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Annales de la Faculté des Sciences de Toulouse Vol. XX, n◦ Spécial, 2011
pp. 71–99

A new characterization of the analytic surfaces in C3

that satisfy the local Phragmén-Lindelöf condition
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and B. A. Taylor(3)

Dedicated to Nguyen Than Van on the occasion
of the colloquium celebrating his contributions to complex analysis

ABSTRACT. — We prove that an analytic surface V in a neighborhood of
the origin in C3 satisfies the local Phragmén-Lindelöf condition PLloc at
the origin if and only if V satisfies the following two conditions: (1) V is
nearly hyperbolic; (2) for each real simple curve γ in R3 and each d � 1,
the (algebraic) limit variety Tγ,dV satisfies the strong Phragmén-Lindelöf
condition. These conditions are also necessary for any pure k-dimensional
analytic variety V to satisify PLloc.

RÉSUMÉ. — On démontre qu’une surface analytique V dans un voisi-
nage de l’origine dans C3 satisfait à la condition Phragmén-Lindelöf lo-
cale PLloc à l’origine si et seulement si V satisfait aux deux conditions
suivantes: (1) V is presque hyperbolique; (2) pour chaque courbe réelle
simple γ dans R3 et chaque d � 1, la variété (algebrique) limite Tγ,dV
satisfait à la condition de Phragmén-Lindelöf forte. Ces conditions sont
aussi nécessaires que pour toute variété analytique V de dimension pure
k vérifie la condition PLloc.
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1. Introduction

An analytic variety V in a neighborhood of the origin in Cn is said to
satisfy the local Phragmén-Lindelöf condition, PLloc, at the origin if every
function u(z) that is plurisubharmonic on a neighborhood of the origin in
V , is bounded above by the constant 1, and is bounded above by 0 on
the real points of V must grow linearly, u(z) � A| Im z|, at all points z in
a (perhaps smaller) neighborhood of the origin in V . This condition was
introduced by Hörmander [11] who used it in his characterization of the
linear constant coefficient differential operators that map the space A(Rn)
of all real analytic functions on Rn surjectively onto itself. It was later
used by Vogt [16] to characterize the compact real analytic subvarieties V
of Rn for which there exists a continuous linear extension operator E :
A(V ) → A(Rn) for real analytic functions on V . It also turns out to be a
very useful condition that is needed in the study of other Phragmén-Lindelöf
type conditions on algebraic varieties in Cn.

It is classical that subharmonic functions on the unit disk that are
bounded above by 1 everywhere and by 0 on the real points must grow
linearly in | Im z|; in fact, the subharmonic function

u(z) = u(x + iy) =
2

π
arctan

2y

1− x2 − y2
� 4

π

| Im z|
1− |z|2

is the maximal function. It is an immediate consequence that a similar es-
timate holds on polydisks in higher dimension so that if 0 is a regular point
of the variety V ⊂ Cn, then it will satisfy the condition PLloc. Thus, the
question is to determine what kinds of singularities V is allowed to have
at 0. It is clear that if plurisubharmonic functions on V are going to be
estimated from their values on real points, then V should contain “many”
real points, and there are at least two classical interpretations one can check
for this condition. The first is in the sense of dimension. Namely, the set of
real points in V should have maximal real dimension, or, more precisely, V
should be the complexification of V ∩ Rn; i.e., the smallest analytic variety
that contains V ∩Rn (in some small neighborhood of 0). In fact, this condi-
tion was shown by Hörmander to be necessary for PLloc. Another sense in
which a local variety can have many real points is if it is “maximally real”,
i.e., locally hyperbolic. That is, there is a proper projection π : V → ∆
of V to a polydisk ∆ ⊂ Ck about the origin (k = dim(V )) such that all
the points of the fiber π−1(x) over a real point x ∈ ∆ are real. Hörmander
also observed that the classical estimate for the harmonic measure implies
that such varieties satisfy PLloc(0) and that this sufficient condition is also
necessary for varieties of dimension 1. But, it is no longer a necessary condi-
tion for varieties of dimension 2 or more. For example, the two dimensional
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Local Phragmén-Lindelöf condition

variety in C3 given by the equation z3
1 +z3

2 +z3
3 = 0 is not locally hyperbolic

at the origin but it does satisfy the condition PLloc.

Thus, the condition characterizing when V satisfies PLloc is somewhat
stronger than the dimension condition but weaker than local hyperbolicity.
It turns out that it is not hard to give lots of necessary conditions that must
be satisfied if PLloc is to hold. For example, it carries over to tangent vari-
eties and even to limit varieties of V along real simple curves (see Section
2). The condition we use here is that all limit varieties of V must satisfy
the strong Phragmén-Lindelöf condition (SPL) (see Section 2), a result of
Heinrich [9]. The problem is to determine which combination of these nec-
essary conditions is sufficient to prove that PLloc holds. For surfaces in C3,
the present authors showed that the characterizing condition for PLloc was
that V is hyperbolic in conoids [5] (the extension to germs of algebraic va-
rieties in Cn of dimension 2 was given later by Heinrich [10]). The aim of
this paper is to give a different characterization and proof of a more geo-
metric characterizing condition, one we call nearly hyperbolic. Intuitively,
we say that a variety is nearly hyperbolic if the parts of the variety that are
close to real linear subspaces are hyperbolic; see Definition 2.4 for the pre-
cise version. Our main result, Theorem 4.1, is that this condition, together
with the strong Phragmén-Lindelöf condition (SPL) for all limit varieties,
characterizes PLloc for surfaces in C3.

The main idea of the proof is to carry back the Phragmén-Lindelöf es-
timates that hold on tangent varieties to plurisubharmonic functions on V .
One starts with a plurisubharmonic function on V , bounded above by 1
and equal to 0 on the real points of V and tries to improve the estimate to
u(z) � A| Im z|. For example, near smooth points of the tangent cone to V
at the origin, one can do this without much difficulty. However, when one is
near the singular points of this tangent cone, it is hard to see how one can
do this directly. Near these exceptional points we are able to improve the
estimate. One then examines the variety on a different scale appropriate to
the smaller size of the exceptional set and repeats the procedure. The main
difficulty is to see that this procedure comes to an end after finitely many
steps, something we accomplish by using suitably chosen coordinates at the
smaller scales.

2. Preliminaries

An analytic variety V in Cn is defined to be a closed analytic subset
of some open set G in Cn (see Chirka [8], 2.1). By Vsing (resp. Vreg) we
denote the set of all singular (resp. regular) points in V . We also consider
families (Vt)t∈T of closed analytic subsets of G, where we suppose that the
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parameter set T is a subset of Rm for some m ∈ N and where 0 ∈ T . Note
that the case of a single variety V is covered by this notation, since one can
let T := {0} and V0 := V .

We will also use the following notation: R+ := [0,∞[, the Euclidean
norm on Cn is denoted by | · |, and for a ∈ Cn, r > 0, the ball around a of
the radius r is defined as Bn(a, r) := {z ∈ Cn : |z−a| < r}. The superscript
n is omitted if it is clear from the context.

To define the Phragmén-Lindelöf properties that we are interested in, we
recall the definition of a plurisubharmonic function on an analytic variety.

Definition 2.1. — Let V be an analytic variety in Cn and let Ω be an
open subset of V . A function u : Ω→ [−∞,∞[ is called plurisubharmonic,
if it is locally bounded above, plurisubharmonic in the usual sense on the set
Ωreg of all regular points and satisfies

u(z) = lim sup
ζ∈Ωreg,ζ→z

u(ζ)

at z ∈ Ωsing, the set of singular points of V in Ω. By PSH(Ω) we denote the
set of all plurisubharmonic functions on Ω.

Definition 2.2. — Let (Vt)t∈T be a family of closed analytic subsets of
B(ξ, r0) for some ξ ∈ Rn. We say that (Vt)t∈T satisfies the local Phragmén-
Lindelöf condition PLloc(ξ) at ξ if there exist positive numbers A, δ and
r0 � r1 � r2 such that, whenever t < δ, then each u ∈ PSH(Vt ∩ B(ξ, r1))
that satisfies

(α) u(z) � 1, z ∈ Vt ∩B(ξ, r1) and

(β) u(z) � 0, z ∈ Vt ∩ Rn ∩B(ξ, r1)

also satisfies

(γ) u(z) � A| Im z|, z ∈ Vt ∩B(ξ, r2).

