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On the number of zeros of Melnikov functions

Sergey Benditkis(1), Dmitry Novikov(1)

ABSTRACT. — We provide an effective uniform upper bound for the num-
ber of zeros of the first non-vanishing Melnikov function of a polynomial
perturbations of a planar polynomial Hamiltonian vector field. The bound
depends on degrees of the field and of the perturbation, and on the or-
der k of the Melnikov function. The generic case k = 1 was considered
by Binyamini, Novikov and Yakovenko [BNY10]. The bound follows from
an effective construction of the Gauss-Manin connection for iterated in-
tegrals.

RÉSUMÉ. — Nous donnons une borne supérieure effective et uniforme pour
le nombre de zéros de la première fonction de Melnikov d’une perturbation
polynomiale d’un champ de vecteurs hamiltonien polynomial sur le plan.
La borne dépend des degrés du champ et de la perturbation, et de l’ordre
k de la fonction de Melnikov. Le cas générique k = 1 a été considéré par
Binyamini, Novikov et Yakovenko [BNY10]. La borne est obtenue à l’aide
d’une construction effective de la connection de Gauss-Manin pour les
intégrales itérées.

1. Introduction

1.1. Infinitesimal Hilbert 16th problem

The second part of 16th Hilbert problem asks: How many limit cycles
may have a planar polynomial vector field? The question has a long history,
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and was at the origin of several theories, see [I02]). The most remarkable
achievement, Ecalle-Ilyashenko theorem, claims that the number of limit
cycles is finite for any individual vector field, see [E92, I]. However, existence
of a uniform upper bound for this number even for quadratic vector fields
is an open problem.

A weaker form of the same question concerns perturbations of Hamil-
tonian vector fields. Let H(x, y) be a bivariate polynomial (further called
Hamiltonian). The corresponding Hamiltonian system can be written in
Pfaffian form as

dH = 0. (1.1)

Consider its polynomial perturbation

dH + εω = 0, where ω = P (x, y)dx+Q(x, y)dy, P,Q ∈ R[x, y], (1.2)

and ε ∈ (R1, 0).

Consider a nest of cycles {δt ⊂ {H = t}, t ∈ [a, b] ⊂ R} of (1.1). We ask
how many limit cycles of (1.2) converge to this nest as ε→ 0.

It is easy to see that closed trajectories δt that survive after the pertur-
bation should produce zero value of the Poincaré integral (aka first Melnikov
function)

I = I(δt, ω) =

∮

δt

ω,

the so-called Poincaré-Andronov-Pontryagin criterion, see [IY, §26A]. There-
fore estimates on the number of zeros of this so-called Abelian integral have
direct relation to the Hilbert 16th problem. Binyamini, Novikov, Yakovenko
studied the case of non-conservative perturbations, namely, when the Poinca-
ré integral does not vanish identically.

Theorem 1.1 [BNY10]. — Assume that I �≡ 0 for the nest of cycles of
(1.1). Assume that degω < degH. Then the number of cycles δt providing

the zero value of Poincaré integral is at most 22P (degH)

, where P (n) is some
explicit polynomial of degree at most 61.

This upper bound serves also as an upper bound for the cyclicity of an
open nest of the limit cycles (which is defined as a supremum of cyclicities
of all closed subnests of the open nest, see e.g. [GN10]).

For generic Hamiltonians identical vanishing of I implies exactness of ω
(again, assuming degω < degH), so the perturbation remains integrable,
see [I69]. However, for degenerate Hamiltonians one has to consider Mel-
nikov functions of higher order.
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1.2. Melnikov functions and the main theorem

Definition 1.2. — For a cycle δ of (1.1) choose a transversal σ with
coordinate z chosen in such a way that δ intersect σ at z = 0.
Denote by ∆ : σ → σ the holonomy map of cycle γ considered as a function
of the parameters h, ε. Being analytic function of its arguments, ∆ can be
expanded in the converging series

∆(z, ε) = z + εM1(z) + . . . + εkMk(z) + . . . , (1.3)

where Mk(z) are real analytic functions defined in some common neighbor-
hood of the origin z = 0. The function Mk is called k-th Melnikov function.

Assume that the first nonzero function Mk(z) has N isolated zeros
(counted with their multiplicities) in the closed interval {|z| � ρ}.

Proposition 1.3 [IY, Proposition 26.1]. — There exists a small posi-
tive value r > 0 such that for all |ε| < r the foliation (1.2) has no more
than N limit cycles intersecting σ at {|h| � ρ}.

Our main result provides an upper bound for the number of isolated
zeros of the first non-zero Melnikov function.

Theorem 1.4. — The number of isolated zeros of the first non-zero Mel-
nikov function MK is bounded by exp

(
exp

(
dO(1)nO(K)

))
, where n + 1 =

degH, d = degω, and the absolute constants in O(1), O(K) can be explic-
itly computed.

This bound is certainly not exact, and construction of lower bounds is
a difficult problem, unsolved even for the Abelian integrals.

Note that the order K of the first non-zero Melnikov function cannot be
easily bounded in terms of degree of H: this problem includes, as a particular
case, the center-focus problem.

1.3. Iterated integrals and algebraic motivation

It is well-known, see [G05, IY], that MK can be represented as a linear
combination of so-called iterated integrals of length at most K.

Definition 1.5. — Let γ(s) : [0, 1] → C2 be parameterization of a curve
γ ⊂ C2. For a k-tuple of forms ω1, ..., ωk ∈ Λ1(C2) we define the iterated
integral as

∫

γ

ω1...ωk =

∫ 1

0

(∫ s1

0

(
...

(∫ sk

0

γ∗ωk

)
γ∗ωk−1

)
...

)
γ∗ω1.
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We will always assume that γ lies on a Riemann surface {H = t}. The
fundamental question then is the dependence of the iterated integral on
the path of integration γ. Unlike Abelian integrals, the iterated integrals
are not additive function of γ. However, iterated integrals are preserved by
homotopy with fixed endpoints of γ, in particular by reparametrization. If
γ is closed, this means that iterated integrals depend on [γ] ∈ π1({H =
t}, γ(0)) only.

Iterated integrals were extensively studied from various points of view,
see e.g. [Ch, H, MN08]. Our goal is to investigate their oscillation prop-
erties. Let us choose a straight line as a transversal to the nest of cycles.
Iterated integrals define functions on this transversal: to any point p of the
transversal corresponds the value of the iterated integral over the cycle of
the foliation passing through it, with p being the initial point of the path of
integration (note that, unlike the Melnikov function, the iterated integrals
do depend on the choice of the initial point of the cycle).

