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Extendible bases and Kolmogorov problem
on asymptotics of entropy and widths

of some class of analytic functions

Vyacheslav Zakharyuta(1)

Dedicated to Professor Nguyen Than Van

ABSTRACT. — Let K be a compact set in an open set D on a Stein
manifold Ω of dimension n. We denote by H∞ (D) the Banach space of all
bounded and analytic in D functions endowed with the uniform norm and
by ADK a compact subset of the space C (K) consisted of all restrictions
of functions from the unit ball BH∞(D). In 1950ies Kolmogorov posed a
problem: does

Hε
(
ADK

)
∼ τ

(
ln

1

ε

)n+1

, ε→ 0,

whereHε
(
ADK

)
is the ε-entropy of the compact ADK . We give here a survey

of results concerned with this problem and a related problem on the strict
asymptotics of Kolmogorov diameters of the set ADK wih respect to the
unit ball in the space C (K). We decribe a progress in studying of these
problems, beginning with initial results of 1950ies, in the closed connection
with the problem on existence of a common basis for the spaces A (K) and
A (D) with good estimates on sublevel sets of extremal plurisubharmonic
function for the pair (condenser) (K,D). The survey is concluded by a
discussion of some open problems.

RÉSUMÉ. — Soit K un sous-ensemble compact d’un ouvert D d’une
variété de Stein Ω de dimension n. On désigne par H∞ (D) l’espace de
Banach des fonctions analytiques et bornées sur D functions muni de
la norme de la convergence uniforme et par ADK une partie compacte
de l’espace C (K) consituée de toutes les restrictions des fonctions de la
boule unité BH∞(D). Dans les année 1950, Kolmogorov posa le problème
suivant: Existe-t-il une constante τ telle qu’on ait l’asymptotique

Hε
(
ADK

)
∼ τ

(
ln

1

ε

)n+1

, ε→ 0,
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où Hε
(
ADK

)
est la ε-entropie du compact ADK? On donne ici une revue

des résultats concernant ce problème et un problème qui lui est relié con-
cernant l’asymptotoque stricte des diamètres de Kolmogorovde l’ensemble
ADK par rapport à la boule unité de l’espace C (K). On décrit les progrès
réalisés dans l’étude de ces problèmes, commençant par les résultats initi-
aux des années 1950, en relation étroite avec le problème de l’existence des
bases communespour les espaces A (K) and A (D) avec de bonnes estima-
tions sur les ensembles de sous-niveau de la fonction plurisouharmonique
extrémalede la paire (condensateur) (condenser) (K,D). On conclut cette
présentation avec une discussion des problèmes ouverts.

1. Introduction

Kolmogorov [K1] introduced (developing an idea of Pontryagin and
Schnirelman in their supplement to the Russian translation of the book
[GW]) the following important characteristics of massiveness of a pre-
compact set A in a metric space X = (X, d): the ε-entropy Hε (A) =
Hε (A,X) := lnNε (A,X), where Nε (A,X) is the smallest integer N such
that A can be covered by N sets of diameter not greater than 2ε and the ε-
capacity Cε (A) = Cε (A,X) := lnMε (A,X), where Mε (A,X) is the largest
integer M such that there is a finite set {xj : j = 1, . . .M} ⊂ A with the
property: d (xi, xj) � ε, i �= j (hereafter we prefer to use the natural log-
arithm instead of more traditional log2). We refer to the survey [KT] for
properties of these characteristics: one can found there also a discussion of
important investigations (Vitushkin, Kolmogorov, Tikhomirov, Babenko,
Erokhin, Arnold), in particular, those related to the 13th Hilbert problem
and to the probability information theory.

Here we restrict our consideration to the Kolmogorov’s problem of
1950ies on the strict asymptotics of ε-entropy of the special important class
of analytic functions AD

K (which will be described just now) and the problem
on existence of an extendible bases in spaces of analytic functions, closely
connected with the first one. Let K be a compact set in an open set D on a
Stein manifold Ω of dimension n. We denote by H∞ (D) the Banach space
of all bounded and analytic in D functions endowed with the uniform norm
and by AD

K a compact subset of the space C (K) consisted of all restrictions
of functions from the unit ball BH∞(D). We always assume that the
restriction operator R : H∞ (D)→ C (K) is injective, so one can think
that AD

K = BH∞(D)). Everywhere in this article those pairs (K,D) will be
called shortly “condensers”.
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Extendible bases and Kolmogorov problem on asymptotics of entropy

Problem 1.1. — For which condensers (K,D) there exists a constant
τ such that the strict asymptotics

Hε

(
AD
K

)
∼ τ

(
ln

1

ε

)n+1

, ε→ 0, (1.1)

holds? What is a nature of the constant?

For a set A in a Banach space X the Kolmogorov diameters ( or widths)
of A with respect to the unit ball BX of the space X are the numbers

dk (A) = dk (A,BX) := inf
L∈Lk

sup
x∈A

inf
y∈L

‖x− y‖X , k = 0, 1, . . . , (1.2)

here Lk is the set of all k-dimensional subspaces of X.

Problem 1.1 is connected closely (see Section 2) with the following prob-
lem which is usually attributed to Kolmogorov too.

Problem 1.2. — Describe the condensers (K,D) such that the strict
asymptotics

− ln dk
(
AD
K

)
∼ σk1/n, k −→∞ (1.3)

hold with some constant σ.

Notice that it was known that the weak asymptotics

Hε

(
AD
K

)


(
ln

1

ε

)n+1

, ε→ 0, − ln dk
(
AD
K

)
 k1/n, k −→∞.

hold for good enough pairs (K,D) [K1].

Notation. — Hereafter we use the notation:

• |f |E := sup {|f (x)| : x ∈ E} for a given function f : E −→ C

• given a positive sequence a = (ak) we set ma (t) := � {k : ak � t}

• X ↪→ Y stays always for a linear continuous imbedding with dense
image, where X and Y are linear topological spaces

• BX denotes a closed unit ball in a Banach space X

• Ω always stays for a Stein manifold, dim Ω = n, D for an open set
in Ω and K for a compact set in D;
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• A (D) is the space of all functions analytic in D with the usual locally
convex topology of locally uniform convergence in D;

• A (K) is the space of all analytic germs on K with the usual inductive
limit topology;

• B2
ρ (D) is a weighted Bergman space, i.e. the space of all functions

analytic inD with a finite norm ‖x‖B2
ρ(D) =

(∫
|x (z)|2 dm

)1/2

, where

m is a Hermitian measure on D; in the case D ⊂ Cn one can take
m = λ

|z|2+1
, where λ is Lebesgue measure on Cn;

• given K and a Borel positive measure µ on K, AL2 (K,µ) is the space
obtained by the completion of A (K) in L2 (K,µ) ;

• for a couple of Hilbert spaces H1 ↪→ H0 we denote by (H0)
1−α

(H1)
α
,

α ∈ R, the Hilbert scale connecting these spaces (see, e.g., [Kr, Li,
KPS])

On the early stage the strict asymptotics (1.1) was known only for some
special condensers (Vitushkin [V1, V2], see also [KT]): two concentric disks,
interval and ellipse with foci in its ends or, more generally, a continuum and
its Faber domain; in several complex variables, the strict asymptotics (1.1)
was done for condensers which are Cartesian products of above ones. What
was important that in all these examples some classical extendible bases
were applied (Taylor, Chebyshev or Faber polynomial bases) in evaluation of
entropy; in [KT], Section 7, some general approach, which modelled results
from [V1, V2], was developed and applied for various concrete examples.

