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Levi-flat filling of real two-spheres in symplectic
manifolds (I)

Hervé Gaussier(1), Alexandre Sukhov(2)

ABSTRACT. — Let (M,J, ω) be a manifold with an almost complex struc-
ture J tamed by a symplectic form ω. We suppose that M has the complex
dimension two, is Levi-convex and with bounded geometry. We prove that
a real two-sphere with two elliptic points, embedded into the boundary of
M can be foliated by the boundaries of pseudoholomorphic discs.

RÉSUMÉ. — Soit (M,J, ω) une variété dont la structure presque complexe
J est contrôlée par la forme symplectique ω. On suppose M de dimension
complexe deux, Levi-convexe et à géométrie bornée. On démontre que
toute 2-sphère possédant deux points elliptiques et plongée dans le bord
de M est feuilletée par des bords de disques pseudoholomorphes.

1. Introduction

This expository paper concerns the problem of filling real two-spheres
in almost complex manifolds by pseudoholomorphic discs. We prove the
following statement :

Theorem 1.1. — Let (M,J, ω) be an almost complex manifold of com-
plex dimension 2 with a taming symplectic form, with bounded geometry.
Assume that M does not contain any compact J-complex sphere and that
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the boundary ∂M of M is a smooth Levi-convex hypersurface that does not
contain any germ of a nonconstant J-holomorphic disc. Let S2 be a real
2-sphere with two elliptic points, embedded into ∂M . Then there exists a
unique smooth one parameter family of disjoint Bishop discs for S2 filling
a real Levi-flat hypersurface Γ ⊂M with boundary S2. This hypersurface is
smooth up to the boundary except at the two elliptic points.

Though results of this type admit important applications and have been
obtained by several authors in various forms, it seems difficult to find a
reference for a complete proof of the above statement. This is our first
motivation. The above result and the techniques of the present work will be
used in a forthcoming paper devoted the the problem of filling two-spheres
with elliptic and hyperbolic points. The present work allows us to focus the
second paper on properties of discs near hyperbolic points.

Recall that according to classical results a real two-sphere does not ad-
mit a totally real embedding into a two-dimensional complex manifold :
any embedding of S2 has complex points. In the generic case these points
are isolated and are either elliptic or hyperbolic. Parabolic points can be
removed by a small deformation. The first related local result goes back to
E.Bishop [4] who proved the existence of a family of holomorphic discs with
boundaries attached to a neigborhood of an analytic point in a real two-
dimensional sphere in C2. The global result is due to E.Bedford-B.Gaveau
[2]. They proved the following. Let Ω be a strictly pseudoconvex domain
in C2 and S2 be a real 2-sphere embedded into ∂Ω. If S2 has exactly two
elliptic points p, q and is totally real outside these points then S2 is the
boundary of a Levi-flat hypersurface Γ foliated by holomorphic discs with
boundaries on S2\{p, q}. The hypersurface Γ can be viewed as a resolu-
tion of the Plateau problem and has other important properties related to
polynomially convex hulls and envelopes of holomorphy. This result was ex-
tended by M.Gromov [13] to the almost complex case under the assumption
that the almost complex structure is real analytic and integrable near S2.
This extra assumption was removed by R.Ye in the paper [25]. These results
have many important consequences in complex and contact geometry. One
of them is the fundamental observation due to M.Gromov that the char-
acteristic foliation on any 2-sphere embedded into the 3-sphere with the
standard contact structure has no closed leaf. Another important applica-
tion is due to H.Hofer [15] for his proof of the Weinstein’s conjecture for
contact 3-manifolds M with π2(M) �= {0}. Y.Eliashberg discovered several
applications in symplectic topology [10].

The above mentioned results were obtained for 2-spheres contained in
the boundary of a strictly pseudoconvex domain. In the present paper we
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consider the filling of a 2-sphere embedded to the boundary of a pseudo-
convex domain assuming that this boundary contains no non-constant holo-
morphic discs. This condition is automatically satisfied for strictly pseudo-
convex domains so the class of domains under consideration is substantially
larger. Y.Eliashberg-W.Thurston [11] introduced a new class of structures
called confoliations, intermediate objects between contact structures and fo-
liations. One of the most important examples of such structures is provided
by the holomorphic tangent bundle of a weakly pseudoconvex hypersurface
in C2. This can be viewed as a contact structure with degeneracies. The
problem of filling a real 2-sphere in a confoliated 3-manifold by pseudo-
holomorphic discs was studied by R.Hind [14]. His approach is based on a
result due to E.Bedford-W.Klingenberg [3] on the Levi-flat filling of spheres
in the presence of hyperbolic points and on a theorem of Y.Eliashberg-
W.Thurston on the approximation of a confoliation by contact structures.
However several important arguments of the proof are dropped in [14]. The
present paper presents a detailed proof in the elliptic case, based on a quite
different approach. Our main idea is to use an almost complex version of
the well-known result of Diederich-Fornaess [7] on the existence of bounded
exhaustion plurisubharmonic functions for weakly pseudoconvex domains
in Cn. The corresponding almost complex version is obtained in [8]. It re-
moves many technical problems in the proof. In particular this approach
allows to give a direct proof without using Eliashberg-Thurston’s theory.
The results of [8] are valid in any dimension in contrast to the Eliashberg-
Thurston theory only working in complex dimension two. This allows to
apply our techniques in the study of confoliations in the higher dimensional
case for some classes of complex structures. At the end of the paper (see
Remark 3 in the last section) we indicate how to use our approach in order
to obtain new results on the filling of two-spheres in weakly pseudoconvex
boundaries by holomorphic discs. We also point out that the examples due
to Y.Eliashberg [10] and J.E.Fornaess-D.Ma [12] show that the condition of
pseudoconvexity of ∂M in Theorem 1.1 cannot be dropped.

Keeping in mind forthcoming papers and for convenience of the reader
we give a reasonably self contained exposition.

2. Preliminaries

2.1. Almost complex and symplectic structures

All manifolds and almost complex structures are supposed to be of class
C∞ though the main results require a lower regularity. Let (M ′, J ′) and
(M,J) be almost complex manifolds and let f be a map of class C1 from M̃
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to M . We say that f is (J ′, J)-holomorphic if df ◦J ′ = J ◦df . We denote by
D the unit disc in C and by Jst the standard structure on Cn for every n.
If (M ′, J ′) = (D, J∼≈), we call f a J-holomorphic disc in M . Every almost
complex manifold (M,J) can be viewed locally as the unit ball B in Cn
equipped with a small almost complex deformation of Jst. Indeed for every
point p ∈ M , every real α � 0 and λ0 > 0 there exist a neighborhood U
of p and a coordinates diffeomorphism φ : U −→ B such that φ(p) = 0,
dφ(p) ◦ J(p) ◦ dφ−1(0) = Jst and the direct image φ∗(J) := dφ ◦ J ◦ dφ−1

satisfies ||φ∗(J)− Jst||Cα(B̄) � λ0.

