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Surface measures and convergence
of the Ornstein-Uhlenbeck semigroup

in Wiener spaces

Luigi Ambrosio(1), Alessio Figalli(2)

ABSTRACT. — We study points of density 1/2 of sets of finite perimeter
in infinite-dimensional Gaussian spaces and prove that, as in the finite-
dimensional theory, the surface measure is concentrated on this class of
points. Here density 1/2 is formulated in terms of the pointwise behaviour
of the Ornstein-Uhlembeck semigroup.

RÉSUMÉ. — Dans cet article nous étudions la structure de l’ensemble des
points avec densité 1/2 pour les ensemble de périmètre fini dans un espace
gaussien infini-dimensionnel. Nous démontrons que, comme dans le cas de
dimension finie, la mesure de surface est concentrée sur cet ensemble de
points. Ici, la définition de points avec densité 1/2 est donnée en utilisant
le comportement ponctuel du semigroupe de Ornstein-Uhlembeck.

1. Introduction

The theory of sets of finite perimeter and BV functions in Wiener spaces,
i.e., Banach spaces endowed with a Gaussian Borel probability measure γ,
has been initiated by Fukushima and Hino in [14, 15, 16]. More recently,
some basic questions of the theory have been investigated in [17] and in
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[3, 5] (see also [4] for a slightly different framework). One motivation for this
theory is the development of Gauss-Green formulas in infinite-dimensional
domains; as in the finite-dimensional theory, it turns out that for nonsmooth
domains the surface measure might be supported in a set much smaller than
the topological boundary (see also the precise analysis made in [22], in a
particular class of infinite-dimensional domains).

The basic question we would like to consider is the research of infinite-
dimensional analogues of the classical fine properties of BV functions and
sets of finite perimeter in finite-dimensional (Gaussian) spaces.

For this reason we start first with a discussion of the finite-dimensional
theory, referring to [11] and [2] for much more on this subject. Recall that
a Borel set E ⊂ Rm is said to be of finite perimeter if there exists a vector
valued measure DχE = (D1χE , . . . , DmχE) with finite total variation in
Rm satisfying the integration by parts formula:

∫

E

∂φ

∂xi
dx = −

∫

Rm
φdDiχE ∀i = 1, . . . ,m, ∀φ ∈ C1

c (Rm). (1.1)

De Giorgi proved in [9] a deep result on the structure of DχE . First of all
he identified a set FE, called by him reduced boundary, on which |DχE | is
concentrated, and defined a pointwise inner normal νE(x) = (νE,1(x), . . . ,
νE,m(x)) (see (7.1)); then, through a suitable blow-up procedure, he proved
that FE is countably rectifiable (more precisely, it is contained in the union
of countably many graphs of Lipschitz functions defined on hyperplanes of
Rm); finally, he proved the representation formula DχE = νES m−1 FE,
where S m−1 is the (m−1)-dimensional spherical Hausdorff measure in Rm.
In light of these results, the integration by parts formula reads

∫

E

∂φ

∂xi
dx = −

∫

FE
φνE,i dS m−1 ∀i = 1, . . . ,m, ∀φ ∈ C1

c (Rm).

A few years later, Federer proved in [10] that the same representation result
of DχE holds for another concept of boundary, called essential boundary :

∂∗E :=

{
x ∈ Rm : lim sup

r↓0

L m(Br(x) ∩ E)

L m(Br(x))
>0, lim sup

r↓0

L m(Br(x) \ E)

L m(Br(x))
>0

}
,

where L m is the m–dimensional Lebesgue measure (this corresponds to
points neither of density 0, nor of density 1). Indeed, a consequence of the
De Giorgi’s blow-up procedure is that FE ⊂ ∂∗E (because tangent sets to
E at all points in the reduced boundary are halfspaces, whose density at
the origin is 1/2), and in [10] it is shown that S m−1(∂∗E \ FE) = 0. Since
the set E1/2 of points of density 1/2
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E1/2 :=

{
x ∈ Rm : lim

r↓0
L m(Br(x) ∩ E)

L m(Br(x))
=

1

2

}
,

is in between the two, one can also use it as a good definition of boundary.

When looking for the counterpart of De Giorgi’s and Federer’s results
in infinite-dimensional spaces, one can consider a suitable notion of “dis-
tributional derivative” along Cameron-Martin directions DγχE and surface
measure |DγχE |. But, several difficulties arise:

(i) The classical concept of Lebesgue approximate continuity, underlying
also the definition of essential boundary, seems to fail or seems to be
not reproducible in Gaussian spaces (X, γ). For instance, in [20] it is
shown that in general the balls of X cannot be used, and in any case
the norm of X is not natural from the point of view of the calculus
in Wiener spaces, where no intrinsic metric structure exists and the
“differentiable” structure is induced by H.

(ii) Suitable notions of codimension-1 Hausdorff measure, of rectifiability
and of essential/reduced boundary have to be devised.

Nevertheless, some relevant progresses have been obtained by Feyel-De la
Pradelle in [12], by Hino in [17] and, on the rectifiability issue, by the first
author, Miranda and Pallara in [5]. In [12] a family of spherical Hausdorff
pre-measures S ∞−1

F has been introduced by looking at the factorization
X = Ker(ΠF ) ⊗ F , with F m-dimensional subspace of H, considering the
measures S m−1 on the m-dimensional fibers of the decomposition. A crucial
monotonicity property of these pre-measures with respect to F allows to
define S ∞−1

FDP (here, FDP stands for Feyel-De la Pradelle) as limF S ∞−1
F ,

the limit being taken in the sense of directed sets. This Hausdorff measure,
when restricted to the boundary of a “nice” set (in the sense of Malliavin
calculus) is then shown to be consistent with the surface measure defined
in [1]. In [17] this approach has been used to build a Borel set ∂∗FE, called
cylindrical essential boundary, for which the representation formula

|DγχE | = S ∞−1
F ∂∗FE (1.2)

holds. Here F = {Fn}n�1 is an nondecreasing family of finite-dimensional
subspaces of H̃ (see (2.2) for the definition of H̃) whose union is dense in
H and S ∞−1

F = limn S ∞−1
Fn

. Notice that, while the left hand side in the
representation formula is independent of the choice of F , both the cylindrical
essential boundary and S ∞−1

F a priori depend on F (see Remark 2.6 for a
more detailed discussion). The problem of getting a representation formula
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in terms of a coordinate-free measure S ∞−1 is strongly related to the
problem of finding coordinate-free definitions of reduced/essential boundary.

In this paper, answering in part to questions raised in [17] and in [5], we
propose an infinite-dimensional counterpart of E1/2 and use it to provide a
coordinate-free version of (1.2).

In view of the quite general convergence results illustrated in [21] it is
natural, in this context, to think of the Ornstein-Uhlenbeck semigroup TtχE
starting from χE , for small t, as an analog of the mean value of χE on small
“balls”. Also, it is already known starting from [8] (see also [15, 16, 3, 19])
that surfaces measures are intimately connected to the behavior of TtχE for
small t. Our first main result provides strong convergence of TtχE as t ↓ 0,
if we take the surface measure as reference measure:

Theorem 1.1. — Let E be a Borel set of finite perimeter in (X, γ).
Then

lim
t↓0

∫

X

|TtχE −
1

2
|2 d|DγχE | = 0.

Since |DγχE | is orthogonal w.r.t. γ, it is crucial for the validity of the
result that TtχE is not understood in a functional way (i.e., as an element
of L∞(X, γ)), but really in a pointwise way through Mehler’s formula (2.4).
In this respect, the choice of a Borel representative is important, see also
Proposition 2.2 and (2.8).

The proof of Theorem 1.1 is based on two results: first, by a soft argu-
ment based on the product rule for weak derivatives, we show the weak∗

convergence of TtχE to 1/2 in L∞(X, |DγχE |). Then, by a quite delicate
finite-dimensional approximation and factorization of the OU semigroup,
we show the apriori estimate

lim sup
t↓0

∫

X

|TtχE |2 d|DγχE |2 �
1

4
|DγχE |(X).

Notice that in finite dimensions Theorem 1.1 is easy to show, using the
fact that sets of finite perimeter are, for |DγχE |-a.e. x, close to halfspaces
on small balls centered at x (see the proof of Proposition 3.1 and also Re-
mark 4.2).

