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Real holomorphy rings
and the complete real spectrum(∗)

D. Gondard
(1)

, M. Marshall
(2)

ABSTRACT. — The complete real spectrum of a commutative ring A with
1 is introduced. Points of the complete real spectrum SpercA are triples
α = (p,v,P), where p is a real prime of A, v is a real valuation of the field
k(p) := qf(A/p) and P is an ordering of the residue field of v. SpercA is
shown to have the structure of a spectral space in the sense of Hochster
[5]. The specialization relation on SpercA is considered. Special attention
is paid to the case where the ring A in question is a real holomorphy ring.

RÉSUMÉ. — Nous introduisons la notion de spectre réel complet d’un
anneau A commutatif avec unité. Les points de ce spectre réel complet,
noté SpercA, sont les triplets α = (p, v, P ), où p est un idéal premier de
A, v une valuation réelle du corps k(p) := qf(A/p) et P un ordre du corps
résiduel de v. Nous montrons que SpercA a une structure d’espace spectral
au sens de Hochster [5]. On considère aussi la relation de spécialisation
sur SpercA. Nous nous intéressons particulièrement au cas où l’anneau A
est un anneau d’holomorphie réel.
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The prime spectrum SpecA of a ring A (commutative with 1) is a basic
object in algebraic geometry. In real algebraic geometry, where one deals
with inequalities as well as equations, the prime spectrum, while still an im-
portant object, does not contain sufficient information by itself. The prime
spectrum of a formally real field K, for example, consists of just a single
point, whereas to understand the various ‘real’ aspects of such a field one
needs to consider also the orderings, i.e., the subsets P of K satisfying:

P + P ⊆ P, PP ⊆ P, P ∪ −P = K, P ∩ −P = {0}.

Similarly, to understand the ‘real’ aspects of a ring A, one needs to study,
not just the primes, but also the pairs (p, P ) where p is a prime ideal of A
with formally real residue field k(p) := qf(A/p) and P is an ordering on k(p).
The real spectrum SperA consists of all such pairs. For a formally real field
K, SperK is just the set of all orderings of K. A natural topology is defined,
as in the case of the prime spectrum, making SperK into a Boolean space
and SperA into a spectral space in the sense of [5]; see [4] [9] for details.

The real spectrum of a ring A comes equipped with a certain monoid of
functions Arr. The pair (SperA,Arr) is referred to as the space of signs of
A. We recall briefly the terminology. See [1], [10] and [12] for more details.
Each a ∈ A determines a sign function ã : Sper A → {−1, 0, 1} defined as
follows:

ã(p, P ) :=




1 if a + p > 0 at P,
0 if a ∈ p,
−1 if a + p < 0 at P.

Here, a + p denotes the canonical image of a in A/p ⊆ k(p). The set of sign
functions ã, a ∈ A, forms a monoid under pointwise multiplication: ã·b̃ = ãb.
The space of signs of A is the pair (SperA,Arr) where Arr = {ã : a ∈ A}. If
K is a field, Krr decomposes as K∗

rr∪{0̃} where K∗
rr is a group isomorphic to

the group K∗/
∑

K2∗. The space of orderings of K is the pair (SperK,K∗
rr).

At the same time, there are indications, e.g., in rigid geometry, and in
resolution of singularities via Zariski’s method, that the prime spectrum is
not large enough, even in the classical context: It does not say enough about
the valuation theory of the residue fields. In [6] [7] [13] [14] the valuation
spectrum SpvA is introduced. SpvA consists of pairs (p, v) where p is a
prime ideal of A and v is a valuation on k(p).

Valuations also play an important role in the real case, and important
use is also made of the orderings on the residue field Bv/mv of the valuation
v, where Bv denotes the valuation ring of v, and mv its maximal ideal. One
encounters these objects, for example, in understanding specialization in
SperA, in connection to minimal generation of constructible sets in SperA
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and in the (reduced) theory of quadratic forms over formally real fields.
This suggests that in the real case one should be considering triples (p, v, P )
where p is a real prime, v is a real valuation on k(p) and P is an ordering on
the residue field Bv/mv. (Compare to [13] [14].) We refer to these triples as
residual orderings of A. In the present paper we examine the set consisting
of these objects, with its natural topology, which we call the complete real
spectrum of A. We also define an associated complete space of signs. The
motivation for this study comes from properties of the real holomorphy ring
of a field.

1. Real holomorphy rings

The real holomorphy ring of a formally real field K is

HK = {a ∈ K : ∃ an integer n � 1 such that − n � a � n on SperK}.

H = HK can be described in various other ways [2] [16], and carries lots of
information about the field K. The space of orderings, the real valuations,
the spaces of orderings of the residue fields, the space of real places of K,
can all be “read off” from the space of signs of H.