Remark 2.3. — (a) The local Phragmén-Lindelöf condition for algebraic
varieties in Cn arose for the first time in the work of Hörmander [11].

(b) For several equivalent formulations of PLloc for analytic varieties we
refer to Lemma 3.3 in [5].

(c) The condition PLloc(0) is clearly invariant under real, orthogonal
tranformations of Cn with no change in the constant A. It is also invariant
under real linear changes of coordinates z = L(w), provided the constant A
is changed to A‖L‖ and the parameter r2 is changed to ‖L−1‖r2.
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In order to derive necessary conditions for analytic varieties in Cn to
satisfy PLloc(0), we will use the following definition.

Definition 2.4. — (a) For ξ ∈ Rn and � > 0 let V be an analytic
variety in B(ξ, �) ⊂ Cn of pure dimension k � 1. A k-dimensional linear
subspace L of Cn is called admissible if it has a basis of real vectors. A
(linear) projection πL of Cn onto L is called admissible if it maps real
vectors to real vectors. The variety V is called nearly hyperbolic at ξ with
parameters δ with 0 < δ < �/2 and ε0 : [1,∞[ → ] 0, 1[ if the following
condition is satisfied:

For each K � 1, each x ∈ B(ξ, δ)∩Rn, each 0 < r < δ, each admissible
subspace L, and each admissible projection πL onto L satisfying ‖idCn −
πL‖ � K the following holds: If

V ∩B(x, r) ⊂ S(x + L, ε0(K)r) := {w ∈ Cn : dist(w, x + L) < ε0(K)r}

and z ∈ V ∩B(x, r/2) satisfies πL(z) ∈ Rn, then z ∈ Rn.

(b) Let (Vt)t∈T be a family of analytic varieties in B(ξ, �) for ξ and �
as in part (a). Then the family is called nearly hyperbolic at ξ, if there are
δ, δ1 > 0 and ε0 : [1,∞[→]0, 1[ such that for each t ∈ T with |t| � δ1 the
variety Vt is nearly hyperbolic at ξ with parameters δ and ε0.

See 2.13 for some examples illustrating the key properties of nearly hy-
perbolic varieties.

A variant of the present definition of nearly hyperbolic varieties was
introduced in [6]. Its significance is explained by the following proposition
which is an analog of [6], Theorem 4.3.

Proposition 2.5. — Let V be an analytic variety in Cn of pure dimen-
sion k � 1 that satisfies PLloc(0). Then V is nearly hyperbolic at the origin.

Proof. — Assume that V is defined in B(0, r0) for some 0 < r0 � 1 and
that it satisfies PLloc(0) with the constants from Definition 2.2. Then let
δ := r2/2 and for K � 1 given, let ε0 := 1

4K(A+1) . Then fix 0 < r < δ,

an admissible linear subspace L and an admissible projection πL from Cn

onto L, which satisfies ‖idCn − πL‖ � K. Next fix x ∈ B(0, δ) ∩ Rn and
assume that V ∩B(x, r) ⊂ S(x + L, ε0r). Then fix z0 ∈ V ∩B(x, r/2) with
πL(z0) ∈ Rn. In order to show that z0 is real, define the function ϕ by

ϕ(z) := (A + 1)| Im(z − πL(z))|+ r

2
H(

z − Re z0

r/2
),
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where H(z) := 1
2 (| Im z|2 − |Re z|2). To estimate ϕ at V ∩ ∂B(Re z0, r/2),

note first that the properties of H imply the estimate

r

2
H(

z − Re z0

r/2
) � | Im z| − r

4
if |z − Re z0| = r/2.

To estimate the first term in the definition of ϕ, note that x is real. Hence
each z ∈ B(Re z0, r/2) satisfies

|z − x| � |z − Re z0|+ |Re z0 − x| � r/2 + |z0 − x| < r.

Since V ∩B(x, r) ⊂ S(x+L, ε0r), this and the properties of πL imply that
Im(x − πL(x)) = 0 and that for z ∈ V ∩ ∂B(Re z0,

r
2 ) and each y ∈ L we

have
Im(z − πL(z)) = Im (z − (x + y)− πL(z − (x + y))) ,

hence
| Im(z − πL(z))| � ‖idCn − πL‖ |z− (x + y)|, y ∈ L,

and consequently

| Im(z − πL(z))| � Kdist(z, x + L) < Kε0r.

By our choice of ε0 this implies

ϕ(z) � (A + 1)Kε0r −
r

4
+ | Im z| � | Im z|, z ∈ V ∩ ∂B(Re z0, r).

This shows that there exists u ∈ PSH(V ) which coincides with ϕ on V ∩
B(Re z0, r/2) and with | Im z| on V \ B(Re z0, r/2). Since V ⊂ B(0, r0) ⊂
B(0, 1), it follows that u satisfies

u(z) � 1, z ∈ V ∩B(0, r1) and u(z) � 0, z ∈ V ∩ Rn ∩B(0, r1).

As V satisfies PLloc(0), we conclude from this that

u(z) � A| Im z|, z ∈ B(0, r2) ∩ V. (2.1)

To apply this inequality, note that

|z0| � |z0 − x|+ |x| � r/2 + δ <
3

2
δ < r2

and that
| Im z0| = | Im(z0 − x)| � |z0 − x| < r/2.

Hence we can evaluate (2.1) at z = z0. By the properties of H and the fact
that πL(z0) is real by hypothesis, we get

A| Im z0| � ϕ(z0) = (A+1)| Im(z0−πL(z0))|+
r

2
H

(
2

r
i Im z0

)
� (A+1)| Im z0|.
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Obviously, this inequality implies | Im z0| = 0. Hence we proved that z0 ∈ Rn

and completed the proof. �

Remark. — The proof of Proposition 2.5 actually shows that | Im z| �
(A + 1)| ImπL(z)|.

To state more necessary conditions for PLloc(0) we need to define limit
varieties of a given analytic variety along simple curves. For details we refer
to our paper [3].

Definition 2.6. — Let V ⊂ Cn be analytic in a neighborhood of p ∈ V .
Following Whitney [17], a vector v ∈ Cn is called tangent to V at p if there
are a sequence (pj)j in V and a sequence (aj)j in C such that limj→∞ pj = p
and limj→∞ aj(pj − p) = v. The set of all tangent vectors forms a complex
cone. It is called the tangent cone of V in p and is denoted by TpV .

If f is a holomorphic function in n variables, its localization in p ∈ Cn

is defined as the lowest order nonvanishing term of the expansion f(ζ+p) =∑∞
j=0

∑
α=j aαζ

α. It is denoted by fp.

The relation between tangents and localization is given by Whitney [17],
Chapter 7, Theorem 4D:

TpV = {z ∈ Cn : fp(z) = 0 for all holomorphic functions f vanishing on V } .

Definition 2.7. — A simple curve γ in Cn is a map γ : ]0, α[→ Cn

which for some α > 0 and some q ∈ N admits a convergent Puiseux series
expansion

γ(t) =

∞∑

j=q

ξjt
j/q with ξq = 1.

Then ξq is called the tangent vector to γ in the origin. The trace of γ
is defined as tr(γ) := γ(]0, α[). A real simple curve is a simple curve γ
satisfying tr(γ) ⊂ Rn.

Definition 2.8. — Let V ⊂ Cn be an analytic variety of pure dimension
k � 1 which contains the origin, let γ : ]0, α[→ Cn be a simple curve, and
let d � 1. Then for t ∈ ]0, α[ we define

Vγ,t,d := {w ∈ Cn : γ(t) + wtd ∈ V } =
1

td
(V − γ(t))

and we define the limit variety Tγ,dV of V of order d along γ as the set

Tγ,dV := {ζ ∈ Cn : ζ = lim
j→∞

zj , where zj ∈ Vγ,tj ,d for j ∈ N and (tj)j∈N is a

null-sequence in ]0, α[}.
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From [3], Theorem 3.2 and Proposition 4.1 we recall the following results.

Proposition 2.9. — Let V be an analytic variety of pure dimension
k � 1 which contains the origin, let γ : ]0, α[ → Cn be a simple curve in
Cn with tangent vector ξ at the origin, and let d � 1 be given. Then the
following assertions hold:

1. Tγ,dV is either empty or an algebraic variety of pure dimension k.

2. Tγ,1V = T0V − ξ.

3. If d > 1 then w ∈ Tγ,dV if and only if w+λξ ∈ Tγ,dV for each λ ∈ C.

4. For each R > 0 there exists 0 < δ � α such that Vγ,t,d is a closed
analytic set of B(0, R) for 0 < t < δ, and for each null-sequence
(tj)j∈N in ]0, δ[ the varieties (Vγ,tj ,d∩B(0, R))j∈N converge to Tγ,dV ∩
B(0, R) in the sense of Meise, Taylor, and Vogt [14], 4.3.