Let U be an open set in M and φ : U −→ Cn be a coordinates dif-
feomorphism. Then φ(U) is an open set in Cn with standard coordinates
z. In the sequel we often denote φ∗(J) by J . If f : D −→ U is a J-
holomorphic disc then we still denote by f the composition φ ◦ f view-
ing f as a Cn-valued map f : ζ �→ z(ζ). The conditions J(z)2 = −I and
J(0) = Jst imply that for every z the endomorphism u of R2n defined by
u(z) := −(Jst+J(z))−1(Jst−J(z)) is anti C-linear that is u◦Jst = −Jst◦u.
Thus u is a composition of the complex conjugation and a C-linear operator.
Denote by AJ(z) the complex n× n matrix such that u(z)(v) = AJ(z)v for
any v ∈ Cn. The entries of the matrix AJ(z) are smooth functions of z and

AJ(0) = 0. (2.1)

The J-holomorphicity condition J(z) ◦ df = df ◦ Jst can be written in the
form of the nonlinear Cauchy-Riemann equation :

∂ζ̄f + AJ(f)∂ζ̄f = 0. (2.2)

The matrix function AJ is called the deformation tensor of J in the
coordinates z. Consider the isotropic dilations dλ : z �→ λ−1z in Cn. Since
the structures Jλ := (dλ)∗(J) converge to Jst in any Cα-norm as λ −→ 0,
we have AJλ −→λ−→0 0 in any Cα norm. Thus, shrinking U if necessary
and using the isotropic dilations of coordinates we can assume that for given
α > 0 we have ‖ AJ ‖Cα(B)<< 1 on the unit ball of Cn. In particular, the
system (2.2) is elliptic.

According to classsical results [24], the Cauchy-Green transform

Tf(ζ) =
1

2πi

∫ ∫

D

f(τ)

τ − ζ
dτ ∧ dτ

is a continuous linear operator from Cα(D) into Cα+1(D) for every non-
integer α > 0 . Hence the operator

ΨJ : f −→ h = f + TAJ(f)∂ζ̄f (2.3)
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maps the space Cα(D) into itself and we can write the equation (2.2) in the
form ∂ζ̄ΨJ(f) = 0. This means that a disc f is J-holomorphic if and only if
the map h = ΨJ(f) is Jst-holomorphic. If the norm of AJ is small enough,
then by the Implicit Function Theorem the operator ΨJ realizes a one-
to-one correspondence between sufficiently small J-holomorphic discs and
Jst-holomorphic discs. This implies the existence of a J-holomorphic disc
in a given tangent direction through a given point, a smooth dependence
of such a disc on a deformation of the point, the tangent vector and the
almost complex structure, as well as the interior elliptic regularity of discs.
This is the content of the classical Nijenhuis-Woolf theorem, see [21] for a
short complete proof.

A symplectic form ω on a smooth 2n-dimensional manifold M is a non-
degenerate closed differential two-form. The pair (M,ω) is called a symplec-
tic manifold. An almost complex structure J on M is called tamed by ω
if ω(v, Jv) > 0 for every non-zero tangent vector v. Every ω-tamed almost
complex structure J defines a Riemannian metric

gJ(u, v) =
1

2
(ω(u, Jv) + ω(v, Ju)).

The Gromov Compactness Theorem used in our paper requires some
restriction on (M,J, ω) called the bounded geometry condition. This means
that gJ has uniformly bounded sectional curvatures and positive injectivity
radius, uniformly separated from zero, and that J is uniformly continuous
with respect to gJ . It is shown in [21] that the bounded geometry condition
can be stated in the following form which imposes less regularity restrictions:

(M,J) admits a complete Riemannian metric g such that there exist
positive constants r0, C1, C2 with the following properties:

(i) For every p ∈ M the expp : B(0, r0)→ B(p, r0) is a diffeomorphism.
Here B denote the corresponding balls.

(ii) Every loop γ in M contained in the ball B(p, r), r � r0, bounds a
disc in B(p, r) of area less than C1length(γ)2,

(iii) On every ball B(p, r0) there exists a symplectic form ωp such that
||ωp|| � 1 and |X|2 � C2ωp(X, JX) (taming property).

Properties (i) and (ii) always hold if M is closed and the complete metric
g is of class C2 on M . Property (iii) holds if J is additionally uniformly
continuous with respect to g. In what follows we always assume that the
symplectic tamed almost complex manifold (M,J, ω) satisfies the bounded
geometry condition.
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2.2. Levi form and plurisubharmonic functions

The proof of the statements of this Subsection can be found in [8]. Let r
be a C2 function on (M,J). We denote by J∗dr the differential form acting
on a vector field X by J∗dr(X) := dr(JX). For example, if J = Jst on R2,
then J∗dr = rydx− rxdy. The value of the Levi form of r at a point p ∈M
and at a vector t ∈ Tp(M) is defined by

LJr (p; t) := −d(J∗dr)(X, JX)

where X is an arbitrary smooth vector field in a neighborhood of p satisfying
X(p) = t. This definition is independent of the choice of vector fields. For
instance, if J = Jst in R2, then −d(J∗dr) = ∆rdx ∧ dy (∆ denotes the
Laplacian). In particular, LJstr (0, ∂∂x ) = ∆r(0).

The following properties of the Levi form are fundamental :

Proposition 2.1. — Let r be a real function of class C2 in a neighbor-
hood of a point p ∈M .

(i) If F : (M,J) −→ (M ′, J ′) is a (J, J ′)-holomorphic map, and ϕ is
a real function of class C2 in a neighborhood of F (p), then for any
t ∈ Tp(M) we have LJϕ◦F (p; t) = LJ

′
ϕ (F (p), dF (p)(t)).

(ii) If f : D −→ M is a J-holomorphic disc satisfying f(0) = p, and
df(0)(e1) = t (here e1 denotes the vector ∂

∂Re ζ in R2), then LJr (p; t) =

∆(r ◦ f)(0).

Property (i) expresses the invariance of the Levi form with respect to bi-
holomorphic maps. Property (ii) is often useful to compute the Levi form if
a vector t is given.

Definition 2.2. — A real C2 function r on (M,J) is called plurisub-
harmonic if :

LJr (p, t) � 0 for any p ∈M and t ∈ Tp(M).

A C2 function r is strictly plurisubharmonic on M if LJr (p, t) > 0 for any
p ∈M and t ∈ Tp(M)\{0}.

According to Proposition 2.1, r is plurisubharmonic if its composition
with any J-holomorphic disc is subharmonic.
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A useful observation due to E.Chirka [6] is that the Levi form of a
function r at a point p in an almost complex manifold (M,J) coincides
with the Levi form with respect to the standard structure Jst of R2n if
suitable local coordinates near p are choosen. See the details in [8].

