
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
ERIC BEDFORD, KYOUNGHEE KIM

Linear Fractional Recurrences: Periodicities and Integrability

Tome XX, no S2 (2011), p. 33-56.

<http://afst.cedram.org/item?id=AFST_2011_6_20_S2_33_0>

© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2011_6_20_S2_33_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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Linear Fractional Recurrences:
Periodicities and Integrability

Eric Bedford(1), Kyounghee Kim(2)

ABSTRACT. — Linear fractional recurrences are given as zn+k = A(z)/B(z),
where A(z) and B(z) are linear functions of zn, zn+1, . . . , zn+k−1. In
this article we consider two questions about these recurrences: (1) Find
A(z) and B(z) such that the recurrence is periodic; and (2) Find (invari-
ant) integrals in case the induced birational map has quadratic degree
growth. We approach these questions by considering the induced bira-
tional map and determining its dynamical degree. The first theorem shows
that for each k there are k-step linear fractional recurrences which are pe-
riodic of period 4k. The second theorem shows that the Lyness process,
A(z) = a+ zn+1 + zn+2 + · · ·+ zn+k−1 and B(z) = zn+1 has quadratic
degree growth. The Lyness process is integrable, and we discuss its known
integrals.

RÉSUMÉ. — Les récurrences fractionnaires linéaires sont données par
zn+k = A(z)/B(z), oùA(z) etB(z) sont des fonctions linéaires de zn, zn+1, . . . , zn+k−1.
Dans cet article nous considérons deux questions concernant ces récurrences:
(1) Trouver A(z) et B(z) telles que la récurrence soit périodique; (2)
Trouver des intégrales invariantes dans le cas où le degré de l’application
birationnelle induite a une croissance quadratique. L’approche de ces
questions se fait en considérant l’application birationnelle induite et en
déterminant ses degrés dynamiques. Le premier théorème montre que pour
tout k il y a des récurrences fractionnaires linéaires à k pas qui sont
périodiques de période 4k. Le second théorème montre que le degré du
procédé de Lyness A(z) = a+zn+1 +zn+2 + · · ·+zn+k−1 et B(z) = zn+1

est à croissance quadratique. Le procédé de Lyness est intégrable, et nous
en discuterons les intégrales connues.
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0. Introduction

Let k � 3, and let α = (α0, . . . , αk), β = (β0, . . . , βk) be (k + 1)-tuples
of complex numbers. We consider a k-step linear fractional recurrence

xn+k+1 =
α0 + α1xn+1 + · · ·+ αkxn+k

β0 + β1xn+1 + · · ·+ βkxn+k
(0.1)

Given a k-tuple (x1, . . . , xk), the relation (0.1) generates a sequence {xj , j �
1} as long as the denominator does not vanish. The question has been raised
(see [GL] and [CL]) to find the α and β for which (0.1) is periodic. By
“periodic” we mean that the sequence {xj , j � 0} is periodic for every
starting point (x1, . . . , xk). There are a number of works in the literature
that have considered this question under the hypothesis that all numbers
are positive. Here we consider it natural to examine this question over the
field of complex numbers.

The case k = 2 was considered in [BK1] for general α and β, and it was
shown that the only possible nontrivial periods are 6, 5, 8, 12, 18, and 30.
(Here, “nontrivial” means that the map cannot be reduced to a simpler map,
e.g. linear or 1-dimensional.) McMullen [M] observed that these periods are
the orders of the Coxeter elements of certain Coxeter groups. The case of
dimension 3 is determined in [BK2]: the only possible nontrivial periods are
8 and 12. The 3-step, period 8 maps had been found previously; there are
two essentially different maps, one is in [L], and the other is in [CsLa]. Here
we show that the period 12 corresponds to a phenomenon that holds for
k-step recurrences for all k:

Theorem 0.1. — For each k, there are k different recurrences of the
form (0.1) with α, β as in (5.3), which have period 4k.

Our approach is similar to that of [BK1,2]: we consider (0.1) in terms of
the associated birational map

fα,β(x1, . . . , xk) =

(
x2, . . . , xk,

α0 + α1x1 + · · ·+ αkxk
β0 + β1x1 + · · ·+ βkxk

)
(0.2)

of k-dimensional space. We may consider fα,β as a birational map of complex

projective space Pk, as well as any space X which is birationally equivalent
to Pk. For a rational map f of X, there are well-defined pull-back maps f∗

on the cohomology groups Hp,q(X), as well as on the Picard group Pic(X).
We may define a notion of growth by

δ(f) := lim
n→∞

||(fn)∗|| 1n .
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Here we work on Pic(X) (or H1,1), where δ(f) is equivalent to degree
growth. To determine δ(f), we replace Pk with a space X with the prop-
erty that passage from f to f∗ is compatible with iteration. Specifically,
we “regularize” the map f in the sense that we replace Pk by an X such
that (fn)∗ = (f∗)n holds on Pic(X); so in this case we obtain δ(f) as the
modulus of the largest eigenvalue of f∗. The way we find our space X is
to analyze the “singular” behavior of f , by which we mean the behavior
that prevents fα,β from being a diffeomorphism. Namely, there are hyper-
surfaces E with the property that either f(E) or f−1(E) has codimension
> 1. Such a hypersurface is called exceptional. The existence/nonexistence
of exceptional hypersurfaces depends on the choice of representative X for
f , and the regularity of fX is determined by the behavior of the orbits of
exceptional hypersurfaces.

In §2 we show that for generic α and β we have δ(fα,β) = ∆k > 1. In
particular, we conclude that a generic fα,β is not periodic. In order to prove
Theorem 0.1, we find a space X for which f∗X is periodic, and we use this to
conclude that f is periodic. Although our map fX is not an automorphism,
de Fernex and Ein [dFE] have shown that since f is periodic there will exist
a space Z so that the induced map fZ is biholomorphic.

Next we consider the mappings

h(x1, . . . , xk) =

(
x2, . . . , xk,

a + x2 + x3 + · · ·+ xk
x1

)
, (0.3)

which have been discussed in several places, often under the name of “Lyness
map” because of its origin in [L]. Except in two exceptional cases, these maps
are not periodic, but they exhibit an integrability which has been studied
by several authors: ([KLR], [KL], [Z], [CGM1–3], [GBM], [HKY], [GKI]).
Applying our analysis to h we construct a rather different regularization
and obtain:

Theorem 0.2. — If k > 3, or if a �= 1, the degree of hn is quadratic
in n.

In dimension k = 2, there is a strong connection (see [DF] and [G])
between polynomial degree growth and integrability. Namely, if g is a bira-
tional surface map, then linear degree growth corresponds to preserving a
rational fibration; and quadratic degree growth corresponds to preserving
an elliptic fibration. In §6 we discuss the structure of rational functions that
are invariant under f which were found in [GKI].

We wish to thank the referee for helpful comments on this paper.
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1. Birational maps

Let us recall a few notions from algebraic geometry that we will use.
The reader is referred to [H] for further details. A rational map of projective
space Pk is given by a k + 1-tuple of homogeneous polynomials f = [f0 :
f1 : · · · : fk] of a common degree d = deg(f0) = · · · = deg(fk). We refer to d
as the degree of f . Without loss of generality we assume that the fj ’s have
no common factor, so the degree is well defined. The indeterminacy locus
is I(f) = {x : f0(x) = · · · = fk(x) = 0}. Since the fj ’s have no common
factor, I(f) always has codimension at least 2. The map f is holomorphic
at all points of Pk − I(f) but cannot be extended to be continuous at any
point of I. If V is a variety for which no irreducible component is contained
in I then the strict transform f(V ) is defined as the closure of f(V − I).
The strict transform is again a variety. We say that a map f is dominant if
its image contains an open set. Given two rational maps f and g, there is a
rational map f ◦ g, and f ◦ g is equal to f(g(x)) for all x /∈ I(g) such that
g(x) /∈ I(f). The map f is said to be birational if there is a rational map g
such that f ◦ g and g ◦ f are both the identity.