The main step of the proof of Theorem 1.4 is an explicit construction of
a meromorphic flat connection whose horizontal sections are given by basic
iterated integrals (see (3.7) for definition), a higher order analogue of the
Gauss-Manin connection for Abelian integrals. We prove in Section 4 that
this connection belongs to the class of connections considered in the paper
of of Binyamini, Novikov and Yakovenko [BNY10], see the next section for
formulation of the result. Estimates on the complexity of the connection,
proved in Section 3, allow to apply their main result not only to linear
combinations of basic iterated integrals, but also to their combinations with
coefficients polynomially dependent on z from (1.3). In Section 5 we repre-
sent MK in this form.

Note that the main result of the paper holds for Melnikov functions of
any order, not only for the first non-vanishing one. However, the zeros of
these higher order Melnikov functions do not seem to have any meaning.

2. Non-oscillation of horizontal sections of meromorphic
connections

In this section we briefly recall the main result of [BNY10]. Let Ω be a
rational l × l-matrix of rational differential 1-forms on a complex manifold
M , with a singular locus Σ. It defines a connection

dX = Ω ·X (2.1)

on trivial vector bundle M × Cl. We denote by Σ the singular locus of the
connection.
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2.1. Regular integrable connections

Definition 2.1. — The form Ω is integrable or locally flat if dΩ−Ω∧
Ω = 0.

This condition is equivalent to local existence of a basis of horizontal
sections of (2.1) near each nonsingular point a /∈ Σ.

Definition 2.2. — The Picard-Fuchs system (2.1) (and the correspond-
ing matrix 1-form Ω) is called regular at a ∈M , if for any germ of a holo-
morphic curve γ : (C, 0) → (M,a) the pull-back of the connection to (C, 0)
has a regular singularity at the origin:

∀C > 0 ∃p = p(C) ∈ R ‖X(γ(s))‖±1 = O(|s|−p) (2.2)

as s→ 0 in the sector {arg s| � C}.

Connection is called regular on M if it is regular at each point a ∈M .

Regular connections remain regular after pull-backs, push-forwards,
(semi)direct products etc., see [D].

2.2. Quasiunipotent connections

Definition 2.3. — For a point a ∈M a small loop around a is a closed
path γ, such that exists a holomorphic mapping {|z| � 1} →M which maps
0 to a, {|z| = 1} to γ and such that the image of {|z| � 1} \ {0} is disjoint
from Σ.

Recall that an operator is called quasiunipotent if all its eigenvalues are
roots of unity, i.e. belong to exp(2πiQ).

Definition 2.4. — The integrable form Ω is called quasiunipotent at
a point a ∈ M , if the monodromy operator associated with any small loop
around a is quasiunipotent. The system is (globally) quasiunipotent, if it is
quasiunipotent at every point of CPn.

Similarly to regularity condition, quasiunipotency at generic points im-
plies quasiunipotency at all points:

Theorem 2.5. — (Kashiwara theorem [K81]). A regular integrable sys-
tem that is quasiunipotent at each point outside an algebraic subset of codi-
mension 2, is globally quasiunipotent.

In general, quasiunipotency does not imply that every monodromy op-
erator associated to Ω is quasiunipotent.
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2.3. Degree of rational function

We define degree of a rational function to be the minimum of sums of
degrees of numerator and denominator over all its representations as a ratio
of two polynomials. Degree of the form is defined in such a way that the
operator d has degree 0.

2.4. Notion of size

In this work, similarly to [BNY10], we are studying various objects, like
matrices, functions, differential forms, defined over Q, the field of rational
numbers. To obtain quantitative characteristics of these objects, we need to
use the notion of size, or complexity of the objects.

Definition 2.6. — The norm of a multivariate polynomial P ∈
C[z1, . . . , zn], P (z) =

∑
α cαz

α (in the standard multi-index notation) is
the sum of absolute values of its coefficients, ‖P‖ =

∑
α |cα|. Clearly, this

norm is multiplicative,

‖PQ‖ � ‖P‖ · ‖Q‖

Definition 2.7. — The size S(P ) of an integer polynomial P ∈
Z[z1, . . . , zn] is set to be equal to its norm, S(P ) = ‖P‖.

The size of a rational fraction R ∈ Q(z1, . . . , zn) is

S(R) = min
P,Q
{‖P‖+ ‖Q‖ : R = P/Q;P,Q ∈ Z[z1, . . . , zn]}

The size of a (polynomial or rational) 1-form on Pm or on Pm×P1 defined
over Q, is the sum of sizes of its coefficients in the standard affine chart
Cm.

The size of a vector or matrix rational function (resp., 1-form) defined over
Q, is the sum of the sizes of its components.

Note that, unlike polynomials, for rational functions we have only

deg
(∑

Ri

)
� 2

∑

i

degRi

S

(
n∑

i=1

Ri

)
� (n + 1)

n∏

i=1

S(Ri). (2.3)
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2.4.1. Counting number of zeros of the solution

Let Ω be a rational l× l-matrix 1-form of degree d on the product CPm,
and consider the restriction of the corresponding Picard-Fuchs system (2.1)
to some line ( ∼= CP 1 ⊂ CPm. We are interested in the number of zeros of a
linear combinations of entries of the fundamental matrix of (2.1). In general,
restriction of the fundamental matrix to this line produces a multivalued
matrix function on ( \ Σ, so to count zeros one should choose a simply
connected domain in (\Σ. One can easily see that the geometric complexity
of the domain should be taken into account.

Definition 2.8. — We denote by N (() = N (Ω|�) the supremum over
all constant matrices B and all closed triangles T lying in (\Σ of the number
of isolated zeros of the function TrBX in T .

Without extra assumption, this supremum could be easily infinite. However,

Theorem 2.9 [BNY10, Theorems 7,8]. — Let Ω be a rational l × l-
matrix 1-form of degree d on the product CPm × CP 1. Assume that Ω
is integrable, regular and quasiunipotent, is defined over Q and its size is
s = S(Ω). Then

∀( ∼= CP 1 ⊂ CPm × CP 1 N (() � s2C(dl4m)5

for some universal constant C.

3. Construction of Gauss-Manin connection
for iterated integrals

3.1. Base spaces: notations

Let Cn+1[x, y] denote the space of all bivariate polynomials of degree at
most n+1. We will denote the points of its projectivization PCn+1[x, y] by
λ. In standard coordinates H =

∑
0�i+j�n+1 λijx

iyj . By λ̃ we denote the
tuple of all elements of λ except the last one, λ00.

An important role plays the space C̃n+1[x, y] of polynomials vanishing
at the origin, of dimension smaller by 1. The tuples λ̃ parametrize the points
of its projectivization P C̃n+1[x, y].
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3.2. Gauss-Manin connection for Abelian integrals

Definition 3.1. — Let H ∈ C[x, y] be a polynomial of degree n+1. The
Petrov module PH is the C[t]-module defined as the quotient space

PH =
Λ1

dH · Λ0 + dΛ0

of polynomial 1-forms over the space of relatively exact forms f · dH + dg,
where f, g are polynomials.