Let p be a boundary point of a domain Ω in an almost complex manifold
(M,J). Assume that ∂Ω is of class C2 in a neighborhood U of p. Then
Ω ∩ U = {q ∈ U : r(q) < 0} where r is a real function of class C2 on U ,
dr(p) �= 0.

Definition 2.3. — (i) Ω is called Levi J-convex at p ∈ ∂Ω if LJr (p; t)
� 0 for any t ∈ Tp(∂Ω) ∩ J(Tp(∂Ω)) and strictly Levi J-convex at p if
LJr (p; t) > 0 for any non-zero t ∈ Tp(∂Ω) ∩ J(Tp(∂Ω)). If Ω is a relatively
compact domain with C2 boundary in an almost complex manifold (M,J),
then Ω is called Levi J-convex if it is Levi J-convex at every boundary
point. (ii) A real hypersurface Γ = {r = 0} in an almost complex manifold
(M,J) is called Levi -flat if LJr (p, t) = 0 for every p ∈ Γ and every t ∈
Tp(Γ) ∩ J(Tp(Γ)).

This definition does not depend on the choice of defining functions. We
simply write a Levi convex domain dropping J in the notations when an
almost complex structure is prescribed.

Example. — Consider in (C2, Jst) the smoothly bounded domain
{(z1, z2) ∈ C2 : |z1|2 + |z2|2m < 1}, where m � 1 is an integer. This domain
is strictly Levi convex for m = 1 and Levi convex for m � 1. Its boundary
contains no non-constant Jst-holomorphic discs for all integer m � 1.

A strictly Levi convex domain admits near every boundary point a
strictly plurisubharmonic defining function. One could expect that Levi con-
vex domains have a similar property i.e. admit local defining plurisubhar-
monic functions. However, it is well-known that there are smoothly bounded
domains in Cn with Levi convex boundary (for the standard complex struc-
ture) which do not admit defining plurisubharmonic functions, see [7]. For-
tunately, a weaker property always holds : a smoothly bounded Levi convex
domain in Cn admits a bounded exhaustion strictly plurisubharmonic func-
tion [7].

The following result obtained in [8] is an almost complex analog of the
classical result [7]. It is a key for our approach.

Theorem 2.4. — Let (M,J) be an almost complex manifold and let Ω ⊂
M be a relatively compact Levi convex domain with C3 boundary, such that
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there exists a C2 strictly plurisubharmonic function ψ in a neighborhood U
of ∂Ω. Let r be any C3 defining function for Ω ∩ U . Then there exist a
neighborhood U ′ of ∂Ω and constants A > 0, 0 < η0 < 1, such that for any
0 < η � η0 the function ρ = −(−re−Aψ)η is strictly plurisubharmonic on
Ω ∩ U ′. If U is a neighborhood of Ω, then ρ is strictly plurisubharmonic on
Ω. Furthermore for a fixed point p ∈ ∂Ω and any given 0 < η < 1 there
is a neighborhood U of p, a strictly plurisubharmonic function ψ in U and
A > 0 such that ρ is strictly plurisubharmonic in Ω ∩ U .

As a direct consequence we obtain that no J-holomorphic disc can touch
∂Ω from inside.

Definition 2.5. — Let E be a real submanifold in (M,J). A Bishop
disc for E is a J-holomorphic disc f : D −→ M continuous on D and such
that f(∂D) ⊂ E.

We will use the following properties of Bishop discs.

Proposition 2.6. — (i) Let Ω be a smooth Levi convex domain. For
any point p ∈ ∂Ω there exists a neighborhood U of p with the following
property: if f : D −→ U is a Bishop disc for ∂Ω then f(D) ⊂ Ω ∩ U .

(ii) Under the hypothesis of Theorem 2.4 for any point p ∈ ∂Ω there
exists a neighborhood U of p with the following property: if f : D −→ U is a
Bishop disc for ∂Ω then either f(D) ⊂ ∂Ω or the disc f(D) is contained in Ω
and is transverse to the holomorphic tangent space of ∂Ω at every boundary
point.

Proof. — Part (i) is proved in [8]. Let us prove part (ii). Suppose that f
is not contained in ∂Ω. The statement is local so according to Theorem 2.4
η in the construction of an exhaustion plurisubharmonic function can be
choosen arbitrarily close to 1. Fix η = 3/4. We can assume that in local
coordinates p = 0, the condition (2.1) is satisfied and f(1) = 0. Applying
the Hopf lemma to the subharmonic function u(ζ) = −(−re−Aψ ◦ f(ζ))3/4

on the unit disc we obtain the estimate

|r ◦ f(ζ)| � C(1− |ζ|)4/3.

We point out that u does not vanish identically since f is not contained in
∂Ω so the constant C is strictly positive. On the other hand the function r
is smooth so near the point 1 we have r ◦ f(ζ) = a(1− |ζ|) + O((1− |ζ|)2).
Hence a �= 0. In particular f(∂D) is a real curve in ∂Ω. Let v be a vector
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tangent to f(∂D) at a point p. Since f(D) is a J-curve then Jv is tangent
to f(D) at p and does not belong to the real tangent space of ∂Ω at p by
the expression of r ◦ f . Hence v is transverse to the holomorphic tangent
space of ∂Ω at p. �

According to Y.Eliashberg - W.Thurston [11] a tangent hyperplane field
ξ = {α = 0}, where α is a 1-form, on a (2n + 1)-dimensional manifold Γ is
called a positive confoliation if there exists an almost complex structure J
on the bundle ξ such that

dα(X, JX) � 0

for any vector X ∈ ξ. The 1-form α is defined up to the multiplication by
a nonvanishing function. Thus, the confoliation condition for ξ is equiva-
lent to the existence of a compatible Levi convex CR-structure (in general,
non-integrable). In other words, if Γ = {r = 0} is a smooth Levi convex
hypersurface in an almost complex manifold (M,J), then the distribution
of its holomorphic tangent spaces ξ = TΓ ∩ J(TΓ) is a confoliation: we can
set α = J∗dr. In particular, if Γ is a strictly Levi convex hypersurface, then
ξ = {J∗dr = 0} is a contact structure. Recall t hat a tangent hyperplaene
field ξ = {α = 0} on Γ is called a contact structure if α ∧ (dα)n �= 0 on Γ.
One of the main questions considered by Y.Eliashberg - W.Thurston con-
cerns the possibility to deform a given confoliation to a contact structure
or approximate a confoliation by contact structures. Combining the contact
topology techniques with the geometric foliation theory they obtained sev-
eral results of this type in the case where Γ is of real dimension 3. The next
result of [8] holds in any dimension.