If f is a rational map, we say that a subvariety E is exceptional if E �⊂ I,
and the dimension of f(E) is strictly less than the dimension of E. We let
E denote the set of exceptional hypersurfaces of f . We will say that f is a
pseudo-automorphism if there is no exceptional hypersurface.

We will define manifolds by the procedure of blowing up. If p ∈ X is
a point, then the blowup of X at p is given by a new manifold Y with a
holomorphic projection π : Y → X such that π : Y − π−1p → X − p is
biholomorphic, and π−1p is equivalent to Pk−1. Similarly, if S is a smooth
submanifold of X, we may define a blowup of X along the center S. Given
a blowup π : Y → X, the preimage π−1S of S under π will be called the
exceptional blowup fiber. If f : X - -→ X is a rational map, then there is
an induced rational map fY := π−1 ◦ fX ◦ π on Y .

We refer to a variety of pure codimension 1 as a hypersurface. We say
that two hypersurfaces S1 and S2 are linearly equivalent if there is a rational
function r such that the divisor of {r = 0} is S1−S2. By Pic(X) we denote
the set of all divisors modulo linear equivalence. The spaces X that we will
deal with all arise from Pk by blowups, so that in fact Pic(X) is isomorphic
to the Dolbeault cohomology group H1,1(X). If π : Y → X is a blowup
along a smooth center S, and if S denotes the exceptional blowup fiber over
S, then Pic(Y ) is generated by Pic(X), together with the class of S.

Suppose that f : X - -→ X is a rational map. Given a hypersurface
S = {p = 0} we define the pullback f∗S as the closure of {p(f) = 0}−I(f).
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This gives a well defined linear map f∗ of Pic(X). We say that f is 1-
regular if (fn)∗ = (f∗)n holds on Pic(X). The (first) dynamical degree of
fX is defined by the growth of the iterates on Pic(X):

δ(fX) := lim
n→∞

||(fnX)∗|Pic(X)||
1
n

This is independent of the choice of norm || · ||. And since π : X → Pk is
holomorphic, we have (fX)n = (π−1 ◦ f ◦ π)n = π−1 ◦ fn ◦ π = (fn)X , so
δ(f) = δ(fX).

2. Linear Fractional Recurrences

We may interpret equation (0.2) as a rational map f : Pk - -→ Pk by
writing it in homogeneous coordinates as

f [x0 : · · · : xk] = [x0β · x : x2β · x : . . . : xkβ · x : x0α · x] (2.1)

where α · x = α0x0 + α1x1 + · · ·αkxk. Let us set B = (−α1, 0, . . . , 0, β1),
α′ = (α0, α2, . . . , αk, 0) and β′ = (β0, β2, . . . , βk, 0). The inverse of f is given
by the map

f−1[x0 : · · · : xk] = [x0B ·x : x0α
′ ·x−xkβ

′ ·x : x1B ·x : · · · : xk−1B ·x] (2.2)

We assume that

(β1, β2, . . . , βk) �= (0, 0, . . . , 0),

α is not a multiple of β, and (2.3)

(αi, βi) �= (0, 0) for i = 1 and some 1 < i � k.

If (α1, β1) = (0, 0) then f does not depend on x1 and thus f can be realized
as a k − 1 step recurrence relation. If (αi, βi) = (0, 0) for all i = 2, . . . , k
then fk is an essentially 1-dimensional mapping.

Let us set γ = β1α − α1β and C = β1α
′ − α1β

′. For 0 � i � k we use
notation Σi = {xi = 0} and ei = [0 : · · · : 0 : 1 : 0 : · · · : 0], the point
whose i-th coordinate is nonzero and everything else is zero. We also use
Σβ = {β ·x = 0},Σγ = {γ ·x = 0},ΣB = {B ·x = 0}, and ΣC = {C ·x = 0}.
To indicate the intersection we combine their subscripts, for example Σ0β =
{x0 = β · x = 0} and Σ01 = {x0 = x1 = 0}. The Jacobian of f is a constant
multiple of x0(β ·x)k−1(γ ·x). The Jacobian vanishes on three hypersurfaces
Σ0,Σβ ,Σγ ; these hypersurfaces are exceptional and are mapped to the lower
dimensional linear subspaces:

f(Σ0) = Σ0B = Σ0k, f(Σβ) = ek, f(Σγ) = ΣBC .
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The Jacobian of f−1 is a constant multiple of x0(B · x)k−1(C · x) and we
have

f−1 : Σ0 �→ Σ0β , ΣB �→ e1, and ΣC �→ Σβγ .

The indeterminacy locus of f is I+ = {e1,Σ0β ,Σβγ} and f−1 is I+ =
{ek,Σ0B ,ΣBC}.

Let us consider the maps which satisfy (2.3) and the following:

β1 �= 0 and β1αj − α1βj �= 0 for all j = 2, . . . , k (2.4)

For every choice of parameters α, β satisfying (2.3–4), we have

f : Σ0 �→ Σ0k �→ Σ0 k−1 k �→ · · · �→ Σ0 3 ... k �→ e1 � ΣB (2.5)

We first modify the orbit of Σ0. Let π : Y → Pk be the complex manifold
obtained by blowing up e1 and then Σ0 3 ... k and continuing successively
until we reach Σ0 k. That is, we let Σ3 ... k denote its strict transform in the
space obtained by blowing up e1, and then we blow up along the center
Σ3 ... k, etc. We let E1 = π−1e1 denote the exceptional fiber over e1, and let
S0,j denote the exceptional fiber over Σ0 j ... k for all j � 3. Let us set α(j) =
(0, α1, . . . , αj , 0, . . . , 0), and β(j) = (0, β1, . . . , βj , 0, . . . , 0). For 3 � j � k we
use local coordinates near S0 j

πsj : (s, x2, . . . , xj−1, ξj , . . . , ξk)sj �→ [s : 1 : x2 : · · · : xj−1 : sξj : · · · : sξk]∈Pk

and for the neighborhood of the exceptional divisor E1 we use

πe1 : (s, ξ2, . . . , ξk)e1 �→ [s : 1 : sξ2 : · · · : ξk] ∈ Pk.

Let us use subscripts to indicate which local coordinates we are using; for
example (· · ·)sj is a coordinate of a point in local coordinates near S0 j .
Working with the induced birational map fY := π−1 ◦ f ◦ π we have

fY : Σ0 � [0 : x1 : x2 : · · · , xk] �→
(

0, x2, . . . , xk,
α(k) · x
β(k) · x

)

sk

∈ S0 k

Similarly we have for all j = 2, . . . , k − 1

fY : S0,j+1 � (0, x2, . . . , xj , ξj+1 . . . , ξk)sj+1

�→
(

0, x3/x2, . . . , xj/x2, ξj+1, . . . , ξk,
α(k) · x
β(k) · x

)

sj

∈ S0 j

For the points of E1, we have

fY : E1 � (0, ξ2, . . . , ξk)e1 �→ [β1 : β1ξ2 : · · · : β1ξk : α1] ∈ ΣB .
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By condition (2.4), we see that α(j) is not a constant multiple of β(j) for all
2 � j � k. It follows that

Lemma 2.1. — The map fY is a local diffeomorphism at generic points
of Σ0, E1, and S0,j+1 for 2 � j � k − 1.