Thanks to Theorem 1.1, we can choose an infinitesimal sequence (ti) ↓ 0
such that ∑

i

∫

X

|TtiχE −
1

2
| d|DγχE | <∞, (1.3)
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This choice of (ti) ensures in particular the convergence of TtiχE to 1/2
|DγχE |-a.e. in X, and motivates the next definition:

Definition 1.2 (Points of density 1/2). — Let (ti) ↓ 0 be such that∑
i

√
ti <∞ and (1.3) holds. We denote by E1/2 the set

E1/2 :=

{
x ∈ X : lim

i→∞
TtiχE(x) =

1

2

}
. (1.4)

Notice that |DγχE | is concentrated on E1/2. With this definition, and
defining S ∞−1 as the supremum of S ∞−1

F among all finite-dimensional

subspaces of H̃, we can prove our second main result:

Theorem 1.3. — Let (ti) ↓ 0 be such that
∑
i

√
ti <∞ and (1.3) holds.

Then the set E1/2 defined in (1.4) has finite S ∞−1-measure and

|DγχE | = S ∞−1 E1/2. (1.5)

As we said, an advantage of (1.5) is its coordinate-free character, see
also Remark 2.6 for a more detailed comparison with Hino’s cylindrical
definition of essential boundary. A drawback is its dependence on (ti); how-
ever, this dependence enters only in the definition of E1/2, and not in the
one of S ∞−1. Moreover, it readily follows from Theorem 1.3 that E1/2 is
uniquely determined up to S ∞−1-negligible sets (i.e., different sequences
produce equivalent sets). We consider merely as a (quite) technical issue the
replacement of S ∞−1 with the larger measure S ∞−1

FDP (defined considering
all finite-dimensional subspaces of H) in (1.5), for the reasons explained in
Remark 2.4.

As an example of application of the structure result for |DγχE | provided
by (1.5), we can provide a precise formula for the distributional derivative
of the union of two disjoints sets of finite perimeter. Given a set E of finite
perimeter, write DγχE = νE |DγχE |, with νE : X → H a Borel vectorfield
satisfying |νE |H = 1 |DγχE |-a.e. in X. With this notation we have:

Corollary 1.4. — Let E and F be sets of finite perimeter with γ(E ∩
F ) = 0. Then E ∪ F has finite perimeter,

νE∪FS
∞−1 (E∪F )1/2 =νES ∞−1 (E1/2\F 1/2)+νFS

∞−1 (F 1/2\E1/2),
(1.6)

and νE(x) = −νF (x) at S ∞−1-a.e. x ∈ E1/2 ∩ F 1/2.

– 411 –



Luigi Ambrosio, Alessio Figalli

An important feature in the above result is that, since (E ∪F )1/2, E1/2,
and F 1/2 are uniquely determined up to S ∞−1-negligible sets, one does
not have to specify which sequences (ti) one uses to define the sets (and
the sequences could all be different). On the other hand, if one would
try to deduce the analogous result stated in terms of cylindrical bound-
aries, it seems to us that one would be obliged to choose the same family
F = {Fn}n�1 for all the three sets (see Remark 2.6).

Let us conclude this introduction pointing out that our results can be
considered as the analogous of Federer’s result to an infinite dimensional
setting. In [5, Section 7], the authors gave a list of some open problems
related to the rectifiability result, and gave potential alternative definitions
of essential and reduced boundary. As we will show in the appendix, the
approach used in Proposition 4.3 to prove the weak∗ convergence of TtχE
to 1/2 in L∞(X, |DγχE |) is flexible enough to give a “weak form” of the
fact that |DγχE | is concentrated also on a kind of reduced boundary. Apart
from this, many other natural questions remain open. In particular, the main
open problem is still to find some analogous of De Giorgi’s blow-up theorem
(i.e., understanding in which sense, for |DγχE |-a.e. x ∈ X, the blow-up of
E around x converges to an half-space, see the proof of Proposition 3.1).

Acknowledgement. — The first author acknowledges the support of
the ERC ADG Grant GeMeThNES. The second author was supported by
the NSF Grant DMS-0969962.

2. Notation and preliminary results

We assume that (X, ‖ · ‖) is a separable Banach space and γ is a Gaus-
sian probability measure on the Borel σ-algebra of X. We shall always as-
sume that γ is nondegenerate (i.e., all closed proper subspaces of X are
γ-negligible) and centered (i.e.,

∫
X
x dγ = 0). We denote by H the Cameron-

Martin subspace of X, that is

H :=

{∫

X

f(x)x dγ(x) : f ∈ L2(X, γ)

}
,

and, for h ∈ H, we denote by ĥ the corresponding element in L2(X, γ); it
can be characterized as the Fomin derivative of γ along h, namely

∫

X

∂hφdγ = −
∫

X

ĥφ dγ (2.1)

for all φ ∈ C1
b (X). Here and in the sequel C1

b (X) denotes the space of
continuously differentiable cylindrical functions in X, bounded and with a
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bounded gradient. The space H can be endowed with an Hilbertian norm
| · |H that makes the map h �→ ĥ an isometry; furthermore, the injection of
(H, | · |H) into (X, ‖ · ‖) is compact.

We shall denote by H̃ ⊂ H the subset of vectors of the form
∫

X

〈x∗, x〉x dγ(x), x∗ ∈ X∗. (2.2)

This is a dense (even w.r.t. to the Hilbertian norm) subspace of H. Fur-

thermore, for h ∈ H̃ the function ĥ(x) is precisely 〈x∗, x〉 (and so, it is
continuous).

Given a m-dimensional subspace F ⊂ H̃ we shall frequently consider
an orthonormal basis {h1, . . . , hm} of F and the factorization X = F ⊕ Y ,
where Y is the kernel of the continuous linear map

x ∈ X �→ ΠF (x) :=

m∑

i=1

ĥi(x)hi ∈ F. (2.3)

The decomposition x = ΠF (x) + (x−ΠF (x)) is well defined, thanks to the
fact that ΠF ◦ ΠF = ΠF and so x − ΠF (x) ∈ Y ; in turn this follows by

ĥi(hj) = 〈ĥi, ĥj〉L2 = δij .

Thanks to the fact that |hi|H = 1, this induces a factorization γ =
γF ⊗ γY , with γF the standard Gaussian in F (endowed with the metric
inherited from H) and γY Gaussian in (Y, ‖·‖). Furthermore, the orthogonal
complement F⊥ of F in H is the Cameron-Martin space of (Y, γY ).

2.1. BV functions and Sobolev spaces

Here we present the definitions of Sobolev and BV spaces. Since we will
consider bounded functions only, we shall restrict to this class for ease of
exposition.

Let u : X → R be a bounded Borel function. Motivated by (2.1), we say
that u ∈ W 1,1(X, γ) if there exists a (unique) H-valued function, denoted
by ∇u, with |∇u|H ∈ L1(X, γ) and

∫

X

u∂hφdγ = −
∫

X

φ〈∇u, h〉H dγ +

∫

X

uφĥ dγ

for all φ ∈ C1
b (X) and h ∈ H.

Analogously, following [15, 16], we say that u ∈ BV (X, γ) if there exists
a (unique) H-valued Borel measure Dγu with finite total variation in X
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satisfying ∫

X

u∂hφdγ = −
∫

X

φd〈Dγu, h〉H +

∫

X

uφĥ dγ

for all φ ∈ C1
b (X) and h ∈ H.

In the sequel, shall mostly consider the case when u = χE : X →
{0, 1} is the characteristic function of a set E, although some statements are
more natural in the general BV context. Notice the inclusion W 1,1(X, γ) ⊂
BV (X, γ), given by the identity Dγu = ∇uγ.

2.2. The OU semigroup and Mehler’s formula

In this paper, the Ornstein-Uhlenbeck semigroup Ttf will always be un-
derstood as defined by the pointwise formula

Ttf(x) :=

∫

X

f(e−tx+
√

1− e−2ty) dγ(y) (2.4)

which makes sense whenever f is bounded and Borel. This convention will
be important when integrating Ttf against potentially singular measures,
see for instance (2.8).

We shall also use the dual OU semigroup T ∗t , mapping signed measures
into signed measures, defined by the formula

〈T ∗t µ, φ〉 :=

∫

X

Ttφdµ φ bounded Borel. (2.5)

In the next proposition we collect a few properties of the OU semigroup
needed in the sequel (see for instance [7] for the Sobolev case and [5] for the
BV case).

Proposition 2.1. — Let u : X → R be bounded and Borel and t > 0.
Then Ttu ∈W 1,1(X, γ) and:

(a) if u ∈W 1,1(X, γ) then, componentwise, it holds ∇Ttu = e−tTt∇u;

(b) if u ∈ BV (X, γ) then, componentwise, it holds ∇Ttuγ = e−tT ∗t (Dγu).

