ (x+ y) (as in the proof of Proposition 3.3). �

A final remark about first order axiomatizability: The class of SV-f -rings
with rank 1 is elementary (cf. the remark after Definition 4.1). Referring to
Proposition 3.11, the axiom system includes the statement

∀a, b ∃c1, c2, d1, d2 : 1 = c1 + c2 & c1 · (a− d1 · b) = 0 & c2 · (b− d2) = 0.

This statement can now be replaced by the simpler sentence

∀a, b ∃c : 0 � a � b → a = c · b,

which says that 1st convexity holds.

5. SV-porings and convexity

Convex subrings of rings of continuous functions, and some other por-
ings, are a natural source of SV-rings. A proper convex subring of a poring
(both porings with compatible spectra) has a factor ring that is a nontrivial
SV-ring of rank 1. This section contains a study of those SV-porings that

– 192 –



SV-Rings and SV-Porings

arise in this way. It is asked whether the presence of factor rings that are
SV-rings of rank 1 implies the existence of convex extensions of a given
poring.

Note about terminology: If (B,B+) is a convex subring of a poring
(A,A+) then (A,A+) is called a convex extension of the poring (B,B+).
In [34], Example 1.11, it is shown that every poring has a convex extension.
In this section the question whether a given poring has a proper convex ex-
tension will be considered only for the case that both porings have compat-
ible spectra. To avoid tedious repetition of the hypothesis of compatibility,
it will be assumed that all porings have compatible spectra whenever the
term “convex extension” is being used.

The question why SV-rings occur in connection with convexity has a
simple answer: Convex subrings of fields with respect to total orders are val-
uation rings. Convex subrings of partially ordered fields are not quite so
simple. They are always intersections of real valuation rings, but very often
they are not valuation rings. Every convex subring contains the real holo-
morphy ring ([28]; [20], p. 155). As the real holomorphy ring is a Prüfer
domain, the same is true for the convex subring ([9], Theorem 26.1). There-
fore the convex subring is a valuation ring if and only if it is a local ring.
With these remarks it is easy to prove the following result:

Proposition 5.1. — Suppose that (K,K+) is a partially ordered field
and that B is a convex subring. Then the following conditions are equivalent:

(a) (B,B+) is an SV-poring.

(b) B is an SV-ring.

(c) For all α ∈ Sper(K,K+), B coincides with its the convex hull in K
with respect to α. (In particular, B is a valuation ring.)

(d) (B,B+) has compatible spectra.

Proof. — One identifies Sper(K,K+) with the set of generic points of
Sper(B,B+). Let Vα be the convex hull of B in K with respect to α. Its
maximal ideal is denoted by mα. The ring B is the intersection of the convex
valuation rings Vα.

(a) → (b) is trivial. (b) → (c) The ring B is a domain. Its prime
spectrum is completely normal (Proposition 1.4), hence the ring is local.
But then it is a valuation ring and B = Vα for each α. (c) → (d) If B = Vα

then the maximal ideal is convex with respect to α. Thus, compatibility of
the spectra follows. (d) → (a) Compatibility implies that the domain B
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has normal prime spectrum; hence it is a valuation ring, in particular an
SV-ring. Compatibility holds by hypothesis, hence (B,B+) is an SV-poring.
�

Now consider a poring (A,A+) with compatible spectra and a convex
subring (B,B+). Setting S = A× ∩B+, the porings (A,A+) and (BS , B

+
S )

are canonically isomorphic to each other ([22], Theorem 7.2; [34], Corollary
2.6). Therefore one can identify Spec(A) with a dense and generically closed
pro-constructible subspace of Spec(B), and the same is true about the real
spectra of the porings. If q ∈ Spec(B) \ Spec(A) then there is a unique
maximal ideal m ⊂ A such that m∩B ⊆ q. The ring B/m∩B is convex in
the partially ordered field

(
A/m, πm(A+)

)
([34], Corollary 2.7). This is the

situation considered in Proposition 5.1.