Since the induced map fY is a local diffeomorphism at points of Σ0 ∪
E1 ∪

⋃k
j=3 S0,j , Σ0 and all the exceptional (blowup) divisors E1 and S0,j

for j = 3, . . . , k are not exceptional for fY . Thus the exceptional set for fY
consists of two divisors: E+

Y = {Σβ ,Σγ}. The indeterminacy locus for fY is
I+
Y = {Σ0β ,Σβγ}. For the inverse map f−1

Y we have E−Y = {Σ0,ΣC} and
I−Y = {{ek},ΣBC}.

Let us consider the ordered basis of Pic(Y ) : H, E1, S0,3, . . . , S0,k. Using
the discussion above, we have

Lemma 2.2. — With the given ordered basis the action of f∗Y on Pic(Y )
is given by

f∗Y : E1 �→ S0,3 �→ · · · �→ S0,k

S0,k �→ {Σ0} = H − E1 − S0,3 − · · · − S0,k

H �→ 2H − E1.

Under the same ordered basis the action of f−1
Y is:

f−1
Y

∗
: S0,k �→ S0,k−1 �→ · · · �→ S0,3 �→ E1

E1 �→ {ΣB} = H − E1 − S0,3 − · · · − S0,k

H �→ 2H − E1 − S0,3 − · · · − S0,k.

Now let us consider the following condition on exceptional hypersurfaces

fnY E �⊂ Σβγ ∪ Σ0β for all n � 0 E = Σβ ,Σγ
f−nY E �⊂ ΣBC ∪ {ek} for all n � 0 E = Σ0,ΣC

(2.6)

When (2.6) holds, fY is regular in the sense that (f∗Y )n = (fnY )∗ holds
on Pic(Y ), and similarly for f−1

Y . Thus the dynamical degree δ(f) is the
spectral radius of f∗Y acting on Pic(Y ).

Theorem 2.3. — For generic parameters, the dynamical degrees satisfy
the properties:

(i) δ(f) = ∆+
k is the largest root of xk − (xk − 1)/(x− 1),

(ii) δ(f−1) = ∆−k is the largest root of xk − xk−1 + (−1)k−1.
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Furthermore we have

lim
k→∞

∆+
k = 2, and lim

k→∞
∆−k = 1.

Proof. — It is clear that for a generic map f , the three exceptional hyper-
surfaces {Σ0,Σβ ,Σγ} are in general position, that is, the intersection of all
three is a point. Next we claim that (2.6) holds for a generic map. Since (2.6)
defines the complement of countably many varieties inside C2k+2, it suffices
to show that there is one parameter value (α, β) for which (2.6) holds. For
each k � 3 let us consider α = (0, 1, 0, . . . , 0) and β = (0, 1, . . . , 2 − k).
In this case γ = (0, 0,−1, . . . , k − 2) and B = (1, 0, . . . , 0,−1) and C =
(0,−1, . . . ,−1, k − 2, 0). It follows that

fY Σγ = ΣBC � [1 : 1 : · · · : 1] and fY [1 : . . . : 1] = [1 : . . . : 1]

We also have fk+1
Y : Σβ = [1 : 0 : · · · : 0 : 1] and

fY : [1 : 0 : · · · : 0 : 1] �→ [1 : 0 : · · · : 0 : 1 : 0] �→ · · ·
�→ [1 : 1 : 0 : · · · : 0] �→ [1 : 0 : · · · : 0 : 1]

Thus Σβ is pre-periodic and there exists a fixed point in Σγ \Σβ . It follows
that this mapping satisfies the the first half of (2.6). The second part of
condition (2.6) follows similarly.

The matrix representation of f∗Y and f−1
Y

∗
is given by k × k matrices:

f∗Y =




2 0 · · · 0 1
−1 0 −1

0 1
...

0
. . .

...
0 0 1 −1




, f−1
Y

∗
=




2 1 0
−1 −1 1 0
...

...
. . .

...
... 1

−1 −1 0 0 0




(2.7)

The dynamical degrees ∆+
k and ∆−k are given by the spectral radius of the

above matrix representations. Now (2.6) implies that fY is regular, so the
spectral radius of f∗Y gives the dynamical degree. The polynomials in state-
ments (i) and (ii) are the characteristic polynomials of these matrices.

Corollary 2.4. — For every f of the form (0.2), we have δ(f) � ∆+
k

and δ(f−1) � ∆−k .

Proof. — Let f∗Y be the matrix representation given in (2.7) and let mn

denote the 1, 1 entry of (f∗Y )n. For generic α, β we have that degree(fnα,β) =
mn. By the lower semicontinuity of the degree, we have for all n � 1

(degree(fnα,β))
1/n � m1/n

n for all α, β.

It follows that δ(fα,β) � limn→∞m
1/n
n = ∆+

k for all α, β.
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3. Non-Periodicity

We call the set of exceptional hypersurfaces {Σ0,Σβ ,Σγ} the critical
triangle. When these three hypersurfaces are distinct, we say the critical
triangle is nondegenerate.

Lemma 3.1. — If β1 �= 0 and β1αj−α1βj = 0 for all j �= 0 then there is
unique exceptional hypersurface. If β1 = 0, then there are only two distinct
exceptional hypersurfaces. Otherwise the critical triangle is nondegenerate.

Proof. — Using the condition (2.3) we see that Σ0 �= Σβ and ΣB �= ΣC . It
follows that f and f−1 has at least two distinct exceptional hypersurfaces.
If β1 = 0, we have γ = −α1β and B = (−α1, 0, . . . , 0). It follows that
Σβ = Σγ and Σ0 = ΣB . If β1 �= 0 and β1αj − α1βj = 0 for all j �= 0, then
γ = C = β1(α0, 0, . . . , 0) and therefore Σ0 = Σγ = ΣC .

For j = 2, . . . , k let us consider the codimension k−j+2 linear subspaces

Lj := Σ0β ∩
k⋂

�=j

{β1xk−�+1 + β2xk−�+2 + · · ·βjxk−�+k = 0}.

Lemma 3.2. — Let j∗ be the largest integer such that βj �= 0. If j∗ > 1
then ek �∈ Lj∗ and Σ0 is pre-fixed under f−1:

f−(k−j∗+1)Σ0 = Lj∗ , f−1Lj∗ = Lj∗ .
In case j∗ = 1 we have

f−1 : Σ0 �→ Σ0 1 �→ Σ0 1 2 �→ · · · �→ ek � Σβ .

Proof. — If j∗ > 1, then ek �∈ Lj∗ is a consequence of the condition
βj∗ �= 0. The second part is an immediate consequence of (2.5).To show
that Lj∗ is fixed under f−1, first notice that Lj∗ has codimension 2+k− j∗.
A generic point p ∈ Lj∗ can be written in terms of xk−j∗+2, . . . , xk and
xk−j∗+1 = −(β2xk−j∗+2 + · · · + βj∗xk). It follows that the image of this
point f−1p is [0 : y1 : · · · : yk] where yi = xi−1 for i � 2 and there for
codimension of f−1Lj∗ is 2 + k − j∗. When j∗ = 1, Lj = Σ0 1 ··· k+1−j for
j = 1, . . . , k.