The next result is basically contained in [7, Proposition 5.4.8], we state
and prove it because we want to emphasize that the regular version of the
restriction of Ttf to y+F , y ∈ Y , provided by the Proposition, is for γY -a.e.
y precisely the one pointwise defined in Mehler’s formula.
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Proposition 2.2. — Let u be a bounded Borel function and t > 0. With
the above notation, for γY -a.e. y ∈ Y the map z �→ Ttu(z, y) is smooth in F .

Proof. — Let us prove, for the sake of simplicity, Lipschitz continuity
(in fact, the only property we shall need) for γY -a.e. y, with a bound on the
Lipschitz constant depending only on t and on the supremum of |u|. We use
the formula

∂hTtu(x) =
e−t√

1− e−2t

∫

X

u(e−tx+
√

1− e−2ty)ĥ(y) dγ(y) h ∈ H

for the weak derivative and notice that, if u is cylindrical, this provides
also the classical derivative. On the other hand, the formula provides also
the uniform bound sup |∂hTtu| � c(t)|h|H sup |u|. The uniform bound and
Fubini’s theorem ensure that the class of functions for which the stated prop-
erty is true contains all cylindrical functions and it stable under pointwise
equibounded limits. By the monotone class theorem, the stated property
holds for all bounded Borel functions. �

The next lemma provides a rate of convergence of Ttu to u when u
belongs to BV (X, γ); the proof follows the lines of the proof of Poincaré
inequalities, see [7, Theorem 5.5.11].

Lemma 2.3. — Let u ∈ BV (X, γ). Then
∫

X

|Ttu− u| dγ � ct|Dγu|(X)

with ct :=
√

2
π

∫ t
0

e−s√
1−e−2s

ds, ct ∼ 2
√
t/π as t ↓ 0.

Proof. — It obviously suffices to bound with ct|Dγu|(X) the expression
∫

X

∫

X

|u(x)− u(e−tx+
√

1− e−2ty)| dγ(x)dγ(y). (2.6)

Standard cylindrical approximation arguments reduce the proof to the case
when u is smooth, X is finite-dimensional and γ is the standard Gaussian.
Since

u(e−tx+
√

1− e−2ty)− u(x) =

∫ 1

0

d

dτ
u(e−tτx+

√
1− e−2tτy) dτ

= t

∫ 1

0

∇(e−tτx+
√

1− e−2tτy)

·
(
−e−tτx+

e−2tτy√
1− e−2tτ

)
dτ
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we can estimate the expression in (2.6) with

t

∫ 1

0

e−tτ√
1− e−2tτ

∫

X

∫

X

|∇u(e−tτx+
√

1− e−2tτy) ·(−
√

1− e−2tτx+e
−tτ

y)| dγ(x)dγ(y)dτ.

Now, for τ fixed we can perform the “Gaussian rotation”

(x, y) �→
(
e−tτx+

√
1− e−2tτy,−

√
1− e−2tτx+ e−tτy

)

to get

t

∫ 1

0

e−tτ√
1− e−2tτ

∫

X

∫

X

|∇u(v) · w| dγ(w)dγ(v)dτ.

Eventually we use the fact that
∫
X
|ξ · w| dγ(w) =

√
2/π|ξ| to get

t

√
2

π

∫ 1

0

e−tτ√
1− e−2tτ

dτ

∫

X

|∇u|(v) dγ(v).

A change of variables leads to the desired expression of ct. �

Notice that the proof of the lemma provides the slightly stronger infor-
mation

∫

X

∫

X

|u(x)− u(e−tx+
√

1− e−2ty)| dγ(x)dγ(y) � ct|Dγu|(X). (2.7)

This more precise formulation will be crucial in the proof of Proposition 4.1.

2.3. Product rule

In the proof of Proposition 4.3 we shall use the product rule

Dγ(χEv) = χE∇vγ + vDγχE

for v ∈ W 1,1(X, γ) and E with finite perimeter. In general the proof of
this property is delicate, even in finite-dimensional spaces, since a precise
representative of v should be used to make sense of the product vDγχE .
However, in the special case when v = Ttf with t > 0 and f bounded Borel,
the product rule, namely

Dγ(χETtf) = χE∇Ttfγ + TtfDγχE . (2.8)

holds provided we understand Ttf as pointwise defined in Mehler’s formula.
The argument goes by pointwise approximation by better maps, very much
as in Proposition 2.2, and we shall not repeat it.
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2.4. Factorization of Tt and Dγu

Let us consider the decomposition X = F ⊕ Y , with F ⊂ H̃ finite-
dimensional. Denoting by TFt and TYt the OU semigroups in F and Y re-
spectively, it is easy to check (for instance first on products of cylindrical
functions on F and Y , and then by linearity and density) that also the
action of Tt can be “factorized” in the coordinates x = (z, y) ∈ F × Y as
follows:

Ttf(z, y) = TYt
(
w �→ TFt f(·, w)(z)

)
(y) (2.9)

for any bounded Borel function f .

Let us discuss, now, the factorization properties of Dγu. Let us write
Dγu = νu|Dγu| with νu : X → H Borel vectorfield with |νu|H = 1 |Dγu|-
a.e. Moreover, given a Borel set B, define

By := {z ∈ F : (z, y) ∈ B} , Bz := {y ∈ Y : (z, y) ∈ B} .

The identity

∫

B

|πF (νu)| d|Dγu| =
∫

Y

|DγF u(·, y)|(By) dγY (y) B Borel (2.10)

is proved in [5, Theorem 44.2] (see also [3, 17] for analogous results), where
πF : H → F is the orthogonal projection. Along the similar lines, one can
also show the identity

∫

B

|πF⊥(νu)| d|Dγu| =
∫

F

|DγY u(z, ·)|(Bz) dγF (z) B Borel (2.11)

with πF + πF⊥ = Id. In the particular case u = χE , with the notation

Ey := {z ∈ F : (z, y) ∈ E} , Ez := {y ∈ Y : (z, y) ∈ E} (2.12)

the identities (2.10) and (2.11) read respectively as

∫

B

|πF (νE)| d|DγχE | =
∫

Y

|DγFχEy |(By) dγY (y) B Borel, (2.13)

∫

B

|πF⊥(νE)| d|DγχE | =
∫

F

|DγY χEz |(Bz) dγF (z) B Borel (2.14)

with DγχE = νE |DγχE |.
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Remark 2.4. — Having in mind (2.13) and (2.14), it is tempting to think
that the formula holds for any orthogonal decomposition of H (so, not only
when F ⊂ H̃), or even when none of the parts if finite-dimensional. In order
to avoid merely technical complications we shall not treat this issue here
because, in this more general situation, the “projection maps” x �→ y and
x �→ z are no longer continuous. The problem can be solved removing sets
of small capacity, see for instance [12] for a more detailed discussion.

As a corollary of the above formulas, we can prove the following impor-
tant semicontinuity result for open sets:

Proposition 2.5. — For any open set A ⊂ X the map

u �→ |Dγu|(A)

is lower semicontinuous in BV (X; γ) with respect to the L1(X, γ) conver-
gence.

Proof. — Let uk → u in L1(X, γ). It suffices to prove the result under
the additional assumption that

∑

k

∫

X

|uk − u| dγ <∞. (2.15)

Let F ⊂ H̃ be a finite dimensional subspace, let X = F×Y be the associated
factorization, and use coordinates x = (z, y) ∈ F × Y as before.

Thanks to (2.15) and Fubini’s theorem, uk(·, y) → u(·, y) in L1(F, γF )
for γY -a.e. y ∈ Y . Hence, by the lower semicontinuity of the total variation
in finite dimensional spaces (see for instance [2, Remark 3.5] for a proof
when γF is replaced by the Lebesgue measure) we obtain

|DγF u(·, y)|(Ay) � lim inf
k→∞

|DγF uk(·, y)|(Ay) for γY -a.e. y ∈ Y ,

where Ay := {z ∈ F : (z, y) ∈ A}. Integrating with respect to γY and using
Fatou’s lemma we get

∫

Y

|DγF u(·, y)|(Ay) dγYn � lim inf
k→∞

∫

Y

|DγF uk(·, y)|(Ay) dγY ,

which together with (2.10) gives
∫

A

|πF (νu)| d|Dγu| � lim inf
k→∞

∫

A

|πF (νu)| d|Dγuk| � lim inf
k→∞

|Dγuk|(A)

(recall that |νu|H = 1). Since |πF (νu)| ↑ 1 as F increases to a dense subspace
of H, we conclude by the monotone convergence theorem. �
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2.5. Finite-codimension Hausdorff measures

We start by introducing, following [12], pre-Hausdorff measures which,
roughly speaking, play the same role of the pre-Hausdorff measures S n

δ in
the finite-dimensional theory.