Kolmogorov, analysing Vitushkin’s results, predicted that for a good
enough condenser, in one-dimensional case, the strict asymptotics (1.1)
should hold with the constant τ which coincides with the Green capac-
ity τ (K,D) of the condenser (K,D). Remind that the Green capacity of a
condenser (K,D) in C is the number

τ (K,D) :=
1

2π

∫

K

�ω,

where ω (z) = ω (D,K; z) is the generalized Green potential, which we define
here in a Perron style:

ω (D,K; z) := lim sup
ζ−→z

sup {u (ζ) : u ∈ Sh (D) , u|K � 0, u (ζ) < 1 in D} ;

this function is subharmonic in D, harmonic in D � K, therewith �ω is
a non-negative Borel measure supported by K. It provides the generalized
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solution of the Dirichlet problem for the Laplace equation in the domain
D�K with the boundary value u (z) equal to 1 on ∂D and 0 on ∂ (C�K).
We say that the condenser (K,D) in C is regular if (a) ω (z) ≡ 0 on K
and limz−→∂D ω (z) = 1, (b) A (D) is dense in A (K) (i.e. that for each
component G of D the set G �K is connected) and D has no component
disjoint with K.

2. Relationship between the entropy and widths

Mityagin [M] investigated how the entropy of an absolutely convex com-
pact set in a Banach space can be estimated through some special counting
functions related to Kolmogorov diameters. Here we consider a refined ver-
sion of those estimates for an arbitrary absolutely convex compact set in a
Banach space; therewith the left estimate is an easy adaptation of the right
inequality of Theorem 4, [M] to the complex case, while the right asymptotic
inequality is new; it is obtained in [Z10] by a modification of the estimate
(20) from [LT].

Theorem 2.1. — Let A be an absolutely convex compact set in a com-
plex Banach space X. Then there exists a constant M such that

2

∫ 1
2ε

0

mc (t)

t
dt � Hε (A,X) � 2

∫ M
ε

0

ma (t)

t
dt, ε =↘ 0, (2.1)

where a = (1/dk−1 (A,BX)) and c = (k/dk−1 (A,BX)).

Notice that for special A and X these estimates may be considerably
better, like in Theorem 3 of [M], where X = lp and A is an lp-ellipsoid.

The estimates (2.1) make it possible to show that the problem on the
asymptotics (1.1) is equivalent to the related problem on asymptotics for
diameters of the set AD

K .

Lemma 2.2. — Let K be a compact set in an open set D on a Stein
manifold Ω of dimension n. The asymptotics (1.1) is true if and only if the

asymptotics (1.3) holds with the constant σ =
(

2
(n+1)τ

)1/n

.

For Ω = C the part “if” was proved in [LT] for n = 1. In general case
this lemma was stated without proof in [Z9]; its complete proof, developing
methods of [M] and [LT], is done in [Z10].

In view of Lemma 2.2 one may prove only one of the asymptotics (1.3)
or (1.1).
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3. One-dimensional case

An essential step toward the problem on the asymptotics (1.1), (1.3)
was done by Babenko [B] and Erokhin [E1, E2] in 1958. They proved the
following result, which confirmed the Kolmogorov’s conjecture in a quite
general case.

Theorem 3.1. — Let K be a continuum in C with connected comple-
ment, consisted of more than one point, D a simply connected open neigh-
borhood of K, D �= C. Then the asymptotics (1.1) holds with the constant
τ = τ (K,D) = 1

lnR , where R is a conformal modulus of a domain D �K.

The proofs in [B] and [E1, E2] (see also the posthumous publication of
the Erokhin’s thesis [E3]) are completely different. The first one is based on
rational interpolation methods in a spirit of Walsh’s book [Wl] and, since
it is out of the main line in further discussion, we do not go into details
about it. The Erokhin’s proof, quite the contrary, will be considered here in
detail, because his main idea, to construct and apply (similarly with [V1, V2]
and [KT]) a common basis for the spaces A (K) and A (D), turned to be
crucial for further investigations, especially in the case of several variables.
Notice that the technics of both proofs was exclusively one-dimensional. In
particular, Erokhin’s construction of common bases [E1], is based on his
brilliant result related to geometric function theory, which unfortunately
has no analogue for several complex variables (and even for merely general
plane condensers).

Lemma 3.2. — Suppose (K,D) is a condenser in C such that K and
C � D are continuums with connected complement consisted of more than
one point and F : D � K → {1 < |z < R|} is an analytic bijection. Then
there exist analytic bijections ϕ : D → G := ϕ (D) and ψ : C �L →
{|z| > 1}, L := ϕ (K) , such that F (z) = ψ (ϕ (z)) , z ∈ D � K and
ψ (z) = z + b1

z + b2
z2 + . . . in a neighborhood of ∞.

In the notation of this lemma, consider closed paths

Γα = Γα (t) := F−1
(
Rα eit

)
, γα = γα (t) = ψ−1

(
Rα eit

)
,

t ∈ [0, 2π] , 0 < α < 1

and two one-parameter families of bounded domains

Dα, Gαwith∂Dα = Γα, ∂Gα = γα, 0 < α < 1. (3.1)

Then the mapping
g (w)→ f (z) = g (ϕ (z))
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preserves uniform norms: |g| Gα = |f |Dα , 0 < α < 1, hence it represents

an isomorphism of each space A (G) , A (L) , A (Gα) , A
(
Gα

)
onto the

corresponding space A (D) , A (K) , A (Dα) , A
(
Dα

)
, 0 < α < 1. Thus the

system

fn (z) =
1

2π

∫

Γα

F (ζ)
n
ϕ′ (ζ) dζ

ϕ (ζ)− ϕ (z)
=

1

2π

∫

γα

ψ (w)
n
dw

w − ϕ (z)
= Φn (ϕ (z)) ,

(3.2)
where {Φn (w)}∞n=0 is the classical Faber polynomial basis for the compact
set L = ϕ (K), forms a common basis in all the spaces A (D), A (K), A (Dα),
A

(
Dα

)
. This basis inherits very nice properties of the Faber basis Φn (w)

(see, e.g., [Mk]), which are important for estimating of entropy Hε

(
AD
K

)
in

the Erokhin’s proof of Theorem 3.1.

In his thesis [E3] Erokhin gave also a separate proof of the strict asymp-
totics − ln dk

(
AD
K

)
∼ k lnR, k → ∞ in the conditions of Theorem 3.1.

As it was mentioned above, due to [LT, Z10], it turns to be clear that it is
sufficient to study only one of the asymptotics (1.1) or (1.3).

Levin and Tikhomirov [LT] proved the asymptotics

ln dk
(
AD
K

)
∼ − 1

τ (K,D)
k, k −→∞, (3.3)

for condensers (K,D) in C such that both K and D are bounded by finitely
many analytic Jordan curves; they derived also the strict asymptotics

Hε

(
AD
K

)
∼ τ (K,D)

(
ln

1

ε

)2

, ε −→ 0. (3.4)

from the asymptotics (3.3) by their general result mentioned in the previous
section.