Theorem 2.7. — Let Ω be a relatively compact pseudoconvex domain
with C∞ boundary in an almost complex manifold (M,J). Assume that there
exists a smooth strictly plurisubharmonic function ψ in a neighborhood of
∂Ω. Then the confoliation of holomorphic tangent spaces T (∂Ω)∩J(T (∂Ω))
can be approximated in any Ck norm by contact structures.

In a suitable neighborhood of a fixed point p ∈ ∂Ω there exists a smooth
strictly plurisubharmonic function. So every confoliation can be approxi-
mated locally by contact structures.

3. Complex and totally real points of real surfaces

Let (M,J, ω) be a real four-dimensional symplectic manifold with an
almost complex structure J tamed by the symplectic form ω. Let E be
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a real smooth submanifold in M . A point p ∈ E is called totally real if
TpE ∩ J(p)TpE = {0}. A submanifold E is called totally real if it is totally
real at every point. Let S2 be a smooth real surface diffeomorphic to the
real two-sphere, embedded into M . A point p ∈ S2 is called complex if the
tangent space TpS

2 is a J(p)-invariant subspace of TpM . We consider the
generic case where S2 admits a finite set Σ of complex points so that S2\Σ
is a totally real submanifold of M .

Let p ∈ S2 be a complex point. We may choose local coordinates centered
at p so that p = 0 and the deformation tensor AJ satisfies Condition (2.1).
The complex 2 × 2-matrix function A can be written in the form AJ =
[A1
J , A

2
J ] where the columns of AJ , AjJ , j = 1, 2, are smooth maps from a

neighborhood of the origin in C2 to C2. We need the following additional
normalization of AJ .

Lemma 3.1. — (Adapted coordinates near a complex point). After a suit-
able local change of coordinates at p we have :

(i) the deformation tensor AJ satisfies the normalization condition (2.1)
and

A1
J(z) = L(z2) + O(|z|2) (3.1)

where L : C→ C2 is an R-linear map,

(ii) the sphere S2 is given near the origin by the equation

z2 = z1z1 + γRe (z2
1) + o(|z1|2) (3.2)

Such a system of local coordinates is called adapted. We use the notation

ρ(z) = z2 − z1z1 − γRe (z2
1) + o(|z1|2)

We have used above the standard notation φ(x) = o(ψ(x)) for the functions
φ and ψ defined in a neighborhood of the origin in R and satisfying

lim
x→0

φ(x)

ψ(x)
= 0.

We also use the usual notation φ(x) = O(ψ(x)) if there exists a constant
C > 0 such that

|φ(x)| � C|ψ(x)|
in a neighborhood of the origin.
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Proof. — First, choose coordinates so that ρ(z) = z2 + O(z2
1). Keeping

this expression we may achieve Condition (3.1). Then consider a change of
coordinates (z1, z2) �→ (az1, z2 +Q(z)), a �= 0, with a holomorphic homoge-
neous second degree polynomial Q to obtain the expression (3.2). It follows
from the transformation rule for the deformation tensor AJ that Condition
(3.1) still holds in the new coordinates. �

The number γ ∈ [0,+∞[, γ �= 1, is a local invariant of S2 : it is inde-
pendent of a choice of coordinates satisfying Conditions (2.1), (3.1), (3.2).

Definition 3.2. — A complex point is called elliptic if 0 � γ < 1,
parabolic if γ = 1 and hyperbolic if γ > 1.

In the generic case (i.e. after an arbitrary small perturbation ) S2 con-
tains no parabolic point. Thus, in what follows we consider the only case
where the set Σ of complex points consists of elliptic and hyperbolic points.
Denote by e the number of elliptic points and by h the number of hyperbolic
points. Since the Euler characteristic of S2 is equal to 2 we have, according
to well-known results : e = h+ 2. In particular if S2 contains no hyperbolic
point it contains precisely two elliptic points.

4. Generation of Bishop discs near an elliptic point

A local study of Bishop discs near an elliptic point was performed by
several authors [4, 15, 17, 23, 25]. The exposition of this Section is based on
the approach developped by A.Sukhov-A.Tumanov in [23] in any dimension.
Here we adapt it to the two-dimensional case.

4.1. Bishop’s equation

Denote by ∂J the Gromov operator

∂Jf := df + J ◦ df ◦ Jst.

A smooth map f defined on D is J-holomorphic if it satisfies the non-
linear Cauchy-Riemann equation ∂Jf = 0 on D.

A smooth map f defined on D and continuous on D is a Bishop disc
if and only if it satisfies the following non-linear boundary problem of the
Riemann-Hilbert type for the quasi-linear operator ∂J :

(RH) :





∂Jf(ζ) = 0, ζ ∈ D,

ρ(f)(ζ) = 0, ζ ∈ ∂D.
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First we derive Riemann-Hilbert type boundary problems describing
pseudoholomorphic Bishop discs near generic elliptic points of a real sub-
manifold in an almost complex manifold.

Since our considerations are local, we suppose that local coordinates are
choosen as in Section 1, namely that Conditions (2.1), (3.1) and (3.2) are
satisfied near an elliptic point in S2.

Denote by P (z1) = z1z1 + γRe (z2
1) the quadratic part of the Taylor

expansion of S2 near the origin. Consider the non-isotropic dilations Λδ : z =
(z1, z2) �→ z′ = (δ−1/2z1, δ

−1z2). In the new z-variables (we drop the primes)
the image S2

δ := Λδ(S
2) is defined by the equation ρδ(z) := δ−1ρ((Λδ)

−1z) =
0. The functions ρδ converge in any Ck norm on every compact subset of
C2 to the function

ρ0(Z) = z2 − P (z1)

as δ −→ 0. Hence the surfaces S2
δ converge for the local Hausdorff distance

to the model quadric manifold S2
0 := {ρ0(Z) = 0}, C2, as δ −→ 0.

Suppose additionally that S2 is contained in a strictly J-Levi convex
hypersurface Γ near the origin. Then the Taylor expansion of the defining
function φ of Γ is

φ(z) = αRe z2 + βImz2 + O(|z|2).

Let f(ζ) = (z1(ζ), z2(ζ)) = (aζ, 0)+O(ζ2) be a J-holomorphic disc tangent
to Γ at the origin. Since z2 = O(ζ2), the J-holomorphicity equations for f
in the adapted coordinates imply that there exist b1, b2 ∈ C such that :

f(ζ) = (aζ + b1ζ
2, b2ζ

2) + O(ζ3).

Hence the Levi form of Γ at the origin with respect to J coincides with the
Levi form of Γ with respect to Jst. In particular :

∂2φ

∂z1∂z1
(0) > 0.

The dilated hypersurface Γδ := {ρδ(z) = 0} converges to a real quadric
hypersurface Γ0 which is Jst-strictly pseudoconvex near the origin.