Let F ⊂ H̃ be finite-dimensional, m � k � 0 and, with the notation of
the previous section, define

S ∞−kF (B) :=

∫

Y

∫

By

Gm dS m−k dγY (y) B Borel (2.16)

where m = dim(F ) and Gm is the standard Gaussian density in F (so that
S ∞−0
F = γ). It is proved in [12] that y �→

∫
By

Gm dS m−k is γY -measurable

whenever B is Suslin (so, in particular, when B is Borel), therefore the
integral makes sense. The first key monotonicity property noticed in [12],
based on [10, 2.10.27], is

S ∞−kF (B) � S ∞−kG (B) whenever F ⊂ G ⊂ H̃

provided S m−k in (2.16) is understood as the spherical Hausdorff measure
of dimension m− k in F . This naturally leads to the definition

S ∞−k(B) := sup
F

S ∞−kF (B) B Borel, (2.17)

where the supremum runs among all finite-dimensional subspaces F of H̃.
Notice, however, that strictly speaking the measure defined in (2.17) does
not coincide with the one in [12], since all finite-dimensional subspaces of
H are considered therein. We make the restriction to finite-dimensional
subspaces of H̃ for the reasons explained in Remark 2.4. However, still
S ∞−k is defined in a coordinate-free fashion.

These measures have been related for the first time to the perimeter
measure DγχE in [17]. Hino defined the F -essential boundaries (obtained
collecting the essential boundaries of the finite-dimensional sections Ey ⊂
F × {y})

∂∗FE := {(z, y) : z ∈ ∂∗Ey} (2.18)

and noticed another key monotonicity property (see also [5, Theorem 5.2])

S ∞−1
F (∂∗FE \ ∂∗GE) = 0 whenever F ⊂ G ⊂ H̃. (2.19)

Then, choosing a sequence F = {F1, F2, . . .} of finite-dimensional subspaces
of H̃ whose union is dense he defined

S ∞−1
F := sup

n
S ∞−1
Fn

, ∂∗FE := lim inf
n→∞

∂∗FnE (2.20)
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and proved that

|DγχE | = S ∞−1
F ∂∗FE. (2.21)

Remark 2.6. — If we compare (2.21) with (1.5), we see that both the
measure and the set are defined in (1.5) in a coordinate-free fashion, using
on one hand all finite-dimensional subspaces of H̃, on the other hand the OU
semigroup. In this respect, it seems to us particularly difficult to compare
null sets w.r.t. S ∞−1

F and S ∞−1
F ′ when F �= F ′; so, even though the

left hand side in (2.21) is coordinate-free, it seems difficult to extract from
this information a “universal” set. On the other hand, combining (1.5) and
(2.21) we obtain that E1/2 is equivalent to ∂∗FE, up to S ∞−1

F -null sets
(observe that, on the other hand, it is not even clear that ∂∗FE has S ∞−1

finite measure). So, in some sense, E1/2 is “minimal” against the “maximal”
measure S ∞−1.

3. Finite-dimensional facts

Throughout this section we assume that (X, γ) is a finite-dimensional
Gaussian space, with the associated OU semigroup Tt. We assume that the
norm of X is equal to the Cameron-Martin norm, so that we can occasionally
identify X with Rm, m = dimX, and identify γ with the product GmL m

of m standard Gaussians. Give a Borel set E, we shall denote by E1 (resp.
E0) the set of density points of E (resp. rarefaction points) with respect
to the Lebesgue measure (it would be the same to consider γ, since this
measure is locally comparable to L m).

In this finite dimensional setting, the first result is that the statement of
Theorem 1.1 can be improved, getting pointwise convergence up to |DγχE |-
negligible sets:

Proposition 3.1. — Let E ⊂ X be with finite γ-perimeter. Then, as
t ↓ 0, TtχE → 1/2 |DγχE |-a.e. in X.

Proof. — In this proof we identifyX with Rm. Since |DγχE | = Gm|DχE |,
we know that E has locally finite Euclidean perimeter. Hence, the finite-
dimensional theory ensures that |DχE |-almost every point x the rescaled
and translated sets (E − x)/r locally converge in measure as r ↓ 0 to an
halfspace passing through the origin (see for instance [2, Theorem 3.59(a)]).
We obtain that for |DγχE |-almost every point x the sets

Et,x :=
E − e−tx√
1− e−2t
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locally converge in measure as t ↓ 0 to an halfspace (here we use the fact that
translating by e−tx instead of x is asymptotically the same, since 1− e−t =
o(
√

1− e−2t) as t ↓ 0). Hence, it suffices to show that TtχE(x) → 1/2 at all
points x where this convergence holds. We compute:

TtχE(x) = (2π)−m/2
∫

Rm
χE(e−tx+

√
1− e−2ty)e−|y|

2/2 dy

= (2π)−m/2
∫

Et,x

e−|y|
2/2 dy.

Taking the limit as t ↓ 0 yields (2π)−m/2
∫
H
e−|w|

2/2 dw for some halfspaceH
with 0 ∈ ∂H. By rotation invariance the value of the limit equals 1/2. �

In the next proposition we carefully estimate the blow-up rate of the
density of T ∗t µ as t ↓ 0 when µ is a codimension one Hausdorff measure on
a “nice” hypersurface.

Proposition 3.2. — Let K ⊂ Rm be a Borel set contained in the union
of finitely many C1 compact hypersurfaces. Then, for all ε > 0, there exist
Kε ⊂ K and tε > 0 such that S m−1(K \Kε) < ε and

√
tT ∗t

(
GmS m−1 Kε

)
� γ ∀t ∈ (0, tε).

Proof. — We can assume with no loss of generality that 1 + ε2 < 2π.
For any y ∈ K, let ry > 0 be a radius such that:

– K ∩Bry (y) is contained inside a C1 submanifold Sy;

– there exists an orthogonal transformation Qy : Rm → Rm such that
Qy(Sy) is contained inside the graph of a Lipschitz function uy :
Bm−1
ry ⊂ Rm−1 → R;

– the Lipschitz constant of uy is bounded by ε.

By compactness, there exists a finite set of points y1, . . . , yN such that

K ⊂
N⋃

i=1

Bryi (yi).

Let us define the disjoints family of sets A1 = K ∩ Bry1 (y1), Ai := K ∩
Bryi (yi) \

(
∪i−1

1 Aj
)

for i = 2, . . . , N . For any given ε > 0, we can find
compact sets Ei ⊂ Ai such that

N∑

i=1

S m−1(Ai \ Ei) < ε, min
1�i =j�N

dist(Ei, Ej) =: 2δ > 0.
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Let us setKε := ∪Ni=1Ei, and letR > 0 be sufficiently large so thatKε ⊂ BR.
Thanks to Lemma 3.3 below applied with Γ = Qyi(Ei) for i = 1 . . . , N , since
Gm is invariant under orthogonal transformations there exists ti > 0 such
that

√
tT ∗t

(
GmS m−1 Ei

)
�

√
1 + ε2

2π
Ωm,R

(
dist(·, Ei)/

√
t
)
γ ∀t ∈ (0, ti).

This implies that, for 0 < t < mini ti,

√
tT ∗t

(
GmS m−1 Kε

)
�

√
1 + ε2

2π

N∑

i=1

Ωm,R

(
dist(·, Ei)/

√
t
)
γ.

Recalling that dist(Ei, Ej) � 2δ > 0 for i �= j, for all x ∈ Rm it holds
dist(x,Ei) > δ for all i with at most one exception. Hence, since Ωm,R � 1
and Ωm,R(s) → 0 as s→ +∞, we get
√

1 + ε2

2π

N∑

i=1

Ωm,R

(
dist(·, Ei)/

√
t
)
�

√
1 + ε2

2π

(
1 + (N−1)Ωm,R

(
δ/
√
t
))
�1

for t sufficiently small, which concludes the proof. �

Lemma 3.3. — Let A ⊂ Rm−1 be a bounded Borel set, let u : A �→ R be a
Lipschitz function with Lipschitz constant 9, and let Γ := {(z, u(z)) : z ∈ A}
be the graph of u. Assume that Γ ⊂ BR for some R > 0. Then, there exist a
continuous function Ωm,R : [0,+∞) → [0, 1], depending only on m and R,
and t̄ > 0, such that Ωm,R(s) → 0 as s→ +∞, and

√
tT ∗t

(
GmS m−1 Γ

)
�

√
1 + 92

2π
Ωm,R

(
dist(x,Γ)/

√
t
)
γ ∀t ∈ (0, t̄).