Recall that a bivariate polynomial is called ultra-Morse if it has Morse
critical points with distinct critical values and its highest homogeneous part
has no multiple factors.

Proposition 3.2 [IY, Theorem 26.21]. — The set of all ultra-Morse
polynomials H for which the forms ωij = xi−1yj dx, 1 � i, j � n form a
basis of PH over C[h] is a Zarisky open subset UM ⊂ PCn+1[x, y].

To simplify the notations, we will sometimes reenumerate the set of ba-
sic forms B = {ωij = xi−1yj dx, i, j = 1, ..., n} as B = {ωl}, in such a way
that degωl is non-decreasing with l. B provides a convenient global trivial-
ization of homological Milnor bundle over UM: a cycle δ ∈ H1({H = 0},C)

corresponds to the vector {
∫
δ
ωl} ∈ Cn2

. The Gauss-Manin connection in
this trivialization can be written explicitly and this fact relates the main
result of [BNY10] to Infinitesimal Hilbert 16th problem. Let us formulate
this result.

Let H be a polynomial satisfying the conditions of Proposition 3.2, such
that the affine curve ΓH = {H = 0} ⊂ C2 is smooth. Choose a point

p0 ∈ ΓH . ΓH is a Riemann surface of genus n(n−1)
2 with n + 1 removed

points. Therefore its fundamental group π1(ΓH , p0) is a free group in N = n2

generators.

Choose δ1, ...δN ∈ π1(ΓH , p0) in such a way that their homology classes
form a basis in H1(ΓH ,Z) and consider the matrix

S1 =

{∮

δk

ωl

}N

k,l=1

. (3.1)

In [G98] it was proved that S1 is non-degenerate for H. Moreover, S1 is a
fundamental system of solutions of a Picard-Fuchs equation, see [AGV].
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Theorem 3.3 ([BNY10]). — S1 = S1(H) is the matrix of fundamental
solutions of the Picard-Fuchs equation

dS1 = Ω1S1, (3.2)

which is defined over Q and has the size s = S (Ω), dimension ( and the
degree d = deg Ω explicitly bounded from above as

s � 2Poly(n), d � O(n2), ( = n2. (3.3)

Using these estimates and Theorem 2.9, one gets the main result of
[BNY10].

Our goal is to generalize this construction for iterated integrals of length
K > 1. To this end we will need more detailed results. We will consider
forms θ ∈ Λ1[C2] ⊗ C(λ), i.e. the one-forms on C2 whose coefficients are
polynomials in x, y and the coefficients of these polynomials are rational
functions of λ. If the coefficients of these rational functions in λ are rational
numbers, i.e. θ ∈ Λ1[C2] ⊗ Q(λ), then we will say that θ is a polynomial
1-form on C2 defined over Q(λ).

Proposition 3.4. — Let θ be a polynomial one-form of degree d on C2
x,y

defined over Q(λ). Let θ be of degree ν in λ and of size s. Denote by λ̃ =
λ\{λ00} the tuple of all coefficients of H except the first one. Then one can
write a decomposition

θ =

N∑

i=1

(fi ◦H)ωi +fdH +dg, f, g ∈ Q(λ̃)[x, y], fi ∈ Q(λ̃)[h], (3.4)

with degx,y f,degx,y g � d and degh fi � d
n+1 . Moreover, coefficients of f, g

and fi can be chosen to be of degree at most ν + O(d3) in λ̃ and of sizes

bounded by sdO(d3).

Proof. — It is well known that for any fixed sufficiently generic λ̃ one
can write decomposition (3.4) with this bounds on degrees in x, y and h
and some numerical coefficients, see e.g. [G98]. The functions f, g in this
decomposition are not uniquely defined, but the functions fi are defined
uniquely. To understand dependence of coefficients of fi, f, g on λ̃, consider
(3.4) as a system of linear equations on the coefficients of f, g and fi (these
are rational functions of λ̃)

AF̂ = θ̂, (3.5)
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where F̂ ∈ Q(λ̃)DU denotes the vector of coefficients of f, g and fi, and

θ̂ ∈ Q(λ̃)DE denotes the vector of coefficients of θ.

Note that the matrix A in (3.5) does not depend on the form θ, only on
its degree. Let us denote determinant of its biggest non-degenerate minor
by ∆d.

Assume that d > n (otherwise there is nothing to prove). The number
of equations is equal to the number of coefficients of θ, i.e. is equal to
DE = (d + 1)(d + 2) = O(d2). The number of unknowns (i.e. of coefficients

of fi, f and g) is DU = dn2

n+1 + O(d2) = O(d2). Coefficients of the matrix
A in (3.5) are polynomials in λ, of degrees and sizes being O(d) (coming
from Hj) and nO(d) correspondingly. By assumption, on the right hand
side of (3.5) are polynomials of degree at most ν1, divided by some common
polynomial R of degree ν2, ν1+ν2 = ν. Their sizes are at most s. Multiplying
by R, applying Cramer rule and dividing back by R, we conclude that
the coefficients of f, g and fi can be chosen to be polynomials of degree
ν1 + O(d3) and of size snO(d3) divided by a product of R∆d. One can see

that ∆d is of degree O(d3) and of size nO(d3), so the entries of F̂ are of

degree ν + O(d3) and of sizes sdO(d3). Since the denominators of all entries
are equal, the same bounds hold for the degrees and sizes of f, g and fi.
�

3.3. Chen homomorphism

Here we prove an analogue of the first claim of Theorem 3.3 for iterated
integrals.

Let U be the space of all formal infinite series in non-commuting variables
X1, ..., XN , N = n2. Let m denote the maximal ideal m = 〈X1, . . . , XN 〉 ⊂
U . We denote the units of U and of π1(ΓH , p0) by e.

Definition 3.5. — Define Chen homomorphism ϕ : π1(ΓH , p0) → U as

ϕ(δ) = e +
∑

(ωi1 ···ωik )

∮

δ

ωi1 · · ·ωikXi1 · · ·Xik , (3.6)

where summation is over the set of all non-empty words in alphabet ωl.

Let jK : U → U/mK+1U be the natural homomorphism. Define ϕK to
be the composition ϕK = jKϕ : π1(ΓH , p0) → U/mK+1U .

One can easily show that ϕ (and therefore ϕK) is a group homomorphism
to the set of invertible elements of U (of U/mK+1 resp.), see [H].
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Note that the space U/mK+1U is finite-dimensional, and has standard
basis of monomials {Xi1Xi2 · . . . ·Xik , 0 � k � K, 1 � ij � N}. We claim
that the image of ϕK spans U/mK+1U .