In [Z1] Zakharyuta, aiming to find a method suitable also for several
variables, suggested another approach to the construction of Erokhin-type
common basis based on the following classical fact of the functional analysis
which is a corollary of the theorem on eigenvectors of a compact self-adjoint
operator.

Lemma 3.3 (see, e.g., [Be, Li, Kr, M]). — Let (H0, H1) be a couple of
Hilbert spaces with compact dense imbedding: H1 ↪→ H0. Then there is a
system {ek}∞k=1 ⊂ H1 which is a common orthogonal basis for the spaces
H1 and H0 such that

‖ek‖H0
= 1, µk = µk (H0, H1) := ‖ek‖H1

↗∞.
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This basis is unique up to the permutations do not changing the sequence
µk. The system {ek} forms also a basis in all the spaces of the Hilbert scale
Hα = H1−α

0 Hα
1 , therewith ‖ek‖Hα = µαk , α ∈ R.

Definition 3.4. — The basis from Lemma 3.3 will be called the (canon-
ical) doubly orthogonal basis for the couple of Hilbert spaces (H0, H1).

In the conditions of Theorem 3.1 consider conformal mappings ϕ : D −→
{|w| < 1} and ψ : C�K −→ {|w| > 1} such that ψ (∞) =∞ and ψ (z) ∼ γz

as z −→ ∞. Then the system
{
ϕ (z)

k
}∞
k=0

is a basis in A (D), while the

system of Faber polynomials {Φk (z)}∞k=0 forms a basis in the space A (K).
Introduce two Hilbert spaces, generated by this bases: the space H1 of all

functions f (z) =
∑∞

k=0 ξkϕ (z)
k

with ‖f‖H1
:=

(∑∞
k=0 |ξk|

2
)1/2

< ∞ and

the space H0 of all formal expansions into the series by Faber polynomials

g =
∑∞

k=0 ξkΦk with ‖g‖H0
:=

(∑∞
k=0 |ξk|

2
γ−2k

)1/2

<∞. Then

H1 ↪→ A (D) ↪→ A (K) ↪→ H0.

Theorem 3.5 ([Z1])([Z1]). — The canonical doubly orthogonal basis
{ek}∞k=1 for the couple (H0, H1) , chosen above, forms also a basis in the
spaces A (D), A (K), A (Dα), A

(
Dα

)
, where Dα is defined in (3.1),

0 < α < 1. This basis satisfies the estimates

1

C
Rα(1−ε)k � |ek|Dα � C Rα(1+ε)k, k ∈ N, 0 < α < 1, ε > 0

with some constant C = C (α, ε). Therewith the Hilbert scale Hα := H1−α
0 Hα

1

satisfies the conditions:

A
(
Dα

)
↪→ Hα ↪→ A (Dα) , 0 < α < 1 (3.5)

and
lnµk (H0, H1) ∼ k lnR, k −→∞. (3.6)

The proof of the asymptotics (3.6) in Theorem 3.5, which is important
for gaining the asymptotics (1.1), was quite artificial: some linear topological
invariants under common isomorphisms of pairs of linear topological spaces
were applied (see [Z1], Section 3); the evaluation of this invariants was
specifically one-dimensional.

In 1972 Nguyen Thanh Van [Ng1], applying the methods from [Z1], ex-
tended Theorem 3.5 to the case of regular condenser (K,D) in C (it is sup-
posed additionally that the open sets D and C�K are connected). Namely,
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he proved that, for a special couple of Hilbert spaces H0, H1 determined
by the condenser, the Hilbert scale Hα := (H0)

1−α
(H1)

α
satisfies the con-

ditions (3.5) and the doubly orthogonal basis for H0, H1 turns to be a
common basis in the spaces A (D) , A (K) , A (Dα) , A

(
Dα

)
with

Dα := {z ∈ D : ω (D,K; z) < α} , 0 < α < 1.

This basis satisfies the estimates

1

C
exp

α(1−ε)k

τ (K,D)
� |ek|Dα � C exp

α(1+ε)k

τ (K,D)
, k ∈ N, 0 < α < 1, ε > 0

with some constant C = C (α, ε).

Let us describe the Hilbert spaces H0 and H1, utilized in [Ng1]: H0 =
AL2 (K,µ) is the subspace obtained by completion of the subspace of poly-
nomials in the space L2 (K,µ) with Borel measure µ admissible in the sense
of Widom [Wd1] (an additional restriction that K has no holes occurs just
here); the space H1 is constructed (similarly to [Z1]), using an extendible ba-
sis {ϕj} in the space A (D), which is biorthogonal (by Grothendieck-Köthe-

Silva duality) to the basis gj (ζ) = Λj

(
a+ 1

ζ

)
in A (D∗), where Λj is the

Leja polynomial basis [Le] in the space A (F ) , F =
{
w = 1

z−a : z ∈ D∗
}

with some a ∈ D.

Notice that, in order to get the asymptotics

lnµk (H0, H1) ∼
k

τ (K,D)
, k −→∞,

Nguyen applies linear topological invariants for pairs of linear topological
spaces from [Z1] and evaluates them still in a specifically one-dimensional
way.

He considered several applications of such bases, but, in the context of
the present survey, the most interesting is the following result

Theorem 3.6 ([Ng1]). — Suppose that (K,D) is a regular condenser
in C, such that D is a domain with the boundary consisted of countable set
of Jordan curves and K is polynomially convex. Then the asymptotics (3.4)
holds.

H. Widom [Wd2] investigated the asymptotics (1.3) in one-dimensional
case in a close connection with studying the asymptotics of the best ap-
proximation by rational functions. We cite here only his result about the
asymptotics (1.3).
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Theorem 3.7. — Let (K,D) be a condenser in C. Then

lim sup
k−→∞

(
dk

(
AD
K

))1/k � exp (−1/τ (K,D)) . (3.7)

If, additionally, the complement of D has countably many connected com-
ponents, then also

lim inf
k−→∞

(
dk

(
AD
K

))1/k � exp (−1/τ (K,D)) .. (3.8)

It is worth to be noted that the Riemann boundary value problem is
used in the proof of the inequality (3.8).

The asymptotics (1.1) and (1.3) for condensers on a one-dimensional
open Riemann surface Ω were studied in [ZS, S]; Hilbert scales methods
were central in these considerations.

Theorem 3.8 [S]. — Suppose that (K,D) is a condenser on an open
Riemann surface Ω, n = dim Ω = 1; K is a perfect compact set such that
D � K is connected and has no polar portion; D � Ω is a Caratheodory
domain (that is, ∂D = ∂D) such that the set of all points ζ ∈ ∂D, irregular
for the open set Ω � D, has zero harmonic measure (with respect to the
domain D). Then both asymptotics (3.4) and (1.3) with σ = 1

τ(K,D) , n = 1,
are true.

This result strengthens Theorem 2 from [ZS], where it was assumed that
K is a regular compact set such that D�K is connected and D is a finitely
connected Caratheodory domain.