In more detail: Every prime ideal of H is real. If p is a prime ideal of H
then the local ring Hp is a real valuation ring of K. Conversely, every real
valuation ring of K is of this form, for some unique p. The residue field of Hp

is k(p) := qf(H/p). The space of orderings of this residue field is identified
with the space of support p orderings of H. Consequently, every support
p ordering of H generalizes, via the Baer-Krull Theorem, to a support {0}
ordering of H. SperK is identified with MinSperH. The space of real places
of K (places into the field of real numbers) is identified with MaxSperH.

For any prime q of H, the real holomorphy ring of k(q) is precisely
Hk(q) = H/q. Consequently, everything said above works equally well with
H replaced by H/q. In particular, if p, q are any prime ideals of H with
q ⊆ p, then support p orderings of H generalize to support q orderings of H
via the Baer-Krull theorem applied to the valuation ring (H/q)(p/q) in the
field k(q) with residue field equal to k(p).

This suggests that to have more of this structure available, one should
perhaps be studying spaces of signs of real holomorphy rings of fields rather
than spaces of orderings of fields.

One can also argue a step further, thinking of rings instead of fields. All
rings considered here are commutative with 1. The space of signs of a ring A
carries information about the spaces of orderings of each of the residue fields
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k(p), p a real prime of A, but typically does not carry enough information
concerning the real holomorphy rings of these residue fields.

The real holomorphy ring HA of an arbitrary commutative ring A [3]
[17] has been introduced and has proved to be a useful object, e.g., in
studying the Moment Problem from functional analysis. Actually, there are
two versions in the ring case, the geometric version:

HA = {a ∈ A : ∃ an integer n � 1 such that − n � a � n on SperA},

and the generally smaller arithmetic version:

H ′
A = {a ∈ A : ∃ an integer n � 1 such that n ± a ∈

∑
A2}.

If A is a finitely generated R-algebra with Hom(A, R) compact then, by
Schmüdgen’s Theorem [15], both versions coincide. The same is true if the
elements of 1 +

∑
A2 are invertible in A (not such a drastic assumption

from the point of view of what we are trying to do here). But even with
special assumptions of this sort, HA is not big enough, in general, to carry
good information concerning the valuations on the residue fields of A.

The image of SperA in SperHA under the restriction map SperA →
SperHA is often not dense in SperHA. Consequently, H(HA) is often strictly

smaller than HA. Define Hn
A recursively by Hn

A = H(Hn−1
A

) and set H∞
A =

∩n�1H
n
A. H∞

A is the largest subring B of A satisfying HB = B. H ′
A is better

behaved in this regard, since H ′
(H′

A
) = H(H′

A
) = H ′

A (so, in particular,
H ′

A ⊆ H∞
A ), but H∞

A and H ′
A are generally not equal. In [11] an example

of an R-algebra A is given where H∞
A = A, H ′

A = R. If A is an R-algebra
of finite transcendence degree d (in particular, if A is finitely generated),
then H∞

A = Hd
A = H ′

A. The first equality is proved in [3]. The second (the
so-called Monnier Conjecture) is proved in [17].

We say a ring A is a real holomorphy ring if the following equivalent
conditions hold:

1) HA = A.

2) A/p ⊆ Hk(p) holds for each real prime p of A.

3) A/p ⊆ Bv holds for each real prime p of A and each real valuation v
of k(p).

We say a real holomorphy ring A is complete if, in addition,

4) A/p = Hk(p) holds for each real prime p of A.
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Remark 1.1. — 1) The implications (1) ⇒ (2) ⇒ (3) are trivial. The
implication (3) ⇒ (1) uses the compactness of the real spectrum.

2) In [1] real holomorphy rings are referred to as totally Archimedean
rings.

3) If A/p = Hk(p) then, for any prime q lying over p, A/q = Hk(q).
Consequently, to check that a real holomorphy ring is complete, it suffices
to check that A/p = Hk(p) for each minimal real prime of A.

Example 1.2. —

1) Real holomorphy rings: For any ring A, B = H∞
A and C = H ′

A are
real holomorphy rings. For any ring A such that each element of 1 +

∑
A2

is a unit in A, HA is a holomorphy ring (since HA = H ′
A in this case).

2) Complete real holomorphy rings: The real holomorphy ring of a for-
mally real field and the ring of continuous functions Cont(X, R) for any
compact space X. The next theorem provides additional examples.

Theorem 1.3. — Suppose A is real (i.e., the real nilradical of A is zero).

1. If A is zero dimensional then H = HA is a real holomorphy ring
which is complete.

2. If the space of minimal primes of A is compact and S−1A denotes the
complete ring of quotients of A, then H = HS−1A is a real holomorphy
ring which is complete.

Remark 1.4. —

1) The hypotheses of (1) and (2) of Theorem 1.3 are pretty restrictive.
Still, there are many examples.

2) A finite space is compact. Consequently (2) applies when A has only
finitely many minimal primes, e.g., when A is Noetherian. In this case,

S−1A = k(p1) × . . . × k(pn)

where the pi are the minimal primes of A, and

H = Hk(p1) × . . . × Hk(pn).