If the mapping f is periodic with period p then f−1 is also periodic and
for every hypersurface H in Pk fpH = H and therefore the codimension of
fpH has to be equal to 1. Thus we have

Corollary 3.3. — If βj �= 0 for some j � 2, then f is not periodic.
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4. Critical Case

We say f is critical if βj = 0 for all j > 1 and the critical triangle is
non-degenerate. Using (2.4) we may also set αk = 1, and by Lemma 2.1, we
may assume that

α = (α0, 0, α2, . . . , αk−1, 1) and β = (β0, 1, 0, . . . , 0), α2 · · ·αk−1 �= 0.
(4.1)

Let us consider the involution τ [x0 : x1 : · · · : xk] = [x0 : xk : · · · : x1] gotten
by interchanging the variables xj ↔ xk−j+1, 1 � j � k. We see that f is
reversible in the sense that f−1 = τ ◦ f ◦ τ . If (4.1) holds, we have

γ = β1α− α1β = α, B = (0, . . . , 0, 1), and C = β1α
′ − α1β

′ = α′.

When the mapping is critical, we use the conjugacy by τ and apply Lemma
2.2 to f−1 to obtain:

fY : Σβ �→ ek � Σ0 1 ... k−2 � Σ0 1 ...,k−3 � · · ·� Σ0 1 = Σ0β � Σ0 (4.2)

where ek, Σ0 1 ... k−2, . . . , Σ0 1 are the strict transforms in Y of the corre-
sponding linear subspaces in Pk.

Let us consider a complex manifold πX : X → Y obtained by a succes-
sive blowing up the sets ek, Σ0 1 ... k−2, . . ., Σ0 1. We denote the exceptional
divisors over ek, Σ0 1 ... k−2, . . ., Σ0 1 be Ek, P0,k−2, . . ., P0,1. We will show
that the induced maps on the blowup fibers are dominant:

fX : Σβ→Ek �→P0,k−2 �→· · · �→P0,1 �→ Σ0 �→ S0,k �→· · · �→S0,3 �→E1 �→ΣB .
(4.3)

For this, we work with local coordinates. Near Ek we use

πek : (s, ξ1, . . . , ξk−1)ek �→ [s : sξ1 : · · · : sξk−1 : 1]

and near P0,j , 1 � j � k − 2, we use:

πpj : (s, ξ1, . . . , ξj , xj+1, . . . , xk−1)pj �→ [s : sξ1 : · · · : sξj : xj+1 : · · · : xk−1 : 1]

so that {s = 0} = P0,j . Then the induced birational map fX acts on Σβ
and the exceptional divisors as follows:

fX : Σβ � [x0 : −β0x0 : x2 : · · · : xk] �→ (0, x2/x0, . . . , xk/x0)ek ∈ Ek
Ek � (0, ξ1, . . . , ξk)ek �→ (0, ξ2, . . . , ξk−1, β0 + ξ1)pk−2

∈ P0,k−2

For all 2 � j � k − 2

fX : P0,j � (0, ξ1, . . . , ξj , xj+1, . . . , xk−1)pj

�→ (0, ξ2, . . . , ξj ,
β · ξ xj−1

α · x , . . . ,
β · ξ xk−1

α · x )pj−1 ∈ P0,j−1
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where β · ξ = β0 + ξ1 and α · x = αj+1xj+1 + · · ·+ αk−1xk−1 + αk. And we
also have

fX : P0,1 � (0, ξ1, x2, . . . , xk−1)p1
�→ [0 : x2β · ξ : · · · : xk−1β · ξ : β · ξ : α2x2 + · · ·+ αk−1xk−1 + αk] ∈ Σ0

On the other hand the induced map f−1
X acts as follows:

f−1
X : Σ0 � [0 : x1 : · · · : xk] �→ (0, (α′ · x− β0xk)/xk, x1/xk−1, . . . , xk−2/xk−1)p1

∈ P0,1

Ek � (0, ξ1, . . . , ξk−1)ek �→ [1 : −β0 : ξ1 : · · · : ξk−1] ∈ Σβ

Hence fX is a local diffeomorphism at points of Σβ ∪ Ek ∪
⋃k−2
j=1 P0,j and

f−1
X is a local diffeomorphism at points of Σ0 ∪ Ek ∪

⋃k−2
j=1 P0,j . It follows

that

Lemma 4.1. — In the critical case, the induced map fX has only one
exceptional hypersurface Σγ ; and Σβγ is the only component of the indeter-
minacy locus I(fX) which blows up to a hypersurface.

Lemma 4.2. — Suppose that f is critical. Then with the ordered basis
of Pic(X): H, E1, S0,3, . . ., S0,k, P0,1, . . ., P0,k−2 Ek, the action of f∗X on
Pic(X) is given by

f∗X : E1 �→ S0,3 �→ · · · �→ S0,k

S0,k �→ {Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1 − · · · − P0,k−2 − Ek
P0,1 �→ P0,2 �→ · · · �→ P0,k−2 �→ Ek
Ek �→ {Σβ} = H − P0,1 − · · · − P0,k−2 − Ek
H �→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek.

(4.4)

The action on cohomology f−1
X

∗
is similar. In fact, the matrix representa-

tions for f∗X and f−1
X

∗
are the same up to the order of basis. Furthermore

the spectral radius is given by the largest root of x2k−1 − (xk − 1)/(x− 1).

Let ∆c
k denote the largest root of the polynomial x2k−1−(xk−1)/(x−1).

We note that ∆c
k decreases to 1 as k → ∞. Using the fact that the degree

of n-th iterate is lower semi-continuous, as in the proof of Corollary 2.4, we
have the following:

Theorem 4.3. — If f is critical, then δ(f), δ(f−1) � ∆c
k.
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5. Periodic Mappings

Let us suppose f is critical for the rest of the paper. If f is periodic,
then for every exceptional hypersurface E, there is an n � 0 such that the
codimension of fn+1E = 1, that is, fn+1E ⊂ I(f) and fn+1E = f−1E′

where E′ is an exceptional hypersurface of f−1. Since f is critical and pe-
riodic, then by Lemma 4.1 there is an n � 0 such that fn+1

X Σγ = Σβγ . Let
us note that it is conceivable that there are 0 � n1 < . . . < nµ = n such

that f
nj+1
X Σγ ⊂ I(fX) and f

nj+1
X Σγ �= Σβγ for j = 1, . . . , µ− 1. Such pos-

sibilities are discussed in [BK2]; in this paper we only consider the simplest
possibility, µ = 1.

In this section, we consider the induced birational mapping fX such that
the orbit of Σγ ends up with Σβγ , that is for some n� � 0

fX : Σγ �→ ΣBC �→ fXΣBC �→ · · · �→ fn�ΣBC = Σβγ

and f jXΣBC �⊂ Σ0 ∪ Σβ ∪ Σγ for j = 0, . . . , n� − 1. Let πZ : Z → X be the
complex manifold obtained by blowing up the orbit of ΣBC = fXΣγ , and

let Fj denote the exceptional divisor over f j−1
X ΣBC for j = 1, . . . , n� + 1.