N. Skiba [S] showed that the upper estimate could be considerably better
than in (3.7) even for regular condensers. Namely, the following inequality
holds

lim sup
k−→∞

(
dk

(
AD
K

))1/k � exp (−1/ζ (K,D)) = exp (−1/τ (K,∆)) (3.9)

with ζ = ζ (K,D) := inf {τ (K,G)}, where infimum is taken over all open
sets G ⊃ D, such that ∂G ⊂ ∂D and ∂D� ∂G is a portion of zero analytic
capacity, and ∆ is a union of those sets G. In particular, if the open set
∆ satisfies the conditions of Theorem 3.8, then the asymptotics (1.3) holds
with the constant σ = 1

τ(K,∆) . It is clear from the following example that

the estimate (3.9) can be better than (3.7). Suppose that D = ∆�E, where
E is the standard Cantor set, ∆ is any simply connected open neighborhood
of E, and K is any regular compact subset of D. Then, since E has positive
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capacity but zero analytic capacity, we have that ζ (K,D) = τ (K,∆) <
τ (K,D).

Fisher and Miccelli [FM] studied the asymptotics of widths (1.2), where
A is the restriction of the unit ball of the Hardy space Hp (D) and X is
either C (K) or Lp (ν) with some probability measure on K.

Notice that the following well-known fact of potential theory was essen-
tially used almost in all one-dimensional investigations (see, e.g., [Wd2, ZS,
S]).

Proposition 3.9. — For any regular condenser (K,D) on an open Rie-

mann surface there exists a sequence of finite sets Fs =
{
ζ
(s)
j :j = 1, . . . ,ms

}

and α(s) =
(
α

(s)
j

)
∈ Rms

+ such that the sequence
∑ms

j=1 α
(s)
j gD

(
z, ζ

(s)
j

)

converges to the function ω (D,K; z)− 1 locally uniformly in D�K, where
gD (z, ζ) is the Green function with the singularity ln |z − ζ| at ζ; therewith∑ms

j=1 α
(s)
j −→ τ (K,D).

4. Multidimensional case (extendible bases)

It was demonstrated in [Z1] that the methods based on Lemma 3.3 are
applicable to several complex variables as well. Namely, it was proved that
a common Erokhin-type basis in A (D) and A (K) exists for a condenser
(K,D) in Cn if D is a (p1, . . . , pn)-circular domain and K = G, where
G is a (q1, . . . , qn)-circular domain. In particular, they allowed to give a
positive solution to the problem posed by L. Aizenberg on existence of
a common bases, consisted of polynomials homogeneous with respect to

z
1/p1

1 , . . . , z
1/pn
n , where (p1, . . . , pn) = (q1, . . . , qn).

Another application of the Hilbert scales method for constructing of a
common basis for the spaces A (D) and A (K) was displayed in [Z2], where
D is a bounded convex domain in Cn and a compact set K ⊂ D is a
closure of some convex domain. The main goal in [Z2] was establishing of
the isomorphism of the spaces A (D) and A (K) to the canonical spaces of
analytic functions in polydiscs; for this purpose only the weak asymptotics
lnµk (H0, H1)  k1/n is sufficient.

Notice that there was no idea how to get a strict asymptotics for
lnµk (H0, H1) in the both above cases as well as in more general results
about common bases ([Z3, Z4, Z6, Z7, Z8, A1, A2, Ng2, NZ1, Ze2, Ze3, Ze4]
etc.) considered in this section below (see Theorem 4.16 and its discussion
below).
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Before dealing with them several definitions need to be introduced.

Definition 4.1. — The Green pluripotential (pluricomplex Green
function, relative extremal plurisubharmonic function) of a condenser
(K,D) on a Stein manifold Ω is the function

ω (z) = ω (D,K; z) := lim sup
ζ→z

sup {u (ζ) : u ∈ P (K,D)} , (4.1)

where P (K,D) is the class of all functions u plurisubharmonic in D and
such that u|K � 0 and u (ζ) � 1 in D.

Definition 4.2. — An open set D ⊂ Ω is pluriregular if there is a
negative plurisubharmonic function u (z) in D such that u (zj)→ 0 for each
sequence {zj} ⊂ D without limit points in D, shortly, lim

z−→∂D
u (z) = 0; a

compact set K ⊂ Ω is said to be pluriregular if ω
(
G̃,K; z

)
= 0, z ∈ K

for every open neighborhood G of K, where G̃ is a holomorphic envelope
of G.

Definition 4.3. — An open set D ⊂ Ω is strictly pluriregular if
there exists a continuous plurisubharmonic function u in an open set G � D
such that D = {z ∈ G : u (z) < 0}.

Definition 4.4. — A condenser (K,D) on a Stein manifold is said to
be pluriregular if (i) K and D are pluriregular in the above sense and (ii)

D has no component disjoint with K and K̂D = K (it is known that for a
pluriregular condenser (K,D) the function (4.1) is continuous in D [Z4]).

The notion of pluriregularity of an open set in Ω appeared (under the
name strong pseudoconvexity) [Z3, Z4, Z6] in connection with the character-
ization of the isomorphism A (D) � A (Un) (do not confuse with the strict
pseudoconvexity) and (under the name hyperconvexity) [St] in connection
with Serre conjecture on holomorphic fiber bundles (see also [KR, A1, A2]).
We find the name “pluriregular” for an open set in Ω more natural because
in the classical potential theory the analogous condition characterizes the
regularity of an open set.

The following result is a generalization of the one-dimensional result
about Hilbert scales [Z1, Ng1, ZS, S]; it proved to be an important tool
in solving of several problems in complex analysis (isomorphism of spaces
of analytic functions, separate analyticity, orthogonal polynomials etc.; see,
e.g., [Z8]).
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Theorem 4.5. — Suppose (K,D) is a pluriregular condenser on a Stein
manifold Ω, dim Ω = n, and D is strictly pluriregular; H0, H1 are Hilbert
spaces satisfying the condition:

A
(
D

)
↪→ H1 ↪→ A (D) ↪→ A (K) ↪→ H0 ↪→ AC (K) . (4.2)

Then the Hilbert scale Hα := (H0)
1−α

(H1)
α

satisfies the condition:

A (Kα) ↪→ Hα ↪→ A (Dα) , 0 < α < 1, (4.3)

where

Dα := {z ∈ D : ω (D,K; z) < α} , Kα := {z ∈ D : ω (D,K; z) � α} .
(4.4)

Notice that the existence of couples H0, H1 satisfying the conditions
(4.2) follows from nuclearity of the spaces A (D) and A (K), due to Pietsch
([Pt], section 4.4).

The left imbeddings in (4.3) are equivalent to some interpolation in-
equality for norms of analytic functionals, which is an analogue of the two
constant theorem for analytic functions (see, e.g., [Si1, Si2, Z3, Z4]).

Theorem 4.6 ([Z7, Z8]). — Let (K,D) be as in Theorem 4.5. Suppose
that Xα, 0 � α � 1, are Banach spaces satisfying the conditions

A
(
D

)
↪→X1 ↪→A (D) ↪→A (Kα) ↪→Xα ↪→A (Dα) ↪→A (K) ↪→X0 ↪→AC (K) ,

where 0 < α < 1. Set

‖x′‖∗α := sup
{
|x′ (x)| : x ∈ Xα, ‖x‖Xa � 1

}
, x′ ∈ X ′α.