Proof. — Let us first observe that, given a test function f : Rm → R, it
holds∫

Rm
f dT ∗t

(
GmS m−1 Γ

)
=

∫

Γ

Ttf(y)Gm(y) dS m−1(y)

=

∫

Rm
f(x)

∫

Γ

e
− |e
−tx|2−2e−tx·y+|e−ty|2

2(1−e−2t)

(1− e−2t)m/2
Gm(y) dS m−1(y) dγ(x).

Hence, we have to show that, for any x = (x′, xm) ∈ Rm−1×R, the expres-
sion

√
t

∫

Γ

e
− |e
−tx|2−2e−tx·y+|e−ty|2

2(1−e−2t)

(1− e−2t)m/2
Gm(y) dS m−1(y)

=

√
t

(2π)m/2(1− e−2t)m/2

∫

Γ

e
− |e
−tx−y|2

2(1−e−2t) dS m−1(y)
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is bounded by
√

1+'2

2π Ωm,R
(
dist(x,Γ)/

√
t
)

for t sufficiently small (indepen-

dent of x), with Ωm,R as in the statement.

Thanks to the area formula and the bound on the Lipschitz constant,
we can write

√
t

(2π)m/2(1− e−2t)m/2

∫

Γ

e
− |e
−tx−y|2

2(1−e−2t) dS m−1(y)

=

√
t

(2π)m/2(1− e−2t)m/2

∫

A

e
− |e
−tx′−y′|2

2(1−e−2t) e
− |e
−txm−u(y′)|2
2(1−e−2t)

√
1 + |∇u(y′)|2 dy′

�
√

1 + 92
√
t

(2π)m/2(1− e−2t)m/2

∫

A

e
− |e
−tx′−y′|2

2(1−e−2t) e
− |e
−txm−u(y′)|2
2(1−e−2t) dy′.

Now, since t � 1− e−2t for t small, we can bound the above expression by
√

1 + 92

2π

1

(2π)(m−1)/2(1− e−2t)(m−1)/2

∫

A

e
− |e
−tx′−y′|2

2(1−e−2t) e
− |e
−txm−u(y′)|2
2(1−e−2t) dy′.

(3.1)
First of all we observe that, since

1

(2π)(m−1)/2(1− e−2t)(m−1)/2

∫

A

e
− |e
−tx′−y′|2

2(1−e−2t) dy′ = TtχA(x′) � 1,

the quantity in (3.1) is trivially bounded by (1 + 92)/(2π).

To show the existence of a function Ωm,R as in the statement of the
lemma, we split the integral over A into the one over A \ Bdist(x,Γ)/2(x

′),
and the one over A ∩Bdist(x,Γ)/2(x

′).

To estimate the first integral, we bound e−|e
−txm−u(y′)|2/[2(1−e−2t)] by 1.

Moreover, we observe that

TtχA\Bdist(x,Γ)/2(x′)(x
′)

� 1

(2π)(m−1)/2(1− e−2t)(m−1)/2

∫

Rm−1\Bdist(x,Γ)/2(x′)
e
− |e
−tx′−y′|2

2(1−e−2t) dy′

=
1

(2π)(m−1)/2

∫

Rm−1\B
dist(x,Γ)/[2

√
1−e−2t]

e
− |e
−tx′−x′−

√
1−e−2tz′|2

2(1−e−2t) dz′

=
1

(2π)(m−1)/2

∫

Rm−1\B
dist(x,Γ)/[2

√
1−e−2t]

e−

∣∣∣z′+
√

1−e−t
1+e−t

x′
∣∣∣
2

2 dz′.

We now remark that −|a+b|2 � −|a|2/2+|b|2 for all a, b ∈ Rm−1, 1−e−2t �
2t, and 1−e−t

1+e−t � t for t small. Hence, the above expression is bounded from
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above by

1

(2π)(m−1)/2

∫

Rm−1\Bdist(x,Γ)/(2
√

2t)

e−|z
′|2/4et|x

′|2/2 dz′.

Since Γ ⊂ BR for some R, it holds |x′| � |x| � R + dist(x,Γ), and so the
above quantity can be bounded from above by

1

(2π)(m−1)/2
etR

2

etdist(x,Γ)2
∫

Rm−1\Bdist(x,Γ)/(2
√

2t)

e−|z
′|2/4 dz′

� mωm
(2π)(m−1)/2

eR
2

edist(x,Γ)2/100t

∫ ∞

dist(x,Γ)/(4
√
t)

e−τ
2/4τm−1 dτ

for t small (here ωm denotes the measure of the unit ball in Rm).

To control the second integral over A ∩ Bdist(x,Γ)/2(x
′), we bound

TtχA∩Bdist(x,Γ)/2(x′)(x
′) by 1 and we estimate from above, uniformly for

y′ ∈ Bdist(x,Γ)/2(x
′), the quantity

e
− |e
−txm−u(y′)|2
2(1−e−2t) .

We proceed as follows: for y′ ∈ Bdist(x,Γ)/2(x
′), by the definition of dist(x,Γ),

we have

4|x′ − y′|2 � dist(x,Γ)2 � |x′ − y′|2 + |xm − u(y′)|2,

which implies 3|x′ − y′|2 � |xm − u(y′)|2, and so dist(x,Γ)2 � 4|xm −
u(y′)|2/3. Thus, using again the estimate −|a − b|2 � −|a|2/2 + |b|2, for t
small enough we obtain

e
− |e
−txm−u(y′)|2
2(1−e−2t) � e

− |xm−u(y′)|2
4(1−e−2t)) e

(1−e−t)2|xm|2
(1−e−2t) � e−dist(x,Γ)2/(16t)et|xm|

2

.

Since |xm| � |x| � R + dist(x,Γ), we conclude that

e
− |e
−txm−u(y′)|2
2(1−e−2t) � eR

2

e−dist(x,Γ)2/(20t) ∀y′ ∈ Bdist(x,Γ)/2(x
′)

for t small enough.

Hence, it suffices to define

Ωm,R(s) := min

{
1,

mωm
(2π)(m−1)/2

eR
2

es
2/100

∫ ∞

s/4

e−τ
2/4τm−1dτ + eR

2

e−s
2/20

}

(recall that
∫∞
s/4

e−τ
2/4τm−1 dτ ∼ cme

−s2/64sm−2 as s → +∞) to conclude

the proof. �
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The next lemma is stated with outer integrals
∫ ∗
Y

; this suffices for our
purposes and avoids the difficulty of proving that the measures σy we will
dealing with have a measurable dependence w.r.t. y.

Lemma 3.4. — Let (Y,F , µ) be a probability space and, for t > 0 and
y ∈ Y , let gt,y : X → [0, 1] be Borel maps. Assume also that:

(a) {σy}y∈Y are positive finite Borel measures in X, with
∫ ∗
Y
σy(X) dµ(y)

finite;

(b) σy = GmS m−1 Γy for µ-a.e. y, with Γy countably S m−1-rectifiable.

Then

lim sup
t↓0

∫ ∗

Y

∫

X

Ttgt,y(x) dσy(x)dµ(y) � lim sup
t↓0

1√
t

∫ ∗

Y

∫

X

gt,y(x) dγ(x)dµ(y).

(3.2)

Proof. — We prove first the lemma under the stronger assumption that,
for µ-a.e. y ∈ Y , there exists ty > 0 such that

T ∗t σy �
1√
t
γ ∀t ∈ (0, ty).

Fix ε > 0 small, and set Yε := {y ∈ Y : ty > δ}, where δ = δ(ε) > 0
is chosen sufficiently small in such a way that

∫ ∗
Yε

∫
X
Ttgt,y dσydµ(y) + ε �∫ ∗

Y

∫
X
Ttgt,y dσydµ(y) (this is possible, by the continuity properties of the

upper integral). For t ∈ (0, δ) we estimate the integrals in (3.2) with Yε in
place of Y :

∫ ∗

Yε

∫

X

Ttgt,y dσydµ(y) =

∫ ∗

Yε

∫

X

gt,y dT
∗
t σydµ(y) � 1√

t

∫ ∗

Y

∫

X

gt,y dγdµ(y).