Consider the pushed-forward structures Jδ := (Λδ)∗(J) = dΛδ ◦ J ◦
(dΛδ)

−1.
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Lemma 4.1 (Structure deformation near a complex point). —

(i) For every positive integer k and every compact subset K ⊂ Cn we
have ‖ Jδ − Jst ‖Ck(K)−→ 0 as δ −→ 0. Thus S2 and J are small
deformations of S2

0 and Jst, respectively, near the origin.

(ii) Suppose that S2 is contained in a strictly J-Levi convex hypersurface
Γ near the origin. Then Γ is a small deformation of a strictly Jst-
pseudoconvex hypersurface Γ0 containing S2

0 .

Proof. — (i) Consider the Taylor expansion of J(z) near the origin:
J(z) = Jst+L(z)+R(z) where L(z) is the linear part of the expansion and
R(z) = O(|z|2). Clearly, Λδ ◦R(Λ−1

δ (z))◦Λ−1
δ converges to 0 as δ −→ 0. Fix

j, k ∈ {1, 2} and denote by Lδkj(z) (respectively, by Lkj(z)) an entry of the

real matrix Λδ ◦ L(Λ−1
δ (z)) ◦ Λ−1

δ (respectively, of L(z)). We have Jδ12(z) =
δ1/2L12(δ

1/2z1, δz2) and Jδjj(z) = Ljj(δ
1/2z1, δz2), j = 1, 2. Hence, these

terms tend to 0 as δ −→ 0. Furthermore Jδ21(z) = δ−1/2L21(δ
1/2z1, δz2) −→

L21(z1, 0) as δ −→ 0, uniformly on K. However, it follows from (3.1) that
Lkj(z1, 0) = 0 for k, j = 1, 2. This implies that Lδkj converges to 0 as δ −→ 0,
for every k, j = 1, 2. Now Part (ii) follows from Part (i). �

Let f be a Jδ-holomorphic disc in a neighborhood of the origin in C2. The
Jδ-holomorphicity condition for f has the form (2.2) with the deformation
tensor AJδ associated to Jδ.

Considering the operator ΨJδ defined by (2.3) we can replace the non-
linear Riemann-Hilbert problem (RH) by the Bishop equation

ρδ(Ψ
−1
Jδ

(h))(ζ) = 0, ζ ∈ ∂D (4.1)

for an unknown function h, holomorphic in D and continuous on D.

If h is a solution of the boundary problem (4.1) then f := Ψ−1
Jδ

(h) is a

Bishop disc with boundary attached to S2
δ . Since the manifold S2

δ is biholo-
morhic via non-isotropic dilations to the initial manifold S2, the solutions
of Equation (4.1) allow to describe the Bishop discs attached to the sphere
S2 near an elliptic point.

4.2. Geometry of the Bishop discs near an elliptic point

Our goal is to prove the following statement :
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Theorem 4.2. —

(i) Let p be an elliptic point in S2. Given a positive integer k and 0 <
α < 1 there exists a family (f t)t of J-holomorphic Bishop discs for
S2, Ck,α-smoothly depending on one real parameter t ∈ [0, t0]. These
discs foliate a real hypersurface E such that (E,S2) is a Ck,α smooth
manifold with boundary, outside p.

(ii) Suppose additionally that S2 is contained in the boundary ∂Ω of a
Levi J-convex domain. Then the generated family of discs is contained
in Ω.

Part (ii) of Theorem 4.2 follows from part (i) of Proposition 2.6 so we
prove the part (i).

We begin with the description of the Bishop discs attached to the model
quadric manifold S2

0 in C2 with the standard structure Jst. They are the
solutions of the boundary problem (4.1) for δ = 0.

For r > 0 consider the ellipse Dr := {ζ ∈ C : P (ζ) < r} and denote by
z1,r the biholomorphism z1,r = z1(r, •) : D −→ Dr satisfying z1,r(0) = 0,
(∂z1,r/∂ζ)(0) > 0. Then P ◦ z1,r|∂D ≡ r and we set z2(r, ζ) ≡ r. The maps
ζ �→ (z1(r, ζ), z2(r, ζ)) provide a one parameter family of Jst-holomorphic
Bishop discs. Their boundaries are disjoint and fill a pointed neighborhood
of the origin in S2

0\{0}. For r = 0 these discs degenerate to the constant
map ζ �→ (0, 0). Their images form a foliation of a real hypersurface E such
that (E,S2

0) is a smooth manifold with boundary outside the origin.

We claim that in the general case of an almost complex structure J the
Bishop discs have similar properties. Indeed, for a sufficiently small real
positive number δ let pδ := (0, δ) be a point on the real “normal” to S2.
The image of pδ by the non-isotropic dilation Λδ coincides with p0 := (0, 1).
There exists a unique Bishop disc f0 = (z0

1 , z
0
2) of the described above family

centered at p0; it corresponds to the parameter r = 1. The parametrizing
map F : (r, ζ) −→ (z1(r, ζ), z2(r, ζ)) has maximal rank when the parameter
r is in a neighborhood U of the point 1 and ζ ∈ D. Linearize the equation
(4.1) for δ = 0, at the disc f0. We claim that the linearized operator is
surjective between the corresponding Banach spaces. Indeed, the linearized
Bishop equation

Re (∂zρ0(f
0)ż) = ψ

has the form



−Re (z0

1 − γz0
1)(eiθ)ż1(e

iθ) + (1/2)Re ż2(e
iθ) = ψ1(e

iθ),

Re (1/2i)ż2(e
iθ) = ψ2(e

iθ).
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The second equation admits a one-parameter solution given by the Schwarz
integral

(1/2i)ż2(ζ) =
1

2πi

∫

∂D

τ + ζ

τ − ζ

ψ2(τ)

τ
dτ + ic1

with c1 ∈ R. Since every ellipse Dr is homotopic to the unit disc, the winding
number of the function ζ �→ (z0

1 − γz0
1) is equal to the winding number of

z0
1(ζ) ≡ ζ i.e. is equal to −1. Solving then the boundary problem for ż1 we

obtain a general solution depending on four real parameters. If ψj are of class
Ck,α(∂D) for some positive integer k and 0 < α < 1, then ż ∈ Ck,α(D) by
the classical regularity properties of the Cauchy type integral [24]. Applying
the Implicit Function Theorem to the operator equation (4.1) we obtain for
every sufficiently small positive real number δ a Jst-holomorphic solution
h(r, •), smoothly depending on four real parameters. Three of these four
parameters may be removed by fixing a parametrization of the discs. Thus,
we obtain a one-parameter family of disjoint discs. Then f(r) = Ψ−1

Jδ
(h)

is a family of J-holomorphic Bishop discs with boundaries attached to S2
δ .