Then for every ε > 0 and 0 < α < 1 there exists a constant C = C (α, ε)
such that

‖x′‖∗α � C
(
‖x′‖∗0

)1−α+ε (
‖x′‖∗1

)α−ε
, x′ ∈ X ′0. (4.5)

An alternative proof of this interpolational property for analytic func-
tionals, based on Aytuna’s technique from [A1, A2], can be found in [NZ2].

Definition 4.7. — Let X be a Fréchet space, X ′ its dual space,{
|·|p , p ∈ N

}
non-decreasing sequence of seminorms defining its topology

and
|x′|∗p := sup

{
|x′ (x)| : |x|p � 1

}
, p ∈ N
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the system of polar (non-bounded) norms. The space X belongs to the class
D2 [Z5] (see also [Vg, MV] under the notation Ω ) if for every p ∈ N there
exists q ∈ N such that fore each r ∈ N there is a constant C > 0 such that

(
|x′|∗q

)2

� C |x′|p · |x′|r , x′ ∈ X ′.

Definition 4.8. — We say that a Banach space E ↪→ X is adherent
to the Fréchet space X if for every p ∈ N and 0 < α < 1 there exist q ∈ N
and C > 0 such that

|x′|∗q � C (|x′|E∗)
α

(
|x′|p

)1−α
, x′ ∈ X ′. (4.6)

The name “dead end spaces” is also used for those spaces.

Lemma 4.9. — (Zakharyuta [Z4, Z6], see also [Z7, Z8]) Let D be an
open set on a Stein manifold Ω. Then A (D) ∈ D2 if and only if D is
pluriregular.

Notice that the part “if” is an easy consequence of Theorem 4.5.

Definition 4.10. — A Banach space X ←↩ A (K) is adherent to A (K)
if the dual space X ′ ⊂ A (K)

′
is adherent to the space A (K)

′
. A couple of

Banach spaces (X0, X1) satisfying the condition:

X1 ↪→ A (D) ↪→ A (K) ↪→ X0 (4.7)

is adherent to the couple (A (K) , A (D)) if X1 is adherent to A (D) and
X0 is adherent to A (K).

It follows from Theorem 4.5 that any Hilbert space H0 satisfying (4.2)
is adherent to A (K) if K is pluriregular and has a Runge neighborhood in
Ω. In fact there are adherent spaces with norms weaker than the uniform
norm on K, for example the space AL2 (K,µ0) is adherent to A (K) if µ0 =
(ddcω)

n
is the equilibrium measure generated by the pluripotential (4.1)

(see [NZ1, Z7, Ze1, NS, Z8, NZ2, Lv] for this and more general conditions
providing that AL2 (K,µ) is adherent to A (K) for a measure µ on K; notice
that for the one-dimensional case conditions of such kind were considered
in [Wd1, Ul]).

In the conditions of Theorem 4.5, any couple (H0, H1) satisfying (4.2) is
adherent to the couple (A (K) , A (D)). But the existence of a space adherent
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to A (D) for an arbitrary pluriregular open set turned to be a hard nut to
crack - it became clear, for the first time, due to the following important
general result (combined with Lemma 4.9).

Lemma 4.11 (Vogt [Vg], Lemma 1.4, [MV], Lemma 29.16). — A Fréchet
space X belongs to D2 if and only if there exists an adherent Banach space
E ↪→ X.

Later A. Aytuna [A1, A2], using Hörmander’s theory on L2-estimates for
solutions of the ∂-equation, showed that an adherent space can be realized
as a concrete functional space.

Lemma 4.12 ([A1, A2]). — Suppose D is a pluriregular open set on a
Stein manifold having finite set of components, ρ = eϕ, ϕ ∈ Psh (D). Then
the weighted Bergman space B2

ρ (D) (see Introduction for the definition) is
adherent to the space A (D); therewith the weight ρ (z) ≡ 1 is available if
D � Ω.

Applying Lemma 4.11 (or 4.12) and considerations after Definition 4.10,
we obtain

Corollary 4.13. — For any pluriregular condenser (K,D) there ex-
ists a wide class of Banach (Hilbert) couples (X0.X1) adherent to the cou-
ple (A (K) , A (D)); in particular, if (X0.X1) to (A (K) , A (D)) is adherent,
then each couple (Y0, Y1) , satisfying the conditions

X0 ↪→ Y0 ↪→ A (D) ↪→ A (K) ↪→ Y1 ↪→ X1 (4.8)

is also adherent to (A (K) , A (D)).

Theorem 4.5 can be generalized to any normal regular Banach scale con-
necting a given couple of Banach spaces (X0, X1) adherent to (A (K) , A (D));
we refer to [KPS], chapter 3, for definitions and facts of the Banach scales
theory which are not explained here.

Theorem 4.14 (cf., [Z9]). — Let (X0, X1) be a couple of Banach spaces,
satisfying the imbeddings (4.7) and such that BX1

is closed in the topology
induced on X1 by the topology of X0. Then the couple (X0, X1) is adher-
ent to the couple of spaces (A (K) , A (D)) if and only if any (some) regular
scale Xα, α ∈ [0, 1], connecting X0 and X1 (for their existence see [KPS],
chapter 3), satisfies the imbeddings

A (Dα) ↪→ Xα ↪→ A (Kα) , α ∈ (0, 1) ,

where Dα = {z ∈ D : ω (D,K; z) < α}, Kα = {z ∈ D : ω (D,K; z) � α},
0 < α < 1.
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In [Z9] this result was proved under the stronger assumption that BX1

is closed in X0, but the proof suggested there remains valid in the above
formulation. We emphasize that this statement became having content for
any pluriregular pair, due to Vogt’s Lemma 4.11 (or Aytuna’s Lemma 4.12),
providing existence of the left adherent space.

Corollary 4.15. — The conclusion in Theorem 4.6 remains correct for
a pluriregular condenser (K,D) if X0, X1 is a couple of Banach spaces such
that X1 is adherent to A (D) and X0 is any Banach space such that A (K) ↪→
X0 (remember that density of A (K) in X0 is included in this condition, see
the notation in Introduction).

The next theorem is a generalization of one-dimensional results about
existence of Erokhin type bases ([Z1, Ng1, ZS, S]), though the problem
about the strict asymptotics for the numbers lnµk (H0, H1) involved in the
estimates of the bases had been proved in such generality much later; we
shall discuss this problem in the next chapter.