The following immediate consequence of Proposition 5.1 supplements
[34], Theorem 4.4:

Corollary 5.2. — Suppose that (A,A+) is a poring with compatibility
and that B is a convex subring. Then the following conditions are equivalent:

(a) (B,B+) has compatible spectra.

(b) For every maximal ideal m ⊂ A the convex subring B/m ∩B of the
partially ordered field

(
A/m, πm(A+)

)
is a valuation ring.

(c) For every maximal ideal m ⊂ A,
(
B/m ∩ B, πm∩B(B+)

)
has com-

patible spectra.

Proof. — (a) → (b) Compatibility of spectra is preserved modulo convex
ideals. So the claim follows from Proposition 5.1. (b) → (c) is trivial. (c)
→ (a) Let β ∈ Sper(B,B+) be a generic point and let α ∈ Sper(A,A+) be
the corresponding prime cone. Pick a maximal ideal n ⊂ B that contains
supp(β). There is a unique maximal ideal m ⊂ A that contains supp(α). It
follows from [34], Theorem 4.1 that m∩B ⊆ n and that m∩B is β-convex.
Condition (c) says that the maximal ideal n/m∩B of B/m∩B is β-convex.
But then n is β-convex as well. �

It is clear from the consideration of partially ordered fields (which are
trivially SV-porings) that convex subrings of SV-porings are not SV-porings,
in general. The condition of compatibility provides a criterion to decide
whether convex subrings are SV-rings or not:

Corollary 5.3. — Suppose that (A,A+) is an SV-poring. The follow-
ing conditions are equivalent:
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(a) The convex hull of Z is an SV-poring.

(b) The convex hull of Z is an SV-ring

(c) The convex hull of Z has compatible spectra.

(d) Every convex subring is an SV-poring.

(e) Every convex subring is an SV-ring.

(f) Every convex subring has compatible spectra.

Proof. — (a) → (b), (a) → (c), (d) → (e) and (d) → (f) are all
trivial. The equivalence of (c) and (f) is shown in [34], Theorem 4.4. In
view of Proposition 5.1, the following arguments yield the implications (b)
→ (a), (c) → (a), (f) → (d) and (f) → (e): Let B be a convex subring
of (A,A+). Pick q ∈ Min(B), let p ∈ Min(A) be the unique prime ideal of A
that extends q, and let α ∈ Sper(A,A+) be some prime cone with support
p. Then B/q is convex in

(
A/p, πp(A+)

)
, and it is sufficient to deal with a

domain. Now A is a convex subring of its quotient field and B is convex in
A, both with respect to α, hence B is a convex subring of a totally ordered
field as well. �

The equivalent conditions of Corollary 5.3 are satisfied, for example, if
the map from the maximal real spectrum of (A,A+) to the maximal prime
spectrum is bijective. This is the case for f -rings with bounded inversion,
in particular for rings of continuous functions and for real closed rings.

If X is a completely regular space and if Z ⊆ βX \X is a zero set then
Z is an F -space and C(Z) is an SV-ring of rank 1 (cf. Example 1 (j)). The
next result is a generalization:

Proposition 5.4. — Suppose that (A,A+) is a poring with compatible
spectra, that B is a convex subring and that (B,B+) has compatible spectra
as well. If I ⊆ B is an ideal such that VA(I) =

{
p ∈ Spec(A) | I ⊆ p

}
has

dimension at most 0 then B/I is an SV-ring of rank 1. This is the case, for
example, if I = (s) where s ∈ B ∩A×.

Proof. — Let q ∈ Spec(B/I) = VB(I). There is a unique maximal ideal
m ⊂ A such that B ∩m ⊆ q ([34], Theorem 4.1). It is claimed that B/q is
a valuation ring. The hypotheses imply that B/m ∩ B is a valuation ring
(Corollary 5.2), hence B/q is a factor ring of a valuation ring. �

The prime spectrum of the convex subring B of Proposition 5.4 has
a peculiar structure, which has been described in [34], Theorem 2.12 and
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Theorem 2.13: The set of specializations of Max(A) in Spec(B) is a union
of disjoint chains. The specialization map from the compact space Max(A)
(note that A has normal prime spectrum, [34], Proposition 3.2, therefore
the space of maximal points is compact, [2]) to the compact space Max(B)
is bijective and continuous, hence a homeomorphism.