3) In general, for complete real holomorphy rings, it would seem that
the space of minimal real primes can be pretty complicated.

– 61 –



D. Gondard, M. Marshall

Proof. — Since A is real, the minimal primes of A are all real. Let pλ,
λ ∈ Λ, be the set of minimal primes of A. By definition, S = A\ ∪λ∈Λ pλ.
Suppose q is a prime ideal of A with q ⊆ ∪λ∈Λpλ. If q � pλ for all λ, then
there exists aλ ∈ q, aλ /∈ pλ, i.e. the open sets D(aλ) cover the space of
minimal primes, where D(a) := {p ∈ SpecA : a /∈ p}. By compactness, we
have finitely many elements ai of A with ai ∈ q and, for each λ, ai /∈ pλ

for some i. Then
∑

a2
i ∈ q,

∑
a2

i /∈ pλ. This contradicts our assumption.
Thus the hypothesis of (2) implies that the only primes of S−1A are those
co! ming from the pλ, so S−1A is zero dimensional. Thus it only remains to
prove (1).

Thus we assume now that A is zero dimensional. Note that S = the
group of units of A in this case, so S−1A = A. Since all the primes of
A are real, 1 +

∑
A2 ⊆ S. It follows that H is a real holomorphy ring.

Since A is zero dimensional, SpecA is a Boolean space and A is the ring of
global sections of a sheaf on SpecA with the A/p = k(p), p ∈ SpecA, as
the stalks. If A = A1 × A2 then clearly H = H1 × H2, where Hi = HAi .
Consequently, H is also the ring of global sections of a sheaf on SpecA with
the H/(H ∩ p) as stalks. If q is a prime ideal of H, a compactness argument
shows that H ∩ p ⊆ q for some prime p of A. (Otherwise we would have
finitely many bi ∈ H with bi /∈ q but for each prime p of A, bi ∈ p for some
i. Then

∏
bi /∈ q, but

∏
bi lies in all primes of A so is zero.) Note that

k(H ∩ p) = k(p). (Use the identity a/b = a
1+a2+b2 / b

1+a2+b2 .)

We are reduced to showing that H/(H ∩ p) = Hk(p). One inclusion is
clear. For the other, suppose a, b ∈ A, b /∈ p, and a+p

b+p
∈ k(p) is bounded. By

Lemma 2.1 below we can assume nb2 −a2 ∈
∑

A2 for some integer n � 1. p

lies in the clopen set C := D(b) in SpecA. Let D = Z(b) := {q ∈ SpecA :
b ∈ q}, the complement of C in SpecA. The decomposition SpecA = C ∪D
allows us to produce an element e ∈ H which agrees with a/b at p, namely
e = a/b on C, e = 0 on D. �

What are the special properties of the space of signs of a complete real
holomorphy ring A which distinguishes it from the space of signs of an
arbitrary ring? Part of the answer is that, for these rings, specialization is
very well-behaved. The following result is clear from properties of the real
holomorphy ring of a field noted at the beginning of the section.

Theorem 1.5. — Suppose A is a complete real holomorphy ring and p,
q are real primes of A with p ⊆ q. Then:

1. (A/p)(q/p) is a real valuation ring of k(p).
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2. The orderings with support p which specialize to an ordering with
support q are those compatible with the valuation ring (A/p)(q/p). The
specialization of any such ordering is determined by the Baer-Krull
Theorem.

3. Every ordering with support q generalizes to an ordering with support
p. Its set of generalizations is determined by the Baer-Krull Theorem.

4. The real primes contained in a given real prime form a chain with
respect to inclusion.

5. If the real radical of A is zero (so the minimal primes of A are real)
then all primes of A are real.

It is important to note, again since we are assuming that A is complete,
that every real valuation v of k(p) arises via this process: mv ∩A/p is of the
form q/p for some (real) prime q. Consequently Bv = (A/p)(q/p), and the
residue field of Bv is k(q).

The space of maximal specializations of orderings with support p is
homeomorphic to Mk(p) := the space of real places of k(p). If p ⊆ q, then
Mk(q) is naturally identified with a subspace in Mk(p).

⋃
p
Mk(p) (modulo

these identifications) is identified with MaxSperA = Hom(A, R).

By the Stone-Weierstrass approximation property, it is possible to sep-
arate disjoint closed sets in the maximal real spectrum using elements of
A: Given disjoint closed C,D in MaxSperA, there exists ã ∈ Arr such that
ã = 1 on C, ã = −1 on D.

In the case A = HK , the real holomorphy ring of a field K, there is a
unique minimal real prime. In the general case, a complete real holomorphy
ring may have a large number of minimal real primes. Is it possible to say
anything about the space of minimal real primes?

It would be nice to have a list of abstract properties of the space of signs
of a complete real holomorphy ring.

2. The complete real spectrum of a ring

Is it possible to think of the space of signs of A as being part of some big
“super object” associated to A which takes into account all real valuations
on the k(p) and all the orderings on the corresponding residue fields of k(p)
into account?