We also need the following condition of Phragmén-Lindelöf type.

Definition 2.10. — An algebraic variety V in Cn satisfies the condition
(SPL) if there exists a constant A � 1 such that for each u ∈ PSH(V ) the
conditions (α) and (β) imply (γ), where

(α) u(z) � z + o(z), z ∈ V ,

(β) u(z) � 0, z ∈ V ∩ Rn,

(γ) u(z) � A Im z, z ∈ V .

Remark 2.11. — If V is an algebraic variety in Cn that satisfies (SPL),
then for each ξ ∈ V ∩ Rn the variety V satisfies PLloc(ξ), by Meise and
Taylor [12], Proposition 4.4. If V is homogeneous, then V satisfies (SPL)
if and only if V satisfies PLloc(0), by Meise, Taylor, and Vogt [15], Theo-
rem 3.3. The algebraic curves in C2 and the algebraic surfaces in C3 that
satisfy (SPL) are characterized in [7].

Theorem 2.12. — Let V be an algebraic variety of pure dimension
k � 1 which contains the origin. If V satisfies PLloc(0) then the follow-
ing two conditions are satisfied:

1. V is nearly hyperbolic at the origin.

2. Each limit variety Tγ,dV satisfies (SPL).
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Proof. — Condition (1) follows from Proposition 2.5. The fact that con-
dition (2) is necessary for PLloc(0) was shown in Heinrich [9], Theorem 10.
�

Example 2.13. — (a) A simple class of examples that violates the nearly
hyperbolic condition is given by certain perturbations of a hyperplane of
multiplicity two. To show this, let

F (z) := z2
1 − ϕ(z′) = 0, z′ = (z2, . . . , zn)

where ϕ is a holomorphic function defined in some neighborhood of the
origin in Cn−1 which has real power series coefficients, satisfies ϕ(z′) =
O(|z′|3) and for which there exists a null-sequence (x′j) in Rn−1 satisfying
ϕ(x′j) < 0 for each j ∈ N. To argue by contradiction, assume that V := V (F )
is nearly hyperbolic at ξ = 0 with parameters δ and ε0. Then choose C > 0
such that |ϕ(z′)| � C|z′|3 for z′ ∈ Bn−1(0, δ) and let k := n−1, x0 := 0, and
K := 1. Next we let r := ε0(1)2/2C and L := {0} × Cn−1. If we define πL
by πL(z1, z

′) := (0, z′), then πL is admissible and K = ‖idCn −πL‖ = 1. Fix
a point (z1, z

′) ∈ V ∩B(0, r). By the definition of V , this implies z2
1 = ϕ(z′)

and hence
|z1| � |ϕ(z′)|1/2 � C1/2|z′|3/2 � C1/2r3/2.

Consequently, we have

dist((z1, z
′), L) � |(z1, z

′)−(0, z′)|= |z1|�C1/2r3/2 =C1/2r
ε0(1)

(2C)1/2
<ε0(1)r.

Hence, we proved that V ∩ B(0, r) ⊂ S(L, ε0(1)r). Since (x′j)j∈N is a null
sequence, the conditions on ϕ imply that we can choose j ∈ N so large that

|(ϕ(x′j)
3/2, x′j)| < r/2.

Hence, the point ζj = (ϕ(x′j)
3/2, x′j) is in V and πL(ζj) ∈ Rn. However,

ζj /∈ Rn since ϕ(x′j) is a negative real number by hypothesis. Thus, we
arrive at a contradiction to our assumption that V is nearly hyperbolic at
the origin.

In general, it appears to be difficult for V (F ) to be nearly hyperbolic
when F has a repeated irreducible factor in its leading term. It can happen;
e.g. z2

1 = z4
2 + z4

3 . But, the line of argument just given shows that varieties
of the form

zν1 − ϕ(z′) = 0, z′ = (z2, . . . , zn), ϕ(z′) = O(|z′|ν+1)

can never be nearly hyperbolic if ν � 3.
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(b) Varieties that are nearly hyperbolic but not locally hyperbolic at the
origin include those of the form

F (z) = z3
1 + z3

2 + z3
3 + ϕ(z1, z2, z3) = 0

where ϕ is holomorphic in some neighborhood of the origin, is real at real
points, and ϕ(z) = O(|z|4). From [4], Example 1, it then follows that the va-
rieties V (F ) satisfy the condition PLloc at the origin so it is a consequence
of Proposition 2.5 that they are nearly hyperbolic at the origin. However, it
is tedious to give a complete, separate proof that they are nearly hyperbolic
so we will not include one here. The main point of such an argument is
that the part of V (F ) that lies in balls B(x, r) that contain the origin, e.g.
with r > (1 + δ)|x|, cannot be contained in a small strip about any hyper-
plane, because the three different branches of V (F ) over the hyperplane are
distance δ1|z| apart. Therefore, the only admissible subspaces L and balls
B(x, r) with the property that V (F )∩B(x, r) is contained in a strip of width
εr about x + L occur with x in or near the tangent cone z3

1 + z3
2 + z3

3 = 0
to V (F ) at the origin and have r < δ2|x|. In this case, V (F ) ∩B(x, r) is in
fact a single sheeted graph over the tangent cone which makes the required
hyperbolicity condition valid.

(c) Define P ∈ C[x, y, z] by

P (x, y, z) :=
1

2
y(x2 − y2)− (x− y)z + z.

Then V (P ) := {ζ ∈ C3 : P (ζ) = 0} satisfies (SPL) by [7], Example 5.5.

3. Auxiliary results

In this section we will prove some auxiliary results that we need in the
next section to prove our main theorem.

Lemma 3.1. — Let P ∈ C[w1, ..., wk] be homogeneous of degree ν � 1
and suppose that P depends on all the variables; that is, there is no linear
change of coordinates that makes P a function of fewer than k variables.
Then for each 1 � i � k, there is a linear, constant coefficient differential
operator Li of pure degree ν − 1 such that (LiP )(w) = wi for all w ∈ Ck.

Proof. — Suppose that the span of the linear functions lβ = Dβ
wP ,

|β| = ν − 1, does not include all the linear functions. Then there is a “dual
linear functional”, i.e., a vector w0 �= 0 ∈ Ck, such that lβ(w0) = 0 for all
|β| = ν− 1. It is no loss of generality to assume coordinates to be chosen so
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that w = (w1, w
′) and the vector w0 is (1, 0, . . . , 0). We will show that this

implies P (w) = P (w′), contrary to the hypothesis.

To see this, write out

P (w1, w
′) =

ν∑

i=0

wi
1Pν−i(w

′)

where Pj is a homogeneous polynomial of degree j. Apply the differential

operators of order ν−1, Di,γ
w1,w′ where the multi-index γ has length ν−1−i.

The resulting set of equations is:

1

(ν − 1)!
Dν−1,0

w1,w′P (w1, w
′) = νw1P0 + P1(w

′)

1

(ν − 2)!γ!
Dν−2,γ

w1,w′ P (w1, w
′) = (ν − 1)w1D

γ
w′P1(w

′) + Dγ
w′P2(w

′), |γ| = 1

... =
...

...
1

γ!
D0,γ

w1,w′P (w1, w
′) = w1D

γ
w′Pν−1(w

′) + Dγ
w′Pν(w

′), |γ| = ν − 1

Evaluate these equations at the point w0 = (1, 0, . . . , 0). The left hand
sides are all 0 by our choice of w0. On the right hand sides, the second
terms all vanish since they are the values at the origin of the (j − 1)-st
derivative of a homogeneous polynomial of degree j. We conclude that the
first terms also must vanish. But these are all the possible j-th derivatives
of a homogeneous polynomial in w′ of degree j < ν. Thus, each of the
homogeneous polynomials Pj must vanish for 0 � j < ν; that is,

P (w) = Pν(w
′)

which contradicts the assumption that P depends on all the variables. �

Next let pν be a homogeneous polynomial in n variables of degree ν that
depends exactly on l variables, where 1 � l � n. Then we can assume that
coordinates are chosen so that pν depends only on w′ = (w1, . . . , wl), while
w′′ denotes (wl+1, . . . , wn). By Lemma 3.1, we can choose homogeneous,
linear, constant coefficient differential operators L1, . . . , Ll in the variables
w1, . . . , wl such that

Li(pν) = wi, 1 � i � l. (3.1)

Since Li commutes with ∂
∂wj

we have

Li(
∂pν
∂wj

) = δi,j , 1 � i � l, 1 � j � n. (3.2)

– 81 –
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The operators L1, . . . , Ll provide a way to decompose polynomials of degree
at most ν − 1 into a part in the span of the derivatives ∂pν

∂wj
and a part that

contains no such terms, as we show next.