Theorem 4.16 ([Z4, Z7, Z8]). — Let (K,D) be a pluriregular condenser
on a Stein manifold. Then for any couple of Hilbert spaces (H0, H1) , ad-
herent to the couple (A (K) , A (D)) (such couples exist due to the Vogt’s
Lemma 4.11), the canonical doubly orthogonal basis {ek} forms a common
basis in the spaces A (K), A (D), A (Dα) , A (Kα) , where Dα and Kα are
as in Theorem 4.14. This basis satisfies the estimates

1

C (α, ε)
µα−εk � |ek|Dα � C (α, ε) µα+ε

k , 0 < α < 1, ε > 0, (4.9)

where
lnµk = lnµk (H0, H1)  k1/n, k −→∞. (4.10)

Conversely, if {fk} is a common basis for the spaces A (K), A (D) then
there is a bijection σ : N −→ N and a positive sequence {tk} such that
the system

{
tk fσ(k)

}
satisfies the estimates (4.9) and coincides with the

canonical doubly orthogonal basis {ek} for some couple of Hilbert spaces
(H0, H1) adherent to the couple (A (K) , A (D)). The pluripotential (4.1)
can be expressed by the following formula:

ω (D,K; z) = lim sup
ζ

lim sup
k−→∞

ln |ek (ζ)|
lnµk

, z ∈ D �K. (4.11)

This result was proved first in [Z4] under an additional assumption that
the open set D is strictly pluriregular ; then in [Z7] (see also [Z8]) it was
derived from the results of [Z4] in the above form, due to the Vogt’s result
of Lemma 4.11. An alternative proofs, based on Aytuna’s approach [A1, A2]
and Vogt’s results on the spaces of the class D2, were done in [NS, NZ2].
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Theorem 4.17. — Let D ⊂ Ω be an open set, consisted of finite set of
components, dim Ω = n. Then the space A (D) is isomorphic to A (Un) if
and only if D is pluriregular.

The first proof of this result [Z6] was based on Theorem 4.5 and Corol-
lary 4.13 (hence on Lemma 4.11 of Vogt). A. Aytuna [A1, A2] obtained an
alternative proof of the part “if” in Theorem 4.17, using a weighted Bergman
space B2

ρ (D) as an adherent space to A (D) (see Lemma 4.12).

Definition 4.18. — ([Z7, Ll]) (Multipole Green Pluripotential) Let D
be a pluriregular open set on a Stein manifold Ω, F = {ζj : j = 1, . . . ,m} ⊂
D a finite set and α = (αj) ∈ Rm

+ . The multipole Green Pluripotential
(pluricomplex Green function in [Kl]) in D with logarithmic singularities of
given masses α at the points of F is the function

gD (F, α; z) := lim sup
ζ−→z

sup {u (ζ) : u ∈ P (Ω, F, α)} ,

where P (Ω, F, α) is the class of all non-negative functions u ∈ Psh (D) such
that for each j = 1, . . . ,m the estimate u (ζ) � αj ln |tj (ζ)| + C, ζ ∈ Vj
holds with some constant C = Cj (u), where Vj is some open neighborhood
of ζj, tj : Vj −→ Cn is a coordinate mapping such that tj (ζj) = 0.

Theorem 4.19 ([Z7, Z8, Z9]). — Let F = {ζµ : µ = 1, . . . ,m} be a fi-
nite subset in a pluriregular open set D ⊂ Ω, such that each component of
D has non-empty intersection with F ; α = (αµ)

m
µ=1, αµ > 0, µ = 1, . . . ,m;

Dλ := {z ∈ D : gD (F, α; z) < −λ} , Fλ := {z ∈ D : gD (F, α; z) � −λ} ,

with 0 < λ <∞, and

σn =

(
n!∑m

µ=1 (αµ)
n

)1/n

.

Let H ↪→ A (D) be a Hilbert space adherent to the space A (D). Then there
exists a system {fi (z)}i∈N , orthonormal in H, which forms a common basis
in all the spaces

A (Ω) , A (F ) , A (Ωλ) , A (Fλ) , 0 < λ <∞,

such that for each λ : 0 < λ <∞ and ε > 0 the estimates

1

C
expσn (−λ− ε) i1/n � |fi (z)|Fλ � C expσn (−λ+ ε) i1/n, i ∈ N,

(4.12)
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hold with some constant C = C (λ, ε) .The Green multipole function can be
expressed via the basis by the formula:

σn gD (F, α; z) = lim sup
ζ→z

lim sup
i→∞

ln |fi (ζ)|
i1/n

, z ∈ Ω� F. (4.13)

These bases are of a mixed nature: on the one hand, they are orthonor-
mal in a Hilbert space connected with D and on the other hand, they have
an interpolation nature with respect to given points of K. It is possible
to take in this theorem the Bergman space H = B2

ρ (Ω), described in Ay-
tuna’s Lemma 4.12. Such bases are an important tool in establishing of the
asymptotics (1.1) and (1.3) which will be discussed in the next section.

Zeriahi ([Ze4]) considered bases extendible into sublevel domains of a
Green pluripotential with countable set of weighted logarithmic singularities;
this generalizes the Kadampatta-Zakharyuta’s result ([ZK]) on existence of
common bases for a pair K ⊂ D ⊂ C, where D is a regular domain and
K is an arbitrary polar compact set in D. Notice that it remains open the
problem about a complete multidimensional analogue of the Kadampatta-
Zakharyuta’s result.

Problem 4.20. — Suppose D be a pluriregular open set on Ω and K ⊂
D is a compact set having non-empty intersection with every component of
D and complete pluripolar, that is there exists u ∈ Psh (D) such that K =
{z ∈ D : u (z) = −∞}. Does there exist a common (orthonormal-interpola-
tion) basis for the spaces A (D) and A (K) (extendible onto sublevel sets of
some plurisubharmonic function)?

5. Multidimensional case (entropy and width asymptotics)

For a long time the asymptotics (1.1) or (1.3) for several complex vari-
ables were known in quite special cases. Notice that usually in particu-
lar cases one can obtain asymptotic formulas much finer than (1.1) and
(1.3) which would not be expected in general. For example, A. Vitushkin
([V1, V2]) proved that for the condenser, formed by two concentric polydiscs

Ur, UR, r = (rν) , R = (Rν) , 0 < rν < Rν , ν = 1, . . . , n, (5.1)

the following asymptotics have place

Hε

(
AUR
Ur

)
= τ

(
ln

1

ε

)n+1

+O

((
ln

1

ε

)n

ln ln
1

ε

)
, ε −→ 0 (5.2)
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with τ = 2

(n+1)! 
nν=1 ln Rν
rν

. It is obvious that this asymptotics implies the

asymptotics (1.1) with the same constant τ . Besides this classical result next
two results about the asymptotics (1.1) and (1.3) are worth to be mentioned
here .

The following result for special analytic polyhedra was proposed in [Z4],
Proposition 10.6 and Corollary 10.1 without proof as an easy consequence
from Theorem 4.5.

Proposition 5.1. — Suppose that (K,D) is a condenser on a Stein
manifold Ω, dim Ω = n and there is an open set G � D and an analytic
mapping g = (gν) : G −→ Cn so that K = g−1

(
Ur

)
, D = g−1 ( UR),

where Ur, UR are defined in (5.1). Then the asymptotics (1.1) holds with
the constant

τ =
2 κ

(n+ 1)! �nν=1 ln Rν
rν

(5.3)

where κ is the multiplicity of the mapping g over D.

A set E ⊂ Cn is said to be complete n-circular if z = (zν) ∈ E implies
that each w = (wν) with |wν | � |zν | also belongs to E; to each complete
n-circular set E we correspond its characteristic function:

hE (θ) := sup

{
n∑

ν=1

θν ln |zν | : z = (zν) ∈ E
}
, θ = (θν) ∈ Rn

+.