It seems that, in a certain sense at least, this is in fact the case. We define
a big object SpercA which we call the complete real spectrum of A. There are
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various connections between this and the valuation spectra considered in [6]
[7] [13] [14]. Roughly speaking, the complete real spectrum is related to the
valuation spectrum in the same way that the real spectrum is related to the
prime spectrum. A is any commutative ring with 1. We define a topology
on SpercA and prove that SpercA, with this topology, is a spectral space.
SpercA gives rise to a complete space of signs (SpercA,Ac

rr), but this is not
a space of signs in the usual sense. This should not be viewed as a drawback.
Rather, SpercA should be viewed as a new sort of structure, interesting in
its own right.

In Sect. 8.6 of [10] another sort of attempt is made to overcome short-
comings of the real spectrum of A by introducing the space of real places
of A, which we denote here by MA. By definition, MA consists of pairs
(p, λ) where p is a real prime of A and λ is a place from the residue field
k(p) into the field of real numbers. This takes care of the real places in a
satisfactory way but does not keep track of all real valuations on the k(p)
and all the orderings on the corresponding residue fields of k(p). Still, the
MA construction in [10] is closely related to the complete real spectrum
construction described below.

The elements of SpercA, which we refer to as residual orderings of A,
are triples (p, v, P ) where p is a real prime of A, v is a real valuation (more
precisely, an equivalence class of real valuations) on the residue field k(p) and
P is an ordering on the residue field Bv/mv of v. Here, Bv ⊆ k(p) denotes
the valuation ring of v and mv its maximal ideal. Equivalently, elements of
SpercA are pairs (p, Q) where p is a real prime of A and Q is an element of
SperHk(p). The pair (p, v) will be referred to as the support of (p, v, P ).

There are natural maps

(p, v, P ) �→ p, (p, v, P ) �→ (p, v)

from SpercA into SpecA (the prime spectrum of A) and from SpercA into
SpvA (the valuation spectrum of A [6] [7]), and a natural map

(p, P ) �→ (p, 0, P )

(where 0 denotes the trivial valuation on k(p)) from SperA into SpercA.
There is also the specialization map

(p, Q) �→ (p, Q′)

from SpercA onto the space of real places M = MA defined in [10]. Here, Q′

denotes the unique maximal specialization of Q in SperHk(p); also see [2].
The composite map SperA → MA is just the P-structure map Λ considered
in [10].
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Note: The complete real spectrum of a formally real field K is naturally
identified with the real spectrum of its real holomorphy ring HK . More gen-
erally, if A is real and zero dimensional, then SpercA is naturally identified
with SperHA.

Subbasic open sets in SpercA are defined using pairs of elements of A.
For (a, b) ∈ A × A, we define:

U(a, b) = {(p, v, P ) ∈ SpercA : v(a) = v(b) �= ∞,
a + p

b + p
+ mv > 0 at P}.

Here, v(a) is standard shorthand notation for v(a + p).

For the alternate description of elements of SpercA as pairs (p, Q), Q an
ordering of Hk(p), it is convenient to consider the set

SA := {(a, b) ∈ A × A : ∃ an integer n � 1 such that nb2 − a2 ∈
∑

A2}.

For any (a, b) ∈ A×A, (ab, a2 + b2) ∈ SA and U(a, b) = U(ab, a2 + b2). For
(a, b) ∈ SA,

U(a, b) = {(p, Q) ∈ SpercA : b /∈ p,
a + p

b + p
> 0 at Q}.

Note that (a, b) ∈ SA, b /∈ p ⇒ a+p

b+p
∈ Hk(p). For our purposes it is important

to know that every element of Hk(p) is represented this way.

Lemma 2.1. — For each s ∈ Hk(p), there exists (a, b) ∈ SA with b /∈ p

and a+p

b+p
= s.

Note: An essentially equivalent statement is: The natural surjection
Ap → k(p) maps HAp

onto Hk(p). This holds for any local ring with for-
mally real residue field.

Proof. — Choose a positive integer n so that n − s2 =
∑

s2
i , si ∈ k(p).

Choose a common denominator b+p for s and the si. Clearing denominators
yields

nb2 − a2 =
∑

a2
i + r, r ∈ p, s =

a + p

b + p
, si =

ai + p

b + p
.

Multiplying each side by b2, subtracting rb2 from each side, and adding r2

4n
to each side yields

n(b2 − r

2n
)2 − a2b2 =

∑
a2

i b
2 +

r2

4n
.

Take a1 = ab, b1 = b2 − r
2n . Then (a1, b1) ∈ SA and a1+p

b1+p
= s. �
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We also use the following elementary facts:

Lemma 2.2. — Suppose (a, b), (c, d) ∈ SA. Then (ac, bd) ∈ SA and (ad+
bc, bd) ∈ SA.