Lemma 5.1. — If there exists a positive integer n� such that fn�X ΣBC =

Σβγ and codimension(f jXΣBC) = 2 for all j = 1, . . . , n�, the dynamical
degree is given by the largest root of the polynomial

χk,n�(x) = (x1+2k+n�−x2k+n�−x1+k+n�+x1+n�+x2k−xk−x+1)/(x−1).
(5.1)

Proof. — Since fX is well defined on ΣBC , . . . , f
n�−1Σ, it suffices to

check the mapping on Σγ and Σβγ . By the induced map fZ the generic
point on Σγ map to a point on F1 :

fZ : Σγ � [x0 : x1 : · · · : xk−1 : −α0x0 − α2x2 − · · · − αk−1xk−1]
�→ (x2/x0, . . . , xk−1/x0, 0, x0/(β0x0 + x1))F1 ∈ F1

where we use local coordinates near F1 :

πF1
: (x1, . . . , xk−2, s, ξk)F1

�→ [1 : x1 : · · · : xk−2 : −α0 − α2x1 − · · · − αk−1xk−2 + s : sξk]

Also under the inverse map f−1
Z we have

f−1
Z : ΣC � [x0 : · · · : xk−2 : −α0x0 − α2x1 − · · · − αk−1xk−2 : xk]

�→ (x0, 0, x2, . . . , xk−2, xk/x0)Fn� ∈ Fn�
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where we use a local coordinates near Fn� :

πFn� : (x0, s, x2, . . . , xk−2, ξk)Fn�
�→ [x0 : −β0x0 + s : x2 : · · · : xk−2 : −α0 − α2x2 − · · · − αk−1xk−1 : sξk].

It follows that fZ is a local diffeomorphism at points on Σγ ∪
⋃n�
j=1 Fj .

Furthermore fZ doesn’t have any exceptional hypersurfaces and therefore
fZ is 1-regular. To compute the action on Pic(Z) let us use the ordered
basis H, E1, S0,3, . . ., S0,k, P0,1, . . ., P0,k−2 Ek, Fn� , . . ., F1. The action of
f∗Z on Pic(Z) is given by

f∗X : E1 �→ S0,3 �→ · · · �→ S0,k

S0,k �→ {Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1 − · · · − P0,k−2 − Ek
P0,1 �→ P0,2 �→ · · · �→ P0,k−2 �→ Ek
Ek �→ {Σβ} = H − P0,1 − · · · − P0,k−2 − Ek
Fn� �→ · · · �→ F1 �→ {Σγ} = H − E1 −Fn�
H �→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek.

(5.2)
The spectral radius of the action given by (5.2) is the largest root of χk,n�(x)

Lemma 5.2. — If n� > (k2 + k)/(k − 1) then f has exponential degree
growth.

Proof. — The derivative of χ at x = 1 is negative if n� > (k2+k)/(k−1).
It follows that if n� > (k2+k)/(k−1) then χ has a real root which is strictly
bigger than 1.

Lemma 5.3. — For a critical map, n� � k − 1.

Proof. — Since we have ΣBC ⊂ Σk, Σβγ �⊂ Σj , for j � 2, and f : Σk �→
Σk−1 �→ · · · �→ Σ1, it requires at least k−1 iterations for ΣBC to be mapped
to Σβγ .

Lemma 5.4. — If k > 3 and n� > k + 2 then the dynamical degree
is strictly bigger than 1. If k = 3, the dynamical degree for n� = 6 =
(k2 +k)/(k− 1) is equal to 1 and the dynamical degree for n� � 7 is strictly
bigger than 1.

Proof. — The second derivative of (x − 1)χk,n�(x) at x = 1 is 2((1 −
k)n� + k(k + 1)). It follows that χ′k,n�(1) < 0 and therefore the dynamical

degree is strictly bigger than 1 if and only if n� > (k2 + k)/(k − 1). Since
k + 3 = (k2 + k + (k − 3))/(k − 1), k + 3 > (k2 + k)/(k − 1) if k > 3 and
k + 3 = (k2 + k)/(k − 1) if k = 3.
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To discuss the case n� = k + 2, we will look at

χ = χk,k+2 = x3k+2 + (1− xk)xk(x2 + x + 1)− 1.

Using Φn to denote the n-th cyclotomic polynomial, we factor χk,k+2 for
small k: χ0,2 = (x − 1)Φ2, χ1,3 = (x − 1)Φ8(x), χ2,4 = (x − 1)Φ18, χ3,5 =
(x− 1)Φ4 · Φ30.

Theorem 5.5. — If k � 3 and n� = k + 2, then f is not periodic. In
fact, if k > 3, and n� = k + 2, then f has exponential degree growth.

Using computer, we can check that f5ΣBC �⊂ Σβ . Thus Theorem 5.5 is
valid in the case k = 3 because we do not have n� = k + 2. Before we begin
the proof, we make an observation about χ(x):

Lemma 5.6. — Suppose that η is a primitive m-th root of unity, and is
a root of χk,k+2 for k � m. Then, in the following cases, η is a simple root:

(i) m = 2, k ≡ 0 mod m
(ii) m = 8, k ≡ 1 mod m
(iii) m = 18, k ≡ 2 mod m
(iv) m = 5, and k ≡ 3 mod m
(v) m = 30, k ≡ 3 mod m.

Proof. — Let us consider, for instance, case (v), i.e., m = 30 and show
that χ′(η) �= 0. To do this, we may substitute x = ηk = η3 into the formula
for χ′(x), and we have χ′(η) = c0(η) + c1(η)k, where c0 and c1 are polyno-
mials of degree 11 in η. Using the computer, we can determine the minimal
polynomials of −c0(η)/c1(η), where η is any of the primitive 30-th roots of
unity, and we see that these quotients are not rational. Thus χ′(η) �= 0. The
other cases are analogous.

Proof of Theorem 5.5. — It will suffice to show that when k � 4, χ has a
root of unity of modulus > 1. χ is a reciprocal polynomial, so if λ is a root
of χ, then λ−1 is also a root. Thus if there is a root which is not on the unit
circle, then there is a root with modulus > 1. In this case, f has exponential
degree growth and is not periodic. Since χ has integer coefficients, if all the
roots of χ lie on the unit circle, then they must all be roots of unity. Thus
to prove the Lemma, it suffices to show that not all roots of χ are roots of
unity. We will proceed by induction on k, and we will show that, in fact, if η
is a root of χ which is a root of unity, then η falls into one of the cases (i)–(v)
in Lemma 5.6. We start by using the computer to show that Theorem 5.5
is valid for 4 � k � 25.

Now consider a root of unity η which is a root of χ; η is a primitive m-th
root of unity for some m. If m � k, then we see from the formula for χ that
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χk−m,k−m+2(η) = 0. Thus χk̂,k̂+2(η) = 0, where 0 � k̂ < m � k, and k̂ ≡ k
mod m. By induction, then, we conclude that m and k are one of the cases
in Lemma 5.6, so it follows that η is a simple root. Since χ has 3k+2 roots,
and k � 25, the roots with m � k cannot all fall into cases (i)–(v), so there
must be a root with m > k. Since the primitive m-th roots of unity are all
Galois conjugates of each other, we may assume that ζ = eθ = exp(2πi/m).
We will show that if k > 25, then m > πk3/2. Then we use an elementary
lower estimate on the size of the Euler ϕ-function: ϕ(m) > .37m9/10. This
is the number of Galois conjugates of ζ, which must be zeros of χ. But for
k > 25, .37(πk3/2)9/10 is strictly bigger than 3k + 2, the degree of χ, which
is a contradiction.

Now we estimate the size of m or, equivalently, θ. By standard trigono-
metric identities applied to the formula for χ, we find that

χ(ζ) = 2iζ(3k+2)/2

[
sin

(
3k + 2

2
θ

)
− sin(3θ/2)

sin(θ/2)
sin

(
k

2
θ

)]
= 0.