Lemma 3.2. — Let pν and L1, . . . , Ll be as above and denote by Pν−1

the subspace of C[w1 . . . wn] of polynomials of degree at most ν − 1. Then
each Q ∈ Pν−1 has a unique decomposition in the form

Q(w) =

l∑

i=1

ci
∂pν
∂wi

+ q(w)

where

q ∈ N (L1, . . . , Ll) := {q ∈ Pν−1 : Li(q) = 0, 1 � i � l}

and ci = Li(Q), 1 � i � l.

Whenever q ∈ N (L1, . . . , Ll) is not identically zero, then pν + q has local
vanishing of order less than ν at each ζ ∈ Cn.

Proof. — From (3.2) it follows that the vectors ∂pν
∂w1

, . . . , ∂pν
∂wl
∈ Pν−1 are

linearly independent and that {L1, . . . , Ll} is the basis dual to { ∂pν∂w1
, . . . , ∂pν

∂wl
}.

Obviously, these facts imply the first assertion of the Lemma.

To prove the second assertion, we argue as follows. If Q := pν + q van-
ished to order ν at ζ ∈ Cn, then pν(x)+ q(x) = pν(x− ζ) so that q(x) must
also be a function of x1, . . . , xl alone. Applying the differential operators Li

to the last equation then gives

xi = Li(pν) = Li(pν + q) = Li(pν(x− ζ)) = xi − ζi

so that we must have ζ1 = . . . = ζl = 0. Then pν(x) = pν(x − ζ) so that
q(x) ≡ 0, contrary to the hypothesis. �

Definition 3.3. — Let ∆m
+ denote the set of t = (t1, . . . , tm) ∈ Rm such

that 0 < ti < 1 for i = 1, 2, . . . ,m. For t ∈ ∆m
+ and z ∈ Bn(0, r) fix

F (t, z) =
∑

k�ν

pk(z) +
∑

|j|>0,|β|�ν−1

aj,βt
jzβ +

∑

j>0,β�ν

aj,βt
jzβ , (3.3)

where j ∈ 1
QN

m
0 for some Q ∈ Q, Q � 0. Assume that, for fixed t ∈ ∆m

+ ,

F (t, z) is analytic in {w ∈ Cn : |w| � �(t)}, where �(t) tends to infinity
as t tends to zero in ∆m

+ . Assume further that pν depends exactly on the
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variables z1, . . . , zl and choose differential operators L1, . . . , Ll which satisfy
the condition (3.1). Then we say that F is in normal form if we have

Li


 ∑

|j|>0,|β|�ν−1

aj,βt
jzβ


 = 0.

If F is not in normal form, there is a way to transform it into this form in
such a way that neither the property PLloc(0) nor the nearly hyperbolicity
properties of the family (Vt)t∈∆m

+
associated with F are changed. To show

this we need the following proposition.

Proposition 3.4. — Let (Φt)t∈T be a family of biholomorphic maps of
a neighborhood of the origin in Cn to a neighborhood of the origin in Cn

such that the following conditions are satisfied.

(i) There exist 0 < r1 < r0 and 0 < �1 < �0 such that Φt(B(0, r0)) ⊂
B(0, �0) and Φ−1

t (B(0, �1)) ⊃ B(0, r1).

(ii) Φt(z) = Φ0(z) +
∑
|j|>0 aj,βt

jzβ, aj,β ∈ Rn, has a uniformly and

absolutely convergent expansion for t ∈ T , |z| < �0, which is a power
series in z and a fractional power series in t; i.e., j = k/Q for some
fixed integer Q � 1 and k ∈ Nm

0 .

(iii) Φ0(0) = 0 and Φ0 maps real points to real points.

(iv) The derivatives DzΦt(z) and DwΦ−1
t (w) are uniformly bounded for

z ∈ B(0, r0), t ∈ T , and for w ∈ B(0, �1), t ∈ T .

Then for each family (Vt)t∈T in Cn satisfying 0 ∈ Vt for each t ∈ T the
following assertions hold:

(a) (Vt)t∈T satisfies PLloc(0) if and only if the family (ΦtVt)t∈T satisfies
PLloc(0).

(b) (Vt)t∈T is nearly hyperbolic in some neighborhood of the origin if and
only if the family (ΦtVt)t∈T has this property.

Proof. — (a) The conditions (ii) and (iii) on the mappings Φt imply
that

1

C
| Imw| � | Im z| � C| Imw|

for w = Φt(z). Plurisubharmonic functions ut on a fixed neighborhood of
the origin in Vt correspond uniquely to plurisubharmonic functions vt on
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a fixed neighborhood of the origin in ΦtVt = {w = Φt(z) : z ∈ Vt} by
vt(w) = ut(z) = ut(Φ

−1
t (w)). And real points of Vt are mapped to real

points of Φt(Vt) and vice-versa. Thus, it is clear that the condition PLloc(0)
is preserved, although there is a change in the parameters that describe the
condition.

(b) Since nearly hyperbolicity is invariant under a real linear change of
coordinates, we may assume that DwΦ0 = id. Then, also for t and w near
the origin, the derivatives DwΦt are close to the identity. Therefore, when
x ∈ Rn the small balls B(x, r) used in the definition of nearly hyperbolicity
are almost preserved, i.e., for small σ, r > 0 we have

B(Φt(x), (1− σ)r) ⊂ Φt(B(x, r)) ⊂ B(Φt(x), (1 + σ)r).

Similary, the admissible subspaces and projections used in the definition of
nearly hyperbolic varieties are very well approximated by replacing Φt(L)
by L and keeping the same projection πL. We omit the routine but tedious
details. �

Proposition 3.5. — For F as in formula (3.3) assume that the leading
term pν of F depends exactly on the first l-variables and denote by Li, 1 �
i � l, operators that satisfy (3.1). Then in a neighborhood of t = 0 ∈ ∆

m

+ ,
w = 0, the system of equations

Li(F (t, w)) = 0, 1 � i � l,

has a unique solution

wi = hi(t, wl+1, . . . , wn), 1 � i � l,

where hi is a fractional power series in t, analytic in w, and has real power
series coefficients. Further, there are ε > 0 and fractional power series ϕi,
i = 1, . . . , l, such that the following assertions hold:

(a) hi(t, w
′′) = ϕi(t) + O(w′′2) + O(tεw′′),

(b) F1(t, w
′, w′′) := F (t, w′ + h(t, w′′), w′′) is in normal form, if we let

h(t, w′′) := (h1(t, w
′′), . . . , hl(t, w

′′)).

(c) The family (Vt)t∈∆m
+

defined by F satisfies PLloc(0) (resp. is nearly

hyperbolic at 0) if and only if the corresponding family defined by F1

satisfies PLloc(0) (resp. is nearly hyperbolic at 0).

Proof. — Consider the system of equations

Li(F (t, w)) = 0, 1 � i � l. (3.4)
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Using the expansion of F given in (3.3), the notation

Q(t, w) =
∑

|j|>0,|β|�ν−1

aj,βt
jwβ ,

and the fact Li(pν) = wi for 1 � i � l, the system (3.4) has the form

0 = wi + O(|w|2) + Li(Q(t, w)) + O(tε|w|), 1 � i � l, (3.5)

where ε is the smallest positive exponent of t in the series
∑

|j|>0,|β|�ν
aj,βt

jwβ .

After replacing the Puiseux series terms in t by t = sq, q the denominator
in the Puiseux series, the implicit function theorem gives the existence and
uniqueness of a solution with the properties as stated in (a). To prove the
remaining part of the Proposition, just observe that the change of vari-
ables ŵi = wi − hi(t, w

′′), ŵ′′ = w′′, transforms the system (3.4) to one in
which the unique solution is hi(t, w

′′) ≡ 0. In this case, the equations (3.5)
(evaluated at (w1, . . . , wl) = 0), show that

0 = Li(Q(t, w)) + O(tε|w|) + O(|w|2), 1 � i � l.