In 1970th Ronkin and Zakharyuta considered independently (not published)
the case of a complete n-circular condenser (K,D). For the proof of the
following result see [ARZ].

Proposition 5.2. — Suppose (K,D) is a condenser in Cn such that
both sets are complete n-circular and

Θ =
{
θ = (θν) ∈ Rn

+ : hD (θ)− hK (θ) � 1
}
.

Then the asymptotics (1.3) holds with the constant σ =
(

1
V olΘ

)1/n
and the

asymptotics (1.1) with the constant τ = 2 V olΘ
n+1 .

Remark 5.3. — In the conditions of Propositions 5.1 and 5.2, the asymp-
totics can be essentially refined to the additive form similar to the classical
Vitushkin’s asymptotics (5.2).
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The question about an eventual constants for the asymptotics (1.1), (1.3)
in more or less general case had been open until Bedford and Taylor [BT2]
(see also Sadullaev [Sd]) introduced a capacity, which, for a pluriregular
condenser (K,D) , has a form

C (K,D) :=

∫

K

(ddcω (z))
n
, (5.4)

here the complex Monge-Ampére operator u −→ (ddcu)
n

associates to
any function u ∈ Psh (D) ∩ L∞loc (D) some non-negative Borel measure. In
particular, the so-called equilibrium measure (ddcω (z))

n
is supported by K

(for details see [BT1, BT2, Sd, Kl]). It is convenient to consider also the
pluricapacity τ (K,D) = 1

(2π)n C (K,D), which differs from the capacity

(5.4) by a natural factor so that it coincides with the Green capacity in the
case n = 1. Soon afterwards it was conjectured in [Z7, Z8] that, for a good
enough condenser (K,D) on a Stein manifold of dimension n, the asymp-

totics (1.3) ought to hold with the constant σ =
(

n!
τ(K,D)

)1/n

(respectively,

(1.1) with the constant τ = 2 τ(K,D)
(n+1)! ). This conjecture is confirmed by the

cases considered above, because in the conditions of Proposition 5.1

τ (K,D) =
κ

�nν=1 ln Rν
rν

,

and in Proposition 5.2 we have (see [ARZ])

τ (K,D) = n! V olΘ.

Moreover, some approach was suggested in [Z7, Z8] how to reduce the
question about those asymptotics to the problem of the pluripotential theory
on the approximation of the function ω (D,K; z) − 1 by multipole Green
pluripotentials (see Definition 4.18 above). This problem has been solved
recently in positive by S. Nivoche [N1, N2] and E. Poletsky [P]. Namely
they proved the following

Theorem 5.4 ([N1, N2, P]). — For a pluriregular condenser (K,D)
on a n-dimensional Stein manifold Ω there exists a sequence of finite sets

Fs =
{
ζ
(s)
j : j = 1, . . . ,m

}
and masses α(s) =

(
α

(s)
j

)
∈ Rn

+ such that the

sequence of multipole Green pluripotentials gD
(
Fs, α

(s); z
)

converges locally
uniformly to the function ω (D,K; z)− 1 on D �K.

This statement, generalizing Proposition 3.9, first appeared as a conjec-
ture in [Z7] (see also [Z8]). Together with the approach suggested in [Z7, Z8],
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it plays an important role in a final proof of the asymptotics (1.3) and (1.1)
under quite general assumptions about condensers ([Z9], see below Theo-
rems 5.6, 5.8, etc.).

Definition 5.5. — A couple of Banach spaces (X0, X1) , satisfying the
condition (4.7), is called admissible for a condenser (K,D) if for each
couple of Banach spaces (Y0, Y1) satisfying the condition (4.8) we have
ln dk (BX1 ,BX0) ∼ ln dk (BY1 ,BY0) as k →∞.

If a couple (X0, X1) is adherent for the couple (A (K) , A (D)), then it
is admissible for a condenser (K,D) ([Z9]). Hence, by Corollary 4.13 there
exist a lot of admissible couples of Banach spaces (hence, Hilbert spaces)
for a pluriregular condenser (K,D).

Theorem 5.6. — Let (K,D) be a pluriregular condenser on Stein man-
ifold Ω, dim Ω = n. Then for any couple of Banach spaces (X0, X1) admis-
sible for this condenser (they exist due to Corollary 4.13) the asymptotics
have place

− ln dk (BX1
,BX0

) ∼
(

n! k

τ (K,D)

)1/n

, k −→∞ (5.5)

Hε (BX1
, X0) ∼ 2 τ (K,D)

(n+ 1)!

(
ln

1

ε

)n+1

, ε→ 0 (5.6)

The main idea of the proof is, using the basis from Theorem 4.19, first to
get estimates of widths for condensers formed by level sets of the multipole
Green pluripotential and then, applying Theorem 5.4, to approximate the
condenser (K,D) by those level sets condensers (Kj , Dj) and then apply
Bedford-Taylor result [BT2] providing that τ (Kj , Dj) −→ τ (K,D).

Theorem 5.6 allows us to improve essentially the formulas (4.10) and
(4.11), so that the bases constructed in Theorem 4.16 becomes a complete
analogue of one dimensional Erokhin-type bases, considered in Theorem 3.5.

Proposition 5.7. — Under the conditions of Theorem 4.16 we have

lnµk (H0, H1) ∼
(

n! k

τ (K,D)

)1/n

and hence
(
τ (K,D)

n!

)1/n

ω (D,K; z) = lim sup
ζ→z

lim sup
k→∞

ln |ek (ζ)|
k1/n

, z ∈ D �K.
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It is clear that for any admissible couple of Banach spaces (Y0, Y1) the
asymptotics (1.3 ) could occur with the smallest possible constant σ among
all Banach couples satisfying the conditions (4.7), while, due to Lemma 2.2,
the asymptotics (1.1) for admissible couples could happen with the largest
possible constant τ .

Theorem 5.8. — Let (K,D) be a pluriregular condenser on a Stein
manifold Ω, dim Ω = n. Then the following statements are equivalent:

(a) the couple (H∞ (D) , AC (K)) is admissible for the condenser (K,D) ;

(b) the asymptotics (1.3) holds with the constant σ =
(

n!
τ(K,D)

)1/n

;

(c) the asymptotics (1.1) holds with the constant τ = 2τ(K,D)
(n+1)! .

The equivalence of (a) and (b) has been proved in [Z9], Theorem 1.5 and
Corollary 1.7. The equivalence of (b) and (c) is by Lemma 2.2.

Theorem 5.9 ([Z9]). — Suppose (K,D) is a pluriregular condenser on
a Stein manifold Ω, dim Ω = n, and D is strictly pluriregular. Then the

asymptotics (1.3) holds with σ =
(

n!
τ(K,D)

)1/n

.

Applying Aytuna’s Lemma 4.12 and considerations after Definition 4.10,
we derive from Theorem 5.6 the following

Proposition 5.10. — Suppose (K,D) is a pluriregular condenser on a
Stein manifold Ω, dim Ω = n; H1 = B2

ρ(Ω), where ρ = e−ϕ, ϕ ∈ Psh (D);
H0 = AL2 (K,µ0) with the equilibrium measure µ0 = (ddcω)

n
for the

pluripotential (4.1). Then

− ln dk (BH1 ,BH0) = lnµk (H0, H1) ∼
(

n!