If we set ξ = kθ/2, this equation becomes

sin((3 + 2/k)ξ) =
sin(3ξ/k)

sin(ξ/k)
sin(ξ)

with 0 < ξ < πk/m � π. If we take k to be large, then the term sin(3ξ/k)/
sin(ξ/k) is approximately equal to 3. We rewrite this as sin((3 + δ)ξ) =
(3 − ε) sin(ξ), with δ = 2/k and 0 < ε < θ2 + θ4/12 < 2θ2, where the last
inequality follows since m � k � 2. Since we wish to estimate ξ from above,
we estimate sin((3 + δ)ξ) from above and estimate for (3 − ε) sin(ξ) from
below. Thus we represent the terms in our equation as

sin((3 + 2/k)ξ) � (3 + 2/k)ξ − 1
6

(
3 + 2

k

)3
ξ3 + 1

120

(
3 + 2

k

)5
ξ5

(3− ε) sin(ξ) � (3− 2θ2) sin(ξ/k) �
(

3− 2
(

2ξ
k

)2
) (

ξ − 1
6ξ

3
)
.

We set the polynomial expressions equal, divide by ξ and subtract 3:

2/k − 1

6
(3 + 2/k)3ξ2 +

1

120
(3 + 2/k)5ξ4 = −

(
1

2
+

8

k2

)
ξ2 +

4

3k2
ξ4.

This is a quadratic equation in ξ2, and using simple estimates we find that
the smaller root satisfies 0 < ξ2 < k−1 when k > 25. This gives the estimate:
θ = 2ξ/k < 2k−3/2 and thus πk3/2 < m, which completes the proof.

Theorem 5.7. — Let f be a critical map with k � 3. Suppose there
exists a positive integer n� such that fn�ΣBC = Σβγ and f j�ΣBC �⊂ Σβγ

– 47 –



Eric Bedford, Kyounghee Kim

for 1 � j � n− 1. If f is periodic then one of the following must occur

(i) If n� = k − 1 then the mapping is periodic with period 3k − 1
(ii) If n� = k then the mapping is periodic with period 4k
(iii) If n� = k + 1 then the mapping is periodic with period 3k(k + 1).

Proof. — Using (5.1) it is not hard to show that χk,k−1 = (x3k−1 − 1),
χk,k = (xk−1)(x2k+1) and χk,k+1 = (xk+1−1)(x2k−xk+1). In each case
f is linear fractional. Suppose f [x0 : x1 : · · · : xk] = [

∑
i a0,ixi :

∑
i a1,ixi :

· · · :
∑
i ak,ixi]. Using the fact that E1 and Ek is fixed under fX we see

that aj,1 = 0 for all j �= 1 and aj,k = 0 for all j �= k. Since we are in
the projective space we may assume that a1,1 = ak,k = 1. For each fixed
co-dimension j subspace we obtain j+1 equations on aj,i. We continue this
procedure for other fixed linear subspaces to conclude that the mapping is
actually periodic.

The case of dimension k = 2 is not covered by Theorem 5.7; the numbers
corresponding to the cases (i–iii) are 5, 8, and 18. These are all found to
occur in [BK1], where it was shown that there are also the possibilities of
period 6, 12, and 30. If k = 2 then χ′2,n�(1) = 6(6 − n�) and therefore we
have more possibilities for periodic mappings, that is n� could be k+ 2 and
k+3 which correspond to the cases of period 12 and period 30. The mapping
with period 6 occurs when ΣBC = Σβγ . This cannot happen in dimension 3
or higher, since ΣBC and Σβγ are linear spaces of positive dimension, and
there exists a point [1 : 1−β0 : x2 : · · · : xk−2 : −α0−α3x2−· · ·−αk−1xk−2 :
0] ∈ ΣBC \Σβγ . In the case of dimension k = 3, [BK2] shows that the only
possible periods are 8 and 12 (which correspond to cases (i) and (ii) in
Theorem 5.7); the possibility n� = k+1 = 4 does not occur in dimension 3.
In the case of dimension k � 4, we do not know whether cases (i) and (iii)
of Theorem 5.7 actually occur.

Theorem 5.8. — If a = (−1)1/k and

β = (ak−1, 1, 0, . . . , 0) and α = (ak−2/(1− a), 0, ak−2, . . . , a2, a, 1) (5.3)

then fα,β is periodic with period 4k.

Proof. — It is suffices to show that with these choices of parameter values
we have fkΣBC = Σβγ . Let us set A := −(α0x0 + α2x1 + · · ·+ αk−1xk−2),
where the αj ’s are the entries in α. The generic point p ∈ ΣBC can be
written as [x0 : x1 : · · · : xk−2 : A : 0]. The last coordinate of f(p) is given
by

x0(α0x0 + α2x2 + · · ·+ αk−2xk−2 − αk−1A).
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Since αk−1αj = αj−1 for j = 3, . . . , k and α0 − αk−1α0 = αk−2
k−1, the last

coordinate of f(p) becomes

x0(α
k−2
k−1x0 − αk−1

k−1x1) = −αk−1
k−1(−α−1

k−1x0 + x1)x0 = −αk−1
k−1x0β · x.

It follows that f : ΣBC � [x0 : x1 : · · · : xk−2 : A : 0] �→ [x0 : x2 : · · · : xk−2 :
A : 0 : −αk−1

k−1x0] and using that αkk−1 = −1 we have

f : ΣBC �→ {xk−1 = 0} ∩ {x0 − αk−1xk = 0}.

From (2.1) it is not hard to see that

f : {xk−1 = 0} �→ {xk−2 = 0} �→ · · · �→ {x1 = 0}
f : {x0 − αk−1xk = 0} �→ {x0 − αk−1xk−1 = 0} �→ · · · �→ {x0 − αk−1x2 = 0}.

That is fk−1ΣBC = {x1 = 0}∩{x0−αk−1x2 = 0}. Now let us map forward
a point p = [αk−1x2 : 0 : x2 : · · · : xk]. Since β · p = −x2 we have

f : [αk−1x2 : 0 : x2 : · · · : xk] �→
[−αk−1x2 : −x2 : · · · : −xk : αk−1(α0αk−1 + α2)x2 + αk−1α3x3

+ . . . + αk−1xk].

It follows that β · fp = −αkk−1x2 − x2 = 0 and γ · fp = αk−1(α0(αk−1 −
1)+α2)x2 +(−α2 +αk−1α3)x3 + · · ·+(−αk−1 +αk−1)xk = 0 and therefore
fkΣBC = Σβγ .

6. Non-periodic maps; integrability

Let us consider the critical map given by α = (a, 0, 1, . . . , 1) and β =
(0, 1, 0, . . . , 0):

f [x0 : · · · : xk] = [x0x1 : x2x1 : · · · : xkx1 : x0(ax0 + x2 + · · ·+ xk)]
f−1[x0 : · · · : xk] = [x0xk : x0(ax0 + x1 + · · ·+ xk−1) : x1xk : · · · : xk−1xk].