However, the functions Li(Q(t, w)) are functions of t alone since the Li are
differential operators of order ν−1 applied to polynomials of degree � ν−1.
Thus, letting w′′ → 0 shows that Li(Q(t, w)) ≡ 0, 1 � i � l; i.e., after the
change of variables the function F1 is in normal form. The assertions in (c)
follow from Proposition 3.4 (a) (resp. Proposition 3.4 (b)) applied to the
family (Φt)t∈U of biholomorphic maps defined by

Φt(w
′, w′′) = (w′ + h(t, w′′), w′′),

where U is a suitable neighborhood of (0, 0) ∈ ∆
m

+ × Cn. �

4. Main result

The aim of the present section is the proof of the following theorem.

Theorem 4.1. — Let V be an analytic surface in B3(0, r) for some r >
0 which contains the origin. Then V satisfies PLloc(0) if and only if V
satisfies the following three conditions:

(1) V is nearly hyperbolic at 0.

(2) Each limit variety Tγ,dV satisfies (SPL).

To prove this theorem, we next introduce some notation.
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Definition 4.2. — For η � 1, T > 0, and δ > 0 we let

Γη(T, δ) := {t ∈ C : 0 < Re t < T and | Im t| < δ|t|η}.

Definition 4.3. — Let F : Γη(T, δ1)×B2(0, δ2)→ C be holomorphic in
all three variables and a fractional power series in the first variable. Assume
that F admits an expansion of the form

F (t, z) = pν(z) +

∞∑

l=ν+1

pl(z) +
∑

j>0,β∈N2
0

aj,βt
jzβ , (4.1)

where pl is a homogeneous polynomial of degree l with real coefficients or
identically zero, pν �≡ 0, and where aj,β ∈ R for all j > 0, β ∈ N2

0.

We say that for α � 0 and η � 1 the variety

V = V (F ) := {(t, z) ∈ Γη(T, δ1)×B2(0, δ2) : F (t, z) = 0}

satisfies the condition PL(α, η) if the following holds:

There exist 0 < T0 � T , δ3 > 0, δ4 > 0, and A > 0 such that each
u ∈ PSH(V ) which satisfies

(a) u(t, z) � 0, (t, z) ∈ R3 ∩ V and

(b) u(t, z) � |t|α, (t, z) ∈ V

already satisfies

(c) u(t, z) � A|t|α
(
| Im z|+ | Im t|

|t|η
)
, (t, z) ∈ V ∩ (Γη(T0, δ3)×B2(0, δ4)).

Lemma 4.4. — For F as in 4.3 assume that (V (F (t, ·)))t is nearly hy-
perbolic, that pν is a product of real linear forms, and let

a := min

{
j

ν − |β| : aj,β �= 0, |β| < ν

}
,

where the numbers aj,β are given by (4.1) and where a :=∞ if aj,β = 0 for
each j > 0 and |β| < ν. Then there exist C > 0, A > 0, T0, δ3 > 0, and
δ4 > 0 such that each u ∈ PSH(V (F )) which satisfies the conditions (a) and
(b) of 4.3 also satisfies:

(i) u(t, z) � A|t|α{| Im z|+ | Im t|
|t|η }, (t, z) ∈ V (F )∩(Γη(T0, δ3)×B2(0, δ4)),

|z| > C|t|a.
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(ii) u(t, z) � A|t|α{|z| + |t|a + | Im t|
|t|η }, (t, z) ∈ V (F ) ∩ (Γη(T0, δ3) ∩

B2(0, δ4)) whenever a <∞.

Here, the convention t∞ = 0 is used.

Proof. — Since a real linear change in the z-variables does not change
the number a defined above, it is no loss of generality to assume that in the
expansion (4.1) for F the polynomial pν has the form

pν(z1, z2) =

p∏

k=1

(z1 − ukz2)
nk ,

where uk ∈ R for 1 � k � p and where uj �= ui for i �= j, which implies that
pν is regular in z1. Hence the Weierstrass factorization theorem implies that
for suitable 0 < T1 < T and 0 < δ4 < δ2

F (t, z) = U(t, z)

ν∏

j=1

(z1 − αj(t, z2)), t ∈ Γη(T1, δ3), z2 ∈ B(0, δ4),

where U is a unit and where
∏ν

j=1(z1−αj(t, z2)) is a Weierstrass polynomial

in z1, z2, and t1/q for a suitable number q ∈ N.

Since F is nearly hyperbolic by hypothesis, we claim that there exist
C > 0 and η0 > 0 such that

αj(t, z2) is real for each (t, z2) ∈ R2 satisfying |t| � η0 and |z2| � C|t|a.
(4.2)

Since pν has the form given above, a standard application of the theorem
of Rouché shows that for each sufficiently small number ε > 0 there exist
η0 > 0 and C1 > 1 such that for each t satisfying 0 < t < η0 and each
z2 satisfying |z2| � C1|t|a there are exactly nk solutions z1(t, z2) of the
equation F (t, z1, z2) = 0 which satisfy

|z1(t, z2)− ukz2| � ε|z2|. (4.3)

Next we show that they all have to be real for real z2, due to the hypothesis
that (V (F (t, ·)))t is nearly hyperbolic. To do so let Lk := {(ukz2, z2) : z2 ∈
C} and define πk : C2 → Lk, πk(z1, z2) := (ukz2, z2). Since u1, . . . , up are
real, Lk and πk are admissible in the sense of Definition 2.4. Next choose
δ > 0 and the function ε0 according to the definition of nearly hyperbolicity
and let

ε1 := min
1�k�p

ε0(||idCn − πk||).
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Since the numbers u1, . . . , up are pairwise different, we have

σ := min{|uj − uk| : 1 � j �= k � p} > 0.

Next choose M > 1 such that for 1 � k � p the following estimate holds:

diam(((Lk + B(0, r)) ∩ {(z1, 1) : |z1| < r}) � Mr.

Then choose 0 < λ < σ/(2M) and 0 < ε < ε1λ/(1 + λ). For this choice of
ε we now take η0 > 0 and C1 � 1 such that the statement about the zeros
of F above holds. Next we let C := C1(1 + λ)/λ and we fix 0 < t < η0 and
x2 ∈ R satisfying |x2| � Cta. Then we remark that our choices imply the
following: If we fix x := (ukx2, x2) ∈ Lk and let r := λ|x2| then for each
branch αj of the zero set of F which stays in the ε-cone near Lk we have
for |z2 − x2| < r that

|(αj(t, z2), z2)− (ukz2, z2)| = |αj(t, z2)− ukz2| < ε|z2| � ε(1 + λ)|x2||
� ε1λ|x2 = ε1r.

From this estimate and the choice of λ and M together with x + Lk = Lk

we now get

V (F (t, ·)) ∩B(x, r) ⊂ S(Lk + x, ε0r) ⊂ S(Lk, ε0(||idCn − πk||)r).

Since V is nearly hyperbolic by hypothesis, it follows from this that αj(t, ξ2)
is real whenever |ξ2 − x2| < r/2 = λ|x2|/2, which implies the statement of
our claim (4.2).

Assume now that a <∞. Then let u ∈ PSH(V (F )) be given and assume
that u satisfies the conditions (a) and (b) of 4.3. Then we define

ϕ : Γη(T1, δ3)×B(0, δ4)→ [−∞,∞[,

ϕ(t, z2) := max{u(t, αj(t, z2), z2) : 1 � j � ν}.
Note that ϕ is plurisubharmonic on Γη(T1, δ3)×B(0, δ4). By the properties
of u and (4.2) it follows that ϕ(t, z2) � 0 whenever (t, z2) ∈ (Γη(T1, δ3) ×
B(0, δ4)) ∩ R2 satisfies |z2| � Cta and that ϕ satisfies

ϕ(t, z2) � tα, 0 < t < T1, z2 ∈ B(0, δ4). (4.4)

Hence for 0 < t < T1 the function z2 �→ ϕ(t, z2) is subharmonic in the
disk B(0, δ4) and is non-positive for z2 ∈ ]−δ4, δ4[ \ [−Cta, Cta]. By [1],
Lemma 5.8, this implies the existence of C0 > 0 such that

ϕ(t, z2)

tα
� C0

∣∣∣∣Im
√

z2
2 − (Cta)2

∣∣∣∣ , |z2| � δ4/2.
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This estimate implies (see, e.g., [1], Lemma 5.7) the existence of A1 > 0 and
A2 > 0 such that for 0 < t < T1 we have

ϕ(t, z2) � A1t
α |Im z2| , |z2| � 2Cta (4.5)

ϕ(t, z2) � A2t
α(|z2|+ ta), z2 ∈ B(0, δ4/2). (4.6)

Next fix 0 < t0 < T1/2, z2 ∈ B(0, δ4/2) satisfying |z2| � 2C(1 + T1)
ata0 ,

let A′1 := (1 + δ3)
αA1, and consider the function

ψ : B(t0, δ3t
η
0)→ [−∞,∞[, ψ(t) := ϕ(t, z2)−A′1t

α
0 | Im z2|.