The description of Spec(B) can be rephrased as follows: There is a con-
tinuous section τ : Max(B) → Spec(B) for the specialization map such that
the set of specializations of im(τ) is a disjoint union of chains and every
point of Spec(B) is a specialization or a generalization of some point of
im(τ). (Note that im(τ) is a compact subset of Spec(B), hence Gen(im(τ))
is generically closed and proconstructible, cf. [37], Proposition 2.3.)

If B belongs to a class of rings with completely normal prime spectrum
(e.g., real closed rings) then it suffices to demand that there is a contin-
uous section τ such that every point of Spec(B) is a specialization or a
generalization of some point of im(τ). For, suppose τ : Max(B) → Spec(B)
is a continuous section satisfying this condition. If m,n ∈ Max(B) and if
p ∈ {τ(m)}∩{τ(n)} then m and n are closed points in {p}. As {p} has only
one closed point it follows that m = n.

Each poring (A,A+) that contains the poring (B,B+) as a convex sub-
ring (both with compatible spectra) provides such a section. One may ask
whether the existence of a nontrivial section implies the existence of a con-
vex extension of B that has compatible spectra as well. This is indeed the
case if B is a ring of continuous functions, [32], section 5. However, the
answer is negative for arbitrary real closed rings, as the following example
shows:

Example 5.5. — Let B be a real closed domain with maximal ideal m.
The prime spectrum is a chain, and, given any element p ∈ Spec(B), the
map τ : Max(B) → Spec(B) : m → p is a section that has the properties
described above. But there are real closed domains that do not have any
convex extensions. To exhibit such a ring, suppose that V is a convex subring
of a real closed field T and that there is a prime ideal q ⊂ V with (0) ⊂
q ⊂ mV , where mV is the maximal ideal of V . Pick a maximal subfield
R ⊂ V (which is a real closed field that is isomorphic to the residue field of
V , cf. [20], p. 66, Satz 3). The subring B = R + q ⊂ V is a real closed ring
that does not have any proper convex extension with compatible spectra.
Any such extension would have to be a quotient ring of B, say BS , where
S ⊆ B \ B×, i.e. S ⊂ q. But then BS = VS , and this is a convex subring
of T . The convex hull of B in VS is V , and one concludes that B = V , a
contradiction.
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So, it is not always true that topological properties of the prime spectrum
alone are sufficient to decide whether a given poring has a convex extension.
In general some additional information is required. The discussion of SV-
porings and convex subrings provides stronger necessary conditions, e.g., the
existence of factor rings that are SV-porings of rank 1. The question will
be addressed now whether such additional algebraic information suffices to
prove the existence of convex extensions. A first result in this direction is

Proposition 5.6. — Suppose that (A,A+) is an SV-poring of rank 1.
Then there is a proper convex extension if and only if there is a non-zero
divisor that is not a unit.

Proof. — If there is a proper convex extension (B,B+) then B = AS

with some multiplicative set S ⊂ A (cf. [22], Theorem 7.2; [34], Corollary
2.6). Since A is a subring of B, the multiplicative set does not contain zero
divisors. As the extension is proper, there must be an element in S that
is not a unit. Thus, in A there is a non-zero divisor that is not a unit.
Conversely, suppose that s ∈ A \A× is not a zero divisor. One may assume
that 0 � s (replacing s by s2). The poring (As, A

+
s ) contains A and is an SV-

poring (Corollary 4.3). It is claimed that A is convex in (As, A
+
s ): Suppose

that 0 � a

sk
� b ∈ A. Then there is some l ∈ N such that 0 � a ·sl � b ·sk+l

in A. Convexity of the principle ideal (b · sk+l) implies the existence of an
element c ∈ A such that a · sl = c · b · sk+l (Proposition 4.12). One concludes
that

a

sk
= c · b ∈ A. �

The equivalence of Proposition 5.6 raises the question whether every
SV-poring of rank 1 contains a non-zero divisor that is not a unit. If A is
a von Neumann regular ring then the answer is clearly “no”. So suppose
that dim(A) � 1. If the set of minimal prime ideals is compact then the
answer is clearly “yes”. If the set of minimal prime ideals is not compact
then one considers the constructible closure X of Min(A) and the procon-
structible set Gen(X). In Spec(A), Gen(X) =