(6.1)
It follows that we have

f :
Σβ �→ ek � Σ0 1 ... k−2 � Σ0 1 ... k−3 � · · ·� Σ0 1 = Σ0β � Σ0

Σ0 �→ Σ0k �→ Σ0 k−1 k �→ · · · �→ Σ0 3 ... k �→ e1 � ΣB
(6.2)

In addition, since β0 = 0 we have

f : ΣB = Σk �→ Σk−1 �→ · · · �→ Σ1 = Σβ (6.3)

so we expect to find (after blowing up) a closed orbit of hypersurfaces con-
taining Σβ , Σ0, and ΣB .
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Our first task will be to make f 1-regular. For j = 1, . . . , k− 1 let us set
qj = [0 : · · · : 0 : 1 : −1 : 0 : · · · : 0], the point whose j-th coordinate is 1,
whose j + 1-th coordinate is −1, and every other coordinate is zero. Let us
consider a complex manifold π1 : Z1 → Pk obtained by blowing up the k+1
points e1, ek, and qj , j = 1, . . . , k − 1. We denote by Qj the exceptional
divisor over the point qj . We also denote by E1 and Ek the exceptional
divisors over the points e1 and ek.

Lemma 6.1. — The induced map fZ1 is a local diffeomorphism at generic
points of Qj , j = 2, . . . , k − 1. Furthermore we have dominant maps

fZ1 : Qk−1 �→ Qk−2 �→ · · · �→ Q2 �→ Q1

Proof. — Let us consider the local coordinates near Qk−1 and Qk−2

πk−1 : Z1 � (s, ξ1, · · · , ξk−1)k−1

�→ [s : sξ1 : · · · : sξk−2 : 1 + sξk−1 : −1] ∈ Pk

πk−2 : Z1 � (s, ξ1, · · · , ξk−2, ξk)k−2

�→ [s : sξ1 : · · · : sξk−3 : 1 + sξk−2 : −1 : sξk] ∈ Pk.

Note that in those coordinates, {(s, ξ1, · · · , ξk−1)k−1 : s = 0} = Qk−1, and
we see that

fZ1 :Qk−1�(0, ξ1, · · · , ξk−1)k−1 �→(0, ξ2, . . . , ξk−1,
a

ξ1
+ξ2+· · · ξk−1)k−2∈Qk−2.

It follows that fZ1 is locally diffeomorphic at generic points of Qk−1. For
j = 2, . . . , k − 2, the proof is identical.

By constructing Z1, we create three new exceptional hypersufaces includ-
ing E1 and Ek for each fZ1

and f−1
Z1

. Let us consider the local coordinates
π1 : (s, ξ1, ξ3 . . . , ξk)1 �→ [s : 1 + sξ1 : −1 : sξ3 : · · · : sξk] near Q1. We also
use the local coordinates πe1 : (s, ξ2, . . . , ξk)e1 �→ [s : 1 : sξ2 : · · · : sξk] near
E1. With these coordinates, we see that

fZ1
: Q1 � (0, ξ1, ξ3 . . . , ξk)1 �→ (0, ξ3, . . . , ξk,−1)e1 ∈ E1∩{x0+xk = 0} ⊂ E1.

Similarly with the local coordinates πek : (s, ξ1, . . . , ξk−1)ek �→ [s : sξ1 : · · · :
sξk−1 : 1] near Ek and the local coordinates near Qk−1 defined above, we
have

f−1
Z1

: Qk−1 � (0, ξ1, ξ2 . . . , ξk−1)1 �→ (0,−1, ξ1, . . . , ξk−2)ek
= Ek ∩ {x0 + x1 = 0} ∈ Ek.

Thus we have

fZ1 : Ek ∩ {x0 + x1 = 0}� Qk−1 and f−1
Z1

: E1 ∩ {x0 + xk = 0}� Q1

(6.4)
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Lemma 6.2. — fkZ1
ΣBC = Ek∩{x0+x1 = 0} and f−kZ1

Σβγ = E1∩{x0+
xk = 0}.

Proof. — Let us consider the forward map first. A generic point p in ΣBC
can be written as [x0 : · · · : xk−2 : −ax0 − x1 − · · · − xk−2 : 0]. Using (6.1)
we have

fX : [x0 : · · · : xk−2 : −ax0 − x1 − · · · − xk−2 : 0]
�→ [x0x1 : x2x1 : · · · : (−ax0 − x1 − · · · − xk−2)x1 : 0 : −x0x1].

It follows that fXΣBC ⊂ {xk−1 = 0, x0 + xk = 0}. Since ΣBC is not
indeterminate for f we see that fXΣBC = {xk−1 = 0, x0 + xk = 0}. Note
that fk−2{xk−1 = 0} = {x1 = 0}, fk−2{x0 + xk = 0} = {x0 + x2 = 0} and
therefore fk−1

X ΣBC = {x1 = 0, x0 + x2 = 0} Using the coordinates near Ek
we see that

fX : Σ1 � [x0 : 0 : x2 : · · · : xk] �→ (0,
x2

x0
, . . . ,

xk
x0

)ek ∈ Ek

Thus we have

fX : fk−1
X ΣBC �→ (0,−1, ξ2, . . . , ξk−1)ek ∈ Ek.

The argument for f−1 is essentially identical.

Now let us construct a complex manifold π2 : Z2 → Z1 obtained by blow-
ing up the sets f jXΣBC , j = 0, . . . , k, Qj , j = 1, . . . , k − 1 and f−jX Σβγ , j =

k, . . . , 0. We denote Fj the exceptional divisor over the set f jXΣBC , and we

also denote Hj the exceptional divisor over the set f−jX Σβγ .

Lemma 6.3. — The induced map fZ2 is a local diffeomorphism at a
generic points of

⋃
j Fj∪

⋃
j Hj. Thus fZ2 has four exceptional hypersurfaces

Σ0, Σβ, E1, and Ek.

Proof. — It suffices to check at the points in Σγ ∪ Fk ∪Q1 ∪H0. Let us
define local coordinates :

(x1, . . . , xk−2, s, ξ) �→ [1 : x1 : · · · : xk−2 : s− a− x1 − · · · − xk−2 : sξ] near F1

(s, η, ξ2, . . . , ξk−1) �→ (s,−1 + sη, ξ2, . . . , ξk−1)ek near Fk
(s, ξ2, . . . , ξk−2, η) �→ (s, ξ2, . . . , ξk−2,−1 + sη, )e1 near Hk

(s, x2, . . . , xk−1, ξ) �→ [1 : s : x2 : · · · : xk−1 : −a− x2 − · · · − xk−1 + sξ] near H1.

Then we have

fZ2
:

Σγ � [x0 : x1 : · · · : xk−1 : −ax0 − x2 − · · · − xk−1]
�→ (x2, . . . , xk−1, 0, x0x

−1
1 )∈F1

Fk�(0, η, ξ2, . . . , ξk−1) �→ (0, ξ2, . . . , ξk−1,−η + a + ξ2 + · · ·+ ξk−1)∈Qk−1

Q1 � (0, ξ1, ξ3, . . . , ξk) �→ (0, ξ3, . . . , ξk, a + ξ1 + ξ3 + · · ·+ ξk)∈Hk

H1�(0, x2, . . . , xk−1, ξ) �→ [1 : x2 : · · · : xk−1 : −a− x2 −· · ·− xk−1 : ξ]∈ΣC .
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It follows that the induced map fZ2
is local diffeomorphism on the orbit of

Σγ .

For the other two exceptional hypersurfaces Σ0 and Σβ , we construct
a blowup space πZ : Z → Z2 obtained by blowing up the strict trans-
forms of the sets Σ0 k, . . . ,Σ0 3 ... k−1 k,Σ0 ... k−2, . . . ,Σ01 in (6.4). We use the
same notation for the space X in §3. That is, the exceptional divisors over
Σ0 1 ... k−2, . . . ,Σ0 1 are P0,k−2, . . . ,P0,1 and S0,j are the exceptional divisors
over Σ0 j ... k for all j � 3. Since are only consider a generic point on these
exceptional divisors, the same computations as in §3 and §4 work and thus
we conclude that fZ is local diffeomorphic at a generic points on these new
exceptional divisors as well as E1, Ek,Σ0 and Σβ . It follows that:

Lemma 6.4. — The induced map fZ has no exceptional hypersurface
and therefore fZ is 1-regular.