This family is a small deformation of the above Bishop discs attached to
S2

0 . Since δ is small enough, the parametrizing map (r, ζ) �→ f(r, ζ) has
maximal rank. So these discs swept a real smooth hypersurface Σδ with
smooth boundary. In order to conclude the proof of theorem it remains to
show that this hypersurface is foliated by the Bishop discs f(r, •). This is a
consequence of the general uniqueness result which we establish in the next
subsection. It will also have further applications in our approach.

4.3. Uniqueness of Bishop discs

Uniqueness results for Bishop discs were obtained by several authors in
different forms (see for instance [2, 3, 25]). Here we follow the exposition of
[25].

Proposition 4.3. — Let Ω be a Levi convex domain, relatively compact
in (M,J). Let S2 be an embedded sphere in ∂Ω and p an elliptic point in
S2. Suppose that ∂Ω contains no germ of a nonconstant J-holomorphic disc
near p. Then there exists a neighborhood U of p in M with the following
property : if f : D→ Ω∩U is a J-holomorphic disc with boundary attached
to S2\{p}, then the image of f coincides with one of the discs of the family
constructed in Theorem 4.2.

Proof. — We proceed in several steps.

Step 1. Transversality to the boundary. Since ∂Ω is Levi convex, it follows
from the Hopf lemma that every J-holomorphic disc in Ω with boundary
glued to ∂Ω intersects ∂Ω transversally at all points of the boundary.
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Step 2. Stability of intersections. This is the content of the following

Lemma 4.4. — Let f and g be two distinct J-holomorphic Bishop discs
glued to S2\{p} such that they intersect at a boundary point q ∈ S2. If f̃ is
a Bishop disc close enough to f in the C2-norm, then f̃(D) has a non-empty
intersection with g(D). The same holds if they intersect at an interior point
where at least one of them is immersed.

Proof. — If f and g intersect transversally at q then their boundaries at
q are transverse and the assertion is obvious. Assume that they are tangent
at q. We can suppose after a reparametrization of the maps f and g that
they are defined on the half-disc D+ = {ζ : Im ζ > 0} and are smooth up to
the boundary. Then we can choose local coordinates near q such that q = 0,
J(0) = Jst, S

2 = {z ∈ C2 : Imz = 0} and g(ζ) = (ζ, 0). Then f and f̃ are
the graphs over g(D+) = D+ × {0} of the functions h and h̃ respectively :
f(ζ) = (ζ, h(ζ)) and f̃(ζ) = (ζ, h̃(ζ)) for ζ ∈ D+. The tangency condition
implies

h(ζ) = aζk + o(ζk) (4.2)

for some integer k � 2, with a ∈ R. Since the boundary of f is glued to
S2, we have Imh|[−1,1] ≡ Im h̃|[−1,1] ≡ 0. Then we may extend h and h̃

continuously to D setting h(ζ) = h(ζ) for ζ ∈ D\D+. The extension of h
still satisfies (4.2) and by the mapping degree theory h̃ has exactly k zeros,
counted with their multiplicities, near the origin. But since it is obtained
by reflection over the real axis, it admits at least one zero in D+. The proof
for an interior point is similar with obvious simplifications. �

Step 3. We prove Proposition 4.3. Consider the one parameter family
(f t)t of Bihop discs constructed in Theorem 4.2. For t sufficiently close to
0 the Bishop disc f t does not intersect f . Let τ > 0 be the infimum of
t ∈ [0, t0] such that f intersects f t. Then by continuity f intersects fτ

at an interior point or at a boundary point (notice that the discs f t are
embedded). If f and fτ are distinct then Lemma 4.4 gives a contradiction
to the minimality of τ . �

5. Deformation of discs with totally real boundaries

The results of this Section can be deduced from general Theorems due
to H.Hofer [15], H.Hofer-V.Lizan-J.C.Sikorav [16] and R.Ye [25]. Since our
situation is rather special we give a direct approach.

Consider a J-holomorphic embedding f0 : D→ (M,J) of class Ck,α(D)
for some k � 1 and 0 < α < 1. We suppose that f0(∂D) is contained in
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a totally real submanifold E of dimension 2 in M . Furthermore we assume
that E is contained in a smooth real hypersurface Γ. We always assume
that f0 is transverse to Γ. The aim of this Section is to generate Bishop’s
discs attached to E by deforming f0. This will be a direct application of
the Implicit Function Theorem. We proceed in several steps.

Step 1. Choice of coordinates. Let hζ : D → M be a family of J-
holomorphic discs, smoothly depending on a parameter ζ ∈ ∂D, such that
hζ(0) = f(ζ) for every ζ ∈ ∂D and hζ is tangent to Γ at the point f(ζ).
Since f0 is an embedding there exists a neighborhood U of f0(D) and a
coordinate diffeomorphism H from U to H(U) ⊂ C2 such that

(H ◦ f0)(ζ) = (ζ, 0), ζ ∈ D

and
J |H◦f0(D) = Jst

i.e. the deformation tensor AJ of J satisfies

AJ(ζ, 0) = ∂z1AJ(ζ, 0) = 0 (5.3)

(see [22]). Furthermore for every ζ ∈ ∂D the map φ ◦ hζ : τ ∈ D �→ (H ◦
hζ)(τ) has the form (H ◦ hζ)(τ) = (ζ, τ). We call these coordinates normal
coordinates along the disc f0.

For simplicity of notations we still denote by f0 the composition H ◦ f0

and by hζ the composition H ◦ hζ .

Step 2. Winding number. The manifold E, in a neighborhood of the circle
∂D × {0}, forms a bundle over this circle with as fibers smooth curves γζ
which are tangent to the the complex plane {ζ}×C at (ζ, 0), ζ = eiθ ∈ ∂D.
Denote by X1(ζ) the vector field (iζ, 0) tangent to the circle ∂D× {0}. Let
also X2(ζ), ζ ∈ ∂D, be a vector field tangent to the fiber γζ at the point
(ζ, 0). We assume that E is orientable along f0(∂D); this assumption will
always hold in our applications. Then X2(ζ) = (0, ieiφ(θ)) where φ is a
smooth function on [0, 2π] such that φ(0) = φ(2π). Let µ := µ(f0) be the
winding number of the function θ �→ eiφ(θ), or equivalently the number of
times which the tangent vector to γζ turns around the origin in the plane
{ζ} ×C when ζ runs over ∂D. Denote by Lζ the real tangent space of E at
f(ζ), generated by X1(ζ) and X2(ζ).

It is worth pointing out that µ is defined independently of a choice of
normal coordinates. Obviously µ is invariant with respect to the homotopy
of Bishop discs. Namely, if f t is a family of Bishop discs for E continuously
depending on a real parameter t, then normal coordinates corresponding to
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f t can be choosen smoothly depending in t. Therefore µ(f t) continuously
depends in t and so is a constant function in t.

Let us return to the family of Bishop discs constructed near an elliptic
point.