⋂
s∈S

D(s), where S is the set

of non-zero divisors. One forms the quotient poring (AS , A
+
S ) (the partially

ordered total quotient ring of A). This is an SV-poring (Corollary 4.3) of
rank 1, and dim(AS) = dim(Gen(X)) � 1. In this ring every non-zero
divisor is a unit, hence there is no proper convex extension. The next ex-
ample presents a ring where this situation actually occurs. First note that
Min(A) is proconstructible in Spec(A) if it is compact. (This is either well-
known or can be found in [37], Proposition 8.7.) If it is compact then it is a
Boolean space (since the constructible topology on Min(A) coincides with
the Zariski topology). The specialization map to the maximal prime spec-
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trum is bijective and continuous, hence a homeomorphism. Therefore, if the
space Max(A) is not Boolean then the minimal prime spectrum cannot be
compact. Bob Raphael pointed out to me the following concrete example:

Example 5.7. — Consider the space X = βR� \ R�, the growth of the
nonnegative reals in the Stone-Cech compactification. According to [8], The-
orem 14.27, the space is a compact F -space, therefore C(X) is an SV-poring
of rank 1 (loc.cit., Theorem 14.25). As the space is connected (loc.cit., 6.10)
it is not a Boolean space. It follows that Min(C(X)) is not compact. The to-
tal ring of quotients, Tot(C(X)), is a real closed ring (being a quotient ring
of the real closed ring C(X), [36], Proposition 12.6). It is also an SV-poring
of rank 1 (Corollary 4.3), dim

(
Tot(C(X))

)
� 1, and there is no proper

convex extension.

The existence of convex extensions of SV-porings of rank 1 is well un-
derstood. Convex extensions of real closed rings will be discussed in the
remainder of the paper. Note that a convex extension of a real closed ring A
is a quotient ring, hence is also real closed ([22], Theorem 7.2; [33], section
5; [34], Corollary 2.6). A Prüfer extension is an epimorphism in the cate-
gory of rings ([21], Proposition 3.6). Prüfer extensions of reduced rings are
reduced (loc.cit., Theorem 5.2, condition (v)). Hence a Prüfer extension of
a reduced ring is an epimorphic extension in the category of reduced rings,
and Prüfer extensions of real closed rings are real closed ([33], Theorem
3.8). A subring of a real closed ring is a Prüfer subring if and only if it is
a convex subring ([22], Theorem 7.2). So, to ask whether a real closed ring
has a proper convex extension is the same as to ask whether it is Prüfer
closed, i.e., does not have a proper Prüfer extension.

For real closed domains there is a very simple answer to the question
about the existence of convex extensions:

Proposition 5.8. — Suppose that A is a real closed domain. There is
a proper convex extension A ⊂ B if and only if A has a factor ring that is
a nontrivial valuation ring (i.e., not a field).

Proof. — If B is a proper convex extension of A, let m ⊂ B be the
maximal ideal. Then A/m ∩ A ⊂ B/m is a proper convex subring, hence a
valuation ring, in the real closed field B/m ([34], Corollary 2.7). Conversely,
let p ⊂ A be a prime ideal such that A/p is a valuation ring. Then A/p is
convex in the real closed field qf(A/p) ([35], Theorem 1.1). Pick 0 < s ∈ A
such that 0 < s+ p ∈ A/p is not a unit. Then As/As · p is a proper convex
extension of A/p. It is claimed that A ⊂ As is a proper convex extension
as well. Only convexity must be checked. So suppose that 0 <

a

sk
< b ∈
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A. Then there is an element c ∈ A such that
a

sk
≡ c (mod As · p), say

sl · (a − c · sk) ∈ p. Since s �∈ p it follows that a − c · sk ∈ p, and therefore
0 < |a − c · sk|m < s for every m � 1. Now [31], Satz 1, shows that
a − c · sk ∈ (sn) for every n ∈ N. In particular, a − c · sk = d · sk, and one
concludes that

a

sk
= c+ d ∈ A. �

The answer is only slightly more complicated if one considers arbitrary
real closed rings:

Theorem 5.9. — For a real closed ring A, the following conditions are
equivalent:

(a) There is a nontrivial continuous section τ : Max(A) → Spec(A) such
that every prime ideal is either a generalization or a specialization of some
element of im(τ) and that A/τ(m) is a convex subring of qf(A/τ(m)) for
each m ∈ Max(A).

(b) A has a proper convex extension.

Proof. — (b) ⇒ (a) is clear from Proposition 5.4 and the remarks im-
mediately thereafter. (a) ⇒ (b) Since the section is nontrivial there is an
element m ∈ Max(A) with τ(m) ⊂ m. For each n ∈ Max(A) there is an
element 0 < sn ∈ m \ τ(n). The open constructible sets D(sn) cover the

compact set im(τ). There is a finite subcover im(τ) ⊆
r⋃

i=1

D(si). If s =
∑

i si

then 0 < s ∈ m and im(τ) ⊆ D(s). It is clear that s is not a zero divisor
and not a unit, hence A ⊂ As is a proper extension. It remains to prove
that the extension is convex.

Consider 0 � a

sk
� b ∈ A. For each minimal prime ideal p ⊂ A

the extension A/p ⊂ As/As · p is convex (Proposition 5.8), though there
may be prime ideals for which the extension is not proper. For each min-
imal prime ideal there is an element cp ∈ A such that

a

sk
≡ cp (mod

As · p). The closed constructible sets Kp =
{
q ∈ Spec(A) | a − cp · sk ∈ q

}
cover the spectrum, hence there is a finite subcover Spec(A) =

r⋃
i=1

Ki,

Ki =
{
q ∈ Spec(A) | a − ci · sk ∈ q

}
. Pick such a cover with r as small

as possible. If r = 1 then a−c1 ·sk = 0 since it belongs to every prime ideal.
But then

a

sk
= c1 ∈ A, and the claim has been proved. Now assume that

r > 1. It will be shown that the cover can be modified to become shorter.
This gives a contradiction and finishes the proof.
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Let Ii =
⋂

q∈Ki

q, I12 =
⋂

q∈K1∩K2

q. Then I1 ∩ I2 =
⋂

q∈K1∪K2

q, and

I12 = I1 + I2 ([29], Corollary 15). Now [31], Satz 3 implies that A/I1 ∩ I2;
A/I1×A/I1+I2 A/I2. Pick c12 ∈ A with c12− c1 ∈ I1 and c12− c2 ∈ I2. Then
K1 ∪ K2 ⊆ K12 =

{
q ∈ Spec(A) | a − c12 · sk ∈ q

}
. One may replace the

two sets K1 and K2 in the cover by the one set K12. This makes the cover
shorter, and the proof is finished. �

The theorem does not speak explicitly about SV-porings. However, it is
an immediate consequence that the existence of certain factor rings that are
SV-porings of rank 1 implies the existence of proper convex extensions:

Corollary 5.10. — Let A be a real closed ring. Assume that there is
an element s that is not a zero divisor and that the factor ring A/

√
(s) is

an SV-poring of rank 1 that has a proper convex extension. Then A has a
proper convex extension.

Proof. — In A/
√

(s) there is a non-zero divisor t that is not a unit
(Proposition 5.6). One checks immediately that the specialization map
σ : D(t) = Spec(At) → Max(A) restricts to a bijective map Max(At) →
Max(A). Both spaces are compact and the specialization map is continuous,
hence it is a homeomorphism. The inverse map τ : Max(A) → Max(At) ⊆
Spec(A) is the section that is needed to apply Theorem 5.9. �
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