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On the structure of homeomorphisms
of the open annulus

Lucien Guillou(1)

Dedicated to Jose Maria Montesinos on the occasion
of his 65th birthday

ABSTRACT. — Let h be a without fixed point lift to the plane of a home-
omorphism of the open annulus isotopic to the identity and without wan-
dering point. We show that h admits a h-invariant dense open set O on
which it is conjugate to a translation and we study the action of h on the
compactly connected components of the closed and without interior set
R2 \O.

RÉSUMÉ. — Soit h un relevé au plan sans point fixe d’un homéomorphisme
de l’anneau ouvert isotope à l’identité et sans point errant. Nous montrons
que h admet un ouvert dense et h-invariant O sur lequel il est conjugué à
une translation et nous étudions l’action de h sur les composantes com-
pactement connexes du fermé d’intérieur vide R2 \O.

1. Introduction

1.1. In the paper [BCL] the authors consider homeomorphisms H of the
open annulus S1 ×R isotopic to the identity and preserving the Lebesgue
measure. Given such a homeomorphism and a lift h : R2 → R2 to the
universal cover they show (in their proposition 3.1) that if the closure of the
rotation set of h is contained in ]0,+∞[, then h is conjugate to a translation.
(Here the rotation set refers to a definition, adapted to this non compact
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situation, proposed by Le Calvez [LC] and using only recurrent points of H
in its construction).

They remark that this statement is sharp, and give an example of a
measure preserving homeomorphism H of S1 ×R isotopic to the identity,
such that, for some lift h of H, the rotation set of h is included in ]0,+∞[,
but h is not conjugate to a translation (see 1.2 below).

In the present note we wish to investigate the structure of such home-
omorphims. More generally, we will consider a homeomorphism H of the
annulus S1 × R isotopic to the identity, without wandering point which
admits a lift h to R2 without fixed point. We will show that some of the
features of example 1.2 are indeed preserved in that general situation.

We will prove:

A) There exists an h-invariant dense open set homeomorphic to R2,
O ⊂ R2, such that h restricted to O is conjugate to a translation. (See
paragraph 2).

B) Let W = R2 \O which is a closed subset with no interior in R2. We
have:

– B1) No closed compactly connected component (cf. 3.1 below) of W
is invariant under h. (Cf. Prop. 3.4).

– B2) We now assume that the compactly connected components of W
are closed. Then for every such component C, if X = lim inf hn(C),

either X is empty (that is hn(C) → ∞, meaning that, for every compact
K ⊂ R2 there exists an integer n(K) such that hn(C)

⋂
K = ∅ for n �

n(K))

or it is not empty and no point of X is accessible from R2 \⋃
n∈Z h

n(C).
(Cf. Prop. 3.10).

1.2. The Le Roux example [BCL, Appendix A]:

We will describe the lift h of this example to R2. Let Ik be the vertical

segment {( 1

2k
, y)

∣∣y � |k|} and A be
⋃
k∈Z\{0} Ik and let W =

⋃
n∈Z T

n(A)

where T (x, y) = (x + 1, y). Then R2 \W is homeomorphic to R2 and can
be foliated by lines equivariantely with respect to T . The homeomorphism
h is choosen to act equivariantely, without fixed point, preserving each line
of the foliation and satisfying h(Ik) = Ik−1 for k 
= 0, 1. On each leaf of
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the foliation, h is equivariantly conjugate to a translation hence h preserves
measures without atoms and charging the open sets. On S1 × R seen as
S2 minus the two poles, H preserves such a measure which is finite. That
measure is nothing but the Lebesgue measure up to conjugation thanks to
a classical result of Oxtoby and Ulam.

To see that h is not conjugate to a translation notice that the compact
segment going from x0 = (− 1

2 , 1) to its translate T (x0) = ( 1
2 , 1) has to meet

all its images by all iterates of h since W is h-invariant.

We owe to P. Le Calvez the remark that this example can also be de-
scribed without any reference to the Oxtoby-Ulam theorem. Consider the
part of the phase space (which is homeomorphic to S1 × R) of the free
undamped pendulum above the upper separatrix: it is homeomorphic to
S1× [0,+∞[. We now focus on the time 1 of the corresponding autonomous
hamiltonian and on an orbit of this diffeomorphism on the separatrix. Fold-
ing each complementary interval of this orbit on the separatrix and iden-
tifying all points of the orbit and the equilibrium point of the separatrix
to a single point, we get an example conjugate to the preceding one after
deleting that single point.