Lemma 3.6. — Let ∆�K be the set of products of length at most K of
the generators δj of π1(ΓH , p0). The set {jKϕ(δ), δ ∈ ∆�k} is a basis of
U/mK+1U .

Proof. — The statement of the Lemma holds simultaneously for all base
in H1(ΓH ,Z), so, by replacing ωi by their linear combinations, we can as-
sume that {[ωi]} form a basis of H1(ΓH ,Z) dual to {[δi]} ⊂ H1(ΓH ,Z).

We have ϕ(e) = e. This implies the statement for K = 0.

If K = 1, then ϕ(δi)−ϕ(e) = Xi+m2U , so Xi is in the span of j1ϕ(∆�1).

For K > 1, we see from the previous equality that

Xi1Xi2 · · ·Xik = (ϕ(δi1)− ϕ(e)) · . . . · (ϕ(δik)− ϕ(e)) + mK+1U,

and, since ϕ is homomorphism, the right hand side is a linear combination
of elements of {ϕ(δ), δ ∈ ∆�k} (mod mK+1U).

So {ϕK(δ), δ ∈ ∆�k} spans U/mK+1U , and, by cardinality reason (here
we use that π1(ΓH , p0) is a free group), is a basis. �

3.4. Construction of the horizontal section

Abelian integrals are iterated integrals of length 1. The direct analogue
of the matrix S1 of (3.1) for iterated integrals of length at most K is the
matrix

SK(H) =

{∮

δj1 ...δjk

ωi1 ...ωil , jr, is = 1, ..., N

}K

k,l=0

(3.7)

of iterated integrals of length at most K of basic forms ωj ∈ B over the
cycles δ = δj1 ...δjk ∈ ∆�K (we adopt convention

∫
δ
∅ = 1). We call these

integrals the basic iterated integrals.

The iterated integrals depend on the choice of the base point of π1(ΓH , p0),
so we choose p0 as one of the points of intersection of {H = 0} with the
line σ = {x = 0} (generically, there are n + 1 such points). Columns of SK

are just the coordinates of ϕK(δ), δ ∈ ∆�K written in the standard basis of
U/mK+1U .
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For a generic H for all H̃ sufficiently close to H the pairs
(
Γ
H̃
, p0(H̃)

)

are diffeomorphic to (ΓH , p0(H)) by a diffeomorphism close to identity. This
diffeomorphism is unique up to isotopy, so we can identify the fundamental

groups π1

(
Γ
H̃
, p0(H)

)
. This means that any path δ ∈ π1(ΓH , p0(H)) can be

continuously extended to a family δ(H̃) defined in some neighborhood of H.
Therefore SK can be extended holomorphically to some neighborhood of H,
and, by analytic continuation, to a multivalued matrix function holomorphic
on some Zarisky open subset of PCn+1[x, y].

Lemma 3.6 claims that SK is non-degenerate for a generic choice of H.
Therefore near a generic H the matrix SK describes a basis of space of
sections of the trivial vector bundle PCn+1[x, y]× U/mK+1.

Our goal is to explicitly write coefficients of the connection for which the
matrix SK is a basis of horizontal sections. We construct this connection
locally in a neighborhood of some generic point H ∈ PCn+1[x, y]. The
coefficients of the connection matrix ΩK = dSK S−1

K turn out to depend
rationally on H and the point of intersection p ∈ {H = 0} ∩ σ, which is an
algebraic function of H.

To eliminate the algebraic multivaluedness of ΩK we lift the bundle and
the connection to the corresponding algebraic cover. Namely, for any n > 0
we define Bn to be the product

Bn = P C̃n+1[x, y]× CP 1 (3.8)

of the space of all polynomials of degree at most n + 1 vanishing at (0, 0),
and of the line σ = {x = 0}. Define the mapping ev : Bn → PCn+1[x, y]

by ev(H, y) = H − H(y). Lifting Ω̃K = ev∗ΩK defines a meromorphic
connection on Bn×U/mk+1. We prove that the resulting connection matrix
is rational on Bn and satisfies the conditions of Theorem 2.9.

3.5. Differentiation of iterated integrals

Our main tool in construction of the connection is a formula of differen-
tiating of integrals, a version of the Gelfand-Leray formula for non-closed
paths. We follow closely [G05].

Let R be a function holomorphic in some open set W ⊂ C2, and assume
that its non-critical level {R = 0} is smooth and intersects transversely the
line σ = {x = 0} at a point p0(0). Choose a path δ lying on {R = 0} and
starting from p0(0) with endpoint p1(0). For any point p in a neighborhood
of p1(0) we can define a path δ(p) close to δ, lying on {R = R(p)} and
joining p and the point p0(p) of transversal intersection of {R = R(p)} ∩ σ.
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Proposition 3.7 ([G05, Lemma 2.2]). — Let ω be a differential 1-form
holomorphic in W . Then for the integral

∫
δ(p)

ω, the following equation holds

d

∫

δ(p)

ω =

(∫

δ(p)

dω

dR

)
dR + ω − (σ ◦R)∗ω, (3.9)

where σ : (C, 0) → {x = 0} is the parameterization of {x = 0} by values of
R: σ(t) = {R = t} ∩ {x = 0}.

Here, as usual, the Gelfand-Leray derivative dω
dR is defined by ω = dR ∧

dω
dR , see [IY]. Restricting to p ∈ σ and closed path δ we get the standard
Gelfand-Leray formula.

Assume now that the initial path δ = δ(0) is closed, and the endpoint
p of the path δ(p) varies on σ. As in Definition 1.2, denote the resulting
nest of cycles by δ(t), where t = R(p). Let ω1, ..., ωn be differential 1-forms
holomorphic near δ0. Assume in addition that the pullbacks

(σ ◦R)∗ωi = 0 (3.10)

for the transversal line σ.