The choice of A′1 together with the estimate

(1− δ3)t0 � |t| � (1 + δ3)t0, t ∈ B(t0, δ3t
η
0), (4.7)

implies ψ(t) � 0 for t ∈ B(t0, δ3t
η
0) ∩ R. From (4.4) it follows that

ψ(t) � (t0 + δ3t
η
0)α � (1 + δ3)

αtα0 , t ∈ B(t0, δ3t
η
0). (4.8)

Using the harmonic measure for the half disk we get the existence of a
universal constant C1 > 0 such that

ψ(t) � C1
(1 + δ3)

αtα0
δ3t

η
0

| Im t|, t ∈ B(t0, δ3t
η
0/2). (4.9)

This estimate, together with the definition of ψ and ϕ, implies

u(t, z1, z2) � ϕ(t, z2) � A1(1 + δ3)
αtα0

(
| Im z2|+

C1

A1δ3t
η
0

| Im t|
)

for t ∈ B(t0, δ3t
η
0/2), 2C(1 + δ3)

ata0 � |z2| � δ4/2. Because of (4.7) we now
get the existence of A3 > 0 such that for (t, z1, z2) ∈ V (F )∩Γη(T1/2, δ3/2)×
B2(0, δ4/2) and |z2| � 2C

(
1+δ3
1−δ3

)a

|t|a we have

u(t, z1, z2) � A3|t|α
(
| Im z2|+

| Im t|
|t|η

)
.

Because of the special form of F , this estimate implies (i), provided that we
change the constants appropriately.

Note that for a =∞ the proof of the same estimate is easier, since this
implies that F is locally hyperbolic.
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To prove part (ii) assume that a < ∞, fix 0 < t0 < T1/2 and z2 ∈
B(0, δ4/2), and consider the function

ψ : B(t0, δ3t
η
0)→ [−∞,∞[, ψ(t) := ϕ(t, z2)−A2(1+δ3)

αtα0 (|z2|+(1+δ3)
ata0).

For t ∈ B(t0, δ3t
η
0) ∩ R the estimate (4.6) together with the properties of ϕ

implies ψ(t) � 0, while (4.4) implies that (4.8) holds. Therefore, the same
arguments that we used to prove (i) imply that ψ satisfies the estimate (4.9).
From (4.8) and the definition of ψ and ϕ we now get

u(t, z1, z2) � ϕ(t, z2) � A2(1 + δ3)
αtα0

(
|z2|+ (1 + δ3)

ata0 +
C1

A2δ3t
η
0

| Im t|
)

for t ∈ B(t0, δ3t
η
0/2), z2 ∈ B(0, δ4/2), and 0 < t0 < T1/2. Using (4.7) we get

the existence of A4 > 0 such that

u(t, z1, z2) � A4|t|α
(
|z2|+ |t|a +

| Im t|
|t|η

)
,

(t, z) ∈ V (F ) ∩ (Γη(T1/2, δ3/2)×B2(0, δ4/2)).

Hence (ii) holds. �

Lemma 4.5. — For F as in 4.3 assume that (V (F (t, ·)))t is nearly hy-
perbolic and that ν = 1. Then V (F ) satisfies PL(α, η) for each α � 0 and
each η � 1.

Proof. — The present hypotheses imply that p1 is a real linear form.
After a real linear change in the variables z1, z2, we may therefore assume
that p1(z1, z2) = z1. Hence F has the form

F (t, z) = z1 +

∞∑

l=2

pl(z) +
∑

j>0,β∈N2
0

aj,βt
jzβ .

Moreover, F (t, z) is real for real (t, z). Since F is a fractional power series
in t and analytic in z, an application of the real and the complex implicit
function theorem shows that there exist T1 < T, δ3 < δ1, δ4 < δ2 such that

F (t, z) = z1 − α(t, z2), (t, z) ∈ Γ1(T1, δ3)×B(0, δ4),

where α(t, z2), is Puiseux-analytic in t, analytic in z, and real for (t, z) real.
Next let α � 0 and η � 1 be given and fix u ∈ PSH(V (F ) ∩ (Γη(T, δ1) ×
B2(0, δ2))) satisfying the conditions (a) and (b) of PL(α, η). Then we define

ϕ : Γη(T1, δ3)×B(0, δ4)→ [−∞,∞[, ϕ(t, z2) := u(t, α(t, z2), z2).
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Note that ϕ is plurisubharmonic and that the properties of u imply ϕ(t, z2) �
0 whenever (t, z2) are real and

ϕ(t, z2) � tα, 0 < t < T1, z2 ∈ B(0, δ4). (4.10)

Using the harmonic measure for the half disk and these properties of ϕ it
follows that there exists a universal constant C1 such that the estimates
above imply

ϕ(t, z2) � C1| Im z2|tα, 0 < t < T1, z2 ∈ B(0, δ4/2). (4.11)

Now note that the proof can be completed by the arguments that we used
to prove part (i) of Lemma 4.4. �

Remark 4.6. — If the estimate 4.3 (c) holds for some δ > 0 and δ4 > 0
in V (F ) ∩ (Γη(T, δ) × B2(0, δ4)) then it also holds in V (F ) ∩ (Γη(T,C) ×
B2(0, δ4)) for each C � δ, provided that A is replaced by A′ = A′(A, δ). To
see this, note that by 4.3 (b) we have for each t ∈ Γη(T,C) \ Γη(t, δ)

u(t, z) � |t|α =
1

δ
|t|αδ � 1

δ
|t|α | Im t|

|t|η � max(A,
1

δ
)|t|α{| Im z|+ | Im z|

|t|η }.

Proposition 4.7. — For F as in 4.3 assume that (V (F (t, ·)))t is nearly
hyperbolic and that T0(limt→0 V (F (t, ·))) satisfies PLloc(0). Moreover, as-
sume that for each γ : [0, δ[→ R2 which is defined by a Puiseux series, and
for each d > 0 the family

Wt := {w ∈ C2 : F (t, γ(t) + tdw) = 0}

has a limit variety limt→0 Wt that satisfies (SPL). Then V (F ) satisfies
PL(α, η) for each α � 0 and each η � 1.

Proof. — To prove this by induction on ν, note first that by Lemma 4.5
the assertion holds for ν = 1. To prove the induction step, we assume
that the assertion holds for all F with ν(F ) < ν. Then we fix F as in the
Proposition as well as α � 0 and η � 1.

Case 1: pν depends on both variables z1 and z2.

Then we choose differential operators L1 and L2 for pν , according to
Lemma 3.1. It is no restriction to assume that F is in normal form with
respect to L1 and L2 because of the following argument: The transformation
that puts F (t, z) into normal form is a shear transformation in the z variable,
z ← z+γ(t) where γ(t) is a Puiseux series in t with real coefficients. Neither
the hypotheses of the condition PL(α, η) nor its conclusion is changed by
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such a transformation, because | Im γ(t)| � | Im t|/|t|η since η � 1. Next we
let

a := min

{
j

ν − |β| : |β| < ν, aj,β �= 0

}
,

where we use the notation from (4.1).

If a <∞ then for each ξ ∈ R2 we define the local reduction Hξ of F by

Hξ(t, w) :=
F (t, ta(ξ + w))

taν
.

To show that ν(Hξ) < ν for each ξ ∈ R2, we let

Q(t, z) :=
∑

j>0,|β|�ν−1

aj,βt
jzβ =

∑

|β|�ν−1

fβ(t)zβ .