Acknowledgement. — Some arguments of this paper can be traced
back to an old article of T. Homma and H. Kinoshita [HK], which makes
for a hard reading but a rewarding one. Many thanks to Patrice Le Calvez
and Alexis Marin for careful readings of a first version of this paper.

2. Brouwer homeomorphisms

Homeomorphisms of the plane preserving orientation and without fixed
point are called Brouwer homeomorphisms (see [G1] for more on these).
These homeomorphisms have only wandering points and more generally
satisfy the following particular version of Franks’ lemma (in a reformulation
due to Le Roux [LR1, Lemma 7]). Recall first that a subset A of R2 is free
if h(A)

⋂
A = ∅.

Lemma 2.1. — Let U and V be two free connected open sets.Then the
subset of integers such that hn(U)

⋂
V 
= ∅ is an interval of Z.

Proof. — The usual formulation of this lemma concerns the case where U
and V are open discs. To prove the present lemma from this case, suppose
there exists k < n < m such that hk(U)

⋂
V 
= ∅, hn(U)

⋂
V = ∅ and

hm(U)
⋂
V 
= ∅. Let u1 ∈ U such that v1 = hk(u1) ∈ V and u2 ∈ U such

that v2 = hm(u2) ∈ V and let D and D′ be discs in U and V respectively
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such that u1, u2 ∈ D and v1, v2 ∈ D′. Then hk(D)
⋂
D′ 
= ∅, hn(D)

⋂
D′ = ∅

and hm(D)
⋂
D′ 
= ∅ in contradiction to Franks’ lemma. �

A Brouwer line for a Brouwer homeomorphism h is a properly embed-
ded free line l such that l separates h−1(l) and h(l).We will start with the
following result from [G2] .

Theorem 2.2. — Let H : S1 × R → S1 × R be a homeomorphism
isotopic to the identity such that :

– H admits a fixed point free lift h : R2 → R2.

– H does not have any wandering point.

Then there exists a properly embedded line in S1×R joining one end of
the annulus to the other which lifts in R2 to a Brouwer line.

Notice that such a Brouwer line projects properly and onto on {0} ×R
(and also, a properly embedded line in R2 which projects properly and onto
on {0} × R is a Brouwer line if it is free, that is, the requirement that l
separates h−1(l) and h(l) is automatically satisfied).

Given any Brouwer line l, if we let U be the open region between l
and h(l), then the set O =

⋃
n∈Z h

n(ClU) is homeomorphic to R2 and
the restriction of h to O is conjugate to a translation.Therefore to prove
statement A of the introduction, it is enough to prove that if the Brouwer
homeomorphism h is a lift of a homeomorphismH of the open annulus with-
out wandering point, then R2 \O has no interior for a convenient choice of
Brouwer line l. To this end, we choose a Brouwer line l as given by Theorem
2.2 that we orient so that l induces by projection the usual orientation on
{0} × R. The following Lemma is then enough to conclude the proof of
statement A (this lemma is an extension of the lemma in Winkelnkemper
[W]).

Lemma 2.3. — Let Bn (resp. B′n) be the component of R2 \ hn(l) to
the right (resp. to the left) of hn(l). Then the closed h-invariant set W =⋂+∞
n=−∞Bn (resp. W ′ =

⋂+∞
n=−∞B

′
n) has no interior.

Proof. — Exchanging h and h−1 if necessary, we can suppose h(l) on
the right of l. Suppose U ⊂ W is an open subset which we can choose
small enough to be free and projecting homeomorphically on S1 ×R; since
U ⊂ W , h−n(U) lies on the right of l for all n � 0. Given the properties of
l, there is a m > 0 such that U lies on the left of Tm(l), then h−n(U) lies on
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the left of h−n(Tm(l)) = Tm(h−n(l)) which is on the left of Tm(l) for n > 0.
So that all h−n(U), n � 0, lie on the left of Tm(l) and on the right of l.
There are only a finite number of translates of U between l and Tm(l), say
U = U1, U2, . . . , Uk and each one is wandering. Since H has no wandering
point on S1 × R, there exists n1 > 0 such that h−n1(U1) meets some Ui,
say Uj(1). Let V1 = h−n1(U1)

⋂
Uj(1). There exists also n2 > 0 such that

h−n2(V1) meets one of its translates Vj(2) ⊂ Ui2 . Let V2 = h−n2(V1)
⋂
Vj(2).