Now to compute the dynamical degree we use the following basis of
Pic(Z):

H,E1,S0,3, . . . ,S0,k,P0,1, . . . ,P0,k−2, Ek,H0, . . . ,Hk,Qk−1, . . . ,Q1,Fk, . . . ,F0.

Using (6.2), Lemma 6.1 and Lemma 6.3 we have:

Lemma 6.5. — The action on cohomology f∗Z is given by

f∗Z : E1 �→ S0,3 �→ · · · �→ S0,k �→ {Σ0}
P0,1 �→ P0,2 �→ · · · �→ P0,k−2 �→ Ek �→ {Σβ}
H3k+1 �→ H3k �→ · · · �→ H1 �→ {Σγ}

H �→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek −H0 −Hk −
k−1∑

j=2

Qj −Fk.

(6.5)
where

{Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1

− · · · − P0,k−2 − Ek −Hk −
k−1∑

j=1

Qj −Fk

{Σβ} = H − P0,1 − · · · − P0,k−2 − Ek −H0 −
k−1∑

j=2

Qj −Fk −Fk−1

{Σγ} = H − E1 −H0 −Hk −
k−1∑

j=2

Qj
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Theorem 6.6. — For every k > 3, the map f defined in (6.1) has
quadratic degree growth.

Proof. — The characteristic polynomial of the action on cohomology
given in (6.5) is given by

χ̂k(x) = ±(xk − 1)(xk+1 − 1)(x3k−1 − 1).

It follows that 1 is a zero of χ̂k(x) with multiplicity 3. Furthermore there
is a unique (up to scalar multiple) eigenvector v corresponding to an eigen-
value 1:

v = −(k + 1)H + (k − 1)E1 +

k−2∑

j=1

j S0,k+1−j +

k−2∑

j=1

j P0,j + (k − 1)Ek +

+

k−1∑

j=0

Hj + kHk + (k − 1)

k−1∑

j−1

Qj + kFk +

k−1∑

j=0

Fk

It follows that the Jordan decomposition has 3 × 3 block with 1 on the
diagonal. Thus the powers of this matrix grow quadratically.

We say that a rational function ϕ is an integral of f if ϕ = ϕ ◦ f at
generic points. Some integrals of f are known (see [KLR], [KL] [CGM1],
[GKI]). Here we will describe a method for finding integrals, which seems
more systematic than the ones used in these references. For this, we start
by finding homogeneous polynomials p which are invariant in the sense that

p ◦ f = J · p (6.6)

where J = x0(β ·x)k−1(γ ·x) is the Jacobian of f . This is the same as finding
a meromorphic k-form η, written as dx1 ∧ · · · ∧ dxk/p(1, x1, . . . , xk) on the
affine coordinate chart {x0 = 1}, and which is invariant in the sense that
f∗η = η. If p1, . . . , pr satisfy (6.6), then

∑
λjpj will also satisfy (6.6). And

the quotient of any two of these polynomials
∑

λjpj will give an integral.

Since f has degree 2, J has degree k + 1, so we look for polynomials p
of degree k + 1, so that the degrees of p ◦ f and Jp will both be 2(k + 1).
The invariant rational functions will then be given as quotients of invariant
functions h = p1/p2. Recall that f maps Σβ to ek, and after (4.3) we showed
that fX is a local diffeormorphism at generic points Σβ . Thus by (6.6) we
see that p will vanish to order at least k− 1 at ek, since J vanishes to order
k−1 at Σβ . Similarly, since f(Σ0) = Σ0,k, we see that p must vanish at Σ0,k.
Now starting with a point z ∈ Σ0,k, we have f(z) ∈ Σ0,k−1,k, so by (6.6), p
vanishes to order at least 2 on Σ0,k−1,k. Continuing this way, we see that p
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vanishes to order at least k − j on Σj+1,j+2,...,k for 1 � j � k − 1. Finally,
since J vanishes on Σγ , and f(Σγ) = ΣBC , we see that p vanishes on ΣBC .
Iterating this, we see that p must vanish on f j(ΣBC) for j = 0, . . . , k.

Next we give an organizational procedure for describing the integrals
that were found in the references above. We will refine the equation (6.6)
by using the notation A = α·x, B = β ·x = x1 and C = x0, so J = ABk−1C.
Looking for linear functions which vanish on certain of the sets above, we
define three families:

5j(x) := xj , 0 � j � k, mj(x) := x0 + xj , 1 � j � k, nj := x0 + xj + xj+1,
1 � j � k − 1,

and n0 = nk−1 ◦ f and m0 = A+ x1 = ax0 + x1 + · · ·+ xk. Thus we have a
refined form of (6.6)

5j ◦ f = B5j+1, mj ◦ f = Bmj+1, 1 � j � k − 1,
nj ◦ f = Bnj+1, 1 � j � k − 2 5k ◦ f = A50, 50 ◦ f = C51, mk ◦ f = Cm0,
m1,m0 ◦ f = A n0 ◦ f = ABCn1.

(6.7)

By (6.7) it is evident that p0 := 5051 · · · 5k and p1 := m0m1 · · ·mk satisfy
(6.6). If k � 3, then p2 := n0 · · ·nk−1 also satisfies (6.6).

Now let us use the notation j for the product 5jmj and (j + 1) for
5j+1mj+1. If k � 5 is odd, we define

Φeven := 0 2 4 · · · (k− 1) Φodd := 1 3 5 · · ·k.

If q is a polynomial for which q ◦ f is divisible by J , we let T denote the
operator T (q) = q ◦ f · J−1, so that (6.6) holds exactly when p is a fixed
point of T . By (6.7) we have j ◦ f = (j + 1) B2 for 1 � j � k − 1; and
k ◦ f = 0 AC, and 0 ◦ f = 1 AC. Thus TΦeven = Φodd, and TΦodd = Φeven.
We conclude that p3 := Φeven + Φodd satisfies (6.6).

If k > 5 is even, we consider two functions:

Ψa := 0 n1 3 5 7 · · · (k− 1), Ψb := 1 3 5 7 · · · (k− 1) 5k.

By (6.7) we see that Ψb ◦ f = A 50 2 4 6 8 · · · k Bk = J B 2 4 6 8 · · · k.
Thus TΨb = 51 2 4 6 8 · · · k. Applying T to Ψa, we have

TΨa = 1 n2 4 6 8 · · · k, T 2Ψa = 0 2 n3 5 7 9 · · · (k− 1)k,
. . . T k−2Ψa = 0 2 4 · · · (k− 2) nk−1

(6.8)

Now we claim that

p3 =
(
Ψa + TΨa + · · ·+ T k−2Ψa

)
+ (Ψb + TΨb)
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satisfies (6.6). For this, it suffices to have

Ψa + Ψb = T k−1Ψa + T 2Ψb. (6.9)

Applying T to T k−2Ψa in (6.8), and using (6.7), we find T k−1Ψa = n0 1 3 5
· · · (k− 1). Now apply T to the expression for TΨb found above, we find
T 2Ψb = 0 52 3 5 · · · (k− 1). Thus (6.9) is a consequence of the simple
identity

0 n1 + 1 5k = n0 1 + 0 52,

and we conclude that p3 satisfies (6.6).
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