As F is in normal form with respect to L1 and L2, we have Li(Q(t, z)) = 0
for i = 1, 2. Since

1

taν
Q(t, taw) =

∑

j>0,|β|�ν−1

aj,βt
j+a|β|−aνwβ ,

the definition of the number a implies that

lim
t→0

1

taν
Q(t, taw) =

∑

j=(ν−|β|)a
aj,βw

β =: qξ(w),

where q is not identically zero and deg(q) < ν. Since

0 ≡ Li(
1

taν
Q(t, taw)) =

∑

|β|=ν−1

fβ(t)taLi(w), i = 1, 2,

for all t, it follows that

0 = lim
t→0

Li(
1

taν
Q(t, taw)) = Li(qξ).

Hence we get from Lemma 3.2 that pν + q has local vanishing order less
than ν at each ξ ∈ C2, which implies ν(Hξ) < ν for each ξ ∈ R2. Note
that limt→0 V (Hξ(t, ·)) = V (pν + qξ). By hypothesis, this variety satisfies
(SPL). Hence it follows from Remark 2.11 that V (pν +qξ) satisfies PLloc(0),
whenever 0 ∈ V (pν +qξ). By [5], Proposition 3.5, this implies that T0V (pν +
qξ) = T0(limt→0 V (Hξ(t, ·))) satisfies PLloc(0).
Note also that for any Puiseux series σ(t) with values in R2 and any δ > 0
we have

Hξ(t, σ(t)+tδw) =
1

taν
F (t, ta(ξ+σ(t)+tδw)) =

1

taν
F (t, taξ+taσ(t)+ta+δw).
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From this identity, the considerations above, and Proposition 3.4 (b) it
follows easily that Hξ(t, w) satisfies the hypotheses of the present lemma.

Next fix u ∈ PSH(V (F ) ∩ (Γη(T, δ1) × B2(0, δ2))) and assume that u
satisfies the conditions (a) and (b) of 4.3. Since

T0(lim
t→0

V (F (t, ·))) = T0

( ∞∑

k=ν

pν

)
= V (pν)

satisfies PLloc(0) by hypothesis, it follows from the homogeneity of pν that
V (pν) satisfies (SPL) and hence PL(R2, log), by [1], Lemma 2.5. By Meise,
Taylor, and Vogt [13], Theorem 4.11, pν is hyperbolic with respect to each
non-characteristic direction. Since pν has real coefficients, this implies that
pν is a product of real linear forms. Therefore, we can apply Lemma 4.4
to get the existence of positive numbers C,A, T0, δ3, and δ4 so that the
assertions (i) and (ii) of 4.4 hold. Because of 4.4 (i), the estimate 4.3 (c)
of PL(α, η) holds for those (t, z) ∈ V (F ) ∩ (Γη(T0, δ3) × B2(0, δ4)) which
in addition satisfy |z| > C|t|a. To show that it also holds for such points
which satisfy |z| � C|t|a, we note first that for (t, z) ∈ V (F )∩ (Γη(T0, δ3)×
B2(0, δ4)) satisfying

|z| � C|t|a � | Im t|
|t|η

or equivalently

|z| � C|t|a and t ∈ Γη(T0, δ3) \ Γη+a(T0, C)

the estimate 4.3 (ii) implies (assuming w.l.o.g. C � 1)

u(t, z) � A|t|α
(
|z|+ |t|a +

| Im t|
|t|η

)
� A|t|α

(
(C + 1)|t|a +

| Im t|
|t|η

)

� 3A|t|α | Im t|
|t|η � 3A|t|α

(
| Im z|+ |Im t|

|t|η
)
.

Hence we only have to show that the estimate 4.3 (c) holds for those (t, z) ∈
V (F ) ∩ (Γη(T0, δ3)×B2(0, δ4)) which satisfy

|z| � C|t|a and t ∈ Γη+a(T0, C). (4.12)

For such points (t, z) we get from 4.4 (ii) that

u(t, z) � A|t|α (C|t|a + |t|a + C|t|a) = (2C + 1)A|t|α+a. (4.13)

Next fix ξ ∈ B2(0, δ4/2) ∩ R2, w ∈ B2(0, δ4/2), and t ∈ Γη+a(T0, C) and
assume that

0 = Hξ(t, w) =
1

taν
F (t, ta(ξ + w)).
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Then the function

v : V (Hξ)∩(Γη+a(T0, C)∩B2(0, δ4/2))→ [−∞,∞[, v(t, w) := u(t, ta(ξ+w))

is plurisubharmonic. Since u satisfies the condition 4.3 (a), we have v(t, w) �
0 when t and w are real. From (4.13) it follows that

1

(2C + 1)A
v(t, w) � |t|α+a.

Now note that V (Hξ(t, ·))t is nearly hyperbolic by Proposition 3.4. More-
over, if the expansion for Hξ has ql as lowest degree homogeneous term in
w, then V (ql) satisfies (SPL) by hypothesis, since it is a limit variety of
V (F ). Since we have shown above that ν(Hξ) = deg ql < ν, our induction
hypothesis implies that V (Hξ) satisfies PL(α+a, η+a). Consequently, there
exist positive numbers Aξ, Tξ, δ3,ξ, and δ4,ξ, so that

1

(2C + 1)A
v(t, w) � Aξ|t|α+a

(
| Imw|+ | Im t|

|t|η+a

)

= Aξ|t|α
(
|t|a| Imw|+ | Im t|

|t|η
)

(4.14)

for (t, w) ∈ V (Hξ) ∩ (Γη+a(Tξ, δ3,ξ) × B2(0, δ4,ξ)). Next note that for Tξ

small enough there exists a constant D > 0 such that

|t|a | Imw| � D
(
| Im(ta(ξ + w))|+ | Im t|

|t|η
)

(4.15)

for t ∈ Γη+a(Tξ, δ3,ξ), w ∈ B2(0, δ4,ξ). Hence we get from (4.14) and (4.15)
in connection with Remark 4.6 the existence of Bξ > 0 such that

u(t, ta(ξ + w)) � Bξ|t|α
(
| Im(ta(ξ + w))|+ | Im t|

|t|η
)
, (4.16)

for (t, ta(ξ+w)) ∈ V (F )∩ (Γη+a(Tξ, C)×B2(0, δ4,ξ)), |ξ+w| � C. Next we

use a compactness argument to cover B2(0, C)∩R2 by
⋃m

j=1(ξj+B2(0, δ4,ξj )).

Then there exists σ > 0 such that | Imw| � σ for each w ∈ B2(0, C) \⋃m
j=1(ξj + B2(0, δ4,ξj )). Finally, set T2 := min{Tξj : 1 � j � m}.

To complete the proof of case 1, fix (t, z) ∈ V (F )∩(Γη(T2, δ3)×B2(0, δ4))
satisfying (4.12). Since we are only interested in t �= 0, we can set ζ :=
t−az ∈ B2(0, C).

If ζ /∈ ⋃m
j=1(ξj + B2(0, δ4,ξj )), then Im ζ � σ. Hence Im z � 1

2σt
a,

provided T2 was chosen sufficiently small. Together with the estimate 4.4 (ii)

– 94 –



Local Phragmén-Lindelöf condition

this implies

u(t, z) � A|t|α
(

(C + 1)|t|a +
| Im t|
|t|η

)
� A|t|α

(
2C + 2

σ
| Im z|+ | Im t|

|t|η
)
,

which is estimate (c) of PL(α, η).

Otherwise, there are j ∈ {1, . . . , l} and w ∈ B2(0, δ4,ξj ) with ζ = ξj +w.
Then, equation (4.16) yields estimate (c) of PL(α, η).

If a = +∞ then there is nothing to prove, since V (F ) is hyperbolic near
the origin.

Case 2: pν depends only on one variable.

Then it is no restriction to assume that pν(z1, z2) = zν1 . From this it
follows as in the proof of (4.2) that for fixed small values of t ∈ Γη(T, δ) and
all z2 ∈ B(0, δ2) the solutions of the equation F (t, z1, z2) = 0 satisfy the
estimate (4.3). Using the hypothesis that (V (F (t, ·))t is nearly hyperbolic,
it follows as in the proof of (4.2) that all these solutions are real when (t, z2)
is real. Hence it follows as in the proof of part (i) of Lemma 4.4 that V (F )
satisfies PL(α, η) for each α � 0 and each η � 1. �

In the proof of Theorem 4.1, which we will give next, we will use the
following definition.