Continuing in that way we find a sequence V1, V2, . . . of non empty sets each
Vi being contained in some Uj(i), 1 � j(i) � k. We must have j(i) = j(i′)
for some i and i′, i < i′. Then, since Vi′ ⊂ h−p(Vi) for p = ni+1 + . . .+ ni′ ,
we have Uj(i′)

⋂
h−p(Uj(i)) 
= ∅ contradicting the freeness of Uj(i). �

3. Compactly connected components

In this paragraph we consider any Brouwer homeomorphism h and an
associated oriented Brouwer line l such that W =

⋂+∞
n=−∞Bn and W ′ =⋂+∞

n=−∞B
′
n have no interior (where as above Bn (resp. B′n) is the component

of R2 \ hn(l) to the right (resp. to the left) of hn(l)).

Notice that the sets W and W ′ are disjoints, that the invariant set
O = R2 \ (W

⋃
W ′) is homeomorphic to R2 and that on this set h is

conjugate to a translation. Similar considerations can be applied to each
one of W and W ′ and we will only describe those pertaining to W .

The set W is generally not connected. It is also non-compact (since it is
invariant and points are wandering under h) and we will have to consider its
compactly connected components. Let us recall (see [Moore, page 76] and
also [LR2, Définition 9.1])

Definition 3.1. — A space Z is compactly connected if any two points
in Z are contained in a subcontinuum of Z. Distinct maximal compactly
connected subsets of a space X are disjoint and are called the compactly
connected components of X; these components fill in X. Notice that these
compactly connected components can be non closed.

Lemma 3.2. — The compactly connected components of W are unboun-
ded.

Proof. — We work in the Alexandroff compactification of R2, that is
R2

⋃{∞} ∼= S2. First, W
⋃{∞} is compact and connected as the decreas-

ing intersection of the compact connected Bn
⋃{∞}. Suppose now that W

admits a compactly connected component C contained in some open ball
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B(0, R). Let then C̃ be the component of W
⋂
B(0, R) which contains C.

If AdhC̃ ⊂ B(0, R) then AdhC̃ = C̃ is connected and compact so it is a
connected compact component of W . As such, it is the intersection of the
open and closed subsets of W which contain C̃ [B, II §4.4], and there exists

an open and closed neighborhood of C̃ inside W
⋂
B(0, R). (Indeed, if all

open and closed neighborhoods (Ui)i∈I of C̃ in W meet FrB(0, R), we get
a family pf closed sets (Ui

⋂
FrB(0, R) in FrB(0, R) such that every finite

sub-family fas a non empty intersection and therefore, the intersection of
all these sets, which is C̃, is non empty in contradiction to the local hypo-
thesis.) But this contradicts the connectivity of W

⋃{∞}. Therefore AdhC̃

meets FrB(0, R). But AdhC̃ is compact and connected in W so AdhC̃ ⊂ C
and C meets FrB(0, R): a contradiction.

Let us call C a closed compactly connected component of W and p an
accessible point of C from R2 \C : p is the extremity of an arc γ such that
γ \ {p} ⊂ R2 \ C. We can suppose that γ is a free simple arc. Each hn(l)
has to meet γ and h(γ) for n larger than some n0 which we can suppose to
be −1, replacing l by hn0+1(l) if necessary. Let pn denote the last point of
hn(l) on γ as we move towards p. Then the arc γn = pnp on γ is disjoint
from all hi(l), i � n except for pn ∈ hn(l).

Let q0 = h(p−1) and α0 be the subarc p0q0 of l. Since R2 \ (W
⋃
W ′) is

simply connected (even homeomorphic to R2), it is divided by the arc
γ0

⋃
α0

⋃
h(γ−1) into two domains and we call Ω the one which does not

contain h−1(l).

γ

p0

p−1

p
C

h(p)

h(γ)

Ωγ0

q0

h(γ−1)

h0(l) = l

h−1(l)

Proposition 3.3. — The domain Ω is free.