Proposition 3.8. — The following equation holds:

d

dt

∮
ω1 . . . ωr =

r∑

i=1

∮
ω1 . . . ωi−1

dωi

dR
ωi+1 . . . ωr

−
r−1∑

i=1

∮
ω1 . . . ωi−1

ωi ∧ ωi+1

dR
ωi+2 . . . ωr (3.11)

Proof. — Let us denote ηi = ω1 . . . ωi and θj = ωj . . . ωr. Denote

ϕi(p) =

∫ p

p0

ωi . . . ωr =

∫ p

p0

θi

ϕr+1 ≡ 1, θr+1 ≡ 1

Also let us define ψi(q) =
∫ q

p0
ρi, where

ρi =
d(ωiϕi+1)

dR

Then we have
∫ p

p0

ηi−1ρi =

∫ p

p0

ηi−1
d(ωiϕi+1)

dR
=

∫ p

p0

ηi−1
dϕi+1 ∧ ωi + ϕi+1dωi

dR
1 � i < r

∫ p

p0

ηr−1ρr =

∫ p

p0

ηr−1
dωr

dR
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and, by (3.9) and (3.10)

dϕi+1 = ψi+1dR + ωi+1ϕi+2 (3.12)

hence
dϕi+1 ∧ ωi

dR
= ωiψi+1 −

ωi ∧ ωi+1

dR
ϕi+2

and then

∫ p

p0

ηi−1ρi =

∫ p

p0

ηiψi+1 −
∫ p

p0

ηi−1
ωi ∧ ωi+1

dR
θi+2 +

∫ p

p0

ηi−1
dωi

dR
θi+1, 1 � i < r

∫ p

p0

ηr−1ρr =

∫ p

p0

ηr−1
dωr

dR

Observe that ∫
ηiψi+1 =

∫
ηiρi+1

So we obtain

∫ p

p0

ρ1 =

r∑

i=1

∫ p

p0

ηi−1
dωi

dR
θi+1 −

r−1∑

i=1

∫ p

p0

ηi−1
ωi ∧ ωi+1

dR
θi+2

Now assume that p = p0, so δ(t) are cycles. We will use Gelfand-Leray
formula to obtain

d

dt

∮
θ1 =

d

dt

∮
ω1ϕ2 =

∮
d(ω1ϕ2)

dR
=

∮
ρ1

Hence

d

dt

∮
θ1 =

r∑

i=1

∮
ηi−1

dωi

dR
θi+1 −

r−1∑

i=1

∮
ηi−1

ωi ∧ ωi+1

dR
θi+2

�

Corollary 3.9. — Let us assume that ωi = xβiyγidx, then

d

dt

∮
ω1 . . . ωr =

r∑

i=1

∮
ω1 . . . ωi−1

dωi

dR
ωi+1 . . . ωr (3.13)

Proof. — True since (τ ◦R)∗ωi = 0 and ωi ∧ ωj = 0. �
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3.6. Exact forms in iterated integrals

Let ω1, . . . , ωn be holomorphic differential 1-forms, g be a holomorphic func-
tion in a domain V and δ ⊂ V be a path connecting points p0 and p1. We
assume that R|δ ≡ const for some analytic function R in a neighborhood of
δ. Our goal is to express iterated integrals involving the exact form dg in
terms of iterated integrals of smaller length.

Clearly ∫ p1

p0

dg = g(p1)− g(p0)

For iterated integrals of length greater than 1, integrating by parts and
using (3.12) gives

∫ p1

p0

(dg)ω1 . . . ωn =

∫ p1

p0

(dg)ϕ1 = gϕ1

∣∣∣∣
p1

p0

−
∫ p1

p0

g(ψ1dR + ω1ϕ2).

But dR = 0 on level curves, so we have
∫ p1

p0

(dg)ω1 . . . ωn = g(p1)

∫ p1

p0

ω1 . . . ωn −
∫ p1

p0

(gω1)ω2 . . . ωn

Next,
∫ p1

p0

ηi(dg)θi+1 =

∫ p1

p0

ηi

(
g(q)

∫ q

p0

θi+1 −
∫ q

p0

(gωi+1)θi+2

)

Hence ∫ p1

p0

ω1 . . . ωi(dg)ωi+1 . . . ωn =

∫ p1

p0

ω1 . . . (ωig)ωi+1 . . . ωn

−
∫ p1

p0

ω1 . . . ωi(gωi+1) . . . ωn (3.14)

And the third formula:∫ p1

p0

ω1 . . . ωn(dg) =

∫ p1

p0

ω1 . . . ωn(g(q)− g(p0))

=

∫ p1

p0

ω1 . . . (ωng)− g(p0)

∫ p1

p0

ω1 . . . ωn

3.7. Construction of Picard-Fuchs system

Let H be a Hamiltonian of degree n + 1, which we can write in multi-
index form

H =
∑

0�i+j�n+1

λijx
iyj , λ = (λij) ∈ PCn+1[x, y].
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We assume that B = {xi−1yjdx} = {ωl, l = 1, ..., n2} form a basis of the
Petrov module PH , and that the curve {H = 0} is smooth and intersects
the line σ = {x = 0} transversely. We will compute the connection matrix
ΩK locally near H, and then, by analytic continuation, this expression will
be valid everywhere.

Let δ ⊂ {H = 0} be a cycle with an initial point at p(H) ∈ δ ∩ σ, and
consider the vector of coefficients of ϕ(δ) from (3.6) in the standard basis
{Xi1 · . . . ·Xik , k = 1, ...,K} of U/mK+1:

I(λ) =




1
I1
I2
...
INK


 (3.15)

where λ = {λα}|α|�n+1. We assume that the integrals I1, . . . , INK are or-
dered by length, i.e. Ij =

∫
η1 . . . ηk, ηj = ωij ∈ B, if and only if Nk−1 <

j � Nk, where Nk = dimU/mk+1.

Our first goal is to provide an analogue of Proposition 3.4 for iterated
integrals.

Proposition 3.10. — If η1 ∈ B, . . . , ηK ∈ B, and θ is a polynomial
1-form of degree d, then, for any 1 � i � K + 1,

∮

δ

η1 . . . ηi−1θηi . . . ηK =

NK+1∑

j=1

hjIj , hj ∈ C(λ)[p], (3.16)

where p = δ(0) is the initial point of the cycle δ. Degrees of hj in p do not
exceed d + O(nK).

Moreover, if θ is defined over Q(λ), its degree and size do not exceed ν
and s correspondingly and d � n, then the polynomials hj are also defined
over Q(λ) and their degrees and sizes of do not exceed ν + O(K5d4) and

s(Kd)O(K5d3) respectively.

Proof. — Using Proposition 3.4, we can write

∮
η1 . . . ηi−1θηi . . . ηK =

∮
η1 . . . ηi−1




m∑

j=1

(fj ◦H)ωj + dg


 ηi . . . ηK

=

m∑

j=1

fj(0)

∮
η1. . .ηi−1ωjηi. . .ηK+

∮
η1. . .ηi−1(dg)ηi. . .ηK , (3.17)
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since δ ⊂ {H = 0}. The latter term can be rewritten as a sum of two iterated
integrals of length K, using the equations of §3.6. These iterated integrals of
length K are similar to the iterated integral on the left-hand side of (3.16),
only of smaller length and with θ replaced by gηi−1, i.e. by the form of
degree d + deg ηi−1 (recall that deg g � d by Proposition 3.4). Repeating
the same steps, we reduce everything to a combination of iterated integrals
of length K−1 and so on. During the steps of induction process the terms on
the right-hand side of (3.16) will appear if the non-basic form θ̃ appearing
on this step becomes the last or the first in the tuple of forms under the
integral sign. In this cases equations of §3.6 will produce an iterated integral
of smaller length plus a basic integral multiplied by a polynomial of degree
not exceeding deg θ̃. Therefore degp hj � d+

∑
deg ηi � d+2nK. Evidently,

hj are defined over Q(λ) as Proposition 3.4), the o nly tool we use, preserves
rationality of coefficients.