τ (K,D)

)1/n

k1/n, k −→∞.
(5.7)

6. Conclusion and some open questions

It is worth noting that there are numerous interesting results on asymp-
totics, estimates or even precise computations of diameters for particular
classes of condensers and concrete related couples of Banach spaces (Yu. A.
Farkov, S. D. Fisher, K. Yu. Osipenko, O.G. Parfenov, M. I. Stessin, V. M.
Tikhomirov, et al). We do not discuss them here, because our main goal was
to give a survey of results just concerning the classical Kolmogorov problem
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in their development from initial steps of 1950ies till quite general nowadays
results.

We conclude this survey by some comments and problems remained open
(see also [Z9], Section 9; some of remarks from there we repeat here).

The Widom’s one-dimensional inequality (3.7) can be generalized for an
arbitrary condenser on a Stein manifold, due to Theorem 5.6.

Proposition 6.1. — Let (K,D) ⊂ Ω, dim Ω = n be a condenser and
(X0, X1) a Banach couple satisfying (4.7). Then

lim sup
k−→∞

ln dk (BX1 ,BX0)

k1/n
� −

(
n!

τ (K,D)

)1/n

. (6.8)

In particular,

lim sup
k−→∞

ln dk
(
AD
K

)

k1/n
� −

(
n!

τ (K,D)

)1/n

. (6.9)

Proof. — Consider a sequence of pluriregular condensers (Kj , Dj), j ∈
N, such that Kj � Kj+1, ∩Kj = K and Dj � Dj+1, ∪Dj = D. Then
τ (Kj , Dj) ↘ τ (K,D) (see, e.g., [BT2]) and (6.8) follows from Theorem
5.6. �

For the sake of simplicity, we considered above mainly pluriregular con-
densers. In fact, the restrictions on the compact set K in Theorem 5.6 can
be seriously eased.

Proposition 6.2. — Suppose that (K,D) is a condenser such that D
is a pluriregular open set in Ω, dim Ω = n, K is a non-pluripolar perfect
compact set and there exists a sequence of pluriregular compact sets Kj

such that Kj ⊂ Kj+1 and τ (Kj , D) −→ τ (K,D). If H∞ (D) is adherent to
A (D), then the asymptotics (1.3) holds.

Indeed, since dk
(
AD
K

)
� dk

(
AD
Kj

)
, we obtain from Theorem 5.6 that

the inequality converse to (6.9) holds. Thus, combining this with (6.9), we
obtain (1.3).

The next statement can be considered as a multidimensional generaliza-
tion of the Skiba’s estimate (3.9).

Proposition 6.3. — Suppose that (K,D) be a pluriregular condenser
and there exists an open set G ⊃ D forming with K a pluriregular condenser
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(G,K) such that every function f ∈ H∞ (D) is extended to a function
F ∈ H∞ (G) preserving its uniform norm. Then

lim sup
k−→∞

ln dk
(
AD
K

)

k1/n
� −

(
n!

τ (K,G)

)1/n

.

If, additionally, H∞ (G) is adherent to A (G), then � is to be changed to
=.

In connection with this fact, Example 9.9 in [Z9] (suggested by Sibony
in [Sib]) is of interest.

Consider an extremal plurisubharmonic function ([Z4, Sib], see also [Z9]):

γ (D,K; z) := lim sup
ζ−→z

{u (ζ) : u ∈ A (D,K)} ,

where A (D,K) is the class of all functions u (z) = α ln |f (z)| with α > 0
and f ∈ H∞ (D) such that u|K � 0 and u (z) < 1 in D. It was proved in
[Z9] that the condition

γ (D,K; z) = ω (D,K; z) , z ∈ D (6.10)

is necessary for H∞ (D) to be adherent to the space A (D).

Problem 6.4. — Let (K,D) be a pluriregular condenser on Ω. Is the
condition (6.10) sufficient for the adherence of H∞ (D) to A (D)?

Although Theorems 5.6, 5.8, 5.9 give general necessary and sufficient
conditions for the couples of Banach spaces related to a pluriregular con-
denser (K,D) for which the asymptotics (5.5) and (5.6) hold, the problem
to check these conditions for concrete classes of condensers and couples of
Banach spaces remains open even in one-dimensional case.

In connection with Aytuna’s Lemma 4.12 arises

Problem 6.5. — Given a pluriregular open set D ⊂ Ω, characterize
all weights ρ providing that the weighted Bergman space B2

ρ (D) =: H1 is
adherent to A (D).

Some sufficient conditions for AL2 (K,µ) to be adherent to A (K) were
mentioned above (see the paragraph next to Definition 4.10). In this con-
nection arises

Problem 6.6. — Given a pluriregular compact set K ⊂ Ω, characterize
all measures µ supported by K providing that the space H0 := AL2 (K,µ) is
adherent to A (K).
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The question how to characterize open sets D ⊂ Ω with the property
“H∞ (D) is adherent to A (D)” remains open even in the one-dimensional
case as it follows from Example 9.8 from [Z9]; for the space H∞ (D), con-
sidered in that example, it has been proved only recently ([GM]) that it is
dense in the space A (D), while the condition of adherence yields quite fast
bounded approximation on every compact set K ⊂ D. More precisely, see
Corollary 6.9 below.

Definition 6.7. — A pluriregular condenser (K,D) satisfies the bounded
power approximation property (BPAP) if

inf {|x− y|K : y ∈ H∞ (D) , |y|D �M} � C M−
α−ε

1−α+ε (6.11)

for every x ∈ A (Dα) with |x|Dα � 1 and ε > 0, 0 < α < 1 with some
constant C = C (α, ε) (the sublevel domains Dα are defined in (4.4)).

Proposition 6.8 (cf. Theorem 3.2.9 and Proposition 3.2.10 in [Z8]).
Let (K,D) be a pluriregular condenser on Ω. Then H∞ (D) is adherent to
A (D) if and only if (K,D) satisfies BPAP.

Proof. — Suppose that X1 := H∞ (D) is adherent to A (D). Applying
Corollary 4.15 with X0 := AC (K), Xα = AC

(
Dα

)
, 0 < α < 1 and using

Lemma 29.13 from [MV] we can rewrite the estimates (4.5) in the form

BXα ⊂
C

M
α−ε

1−α+ε

BX0
+M BX1

with some constant C = C (α, ε) > 0 for any M > 0, which is equivalent to
(6.11). On the other hand, the estimates (6.11) imply the inequalities (4.5),
which provide that H∞ (D) is adherent to A (D). �

Corollary 6.9. — Let D be a pluriregular open set with finite set of
components and H∞ (D) is adherent to A (D). Let L ⊂ D be a compact set.
Then for each x ∈ A (D) there exists a sequence ym ∈ H∞ (D), |ym|D � m,
m ∈ N, such that

lim
m−→∞

ln |x− ym|L
lnm

= −∞.

Indeed, one can take a pluriregular compact K ⊃ L forming a plurireg-
ular condenser with D and then apply Proposition 6.8, taking into account
that each x ∈ A (D) belongs to AC (Dα) , 0 < α < 1.
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