Lemma 5.1. — The winding number µ(f) of a Bishop disc f near an
elliptic point is equal to 0.

Proof. — By the non-isotropic rescaling every Bishop disc is homotopic
to the disc (z1

r (ζ), r) glued to the model quadric S2
0 . Its winding number is

equal to 0 which implies the statement. �

Hence, for all t we have µ(f t) = 0.

Step 3. Linearization. Now we are able to prove the main result of this
section.

Proposition 5.2. — Suppose that the winding number of f0 is equal to
0. Then there exists a one parameter family (f t)t of Bishop discs for E,
close to f0 in the Ck,α(D)-norm, such that the boundaries of (f t)t fill a
neighborhood of f0(∂D) in E.

If f : ζ �→ (z1(ζ), z2(ζ)) is a J-holomorphic disc close to f0, the Cauchy-
Riemann equations satisfied by f have the form





∂ζ̄z1 − a11(z)∂ζ̄z1 − a12(z)∂ζ̄z2 = 0, ζ ∈ D

∂ζ̄z2 − a21(z)∂ζ̄z1 − a22(z)∂ζ̄z2 = 0, ζ ∈ D.

Therefore in order to prove that the linearized Cauchy-Riemann operator
is surjective we must solve the following system of linear PDEs :





∂ζ̄ ż1 − b11(ζ)ż2 − b12(ζ)ż2 = h1, ζ ∈ D

∂ζ̄ ż2 − b21(ζ)ż2 − b22(ζ)ż2 = h2, ζ ∈ D.

Here h = (h1, h2) is a given map of class Ck−1,α(D), the coefficients bij are
of class Ck,α(D) and ż : D→ C2 denotes an unknown map of class Ck,α(D).
The above special form of the linearized equations along f0 is a consequence
of the normalization condition (5.3).
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Moreover if E is defined by the equation ρ := (ρ1, ρ2) = 0, the lineariza-
tion of the boundary condition ρ ◦ z|∂D = 0 has the form

ż(ζ) ∈ Lζ , ζ ∈ ∂D.

This is equivalent to the following conditions for θ ∈ [0, 2π] :

Re (e−iθ ż1(e
iθ)) = 0, Re (e−iφ(θ)ż2(e

iθ)) = 0.

In particular the non-homogeneous boundary conditions are for θ ∈
[0, 2π] :

Re (e−iθ ż1(e
iθ)) = g1(e

iθ), (5.4)

Re (e−iφ(θ)ż2(e
iφ(θ))) = g2(e

iθ). (5.5)

The linearized boundary value problem splits into two parts. Consider
first the problem for ż2. Since µ = 0, it follows from classical results (see
[24]) that the boundary value problem





∂ζ̄ ż2 − b21(ζ)ż2 − b22(ζ)ż2 = h2, ζ ∈ D

Re (e−iφ(θ)ż2(e
iθ)) = g2(e

iθ)

is solvable in the class Ck,α(D) for any h2 ∈ Ck−1,α(D) and g2 ∈ Ck,α(∂D).
Furthermore the corresponding homogeneous problem admits precisely one
linearly independent solution. Considering then ż2 as a known function, the
boundary problem for ż1 admits a general solution of class Ck,α depending
on 3 real parameters. Thus the linearized non-homogeneous problem always
admits a solution. By the Implicit Function Theorem there exists a family
of discs, depending on 4 real parameters, glued to E in a neighborhood of
f0. Three parameters correspond to a parametrization of D and must be
removed if we seek for discs with different images. In particular if the wind-
ing number µ is equal to zero we obtain a one-dimensional family of discs
forming a one-dimensional submanifold M in the Banach space Ck,α(D).
Consider the evaluation map ev : M → E defined by ev(z) = z(1). We
claim that it has maximal rank equal to 1 at z = (ζ, 0). Indeed, the tangent
map ėv at the disc f0 = (ζ, 0) is defined on Tf0(M) by ėv : ż �→ ż(1).
In order to give a suitable parametrization of the tangent space Tf0(M)
consider the following auxiliary problem:





∂ζ̄w − b22(ζ)w − b22(ζ)w = h, ζ ∈ D

Rew(eiθ) = 0
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Hervé Gaussier, Alexandre Sukhov

where h is a given function of class Ck−1,α(D) and w is an unknown function
of class Ck,α(D).

By the classical results of Bojarski [5] that boundary problem admits
a unique solution satisfying the condition Imw(1) = 0. Then given c ∈ R
set h = b22(ζ)ic− b22(ζ)ic. If w is a solution of the boundary problem with
Imw(0) = 0, then ż2 = w+ ic satisfies the linearized homogeneous problem
and ż2(0) = ic. This implies that the evaluation map has rank 1. Therefore
the boundaries of the discs in M fill a neighborhood of the circle f0(∂D)
on E.

6. Filling of a sphere with two elliptic points

This Section is devoted to the proof of Theorem 1.1. Since the proof
relies on the Gromov Compactness Theorem we recall related notions fol-
lowing [20, 21]. Let S be a compact Riemann surface with (possibly empty)
smooth boundary ∂S. We use the canonical identification of the complex
plane C with CP\{∞}. Let (M,J, ω) be a symplectic manifold with a tamed
almost complex structure. We assume that M has bounded geometry. Let
E be a smooth compact totally real submanifold of maximal dimension in
M .

Consider a sequence fn : S →M of J-holomorphic maps.

Let g : CP→M be a non-constant J-holomorphic map. We say that g
occurs as a sphere bubble for the sequence (fn) if there exists a sequence of
holomorphic charts φn : RnD → S with Rn → ∞ converging uniformly on
compacts subsets of C to a constant map φ∞ = p ∈ S and such that

fn ◦ φn → g

uniformly on compact subsets of C.

Let g : D→M be a J-holomorphic map, continuous on D, with ∂D ⊂ E.
We say that g occurs as a disc bubble for the sequence (fn)n if there exists
a sequence of holomorphic charts φn : D\(−1 + δnD) → M , smooth on
D\(−1 + δnD) with φn(∂D\(−1 + δnD)) ⊂ E and δn → 0, such that (φn)
converge uniformly on compact subsets of D\{−1} to a constant map point
φ∞ = p ∈ S ∪ ∂S and

fn ◦ φn → g

uniformly on compact subsets of D\{−1}.

We have the following simple version of Gromov’s Compactness Theo-
rem:
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Proposition 6.1. — Let fn : D → M be a sequence of J-holomorphic
discs continuous on D̄ satisfying the boundary conditions fn(∂D) ⊂ E, in-
tersecting a fixed compact subset K ⊂M and such that

area(fn) :=

∫

D
f∗nω � c

where c > 0 is a constant. Then there exists a finite set Σ in D̄, eventually
empty, such that after extraction :

(i) The sequence (fn)n converges uniformly on compact subsets of D̄\Σ
to a J-holomorphic map f∞ : D→M ,

(ii) A bubbling of some J-holomorphic sphere occurs at every point in
Σ ∩ D,

(iii) A bubbling of some J-holomorphic disc occurs at every point in Σ ∩
∂D.