Proof. — Suppose nb2 − a2 = s, md2 − c2 = t, s, t ∈
∑

A2. Then

mnb2d2 − a2c2 = (a2 + s)(c2 + t) − a2c2 = a2t + c2s + st ∈
∑

A2.

Also

(1 + n)(1 + m)b2d2 = b2d2 + nb2d2 + mb2d2 + mnb2d2

= b2d2 + (a2 + s)d2 + (c2 + t)b2 + (a2 + s)(c2 + t)
= (ad + bc)2 + (ac − bd)2 + b2t + d2s + a2t + c2s + st,

so (1 + n)(1 + m)b2d2 − (ad + bc)2 ∈
∑

A2 as required. �

Theorem 2.3. — SpercA is a spectral space.

Proof. — The method of proof is standard [9] [7]. One must show that
SpercA, endowed with the (finer) patch topology, is a Boolean space. One
is reduced to showing that the map

Ψ : SpercA → {0, 1}SA , x �→ fx, where fx(a, b) :=
{

1 if x ∈ U(a, b),
0 otherwise.

is injective, and that the image of Ψ is closed, where {0, 1}SA is endowed
with the product topology.

Injectivity of Ψ: Let x = (p, Q). Observe that for a ∈ A,

fx(a, a) =
{

0 if a ∈ p,
1 if a /∈ p.

Thus p = {a ∈ A : fx(a, a) = 0}. Now suppose (a, b) ∈ SA, b /∈ p, so
a+p

b+p
∈ Hk(p). Then

a + p

b + p
∈ Q ⇔ fx(−a, b) = 0.

It follows, using Lemma 2.1, that

Q = {a + p

b + p
: (a, b) ∈ SA, fx(b, b) = 1, fx(−a, b) = 0}.

– 66 –



Real holomorphy rings and the complete real spectrum

Im(Ψ) is closed: Let f : SA → {0, 1} be in the closure of Im(Ψ). Thus,
for each finite set of points in SA, there exists g ∈ Im(Ψ) agreeing with f
on this finite set. Let

p = {a ∈ A : f(a, a) = 0}.

On checks that 0 ∈ p, a, b ∈ p ⇒ a + b ∈ p, a ∈ p, b ∈ A ⇒ ab ∈ p, 1 /∈ p,
and ab ∈ p ⇒ a ∈ p or b ∈ p. The argument in each case is the same.
E.g., to show closure under addition, pick a, b ∈ p. Pick g ∈ Im(Ψ) which
agrees with f at (a, a), (b, b), and (a + b, a + b). Thus g(a, a) = f(a, a) = 0,
g(b, b) = f(b, b) = 0, so f(a+ b, a+ b) = g(a+ b, a+ b) = 0. This proves that
p is a prime ideal. Now let

Q = {a + p

b + p
: f(b, b) = 1, f(−a, b) = 0}.

We show that Q is an ordering of Hk(p). The argument is similar to the
above. We show closure of Q under multiplication: Pick (ai, bi) ∈ SA, bi /∈ p,
and suppose ai+p

bi+p
∈ Q, i = 1, 2. Pick g ∈ Im(Ψ), say g = Ψ(p′, Q′), agreeing

with f at (bi, bi) and (−ai, bi), i = 1, 2 and at (a1a2, b1b2). Then bi /∈ p′,
g(−ai, bi) = f(−ai, bi) = 0 so ai+p

bi+p
∈ Q′, i = 1, 2. Since Q′ is closed under

multiplication, this implies f(−a1a2, b1b2) = g(−a1a2, b1b2) = 0. The other
properties of an ordering are checked in a similar way. Finally, one checks
that f = Ψ(p, Q). �

It is natural to mimic the space of signs construction outlined in the
introduction: Consider the sign functions

˜(a, b) : SpercA → {−1, 0, 1},

(a, b) ∈ SA, defined by

˜(a, b)(p, Q) :=




1 if
a + p

b + p
> 0 at Q,

−1 if
a + p

b + p
< 0 at Q,

0 if
a + p

b + p
= 0 at Q.

We leave ˜(a, b) undefined at α = (p, Q) if b ∈ p. Note that ˜(a, b) · ˜(c, d) =˜(ac, bd) at all points where both sides are defined. The sign functions ˜(a, b),
(a, b) ∈ SA, form a semigroup. We denote this semigroup by Ac

rr, i.e.

Ac
rr = { ˜(a, b) : (a, b) ∈ SA}.
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We refer to the pair (SpercA,Ac
rr) as the complete space of signs of A. It is

not a space of signs in the usual sense, but has interesting structure which
needs to be investigated further.

Note: The complete space of signs of a formally real field K is precisely
the regular space of signs of HK .

For future use, we also define ˜(a, b) for (a, b) ∈ A × A, (a, b) /∈ SA. For
(a, b) arbitrary in A × A, we define:

˜(a, b)(p, v, P ) :=




1 if v(a) = v(b) �= ∞ and
a + p

b + p
+ mv > 0 at P

−1 if v(a) = v(b) �= ∞ and
a + p

b + p
+ mv < 0 at P

0 if v(a) > v(b) �= ∞.