Hence, letting t ↓ 0 yields (3.2) with an extra summand ε in the right hand
side. Since ε is arbitrary we conclude.

Finally, in the general case when Γy is countably S m−1-rectifiable we
can find for any ε > 0 sets Γ′y ⊂ Γy contained in the union of finitely many
hypersurfaces such that σy(Γy \ Γ′y) < ε/2 and then, thanks to Proposi-
tion 3.2, sets Γ′′y ⊂ Γ′y with σy(Γ

′
y \ Γ′′y) < ε/2 in such a way that the

estimate (3.2) holds when σy is replaced by GmS m−1 Γ′′y . Since Ttgt � 1
we can let ε ↓ 0 to obtain (3.2). �
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In the proof of Theorem 1.3 we need a Poincaré inequality involving
capacities. Recall that the 1-dimensional capacity c1(G) of a Borel set G
can be defined as:

c1(G) := inf
{
|Du|(Rm) : u ∈ Lm/(m−1)(Rm), G ⊂ int({u � 1})

}

(see [23, §5.12]; other equivalent definitions involve the Bessel capacity).
The following result is known (see for instance [23, Theorem 5.13.3]) but
we reproduce it for the reader’s convenience in the simplified case when v
is continuous.

Lemma 3.5. — Let v ∈ W 1,1(Br) ∩ C(Br) and let G ⊂ Br be a Borel
set with c1(G) > 0. Then, for some dimensional constant κ, it holds

1

ωmrm

∫

Br

|v| dx � κ

c1(G)

∫

Br

|∇v| dx

whenever v vanishes c1-a.e. on G.

Proof. — By a scaling argument, suffices to consider the case r = 1. By
a truncation argument (i.e., first considering the positive and negative parts
and then replacing v by min{v, n} with n ∈ N) we can also assume that
v is nonnegative and bounded. By homogeneity of both sides, suffices to
consider the case 0 � v � 1. In this case the statement follows by applying
the inequality

L m(B1\E) � κ

c1(G)
|DχE |(B1) whenever E is open and G ⊂ E (3.3)

with E = {v < t}, t ∈ (0, 1), and then integrating both sides with respect
to t and using the coarea formula. Hence, we are led to the proof of (3.3).
Now, if L m(E) � ωm/2 we can apply the relative isoperimetric inequality
in B1 to get

L m(B1 \ E) � cm|DχE |(B1) �
κ

c1(G)
|DχE |(B1)

provided we choose κ so large that κ � c1(B1)cm (observe that c1(G) �
c1(B1)). On the other hand, if L m(E) � ωm/2 then we estimate L m(B1\E)
from above with ωm and it suffices to show that |DχE |(B1) � c1(G)ωm/κ
for κ = κ(m) large enough. In this case we can find a compactly supported
BV function u coinciding with χE on B1 with

|Du|(Rm) � c′m
(
|DχE |(B1) + L m(E ∩B1)

)
� c′m(1 + cm)|DχE |(B1)

(see for instance [2, Proposition 3.21] for the existence of a continuous
linear extension operator from BV (B1) to BV (Rm)). It follows that
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c1(G) � c′m(1 + cm)|DχE |(B1), so suffices to take κ such that κ/ωm �
c′m(1 + cm). �

In the sequel we shall extensively use the following identity between null
sets w.r.t. c1 and null sets w.r.t. to codimension one Hausdorff measure, see
for instance [23, Lemma 5.12.3]:

c1(G) = 0 ⇐⇒ S m−1(G) = 0. (3.4)

Lemma 3.6. — Let G ⊂ Rm be a Borel set. Then

lim sup
r↓0

c1(G ∩Br(x))

rm−1
> 0 for c1-a.e. x ∈ G.

Proof. — Let L ⊂ G be the Borel set of points where the limsup is null
and assume by contradiction that c1(L) > 0. Then (3.4) yields S m−1(L) >
0 as well and we can find, thanks to [6], a compact subset L′ with 0 <
S m−1(L′) <∞. We will prove that

lim inf
r↓0

c1(L
′ ∩Br(x))

S m−1(L′ ∩Br(x))
> 0 for S m−1-a.e. x ∈ L′. (3.5)

Combining this information with the well-know fact (see for instance
[2, (2.43)])

lim sup
r↓0

S m−1(L′ ∩Br(x))

rm−1
> 0 for S m−1-a.e. x ∈ L′, (3.6)

we obtain

lim sup
r↓0

c1(L
′ ∩Br(x))

rm−1
> 0 for S m−1-a.e. x ∈ L′,

in contradiction with the inclusion L′ ⊂ L and the fact that S m−1(L′) > 0.

To conclude the proof, we check (3.5). Let L′′ ⊂ L′ be the Borel set of
points where the liminf in (3.5) is null; for all ε > 0 we can find, thanks
to Vitali covering theorem, a disjoint cover of S m−1-almost all of L′′ by
disjoint closed balls {Bri(xi)}i∈I satisfying c1(L

′ ∩Bri(xi)) � εS m−1(L′ ∩
Bri(xi)). Thanks to (3.4) the balls cover also c1-almost all of L′′, so the
countable subadditivity of capacity yields c1(L

′′) � εS m−1(L′). Since ε is
arbitrary we conclude that c1(L

′′) = 0, whence S m−1(L′′) = 0 by (3.4).
�
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Proposition 3.7. — Let (un) ⊂ W 1,1(X, γ) ∩ C(X) be convergent in
L1(X, γ) to χE, with E of finite perimeter, and satisfying

lim sup
n→∞

∫

X

|∇un| dγ � |DγχE |(X). (3.7)

Then

L :=

{
x : lim

n→∞
un(x) =

1

2

}

is contained, up to S m−1-negligible sets, in the essential boundary of E.

Proof. — Possibly passing to the smaller sets

L ∩
( ∞⋂

n=m

{
x ∈ X : |un(x)− 1

2
| � 1

4

})

which monotonically converge to L as m→∞, we can assume with no loss
of generality that |un − 1/2| � 1/4 on L.

Let us prove, first, that (3.7) yields the weak∗ convergence in the duality
with Cb(X) of |∇un|γ to |DγχE |. It suffices to apply the lower semiconti-
nuity of the total variation in open sets (see Proposition 2.5) to get

lim inf
n→∞

∫

A

|∇un| dγ � |DγχE |(A) for all A ⊂ X open

and then to apply [2, Proposition 1.80].

Denoting by E1 the set of density points of E, it suffices to show that
c1(L ∩ E1) = 0; indeed, the same property with the complement of E and
1 − un gives c1(L ∩ E0) = 0, where E is the set of rarefaction points of
E, and since E0 ∪E1 is the complement of the essential boundary of E we
conclude thanks to (3.4).

We now assume by contradiction that G := L ∩E1 has strictly positive
capacity. Since |DχE |(Br(y)) = o(rm−1) for S m−1-a.e. y ∈ E1 and thanks
to Lemma 3.6, we find a point x ∈ G and radii ri ↓ 0 such that limi c1(G ∩
Bri(x))/rm−1

i > 0 and |DχE |(Bri(x)) = o(rm−1
i ). Let φ : [0, 1] → [0, 1] be

the piecewise affine function identically equal to 1/2 on [1/4, 3/4] and with
derivative equal to 2 on (0, 1/4)∪ (3/4, 1). Since φ ◦un are identically equal
to 1/2 on L ⊃ G, we can apply Lemma 3.5 to 1/2−φ◦un in the ball Bri(x)
to get

r−mi

∫

Bri (x)

|φ ◦ un −
1

2
| dy � 2κωm

c1(G ∩Bri(xi))

∫

Bri (x)

|∇un| dy.
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Since φ(0) = 0 and φ(1) = 1, passing to the limit as n → ∞ and using the
weak∗ convergence of |∇un|γ to |DγχE | yields

r−mi

∫

Bri (x)

|χE −
1

2
| dy � 2κωm

c1(G ∩Bri(xi))

∫

Bri (x)

1

Gm
d|DγχE |.