Proof of Theorem 1.1. — We proceed in several steps.

Step 1. Characteristic foliation. Let p and q be the elliptic points in S2

and let f t, gt be the families of Bishop discs near these points, given by The-
orem 4.2. Denote by χ the bundle over S2 formed by T (∂M) ∩ JT (∂M) ∩
T (S2). The integral curves of this bundle form a foliation (the characteristic
foliation) of S2\{p, q} with two singular points p and q. Every Bishop disc
is transverse to χ by part (ii) of Proposition 2.6. In particular, the char-
acteristic foliation cannot have any closed trajectories and the boundary of
a Bishop disc intersects every leaf of the characteristic foliation at a single
point. Fix such an integral curve parametrized by a parameter t ∈ [0, 1]. We
may assume that the family of Bishop discs (f t) near p is parametrized by
t close to 0.

Step 2. Area estimate. Let T be the supremum of the parameters t for
which the family (f t)t is defined. The areas of the discs f t, t ∈ [0, T [, are
uniformly bounded with respect to t. Indeed for a fixed t the boundary of
ft divides S2 into two discs, S2

+(t) and S2
−(t). Since ω is closed, the Stokes

Theorem implies
∫

ft(D)

ω =

∫

S2
+

(t)

|ω| �
∫

S2

|ω|.

Hence it follows from Proposition 6.1 that there is a sequence tk −→ T
as k −→ ∞ and a finite set Σ ⊂ D such that the sequence (fk) = (f tk)k
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converges uniformly to a J-holomorphic disc on every compact subset of
D\Σ. Moreover if Σ �= ∅ then every point in Σ corresponds to a disc bubble
or to a sphere bubble. Since M does not contain any holomorphic sphere
by assumption then Σ ∩ D = ∅.

Step 3. Non appearance of bubbles. We have the following

Lemma 6.2. — There is a sequence of Möbius transformations φk : D→
D such that (after extraction) the discs fk ◦ φk converge uniformly on D̄ to
a J-holomorphic disc f∞ : D→M .

Proof. — Fix 3 distinct points ζj , j = 1, 2, 3 on the unit circle and 3
distinct leaves Lj of the characteristic foliation. Consider a sequence φk
of Möbius transformations such that fk ◦ φk(ζj) = Lj for j = 1, 2, 3 and
k = 1, 2, .... We claim that there are no disc bubbles for this sequence. By
contradiction, a boundary disc bubble g is attached to S2 and everywhere
transverse to χ by part (ii) of Proposition 2.6. Furthermore, by Gromov’s
Compactness Theorem (see [20, 25]) the boundary g|∂D of g represents the
trivial homological class on S2\{p, q}. Every ft(∂D) is a closed curve trans-
verse to χ and bounding a disc on S2. Hence the curve g(∂D) bounds on
S2 a totally real disc D (or a finite number of discs) and the line field χ
does not vanish on its boundary. Then it vanishes at an interior point of D
according to [9], P.123, Cor. 14.5.2 : a contradiction. �

Step 4. Gluing Bishop’s families. The sequence (f tk) converges to a
Bishop disc fT . We point out that by the adjunction inequality (see [18, 19])
the limit disc fT is embedded. If fT (∂D) does not intersect a sufficiently
small neighborhood of q on S2 (to be precised below), it is contained in the
totally real part of S2. Moreover according to Lemma 5.1 and to the fact
that the winding number is a homotopy invariant, the winding number of
fT is equal to 0. It follows from Proposition 5.2 that the disc fT gener-
ates a one-parameter family of nearby Bishop discs which contradicts the
maximality of T . Hence fT (D) intersects a sufficiently small neighborhood
of q, meaning that it intersects a boundary of some Bishop disc from the
family (gt). By the uniqueness Proposition 4.3 the image of fT coincides
with the image of one of the discs of this family. We recall that the Bishop
discs as maps are defined up to three real parameters. Hence after a suit-
able reparametrization the two families of Bishop’s discs are glued smoothly
into a global one parameter family of discs with distinct images. This proves
Theorem 1.1. �
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7. Concluding remarks

In this section we address several remarks concerning the results dis-
cussed in the present work.

Remark 1. — For simplicity of notations we suppose everywhere that
manifolds are C∞-smooth. However Theorem 1.1 remains true under weaker
assumptions. Indeed, it suffices to suppose that J is of class C2 and that
the boundary of M is of class C3 for Theorem 2.4 and other results, like
the generation of discs near elliptic points or the transversality statements,
to hold. The positivity of intersection in [18] requires only C2-smoothness
of J .

Remark 2. — In Theorem 1.1 it suffices to suppose that ∂M contains no
germs of non-constant J-holomorphic discs in a neighborhood of the sphere
S2. The proof does not require any change. We point out that in the smooth
category this assumption is weaker than finite type assumptions. However,
they are essentially equivalent in the real analytic case. See a more detailed
discussion in [1]. Using Theorem 2.4 it is easy to prove (see [8]) that if ∂M is
Levi convex and if there exists a strictly pseudoconvex function in a neigh-
borhood of ∂M , then M can be exhausted by a sequence of domains Mj

with strictly Levi-convex boundaries. Under this global assumption the con-
dition that ∂M contains no non-constant holomorphic discs can be dropped.
Namely, we can consider a sequence S2

j of spheres in ∂Mj , their Levi-flat

fillings, and pass to the limit. This gives a Levi-flat filling of S2. However, if
∂M contains non-constant holomorphic discs, the behaviour of boundaries
of the limit discs can be complicated as show examples from [14].

Remark 3. — The assumption that M contains no J-holomorphic sphe-
res can be weakened. A simple topological argument of [25] shows that if a
spherical bubble arises, then it has a negative self-intersection index. Thus it
suffices to require that M contains no sphere of this class. One can also use
a more subtil description of cusp-curves arising as bubbles (see [25]) and
require that M contains no such curves. This result is new for manifolds
with Levi-convex boundaries. However, this condition is difficult to verify.
Finally, our method of proof allows to obtain similarly to [25] a Levi-flat
filling with singularities if M contains holomorphic spheres and ∂M is Levi-
convex. Thus Theorems 4,5,6 and 7 from [25] obtained there for strictly
Levi-convex manifolds remain true in the case where the boundary of M
is Levi-convex. We point out that these results are new in the Levi-convex
case. We do not state them here since they require a rather long description
of generic assumption on an almost complex structure J (rational regularity
in the terminology of [25]) irrelevant to our forthcoming study of spheres
with hyperbolic points. We leave the details to an interested reader.
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