We estimate the degrees and sizes of hj in λ using bounds of Proposi-
tion 3.4) in this inductive process.

One can show that all denominators of coefficients of the polynomials

fi, g appearing during induction are factors of ∆ =
(∏d+2nK

j=1 ∆j

)K

, where

∆j were defined after (3.5). We get deg ∆ = O(K5d4) by Proposition 3.4.
Therefore, multiplying θ by ∆, we can assume that all fi, g on all steps of
induction are polynomial in λ. This implies that the coefficients of hj in
(3.16) are also polynomial in λ. Denote by b(K + 1, d, ν) the maximum of
degrees in λ of the coefficients of hj . Then

b(K + 1, d, ν) � max{ν + O(d3), b(K, d + 2n, ν + O(d3))}

Indeed, the first step of induction reduces (3.16) to a sum of similar equa-
tions for iterated integrals of length K and with a polynomial form gηi of
degree at most d+2n and with coefficients of degree ν+O(d3) (by Proposi-
tion 3.4). Since, in addition, we know that everything is in fact polynomial
in λ, this allows to replace sums of degrees in (2.3) by maximum of the
degrees.

This implies b(K + 1, d, ν) � ν + O(K4d3). Adding the degree of ∆, we
get the required estimate.

Similarly, assume that the polynomials fi, g obtained on all inductive
steps are polynomials, and denote by s(K+1, d, s) the size of the coefficients
of the polynomials hj . We have

s(K + 1, d, s) � max
{
sdO(d3), 2s(K, d + 2n, sdO(d3))

}
,
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where factor 2 appears due to (3.14). Note that on i-th step of induction
we get iterated integrals of length K + 2− i, so the iterated integrals from
different steps do not add up. This implies that

s(K + 1, d, s) � s(Kd)O(K4d3).

Now, size of ∆ is (Kn)O(K5n3), so applying the previous estimate to ∆θ
(and remembering d > n), we get the result. �

We can prove more general statement:

Proposition 3.11. — Let θ1, . . . , θK ∈ Λ1(C2) ⊗ C(λ) be 1-forms of
degree at most d, and of degree in λ at most ν. Then

∮

δ

θ1 . . . θK =

NK∑

j=1

hjIj , hj ∈ C(λ)[p], (3.18)

with degrees of hj in λ, p bounded by νdO(K2). This decomposition is

Proof. — Indeed, decomposing θi =
∑

ω∈B (fiω ◦H)ω + fidH + dgi as
in Proposition 3.4, we see that

∮

δ

θ1 . . . θK =
∑

φ

(
K∏

i=1

fiφ(i)(0)

)∮

δ

φ(1)...φ(K) + ..., (3.19)

where summation is over all mappings φ : {1, ...,K} → B and the dots
denote (n2+1)K−n2K iterated integrals of length K with at least one exact
form dgi. These can be represented as iterated integrals of lesser length, and
the result follow by induction.

To estimate the degrees and sizes of the coefficients in (3.16), note that

the degrees in λ of
∏K

i=1 fiφ(i) are Kν + O(Kd3) by Proposition 3.4. The
remaining (n2 +1)K−n2K terms can be rewritten by formulae of §3.6, as at
most 2

(
(n2 + 1)K − n2K

)
iterated integrals of length K−1 with coefficients

being rational in λ and polynomial in p, of degree at most Kν +O(Kd3) in
λ and at most d in p. Under the integral sign stand some tuple of elements
of B, dgi-s and product of some gi with elements of B. So these are forms
of degrees at most 3d in x, y. By (2.3), we get

b(K, d, ν) � 4
(
Kν + O(Kd3) + b

(
K − 1, 3d, 2ν + O(d3)

)) (
(n2 + 1)K − n2K

)
,

where b(K, d, ν) denote an upper bound for the degrees in λ, p of the coef-

ficients of the hj . This implies that b(K, d, ν) � νdO(K2). �
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However, in order to prove Theorem 2.9, we will need only dependence
on λ00 = −t and on p, which are much better:

Proposition 3.12. — Assume that the forms θi are independent on
λ00. Then the coefficients hj in (3.18) are polynomial in p, λ00, and for
their degrees in p, λ00 we get

degH degλ00
hj + degp hj +

∑
degωjk �

∑
deg θi. (3.20)

Proof. — Polynomiality follows from Proposition 3.4. Therefore the re-
lation between the degrees can be computed by asymptotics at infinity, as
λ00 → ∞, similar to [G98]. For homogeneous forms and generic homoge-
neous Hamiltonians counting homogeneity degrees we get

degH degλ00
hj + degp hj +

m∑

k=1

degωjk =

K∑

i=1

deg θi,

where Ij =
∫
ωj1 ...ωjm . For non-homogeneous in x, y forms and Hamiltoni-

ans, this becomes an inequality. �

Proposition 3.13. — Let, as before, H be a Morse-plus polynomial
such that the curve ΓH = {H = 0} is smooth and intersects transversely
the line σ = {x = 0}. Let SK(λ) be the NK × NK-matrix valued function
defined in a neighborhood of H as in (3.7). Then

dSK(λ) = ΩK(λ, p)SK(λ), (3.21)

with NK ×NK matrix ΩK(λ, p(λ)) of one-forms on PCn+1[x, y] with coeffi-
cients being rational functions of λ and polynomials in p(λ). Here p = p0(λ)
is a starting point of integration, p ∈ ΓH ∩ σ.

The coefficients of ΩK(λ, p) have degree in p at most O(nK), and their

degrees in λ and sizes are at most O(K6n7) and (Kn)O(K6n5).

Proof. — According to Corollary 3.9 for any tuple {ηi}Ki=1, with ηi ∈ B,

∂

∂λα

∮
η1 . . . ηK = −

K∑

i=1

∮
η1 . . . ηi−1

(
dηi
dλα

)
ηi+1 . . . ηK . (3.22)

Our goal is to express the Gelfand-Leray derivatives dωi
dλα

as rational combi-
nations of forms ωj . Consider the form Hdωi. Differentials of the elements
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of B form a basis of Λ2(C2)/dH ∧ Λ1(C2), see [G98], so one can write

Hdωi =

n2∑

j=1

aijdωj + θi ∧ dH, i = 1, ..., n2, (3.23)

where θi is a polynomial one-from of degree equal to the degree of ωi (we
follow closely [BNY10, A.3]). Multiplying by the monomial ∂H

∂λα
, dividing

by dH and decomposing ∂H
∂λα

θi as in Proposition 3.4 we get modulo some
multiple of dH,

H
dωi

dλα
=

∑

j

aij
dωj

dλα
+


∑

j

bαij(H)ωj + fα
i dH + dg̃αi


 , i, j = 1, ..., n2.