Proof. — Suppose there exist x ∈ Ω
⋂
h(Ω) and let β be an arc from a

to h−1(x) with a ∈ intp0p and β \ {a} ⊂ Ω. Since h preserves orientation,
h(y) /∈ Ω for y close to a on β. As h(β)

⋂
h(p0p) = h(a) and h(β)

⋂
α0 = ∅

(since h(β) is on the right of h(l) and so, on the right of l which contains α0),
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there exist some b ∈ β such that the subarc h(ab) of h(β) joins h(p0p) to p0p
inside R2\(W ⋃

W ′
⋃

Ω) and the Jordan curve α0

⋃
q0h(a)

⋃
h(ab)

⋃
h(b)p0

contains the whole Brouwer line l or C (according to p0 or p is contained
inside that Jordan curve) which is absurd since these sets are unbounded. �

Proposition 3.4. — The closed compactly connected component C can-
not be h-invariant.

Proof. — Assume by contradiction that h(C) = C and let then K̃ ⊂ C
be a continuum containing p and h(p). Then Ω is bounded and being simply
connected has a boundary FrΩ which is connected and separating the plane.
We first show K = Ω

⋂
K̃ is compact and connected. It is enough to show

that FrΩ
⋂
C is connected for then, if K = (FrΩ

⋂
C)

⋂
K̃ is not connected

then (FrΩ
⋂
C)

⋃
K̃ ⊂ C separates the plane which contradicts the fact that

C has no interior and does not separate. Let us note δ = γ0
⋃
α0

⋃
h(γ−1) so

that FrΩ
⋂
C = FrΩ\(δ \{p, h(p)}). If this last set is not connected we have

two possibilities, the first one is that it has three components or more, and
then FrΩ is not connected, the second one is that it has two components,
containing p and h(p) respectively, which do not disconnect the plane and
then FrΩ does not disconnect.

Therefore Σ =
⋃
n∈Z h

n(K) ⊂ W is a closed connected set which is
invariant under h and therefore non compact. As W does not separate R2

and has no interior, the same is true of Σ and R2 \ Σ is homeomorphic to
R2. The proper line l separates R2 \ Σ into two regions homeomorphic to
R2 and we name R the one between l and Σ. The region R itself is cut
by the subarc p0p of γ into two regions A and B where we call A the one
containing Ω and B the one containing h−1(Ω)

⋂
R. By definition p0p is on

the frontier of A and B. Notice that A (and B) are non compact since we
can follow l to infinity in one direction or the other staying in A (or B).
Note that A contains hk(Ω), k � 0 and B contains h−k(Ω)

⋂
R, k � 1.

Lemma 3.5. — FrA
⋂

FrB
⋂

Σ is non compact.

Proof. — Let ΣA (resp. ΣB) be the set of points of Σ which admit
a neighborhood contained in A

⋃
Σ (resp. B

⋃
Σ). The sets A

⋃
ΣA and

B
⋃

ΣB are disjoint and open, therefore their complement in R
⋃

Σ
⋃ \(p0p\

{p}) (which complement is the set of points of Σ for which every neighbor-
hood meets A and B, that is FrA

⋂
FrB

⋂
Σ) separates R

⋃
Σ \ (p0p \ {p})

and R
⋃

Σ \ (p0p \ {p}) can be written as the disjoint union
(A

⋃
ΣA)

∐
(B

⋃
ΣB)

∐
(FrA

⋂
FrB

⋂
Σ).

On the other hand, if FrA
⋂

FrB
⋂

Σ was compact in R2 or equivalently
in R

⋃
Σ (which is homeomorphic to R2), thinking of l as a straight line
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and of p0p as a segment orthogonal to l (as it is legitimate by Schoenflies
theorem), one can find a large rectangle in R

⋃
Σ with a side parallel to

l, containing FrA
⋂

FrB
⋂

Σ and whose boundary cuts p0p transversaly in
a single point. The boundary of this rectangle joins a point of A near p0p
to a point of B near p0p in contradiction to the above decomposition of
R

⋃
Σ \ (p0p \ {p}).

Given Lemma 3.5, let us choose some point x in FrA
⋂

FrB
⋂

Σ and
outside K. Then x /∈ Ω and we choose an open euclidean ball 2U ⊂ R⋃

Σ
centered at x free and disjoint of Ω. (U will denote the ball of radius one
half the one of 2U). As x belongs to Σ, U meets some hm(K) and so some
hm(Ω) and (exchanging h and h−1 if necessary) we can suppose m > 0 and
therefore that hm(Ω) ⊂ A. Since U meets B, we want to show that 2U meets
some h−n(Ω), for some n > 0, for then 2U and Ω will give a contradiction
to Lemma 2.1.