Note: For (a, b) ∈ SA, this coincides with the previous definition.

3. Specialization and separation

As is typical for a spectral space, SpercA is usually not Hausdorff (al-
though it is Hausdorff in its patch topology). It has a natural specialization
relation: For α, β ∈ SpercA, α specializes β (equivalently, that β generalizes
α), denoted β � α (equivalently α � β), if α lies in the topological closure
of the singleton set {β}. In view of the definition of the topology on SpercA,
this is equivalent to saying:

∀(a, b) ∈ A × A, ˜(a, b)(α) > 0 ⇒ ˜(a, b)(β) > 0.

We distinguish two basic types. (Compare to [6] [7]):

Type I. Suppose α = (p, v, P ) and q is a prime ideal of A containing p

such that
∀a, b ∈ A a ∈ q, b /∈ q ⇒ v(a) > v(b). (3.1)

Consider the local ring (A/p)(q/p) in k(p) with residue field k(q). Denote by
v′ the valuation on k(q) defined by

Bv′ = {a + q

b + q
: b /∈ q, v(a) � v(b)},

i.e, Bv′ is the image of (A/p)(q/p) ∩ Bv under the natural map a+p

b+p
�→ a+q

b+q

from (A/p)(q/p) to k(q). Bv′/mv′ is naturally embedded in Bv/mv via

a + q

b + q
+ mv′ �→ a + p

b + p
+ mv.
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Denote by P ′ the ordering on Bv′/mv′ obtained by restricting P to Bv′/mv′ .
Then β = (q, v′, P ′) is a specialization of α, called a type I specialization
of α. Each prime ideal qλ of A containing p and satisfying (3.1) determines
an upper cut {v(a) : a ∈ qλ} in v(A/p). The set of such upper cuts is
totally ordered by inclusion. Consequently, the set of such prime ideals is
also totally ordered by inclusion with largest element q = ∪λqλ.

Type II. Suppose α = (p, v, P ), w is a valuation on the field k(p) with
Bw ⊆ Bv and such that P is compatible with the valuation ring Bw/mv

in Bv/mv and Q is the pushdown of P to Bw/mw. Then γ = (p, w,Q) is a
specialization of α, called a type II specialization of α. Type II specializations
of α form a chain with maximal element. The maximal type II specialization
of α is obtained by taking w so that Bw/mv is the convex hull of Z with
respect to the ordering P in the field Bv/mv.

We analyze specialization in more detail. Suppose α1 � α2, αi = (pi, vi, Pi),
i = 1, 2. Note that:

1) p1 ⊆ p2. (If a ∈ p1, a /∈ p2, then ˜(a, a) is positive at α2, zero at α1.)

2) v2(a) � v2(b) �= ∞ ⇒ v1(a) � v1(b). (If v2(a) > v2(b) �= ∞ and
v1(a) < v1(b) then ˜(b + a, b − a) is positive at α2, negative at α1. If v2(a) =
v2(b) �= ∞ and v1(a) < v1(b) then, replacing a by −a if necessary, ˜(a, b) is
positive at α2, zero at α1.)

Conditions (1) and (2) combined are just saying that (p1, v1) � (p2, v2)
as elements of SpvA. From (2) it follows that:

3) If a ∈ p2, b /∈ p2, then v1(a) � v1(b).

Theorem 3.1. — Suppose α1 � α2. Then

1. There is a unique intermediate β such that α1 � β is maximal type
II. β � α2 is type I.

2. There is a unique intermediate γ such that α1 � γ is maximal type
I. Either γ � α2 is of type II or the valuation of γ is trivial.

3. There is a unique intermediate δ with α1 � δ minimal of type II such
that there exists ζ, δ � ζ � α2, with δ � ζ of type I and ζ � α2 of
type II. If δ �= α1, then the valuation of ζ is trivial.

Proof. — Let αi = (pi, vi, Pi), i = 1, 2.

(1) Choose v0 so that Bv0 is the smallest valuation ring of Bv1 such that
Bv0/mv1 is compatible with P1. Choose v so that Bv = Bv0 ·λ−1(Bv2) where
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λ : (A/p1)(p2/p1) → k(p2) denotes the natural homomorphism. Bv ⊆ Bv1 .
β = (p1, v, P ) where P denotes the pushdown of P1 to Bv/mv. β � α2. It
remains to show that β � α2 is type I. If this is not the case, then we would
have

a + p1

b + p1
=

c + p1

d + p1
· x

with b, d /∈ p2, v(a) � v(b), v2(a) < v2(b), v2(c) � v2(d), v0(x) � 0. Thus
v(a) = v(b) and v(c) � v(d). Also, v0(bc) � v0(ad). We can assume a

b , c
d and

x are positive at P . Thus there exists a positive integer n such that nbc−ad
bc =

n− ad
bc and nb!c+ad

bc = n+ ad
bc are strictly positive at P . Consequently, nbc−ad

nbc+ad
is strictly positive at P and strictly negative at P2, a contradiction.