(3.24)
Multiplying both sides of this system of equations by inverse Ă of the matrix
A = {aij} we get

H
∑

ăij
dωj

dλα
=

dωi

dλα
+

n2∑

j=1

qαij(H)ωj + dgαi (3.25)

where coefficients qαij(H) are polynomial in H with coefficients being rational
functions of λ.

Integrating formula (3.22) over δ ⊂ {H = 0} and substituting (3.25)
(cancelling its zero left-hand side), we get

∂

∂λα

∮
η1 . . . ηK =

K∑

i=1

n2∑

j=1

qαij(0)

∮
η1 . . . ηi−1(ωj)ηi+1 . . . ηK

+

K∑

i=1

∮
η1 . . . ηi−1(dg

α
i )ηi+1 . . . ηK (3.26)

Using Proposition 3.10, we can express the integrals from the right hand
side of the latter equation as a combination of basic ones.

Now, let us estimate the degrees and sizes of the coefficients of ΩK(λ, p).
The degree in x, y of the form θi is equal to the degree of ωi ∈ B, i.e. is at
most 2n. For each ωi the equation (3.23), after dividing by dx∧dy, produces
an equality between two polynomials in x, y of degree O(n). By equating
coefficients of these polynomials we get a system of O(n2) linear equations
on aij , j = 1, ...,#B, and coefficients of ηi. This system is defined over Q(λ)
and its coefficients are of degree at most 1 in λ and of size O(n). Therefore
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aij and ηi can be chosen to be defined over Q(λ), of degree O(n2) in λ and

of size nO(n2).

Bounds of Proposition 3.4 imply that the degrees degH bαij � 3 = O(1),
degree in x, y of g̃αi is bounded by O(n), and degrees in λ and sizes of bαij ,

g̃αi are bounded from above by O(n3) and nO(n3) respectively. This implies

that degrees and sizes of ăij are bounded by O(n4) and nO(n2) respectively,
so qαij are polynomials in H of degree O(1), of degree O(n6) in λ and of

size nO(n2). The functions gαi are polynomial in x, y of degree O(n), and

their degrees in λ and sizes are O(n7) and nO(n5) correspondingly. Bounds
of Proposition 3.10 now imply that the coefficients of ΩK(λ, p) are rational
functions of p, λ, polynomial in p of degree at most O(nK), and of degrees

in λ and sizes at most O(K6n7) and (Kn)O(K6n5). �

3.8. Changing the variables (lifting)

The coefficients of the connection (3.21) depend algebraically on λ ∈
PCn+1[x, y], since the base point p = p(λ) of the fundamental group is
not defined uniquely. Let ev : Bn → PCn+1[x, y] be the map ev(H, y) =

H −H(y), where Bn was defined in (3.8). Let S̃K = SK ◦ ev be the lifting
of the matrix SK to Bn. The coefficients of the pulled-back connection

dS̃K = Ω̃K S̃K , Ω̃K = ev∗ΩK , (3.27)

on Bn ×
(
U/mK+1

)
are rational one-forms on Bn.

Proposition 3.14. — The degree and the size of the matrix Ω̃K are
bounded by O(K6n8) and (Kn)O(K6n7) correspondingly.

Proof. — Degree of the mapping ev is equal to n + 1, and it has coef-
ficients equal to 0 or 1. Therefore degree of Ω̃K is at most O(K6n8). Sizes

of coefficients of Ω̃K will not exceed sizes of coefficients of ΩK(λ, p) multi-

plied by the size of ev raised to degλ ΩK(λ, p), i.e. (Kn)O(K6n5)nO(K6n7) =

(Kn)O(K6n7). �

4. Properties of the system

4.1. Quasi-Unipotency

Proposition 4.1. — Connection (3.27) is quasiunipotent and regular.
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Proof. — From (3.26) we see that derivatives of an iterated integral
are linear combination of iterated integrals of smaller or equal length. This
means that ΩK is a lower-block-triangular matrix:

ΩK =




0 0 0 0
∗ Θ11 0 0

∗ Θ22 0
∗ · · · 0
∗ Θnn


 ,

where each block Θii is ki × ki matrix corresponding to the integrals of
length exactly i. Note that Θ11 is just the pull-back by ev∗ of the matrix of
the Gauss-Manin connection for Abelian integrals, so it has quasiunipotent
monodromy by [K81].

Since Ω̃K is lower-block-triangular, it preserves the flag F = {0} =
FK+1 ⊂ FK ⊂ ... ⊂ F0 = U/mK+1, where Fi = mi/mK+1, so any mon-
odromy operator corresponding to ΩK preserves this flag as well, i.e. is lower-
triangular with blocks Mii on diagonal. Therefore its eigenvalues are just the
eigenvalues of the monodromy operators Mii corresponding to Θii, the con-
nection induced by Ω̃K on the factor-bundle with fiber Fi/Fi+1 = mi/mi+1.

Recall definition of Kronecker product of two matrices:

{aij}m,n
i,j=1⊗{bkl}p,qk,l=1 = {crs}mp,nq

r,s=1 , where c(i−1)p+k,(j−1)q+l = aijbkl.

In a more invariant language, if A and B represent linear transformations
V1 → W1 and V2 → W2, respectively, then A ⊗ B represents the tensor
product of the two maps, V1 ⊗ V2 → W1 ⊗ W2. The Kronecker sum of
two matrices is the operation induced by the Kronecker product on the
corresponding Lie algebras:

A1 ⊕ ...⊕An =
d

dt

∣∣∣∣
t=0

[exp(tA1)⊗ ...⊗ exp(tAn)] =

= A1 ⊗ I...⊗ I + I ⊗A2 ⊗ I...⊗ I + ... + I ⊗ ...⊗ I ⊗An. (4.1)

Lemma 4.2. — For all 1 � k � n, Θkk = P (Θ⊕k11 )P−1 for some permu-
tation matrix P . Correspondingly, Mkk = PM⊗k11 P−1.

The first claim is just a way to say that the differentiation of iterated
integrals satisfies Leibniz rule, up to iterated integrals of smaller length. This
can be seen from (3.22). Now, derivation of the products of Abelian integrals
satisfy the same rule, so horizontal sections of Θkk are described by these
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products, and monodromy operators of are just tensor powers of monodromy
M11 of Abelian integrals (the permutation matrix appears since we did not
prescribe exactly the ordering of Ik in (3.15)). This proves quasiunipotency

of Ω̃K since tensor powers of quasiunipotent operators are quasiunipotent.