To that end, let us choose on FrU two arcs, one on FrU
⋂
A and the other

on FrU
⋂
B (these exist since U meets A and B which are open connected

non compact) and choose an arc α0 inside R \ (Σ
⋃
U) joining these two

arcs and meeting transversally p0p into a single point. Complete α0 by a
sub-arc α1 of FrU . This gives a Jordan curve α inside R

⋃
Σ which contains

p in its interior. Since points are wandering there exists N > 0 such that
h−N (p) ∈ Σ belongs to the exterior of α.

Now, if U does not meet any h−k(Ω), k > 0, the connected set K̂ =⋃N
i=1 h

−i(K) either joins p which is inside α to h−N (p) which is outside α
without meeting α (in contradiction to the Jordan curve theorem), or it
meets α1 (K̂, contained in Σ, does not meet α0) and then U meets some
h−i(K) ⊂ K̂ and so 2U meets some h−i(Ω)) and we are done. This concludes
the proof of Proposition 3.4.

Corollary 3.6. — hn(C)
⋂
C = ∅ for all n ∈ Z \ {0}.

Proof. — If hn(C)
⋂
C 
= ∅ then hn(C) = C in contradiction to 3.4

applied to hn which has the same W as h. �

Recall that given a sequence {Xn}n∈N of subspaces of a topological space
Z, a point x ∈ Z belongs to lim infXn if every neighborhood of x meets
Xn for an infinite number of n and to lim supXn if every neighborhood of
x meets Xn for all but a finite number of n.

We will now suppose that X = lim inf hn(C) is not empty. It is then a
closed and non compact subset of W (since it is h-invariant). We aim to
Proposition 3.10 below. Our first step is :

– 374 –



On the structure of homeomorphisms of the open annulus

Proposition 3.7. — The set X is also lim suphn(C). That is, every
open set U which meets an infinite number of hn(C), meets hn(C) for all n
greater than some n0 = n0(U).

Remark. — This Proposition answers a question of F. Le Roux [LR2,
footnote 7]

Proof. — We will use repeatedly the following immediate consequence
of a result of Le Roux [LR2, Lemme 9.3], we repeat the proof here for
completeness.

Proposition 3.8. — X
⋂
hn(C) = ∅ for all n ∈ Z.

Proof. — Since X is h-invariant, it is enough to show that X
⋂
C = ∅.

Let us suppose X
⋂
C 
= ∅, and let U be a free neighborhood of x ∈ X⋂

C
such that U

⋂
h(C) = ∅. As x ∈ X, there exists n > 1 so that U

⋂
hn(C) 
=

∅. Let y ∈ C such that hn(y) ∈ U . There exists a continuum K ⊂ C which
contains x and y. Since h(C) (as C) is free, we can find a free connected
neighborhood V of h(K) ⊂ h(C) such that U

⋂
V = ∅. But x ∈ U ⋂

h−1(V )
and hn(y) ∈ U ⋂

hn−1(V ) so that U and V contradict Lemma 2.1.

C

U

h(C)

hn(C)

x

y

hn(y)

V

K

h(K)

Let V be a free open disc and D a component of V \⋃
n∈Z h

n(C).

Lemma 3.9. — If FrD meets hn(C) and hm(C), then |n −m| � 1 and
FrD cannot meet X if it meets some hn(C).

Proof. — To prove the first assertion, note that since X
⋂
hn(C) = ∅ for

all n, given x ∈ hn(C) there exists a disc neighborhood U of x which does
not meet any other hp(C) and a ray from x to some point in D

⋂
U leads
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to an accessible point of hn(C) from D. So let us suppose |n−m| > 1 and
let α be an arc from a ∈ hn(C) to b ∈ hm(C) such that α \ {a, b} ⊂ D
and let K be a continuum in hn(C) containing a and hn−m(b). We assert
that K

⋃
α is free. Indeed, K is free as a subset of hn(C), α is free as

V is free and h(K)
⋂
α = ∅ = h−1(K)

⋂
α since n ± 1 
= m. But b ∈

hm−n(K
⋃
α)

⋂
(K

⋃
α), and a small enough neighborhood of K

⋃
α will

contradict Lemma 2.1 if |n−m| > 1.