Since rm−1
i /c1(G ∩ Bri(xi)) is uniformly bounded as i → ∞ and

|DχE |(Bri(x)) = o(rm−1
i ) we conclude that

r−mi

∫

Bri (x)

|χE −
1

2
| dy → 0 as ri ↓ 0,

contradicting the fact that x ∈ E1. �

4. Convergence of TtχE to 1/2

In this section we shall prove Theorem 1.1. By a well-known conver-
gence criterion in L2, the stated convergence will be a consequence of the
weak∗ convergence of TtχE to 1/2 in L∞(X, |DγχE |), that we shall prove in
Proposition 4.3, and the following apriori estimate (see also Remark 4.2):

Proposition 4.1. — For any set E with finite perimeter in (X, γ) it
holds

lim sup
t↓0

∫

X

|TtχE |2 d|DγχE | �
1

4
|DγχE |(X). (4.1)

Proof. — In this proof we shall use the simpler notation

Ttf(x) =

∫

F

f(y)ρXt (x, dy)

for the action of the OU semigroup. Comparing with Mehler’s formula (2.4),
we see that the measure ρXt (x, ·) is nothing but the law of y �→ e−tx +√

1− e−2ty under γ (not absolutely continuous w.r.t. γ if t > 0 and X is
infinite-dimensional).

Let ft = TtχE and write, as in (2.9),

ft(z, y) =

∫

Y

∫

F

χEy′ (z
′)ρFt (z, dz′)ρYt (y, dy′)

where H = F ⊕ F⊥ is an orthogonal decomposition of H, F ⊂ H̃ is finite-
dimensional, X = F ⊕ Y and γ = γF ⊗ γY are the corresponding decompo-
sitions of X and γ and Ey = {z ∈ F : (z, y) ∈ E}. Then Hölder’s inequality
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yields

f2
t (z, y) �

∫

Y

(∫

Ey′
ρFt (z, dz′)

)2

ρYt (y, dy′), (4.2)

so that it suffices to estimate from above the upper limits of the integrals

∫

X

[∫

Y

(∫

Ey′
ρFt (z, dz′)

)2

ρYt (y, dy′)

]
d|DγχE |(x) (4.3)

as t ↓ 0, with |DγχE |(X)/4. First of all, we notice that the quantity in square
parentheses is less than 1; hence, since (2.13) ensures that the measures in X

|DγFχEy |(dz)⊗ γY (dy)

monotonically converge to |DγχE | as F ↑ H (more precisely, as F increases
to a vector space dense in H), it suffices to estimate with |DγχE |(X)/4 the
upper limit as t ↓ 0 of the integrals

∫

Y

∫

F

[∫

Y

(∫

Ey′
ρFt (z, dz′)

)2

ρYt (y, dy′)

]
d|DγFχEy |(z)dγY (y). (4.4)

Now, if in (4.4) we replace the innermost integral on Ey′ with an inte-
gral on Ey, thanks to Fatou’s lemma and Proposition 3.1 (observe that∫
Ey

ρFt (z, dz′) � 1) we get immediately

lim sup
t↓0

∫

Y

∫

F

(∫

Ey

ρFt (z, dz′)

)2

d|DγFχEy |(z)dγY (y)

�
∫

Y

∫

F

lim sup
t↓0

(∫

Ey

ρFt (z, dz′)

)2

d|DγFχEy |(z)dγY (y)

� 1

4

∫

Y

|DγFχEy |(F ) dγY (y).

Since the quantity above is less than |DγχE |(X)/4, we are led to show that
the lim sup as t ↓ 0 of the expressions

∫

Y

∫

F

∫

Y

∣∣∣∣
(∫

Ey′
ρFt (z, dz′)

)2

−
(∫

Ey

ρFt (z, dz′)

)2∣∣∣∣ ρYt (y, dy′) d|DγFχEy |(z)dγY (y)

can be made arbitrarily small, choosing F large enough. To this aim, bound-
ing the difference of the squared integrals with twice their difference, using
again that

∫
Ey

ρFt (z, dz′) � 1 it suffices to estimate the simpler expressions

∫

Y

∫

F

∫

Y

∣∣∣∣
(∫

Ey′
ρFt (z, dz′)−

∫

Ey

ρFt (z, dz′)

)∣∣∣∣ρYt (y, dy′) d|DγFχEy |(z)dγY (y).

(4.5)
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We can now estimate (4.5) from above with

∫

Y

∫

F

TFt gt,y(z) d|DγFχEy |(z)dγY (y),

where TFt denotes the OU semigroup in (F, γF ) and

gt,y(z) :=

∫

Y

|χEy′ (z)− χEy (z)|ρYt (y, dy′).

Keeping y fixed, by applying Lemma 3.4 with σy = |DγFχEy | we get that
the limsup as t ↓ 0 of the expression in (4.5) is bounded above by

lim sup
t↓0

1√
t

∫

Y

∫

X

gt,y(z) dγF (z)dγY (y). (4.6)

Since we can also write gt,y(z) =
∫
Y

∣∣χEz (y) − χEz (y
′)

∣∣ρYt (y, dy′), by (2.7)
we get
∫

Y

gt,y(z) dγY (y) =

∫

Y

∫

Y

|χEz (y)−χEz (y′)|ρYt (y, dy′)dγY (y)�ct|DγY χEz |(Y ),

so that an integration w.r.t. z and Fubini’s theorem give that the lim sup in
(4.6) is bounded above by (taking also into account that ct ∼ 2

√
t/π)

2√
π

∫

F

|DγY χEz |(Y ) dγF (z).

But, according to (2.14), we can represent the expression above as

2√
π

∫

X

|πF⊥(νE)| d|DγχE |.

Since |πF⊥(νE)| ↓ 0 as F increases to a dense subspace of H, we conclude.
�

Remark 4.2. — In the previous proof we used that the statement is true
in finite dimensions, see Proposition 3.1. But actually Proposition 3.1 pro-
vides also a stronger information, and the proof above could be slightly
modified to obtain directly Theorem 1.1 from this stronger information.
However, we prefer to emphasize a softer and surely more elementary proof
of the weak∗ convergence of Tt. Indeed, we believe that the softer argument
below (based just on the product rule (2.8) and some elementary arguments)
has an interest in his own. In particular, a variant of this argument allows
to prove that |DγχE | is also concentrated on a kind of reduced boundary
(see the Appendix).
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Proposition 4.3. — As t ↓ 0, TtχE weak∗ converge to 1/2 in
L∞(X, |DγχE |).

Proof. — Let ti ↓ 0 be such that fi := TtiχE weak∗ converge to some
function f as i→∞. It suffices to show that f � 1/2 up to |DγχE |-negligible
sets. Indeed, the same property applied to X \ E yields 1 − f � 1/2 up to
|DγχX\E |-negligible sets, and since the surface measures of E and X \ E
are the same we obtain that f = 1/2 in L∞(X, |DγχE |). Since TtχE is
uniformly bounded in L∞(X, |DγχE |), from the arbitrariness of (ti) the
stated convergence property as t ↓ 0 follows.

By approximation, it suffices to show that

2

∫

A

f d|DγχE | � |DγχE |(A) (4.7)

for any open set A ⊂ X; by inner approximation with smaller open sets
whose boundary is |DγχE |-negligible, we can also assume in the proof of
(4.7) that |DγχE |(∂A) = 0. We use the product rule (2.8) to obtain

Dγ(fiχE) = fiDγχE + χE∇fiγ.

Then, we use the relations ∇Ttv = e−tT ∗t Dγv (see Proposition 2.1(b)) and
|∇Ttv| � e−tT ∗t |Dγv| with v = χE and t = ti to get

|Dγ(fiχE)| � fi|DγχE |+ T ∗ti |DγχE |.

Let us now evaluate both measures on A:

|Dγ(fiχE)|(A) �
∫

A

fi d|DγχE |+
∫

X

TtiχA∩E d|DγχE |.

Since TtiχA∩E � min{fi, TtiχA} we can further estimate

|Dγ(fiχE)|(A) � 2

∫

A

fi d|DγχE |+
∫

X\A
TtiχA d|DγχE |.

Finally, since fiχE → χE in L1(X, γ), it suffices to use the fact that TtχA →
0 pointwise on X \A and the lower semicontinuity of the total variation in
open sets (see Proposition 2.5) to get (4.7). �
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5. Representation of the perimeter measure

In this section we shall prove Theorem 1.3. We fix an orthogonal decom-
position X = F ⊕ F⊥ of H, with F ⊂ H̃ finite-dimensional, and denote by
X = F ⊕ Y the corresponding decomposition of X. We define Ey, y ∈ Y ,
as in (2.12) and, correspondingly, the essential boundary ∂∗FE as in (2.18).