Regularity of Ω̃K follows from regularity of Θkk and the fact that semidi-
rect product of regular connections is regular, see [D]. �

5. Proof of Theorem 1.4

Let δ ⊂ {H = 0} be a cycle and U its small neighborhood, and let
MK be the first non-zero Melnikov function defined as in (1.3). Recall the
construction, going back to at least [F96, Y95], expressing MK as a polyno-
mial in iterated integrals of the perturbation form ω and its Gelfand-Leray
derivatives up to order K.

Definition 5.1. — A real analytic 1-form α ∈ Λ1(U) is relatively exact
with respect to the integrable foliation F = {dH = 0} in a domain U , if

α = h · dH + dg, h, g ∈ O(U) (5.1)

Clearly, the integral of a relatively exact form α along any closed oval
on any level curve {H = z} ⊂ U , vanishes:

∀ oval δ ⊆ {f = z}
∮

δ

α = 0 (5.2)

Define the sequence of real analytic 1-forms ω1, ω2, . . . , ωk as follows:

1. (Base of induction). ω1 = ω is the perturbation form from (1.2)

2. (Induction step). If the forms ω1, . . . , ωj are already constructed and
turned out to be relatively exact, then ωj = hj · dH + dgj . In this
case we define

ωj+1 = −hjω (5.3)

Theorem 5.2 [IY, Theorem 26.7]. — If ωk, k � 2, is the first not rela-
tively exact 1-form in the sequence ω1, . . . , ωk−1, ωk, constructed inductively
by (5.3), then

Mk(z) = −
∮

{H=z}
ωk (5.4)
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Evidently, the functions hj can be restored as hj = −
∫ dωj

dH , so

ωj+1 = ω

∫
d

dH

(
−ω

∫
d

dH

(
. . .

(
−ω

∫
dω

dH

)
. . .

))
.

Denote by φ the algebraic function H|−1
σ ◦ H of x, y which maps the

point (x, y) to the (one of d+ 1) point of the transversal σ = {x = 0} lying
on the same level curve of H as (x, y). In other words, p = φ(x, y, λ̃).

Lemma 5.3. — The function hj in (5.3) is a linear combination of iter-
ated integrals of differential one-forms with coefficients polynomial in x, y.
The coefficients of this combination are rational in λ̃, p.

Proof. — We have h0 = 1, which is of the required form trivially. We
proceed by induction on j. Assume that hj is a finite sum of terms of the
type R(λ, p)

∫
θ1...θk, where θi are polynomial in x, y one-forms, and R

is a rational function. Now, hj+1 =
∫ d(hjω)

dH , so it is enough to consider
the case of hj = R(λ, p)

∫
θ1...θk. Applying repeatedly Proposition 3.7 and

Proposition 3.8, gives

hj+1 =

∫
d

dH

(
R(λ, p)ω

∫
θ1...θk

)
=

∂R

∂p
(H|′σ(p))

−1
∫

ωθ1...θk +

R

∫
dω

dH
θ1...θk + R

k∑

i=1

∫
ωθ1...

dθi
dH

...θk −R

∫
ω ∧ θ1

dH
θ2...θk (5.5)

R

∫
ω

k−1∑

i=1

θ1...
θi ∧ θi+1

dH
...θk −R

∫
ωθ1...

θk−1 ∧ (σ ◦H)∗θk
dH

.

The first term is clearly of the required type.

Denote by m(H) the product
∏n2

i=1 (H − ci), where ci are critical values
of H (repeated if multiple). It is well known, see [G05][Prop.2.4], that m(H)

lies in the Jacobian ideal of H, so the operator m(H)
dH preserves polynomial

one-forms. Therefore

R

∫
ωθ1...

θi ∧ θi+1

dH
...θk =

R

m(H(p))

∫
ωθ1...

m(H)θi ∧ θi+1

dH
...θk

R

k∑

i=1

∫
ωθ1...

dθi
dH

...θk =
R

m(H(p))

k∑

i=1

∫
ωθ1...

m(H)dθi
dH

...θk (5.6)

all terms in (5.5) except the last one are of the required type.
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Finally, (σ ◦ H)∗θ = φk(p)dH, where φk(p) =
θ(p)(∂y)
dH(p)(∂y)

is a rational

function of p, so the last term of (5.5) is also of the required type. �

Lemma 5.4. — For a form ω of degree d > n in x, y, we have

MK =

NK∑

i=1

hiIi,

where hj depend rationally on p and has degree at most 2O(K)dn6 in p.

Proof. — In the inductive step (5.5) one iterated integral of forms of
degrees at most dk with coefficient R of degree νk generated O(k) iterated
integrals of forms of degrees at most 2dk + O(n3). The coefficients of these
new integrals are obtained from R by a combination of a differentiation
and division either by H|′σ(p) or by m(H(p)) or just by division by one
of these polynomials. Applying these operation K times we can increase
degree of R by at most O(Kn3). Summing together, we get a representation

of MK as a sum of 2O(K2) iterated integrals of forms of degree at most
2O(K)

(
d + O(n3)

)
, with rational in p coefficients of degree at most O(Kn3),

with common denominator of degree O(Kn3).

Applying Proposition 3.12, we represent each of these iterated integrals
as in (3.18), and the coefficients of these representations have degrees in p
at most 2O(K)(d + n3). Summing these representations together, we arrive
to the statement of the Proposition. �

Multiplying by the common denominator, we see that the estimate of
Theorem 1.4 is implied by the following

Lemma 5.5. — Linear combination
∑NK

i=1 hiIi of iterated integrals of
length at most K, with coefficients hi being polynomial in p of degree at
most µ, has at most exp

(
exp

(
µO(1)nO(K)

))
zeros on each line λ̃× Cp.

Proof. — We can construct in a standard way a connection whose hor-
izontal sections are described by these functions. More exact, let Jµ be
the Jordan block of size (µ + 1) × (µ + 1). Then the Kronecker product

S̃K ⊗ exp(pTµ) describes horizontal sections of a connection with the con-

nection matrix being the Kronecker sum Ω̃µ
K = Ω̃K ⊕ (Jµdp). Using esti-

mates on the size and degree of Ω̃K , we conclude that Ω̃µ
K is defined over

Q(λ), and is of dimension µNK = µnO(K), of degree O(K6n8) and of size

µ(Kn)O(K6n7). Any linear combination
∑NK

i=1 hiIi is a linear combination of
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components of some horizontal section of this connection, so Theorem 2.9
is applicable and gives the required upper bound. �

Substitution of µ = 2O(K)dn6 from Lemma 5.4 provides the estimate of
the Theorem 1.4.
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