Definition 4.8. — For ξ ∈ Rn and r0 > 0 let V be an analytic variety
in B(ξ, r) which contains ξ. We say that V satisfies the condition RPLloc(ξ)
if there exist positive numbers A and r0 � r1 � r2 such that each u ∈
PSH(V ∩B(0, r1)) satisfying

(α) u(z) � 1, z ∈ V ∩B(0, r1) and

(β) u(z) � 0, z ∈ V ∩ Rn ∩B(0, r1)

also satisfies

(γ) u(z) � Az − ξ, z ∈ V ∩B(0, r2).

Proof of Theorem 4.1. — Because of Theorem 2.12, we only have to show
that the conditions (1) and (2) in Theorem 4.1 are sufficient. To do so, we
fix F ∈ H(Bn(0, r)) and assume that V = V (F ) satisfies conditions (1) and
(2) of 4.1. (Later we will switch to n = 3.) Then we can expand

F (z) =

∞∑

k=m

qk(z),
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where qk is either a homogeneous polynomial of degree k or identically zero,
and qm �= 0. For ξ = (0, . . . , 0, 1) and w = (w′, wn) we have

F (t(ξ + w)) =
∑

k�m

qk(tw
′, t(1 + wn)) =

∑

k�m

(t(1 + wn))
k
qk

(
w′

1 + wn
, 1

)
.

(4.17)
For (τ, ζ) ∈ C× Cn−1 we let

F0(τ, ζ) :=
∑

k�m

τk−mqk(ζ, 1) =

m∑

l=ν

pl(ζ) +
∑

j>0,β∈Nn−1
0

τ jaj,βζ
β ,

where pν �= 0. From (4.17) we get

F (t(ξ + w)) = (t(1 + wn))
m
F0

(
t(1 + wn),

w′

1 + wn

)
. (4.18)

Next fix (τ, ζ) ∈ (Γ1(T, δ)×Bn−1(0, �)) ∩ V (F0) and let

t := Re τ, λ :=
i

t
Im τ, (4.19)

so that τ = t(1 + λ), where |λ| < δ. Then for w := ((1 + λ)ζ, λ) we have

(τζ, τ) = (t(1 + λ)ζ, t(1 + λ)) = t(ξ + w)

and
|w| � �(1 + δ) + δ.

From (4.18) we now get

F (τζ, τ) = F (t(ξ+w)) = (t(1 + wn))
m
F0

(
t(1+wn),

w′

1 + wn

)
= τmF0(τ, ζ).

(4.20)
Hence (τζ, τ) ∈ V (F ).

We claim that V (F ) satisfies RPLloc(0). To prove this, note first that
V (qm) satisfies (SPL). Hence so does each irreducible branch W of V (qm).
Consequently, we can pick a regular point η of V with η ∈ Rn \ {0}. It
is no restriction to assume that π:V → C2, π: z �→ (z1, z2), is proper in
a neighborhood of 0. Next apply the nearly hyperbolicity hypothesis at
points x = tη, t ∈ [−ε, ε] \ {0}, in the ball B(x, δx), δ > 0 fixed sufficiently
small, and for the subspace L = TηW to see that V (F ) is 1-hyperbolic in
the sense of Definition 9 in [2]. Hence Theorem 10 in [2] shows that V (F )
satisfies RPLloc(0).
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From now on assume that n = 3, fix u ∈ PSH(V ∩B3(0, r)), and assume
that u satisfies the conditions (α) and (β) of PLloc(0) (see Definition 2.2).
Since V (F ) satisfies RPLloc(0), there exist A1 > 0 and 0 < r1 < r such that

u(z) � A1|z|, z ∈ V (F ) ∩B3(0, r1).

Replacing u by u/A1 it is no restriction to assume that A1 = 1. For an
arbitrarily chosen ξ ∈ T0V (F ) ∩ R3 with ξ = 1 let

Γ(ξ, η, r1) :=
⋃

0<t<r1

t(ξ + B3(0, η))

and restrict u to the set V (F ) ∩ Γ(ξ, η, r1). By an appropriate change of
coordinates we can arrange ξ = (0, 0, 1).

If we choose 0 < δ < η/2, � < η/4, and T := r1 then (τ, ζ) ∈ Γ1(T, δ)×
B2(0, �) implies that for t and λ as in (4.19) we have that w := ((1+λ)ζ, λ)
satisfies |w| < �(1 + δ) + δ < η/4 · 2 + η/2 < η, so that t(ξ + w) = (τζ, τ) ∈
V (F ) ∩ Γ(ξ, η, r1). Then the function

v : V (F0) ∩ (Γ1(T, δ)×B2(0, �))→ [−∞,∞[, v(τ, ζ) := u(τζ, τ)

is plurisubharmonic on this set and satisfies

v(τ, ζ) � |(τζ, τ)| � |τ |(1 + �)

and
v(τ, ζ) � 0, (τ, ζ) ∈ (Γ1(T, δ)×B2(0, �)) ∩ R3.

To show that F0 satisfies the hypotheses of Proposition 4.7, note first that
by 4.1 (2) the variety T0V (F ) = V (qm) satisfies (SPL). Since qm is ho-
mogeneous, it follows from Remark 2.11 and [5], Lemma 6.1, that because

of qm(ζ, 1) =
∑m

k=ν pν(ζ) the variety V
(∑m

ν=m pν(ζ)
)

satisfies PLloc(0).

By [5], Proposition 3.5, this implies that V (pν) = T0(limt→0 V (F0(t, ·)))
also satisfies PLloc(0). Next let γ : ]0, σ[→ R2 be defined by a convergent
Puiseux series and define for 0 < t < σ the variety

Wt := {w ∈ C2 : z := γ(t) + tdw ∈ V (F0(t, ·))}.

Then it follows from (4.20) that we have

0 = tmF0(t, γ(t) + tdw) = F (t(γ + tdw), t) + F (σ(t) + td+1(w, 0)),

where σ(t) = (tγ(t), t) is a real simple curve in C3. Since the tangent vector
to σ at the origin is ξ = (0, 0, 1), it follows from Proposition 2.9 (3), that
the limit variety Tσ,d+1V (F ) does not depend on the last variable. Hence
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we have Tσ,d+1V (F ) = W0 × C, for an algebraic variety W0 in C2 and it
follows that

lim
t→0

Wt = W0.

Since Tσ,d+1V (F ) satisfies (SPL), this implies that limt→0 Wt satisfies (SPL).
Moreover, Proposition 3.4 implies that the varieties (V (F0(t, ·)))t are nearly
hyperbolic. Hence F0 satisfies the hypotheses of Proposition 4.7. Therefore,
V (F0) satisfies PL(1, 1) by Proposition 4.7. Consequently, there exist B > 0,
T0 > 0, δ3 > 0, and δ4 > 0 such that

u(τζ, τ) = v(τ, ζ) � B|τ |
(
| Im ζ|+ | Im τ |

|τ |

)
= B(|τ | | Im ζ|+ | Im τ |),

for (τ, ζ) ∈ V (F0) ∩ Γ1(T0, δ3) × B2(0, δ4). Since there exists D > 1 such
that

|τ | | Im ζ| � D(| Im τζ|+ | Im τ |), (τ, ζ) ∈ Γ1(T0, δ3)×B2(0, δ4)

this implies
u(τζ, τ) � 2BD| Im(τζ, τ)|. (4.21)

Now choose 0 < σ < 1/2 such that 2σ < min(δ3, δ4) and 0 < r < T0/(1+σ).
Then for w ∈ B3(0, σ) and t ∈ ]0, r[ we let

ζ :=
(w1, w2)

1 + w3
, τ := t(1 + w3)

and we note that

|ζ| � σ

|1 + w3|
� σ

1− σ
� 2σ < δ3

and
Re τ = t(1 + Rew) � t(1 + σ) < r(1 + σ) < T0.

These estimates show that (τ, ζ) ∈ V (F0) ∩ (Γ1(T0, δ3) × B2(0, δ4)). Since
(τζ, τ) = (tw1, tw2, t(1 + w3)) = t(ξ + w) we now get from (4.21) that

u(t(ξ + w)) = u(ζτ, τ) = v(τ, ζ) � 2BD| Im(t(ξ + w))|.

This shows that V (F ) satisfies the estimate (γ) of PLloc(0) in the cone
Γ(ξ, σ, r). Since this holds for each ξ ∈ T0V (F )∩R3, |ξ| = 1, it follows from
[5], Lemma 5.13, that V (F ) satisfies PLloc(0). �
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