(2) Take q = ∪λqλ where {qλ} is the set (chain) of intermediate primes
p1 ⊆ qλ ⊆ p2 satisfying v1(a) > v1(b) for all a ∈ qλ, b /∈ qλ. q is prime
and v1(a) > v1(b) holds for all a ∈ q, b /∈ q. γ = (q, w,Q) is the type
I specialization of α1 determined by q. If q = p2 then the specialization
γ � α2 is type II. Suppose q �= p2. We know that w(a) � w(b) holds for
any a ∈ p2, b /∈ p2. Thus w(a0) = w(b0) holds for some a0 ∈ p2, b0 /∈ p2.
Then, for any c ∈ A, a0c ∈ p2, so w(a0c) � w(b0) = w(a0), so w(c) � 0.
If w(b0) > 0 then w(b2

0) > w(b0) = w(a0). since b2
0 /∈ p2, a0 ∈ p2, this

is a contradiction. Thus w(b0) = 0. Thus, for any c ∈ A, if c /∈ p2, then
w(c) � w(a0) = w(b0) = 0. This proves that w(c) = 0 for all c ∈ A, c /∈ p2.
It follows that (A/q)(p2/q) ⊆ Bw so the prime ideal q ⊆ q′ ⊆ p2 defined by
q′/q = mw ∩ (A/q) defines a type I specialization of γ. Thus q′ = q. Thus w
is the trivial valuation in this case.

(3) If v1(a) > v1(b) holds for all a ∈ p1, b /∈ p1, then δ = α1. Otherwise,
arguing as above, (A/p1)(p2/p1) ⊆ Bv1 . In this case take δ = (p1, v

′, P ′)
where Bv′ = (A/p1)(p2/p1) · Bv0 and P ′ is the pushdown of P1 to Bv′/mv′ .
We claim v′(a) > v′(b) holds for all a ∈ p2, b /∈ p2. Otherwise v′(a) = v′(b)
for some such a, b. Then

b

a
=

c

d
· x

for some d /∈ p2, v0(x) � 0. Thus v0( bd
ac ) � 0. We can assume bd

ac is positive
at P1. There exists a positive integer n such that n − bd

ac is positive at P1.
Then nac−bd

nac+bd is positive at P1, and negative at P2, a contradiction. This
proves the claim. It follows that there is a type I specialization ζ of δ such
that α2 is a type II specialization of ζ. At the same time, the valuation of
ζ is trivial, so ζ has no type II generalization. It follows that δ is minimal
with the desired property. �
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As a consequence of the above argument we also see:

Corollary 3.2. — If α1 specializes to α2 = (p2, v2, P2) and also to
α′

2 = (p2, v2, P
′
2), then P2 = P ′

2, i.e., α2 = α′
2.

Given α1, α2 in SperA, with α1 � α2, α2 � α1, it is well-known that
there exists a ∈ A which separates α1 and α2 in the sense that ã is strictly
positive at one of α1, α2 and strictly negative at the other [9]. This fails in
SpercA, but only when α1 and α2 are related in a particular way:

Theorem 3.3. — Suppose αi ∈ SpercA, i = 1, 2, α1 � α2, α2 � α1.
The following are equivalent:

1. There is no (a, b) ∈ A×A such that ˜(a, b)(α1) > 0 and ˜(a, b)(α2) < 0.

2. Either p1 ⊆ p2 or p2 ⊆ p1. If p1 ⊆ p2 then there exists a type I
specialization α = (p2, v, P ) of α1 which is at the same time a type
II specialization of α2. If p2 ⊆ p1 the same holds, but with the roles
of α1, α2 interchanged.

Proof. —

(1) ⇒ (2). Let αi = (pi, vi, Pi), i = 1, 2. Suppose a ∈ p1, a /∈ p2, b ∈ p2,
b /∈ p1. Then (a + b, a − b) is strictly positive at α1 and strictly negative
at α2 contradicting our assumption. Thus either p1 ⊆ p2 or p2 ⊆ p1, say
p1 ⊆ p2. Since α1 � α2 there exists (a, b) with ˜(a, b)(α2) �= 0, ˜(a, b)(α1) = 0.
Since α2 � α1 there exists (c, d) with ˜(c, d)(α1) �= 0, ˜(c, d)(α2) = 0. Thus
v2(a) = v2(b) �= ∞, ab /∈ p1 (since ab /∈ p2) and v1(a) �= v1(b). Also
v1(c) = v1(d) �= ∞ and either cd ∈ p2 or cd /∈ p2 and v2(c) �= v2(d). Suppose
cd /∈ p2. Interchanging a and b and c and d if necessary, we can assume
v1(a) < v1(b) and v2(c) < v2(d). Then (ad − bc, ad + bc) separates α1, α2.
Thus cd ∈ p2. In particular, p1 is properly contained in p2. This exact same
argument can be used to prove the following:

Claim 1: If c, d are not in p2 and v1(c) = v1(d) then v2(c) = v2(d).