Let us suppose now that FrD meets X and some hn(C) and let again
U be a disc neighborhood of some point x ∈ FrD

⋂
X small enough so that

U
⋂
hk(C) = ∅ if |k| � |n| + 1. A ray issued from x will either give an

accessible point of some hm(C), |m| > |n|+1 from D, but this is impossible
according to the first part of the proof, or an accessible point of X from
D. In that case, let α be an arc from some point a ∈ hn(C) to b ∈ X with
α\{a, b} ⊂ D and let U ′ be a free neighborhood of b such that U ′

⋂
hk(C) =

∅, for |k| � |n| + 1 and such that U ′
⋂
h±1(α) = ∅. The arc α can be

extended to an arc α̃ ⊂ α⋃
U ′ which joins a ∈ hn(C) to some b̃ ∈ hm(C),

|m| > |n|+1. If K ⊂ hn(C) is a continuum containing a and hn−m(b̃), then
K

⋃
α̃ is a free continuum such that b̃ ∈ hm−n(K⋃

α̃)
⋂

(K
⋃
α̃) and a free

neighborhood of this continuum gives a contradiction to Lemma 2.1. �

We now return to the proof of Proposition 3.7. Let V be a free neigh-
borhood of x ∈ liminf hn(C). There exist m and n > m + 1 such that V
meets hn(C) and hm(C). Let α be an arc in V going from am ∈ hm(C) to
an ∈ hn(C) disjoint from hm(C) and hm(C) except for its extremities. Let
D be the component of V \⋃

n∈Z h
n(C) which meets α and has an on its

frontier. By 3.9, FrD meets hn+1(C) or hn−1(C). In the first case, let an+1

be the last point of hn+1(C) seen on α when going from an to am. If D′ is
the component of V \⋃n∈Z h

n(C) which meets the subarc aman+1 of α and
has an+1 on its frontier, then FrD′ does not meet hn(C) by construction of
α and therefore, according to 3.9, meets hn+2(C). Iterating this process we
see that α meets all hk(C), k � n. In the other case, the same reasonning
shows that α meets all the hk(C) for m � k � n. As V meets an infinite
number of hk(C) we conclude in either case that V meets all hk(C) for k
large enough and therefore x ∈ lim suphn(C).

Assumption: We assume for the rest of this paper that the com-
pactly connected components of W (in fact, we will only consider
those of X) are closed.

Proposition 3.10. — No point of X is accessible from R2\⋃n∈Z h
n(C).
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On the structure of homeomorphisms of the open annulus

Proof. — We begin with a lemma :

Lemma 3.11. — There is no free arc α joining C to X contained in
R2 \⋃

n∈Z h
n(C) except for its extremities.

Proof of 3.11. — Let a free arc α join p ∈ C to q ∈ X and consider
a neighborhood D of q such that α

⋃
D is still free and D

⋂
h(C) = ∅ =

D
⋂
h−1(C) (recall that X is disjoint from h(C) and h−1(C) by proposition

3.8). Then α
⋃
D contains a point hn(p′) for some n > 1 and some p′ ∈ C.

Let K ⊂ C be a continuum containing p and p′ and consider the continuum
L = K

⋃
α

⋃
D. It is free but hn(p′) ∈ hn(L)

⋂
L and a small enough

neighborhood of L gives a contradiction to Lemma 2.1. �

At this point we will finish the proof of 3.10 following the lines of the
proof of a similar result (with C replaced by a disc) in [LR2, Proposition
5.5].

Let us suppose there exist a point q ofX accessible from R2\⋃n∈Z h
n(C)

by some arc α and let Z be the connected component of X which contains
q. A point x of R2 \ ⋃

n∈Z h
n(C) will be called a neighborhood point of

Z if there exists a free closed euclidean disc D with center x such that
intD

⋂
Z 
= ∅. The set of all such points is an open set V and V

⋃
Z is an

open neighborhood of Z.

A point of x ∈ V will be said of type C if there is some euclidean disc D
of center x as in the previous definition and an arc in D from x to Z which
meets some hn(C) and of type Z if there exists such a disc D and an arc
in D from x to Z which does not meet any hn(C). It follows from Lemma
3.11 that this type is well defined.

We show that all points of V are of type C. Indeed, it is easily verified
that the type is locally constant on V and so is constant on every connected
component of V . But V

⋃
Z and R2 \ Z are connected and therefore their

intersection V also as follows from the Mayer-Vietoris sequence of the pair
(R2 \Z, V ⋃

Z). Furthermore, since Z ⊂ X, certainly V meets some hn(C)
and all points of V are of type C.

Now, if the point x on the arc α is close enough to q, the subarc xq of
α is contained in a free euclidean disc which meets Z, and, x being of type
C, meets some hn(C). Contradiction.
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