Our main goal will be to show that the set E1/2 (as defined in Defini-
tion 1.2), namely {

x ∈ X : lim
i→∞

TtiχE(x) =
1

2

}

is contained in ∂∗FE up to S ∞−1
F -negligible sets, i.e.,

S ∞−1
F (E1/2 \ ∂∗FE) = 0. (5.1)

Proof of (5.1). — Let fi,y(z) = TtiχE(z, y). Since
∑
i

√
ti < ∞ we can

use the estimates
∫

Y

∑

i

∫

F

|fi,y−χEy | dγF dγY (y) =
∑

i

∫

X

|TtiχE−χE | dγ � |DγχE |(X)
∑

i

cti ,

with ct as in Lemma 2.3, to obtain that fi,y → χEy in L1(γF ) for γY -a.e.
y ∈ Y . Our first task will be to show the existence of a subsequence ti(j)
such that

lim
j→∞

∫

F

|∇F fi(j),y| dγF = |DγFχEy |(F ) for γY -a.e. y ∈ Y . (5.2)

To this aim, we first show that
∫

Y

(∫

F

|∇F fi,y| dγF
)
dγY �

∫

Y

|DγFχEy |(F ) dγY . (5.3)

In order to prove (5.3) we use Proposition 2.1(b) to get |∇F fi|γ
� T ∗ti |πF (DγχE)|, hence

∫

X

|∇F fi,y| dγ � |πF (DγχE)|(X)

and using (2.13) we conclude that (5.3) holds.

Condition (5.2) now follows by the L1(Y, γY ) convergence of
∫
F
|∇F fi,y|dγF

to |DγFχEy |(F ); in turn, applying a convergence criterion (see for instance
[2, Exercise 1.19]) this follows by the lim inf inequality

lim inf
i→∞

∫

F

|∇F fi,y| dγF � |DγFχEy |(F ) for γY -a.e. y ∈ Y .
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(a consequence of the lower semicontinuity of total variation) together with
convergence of the L1 norms ensured by (5.3).

Now, we fix y such that all functions fi,y are continuous and both con-
ditions

lim
i→∞

∫

F

|fi,y − χEy | dγF = 0, lim
j→∞

∫

F

|∇F fi(j),y| dγF = |DγFχEy |(F )

hold and apply Proposition 3.7 to obtain that the y section of E1/2, con-
tained in {

z ∈ F : lim
j→∞

fi(j),y(z) =
1

2

}

is also contained, up to S m−1-negligible sets, in ∂∗Ey. Since Proposition 2.2
and (5.2) ensure that the set of exceptional y’s is γY -negligible, the definition
of S ∞−1

F yields (5.1). �

Having achieved (5.1) we can now prove Theorem 1.3. To this aim, we
fix a nondecreasing family F = {F1, F2, . . .} of finite-dimensional subspaces
of H̃ whose union is dense in H and, using (5.1) in conjunction with (2.19),
for n � m we get

S ∞−1
Fn

(E1/2 \
∞⋂

i=m

∂∗FiE) = 0.

Letting m → ∞ it follows that S ∞−1
Fn

(E1/2 \ ∂∗FE) = 0, and since n is
arbitrary this proves that

S ∞−1
F (E1/2 \ ∂∗FE) = 0. (5.4)

Now, we know that |DγχE | = S ∞−1
F ∂∗FE, hence evaluating both mea-

sures on ∂∗FE \E1/2 and using the fact that |DγχE | is concentrated on E1/2

we get

S ∞−1
F (∂∗FE \ E1/2) = 0. (5.5)

The combination of (5.4) and (5.5) gives

|DγχE | = S ∞−1
F E1/2.

But, since F is arbitrary, this yields that E1/2 has finite S ∞−1-measure
and (1.5), concluding the proof.
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6. Derivative of the union of disjoint sets

In this section we prove Corollary 1.4. Let us remark that, although
the result is standard in finite dimensions and could be proved in different
ways (for instance, using De Giorgi’s rectifiability theorem), the argument
below is very elementary. Although the proof is more or less the same as
the one in [13, Lemma 2.2] (where the authors are dealing with the classical
notion of perimeter in Rm), we believe it is worth to repeat the argument
for reader’s convenience, and for underlying the importance of the fact that
in our representation formula (1.5) the measure S ∞−1 is universal.

Proof of Corollary 1.4. — The fact that E∪F has finite perimeter follows
immediately from the definition.

Since the sets (E ∪ F )1/2, E1/2, F 1/2 are S ∞−1-uniquely determined,
we can assume that they all have been defined using the same sequence (ti).

As γ(E ∩ F ) = 0 we have χE∪F = χE + χF , so that by (1.5)

νE∪FS ∞−1 (E ∪ F )1/2 = DγχE∪F = DγχE +DγχF (6.1)

= νES ∞−1 E1/2 + νFS ∞−1 F 1/2.

Since E1/2 ∩ F 1/2 ⊂ {x ∈ X : limi→∞ TtiχE∪F (x) = 1} we have

(E ∪ F )1/2 ∩ E1/2 ∩ F 1/2 = ∅, (6.2)

so (1.6) follows from (6.2). Moreover, again by (6.1) and (6.2), for every
Borel set C ⊆ E1/2 ∩ F 1/2 we have

∫

C

νE + νF dS ∞−1 =

∫

C∩(E∪F )1/2
νE∪F dS ∞−1 = 0,

which implies that νE = −νF at S ∞−1-a.e. point in E1/2∩F 1/2, as desired.
�

7. Appendix: The reduced boundary

The classical finite-dimensional definition of reduced boundary [9] is
based on the requirements of existence of the limit

νE(x) := lim
r↓0

DχE(Br(x))

|DχE |(Br(x))
(7.1)

and modulus of the limit νE(x) equal to 1. It is not hard to show that points
in the reduced boundary are Lebesgue points for the vector field νE , relative
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to |DχE |, hence the proof that |DχE |-almost every point x is in the reduced
boundary is based on Besicovitch covering theorem, a result not available
in infinite dimensions.

In [5, Definition 7.2], the authors proposed the following definition of
reduced boundary based on the OU semigroup:

Definition 7.1 (Gaussian Reduced Boundary). — Let E be a Borel set
of finite perimeter in (X, γ). We denote by FE the set of points x ∈ X where
the limit

νE(x) := lim
t↓0

Tt

(
T ∗t DγχE
T ∗t |DγχE |

)
(x) (7.2)

exists and satisfies |νE(x)| = 1.

As observed in [5, Section 7], a natural open problem is to prove that
|DγχE | is concentrated on FE. Here, we show how the soft argument used
in the proof of Proposition 4.3 allows to prove easily the weaker result

lim
t↓0

Ttht = 1 in L1(X, |DγχE |) with ht :=
|T ∗t DγχE |
T ∗t |DγχE |

. (7.3)

In particular, we deduce that along any subsequence (ti) ↓ 0 such that

∑

i

∫

X

|Ttihti − 1| d|DγχE | <∞

it holds

lim
i→∞

Tti

( |T ∗tiDγχE |
T ∗ti |DγχE |

)
(x) = 1 for |DγχE |-a.e. x ∈ X.

Proof of (7.3). — Set ft := TtχE . Arguing as in the proof of Proposition
4.3, the product rule (2.8) yields

|Dγ(ftχE)|(X) �
∫

X

ft d|DγχE |+
∫

X

htχE dT
∗
t |DγχE |.

Replacing E by X \ E and and ft by 1− ft, we also have

|Dγ((1− ft)χX\E)|(X) �
∫

X

(1− ft) d|DγχE |+
∫

X

ht(1− χE) dT ∗t |DγχE |.

Adding together the two inequalities above, we obtain

|Dγ(ftχE)|(X) + |Dγ((1− ft)χX\E)|(X) � |DγχE |(X) +

∫

X

ht dT
∗
t |DγχE |

= |DγχE |(X) +

∫

X

Ttht d|DγχE |.
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By lower semicontinuity of the total variation (see Proposition 2.5), letting
t ↓ 0 we get

2|DγχE |(X) � lim inf
t↓0

(
|Dγ(ftχE)|(X) + |Dγ((1− ft)χX\E)|(X)

)

� |DγχE |(X) + lim inf
t↓0

∫

X

Ttht d|DγχE |,

so that

|DγχE |(X) � lim inf
t↓0

∫

X

Ttht d|DγχE |.

This, combined with the fact that 0 � Ttht � 1 (as 0 � ht � 1) proves that
∫

X

|Ttht − 1| d|DγχE | =
∫

X

(1− Ttht) d|DγχE | → 0 as t ↓ 0,

as desired. �

Bibliography

[1] Airault (H.) and Malliavin (P.). — Intégration géométrique sur l’espace de
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