Claim 2: If c, d ∈ A, d /∈ p2, and v1(c) � v1(d) then v2(c) � v2(d).
This is clear by Claim 1 if v1(c) = v1(d). Suppose v1(c) > v1(d). Then
v1(c± d) = v1(d). By Claim 1 this implies v2(c± d) = v2(d) which, in turn,
implies v2(c) � v2(d).

Claim 3: If c ∈ p2, d /∈ p2, then v1(c) > v1(d). Otherwise v1(c) � v1(d)
and consequently v1(ac) < v1(bd). Then the pair (ac+ bd, ac− bd) separates
α1 and α2.
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Claim 3 allows us to construct the type I specialization α = (p2, v,Q)
of α1. Suppose now that c, d ∈ A, d /∈ p2 satisfy v(c) � v(d). Using Claim
2 together with the definition of v this yields v2(c) � v2(d). This proves
Bv ⊆ Bv2 . Using the fact that α1 and α2 cannot be separated, we see that
P2 is compatible with Bv/mv2 and pushes down to the ordering Q in Bv/mv.
Thus α is a type II specialization of α2.

(2) ⇒ (1). Suppose ˜(a, b)(α1) > 0, ˜(a, b)(α2) < 0. Then a, b /∈ p2, v2(a) =
v2(b), and v1(a) = v1(b), a+p2

b+p2
+ mv2 < 0 at P2, and a+p1

b+p1
+ mv1 > 0 at P1.

Thus v(a) = v(b) and a+p

b+p
> 0 at Q. Since P2 pushes down to Q, this

contradicts a+p2
b+p2

> 0 at P2. �

Motivated by this and the case of the real holomorphy ring of a formally
real field, we examine a certain subspace of SpercA. We define S̃per

c
A :=

the set of elements of SpercA which are maximal with respect to type I
specialization. We also denote by s : SpercA → S̃per

c
A the natural map

associating to each α in SpercA, its unique maximal type I specialization.

Example: Suppose A = K, a formally real field. Then S̃per
c
K = SpercK

which is naturally identified with SperH, where H = HK .

Corollary 3.4. — If α1, α2 ∈ S̃per
c
A satisfy α1 � α2, α2 � α1, then

there exists (a, b) in A × A separating α1 and α2.

Corollary 3.5. — S̃per
c
A is completely normal. For each α ∈ S̃per

c
A,

the specializations of α in S̃per
c
A form a chain.

Note: The map (p, P ) �→ (p, 0, P ) identifies SperA with the elements of
SpercA which are minimal with respect to type II generalization. Observe
that each such (p, 0, P ) is also maximal with respect to type I specialization.

Theorem 3.6. — The following are equivalent:

1. A is a real holomorphy ring.

2. The natural embedding (p, P ) �→ (p, 0, P ) of SperA into S̃per
c
A is

surjective, i.e., a homeomorphism.

Proof. —

(1) ⇒ (2). Let α = (p, v, P ) be an arbitrary element of SpercA. Since
A/p ⊆ Bv one checks easily that the maximal type I extension of α has
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the form α′ = (q, v′, P ′) where q is defined by q/p := mv ∩ A/p. But then
(A/p)(q/p) ∩ Bv = (A/p)(q/p), i.e., Bv′ = k(q), i.e., v′ = 0.

(2) ⇒ (1). Let p be a real prime and let v be a real valuation ring of
k(p). Let α = (p, v, P ) where P is some fixed ordering on Bv/mv. By (2),
α has a type I specialization of the form (q, v′, P ′) with v′ = 0. We have
the natural ring homomorphism from (A/p)(q/p) ∩Bv onto Bv′ = k(q) with
kernel (q/p)(q/p). A standard diagram chase shows that (A/p)(q/p) ∩ Bv =
(A/p)(q/p). This proves A/p ⊆ Bv. �

Remark 3.7. — Consider the pair (S̃per
c
A, Ãc

rr) where Ãc
rr denotes the

set of restrictions of elements of Ac
rr to S̃per

c
A. Is S̃per

c
A a spectral space?

Is (S̃per
c
A, Ãc

rr) a space of signs? When HA = A, (S̃per
c
A, Ãc

rr) is identified
with (SperA,Arr), so, in this case at least, the answer to both questions is
‘yes’.

One can also consider the subspace of SpercA consisting of elements
which are maximal with respect to type II specialization. This is precisely
the space of real places MA considered in [10].
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Springer (2002).

[9] Lam (T.-Y.). — An introduction to real algebra, Rky. Mtn. J. Math. 14, p. 767-
814 (1984).

[10] Marshall (M.). — Spaces of orderings and abstract real spectra, Lecture Notes
in Mathematics 1636, Springer (1996).

[11] Marshall (M.). — A real holomorphy ring without the Schmüdgen property,
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