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Annales de la Faculté des Sciences de Toulouse Vol. XXI, n◦ 2, 2012
pp. 259–342

Approximate roots of a valuation
and the Pierce-Birkhoff conjecture

F. Lucas(1), J. Madden(2), D. Schaub(3), M. Spivakovsky(4)

ABSTRACT. — In this paper, we construct an object, called a system of
approximate roots of a valuation, centered in a regular local ring, which
describes the fine structure of the valuation (namely, its valuation ideals
and the graded algebra). We apply this construction to valuations asso-
ciated to a point of the real spectrum of a regular local ring A. We give
two versions of the construction: the first, much simpler, in a special case
(roughly speaking, that of rank 1 valuations), the second – in the case of
complete regular local rings and valuations of arbitrary rank.
We then describe certain subsets C ⊂ Sper A by explicit formulae in terms
of approximate roots; we conjecture that these sets satisfy the Connected-
ness (respectively, Definable Connectedness) conjecture. Establishing this
for a certain regular ring A would imply that A is a Pierce-Birkhoff ring
(this means that the Pierce-Birkhoff conjecture holds in A).
Finally, we use these constructions and results to prove the Definable
Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff con-
jecture) in the special case when dim A = 2.

RÉSUMÉ. — Les résultats contenus dans ce papier constituent une étape
dans notre tentative de démontrer la Conjecture de Pierce-Bikhoff pour
des anneaux réguliers en toute dimension (et en particulier la conjec-
ture classique pour un anneau de polynômes sur un corps réel clos).
On commence par rappeler les conjectures de Connexité et de Connexité
Définissable, qui ont toutes deux pour conséquence la conjecture de Pierce-
Birkhoff.
Nous introduisons alors la notion de système de racines approchées pour
une valuation ν sur un anneau A : c’est une collection Q d’éléments de A
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telle que tout ν-idéal est engendré par un produit d’éléments de Q. On se
sert alors des racines approchées pour définir, par des formules explicites,
des sous-ensembles du spectre réel de A, fortement susceptibles de vérifier
la conjecture de Connexité Définissable.
On prouve ainsi la conjecture de Pierce-Birkhoff pour un anneau régulier
arbitraire de dimension 2.

Introduction

All the rings in this paper will be commutative with 1. Let R be a real
closed field. Let B = R[x1, . . . , xn]. If A is a ring and p a prime ideal of A,
κ(p) will denote the residue field of p.

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial
function

f : Rn → R

can be expressed as a maximum of minima of a finite family of polynomials
in n variables. We start by giving the precise statement of the conjecture
as it was first stated by M. Henriksen and J. Isbell in the early nineteen
sixties.

Definition 0.1. — A function f : Rn → R is said to be piecewise
polynomial if Rn can be covered by a finite collection of closed semi-
algebraic sets Pi such that for each i there exists a polynomial fi ∈ B
satisfying f |Pi = fi|Pi .

Clearly, any piecewise polynomial function is continuous. Piecewise poly-
nomial functions form a ring, containing B, which is denoted by PW (B).

On the other hand, one can consider the (lattice-ordered) ring of all the
functions obtained from B by iterating the operations of sup and inf. Since
applying the operations of sup and inf to polynomials produces functions
which are piecewise polynomial, this ring is contained in PW (B) (the latter
ring is closed under sup and inf). It is natural to ask whether the two rings
coincide. The precise statement of the conjecture is:

Conjecture 0.2 (Pierce-Birkhoff). — If f : Rn → R is in PW (B),
then there exists a finite family of polynomials gij ∈ B such that f =
sup
i

inf
j
{gij} (in other words, for all x ∈ Rn, f(x) = sup

i
inf
j
{gij(x)}).
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This paper represents the second step of our program for proving the
Pierce-Birkhoff conjecture in its full generality. The starting point of this
program is the abstract formulation of the conjecture in terms of the real
spectrum of B and separating ideals proposed by J. Madden in 1989 [26],
which we now recall, together with the relevant definitions. For a general
introduction to real spectrum, we refer the reader to [7], Chapter 7, [3],
Chapter II or [33], 4.1, page 81 and thereafter; see also “Bibliographical
and historical comments” on p. 109 at the end of that chapter.

Let A be a ring. A point α in the real spectrum of A is, by definition,
the data of a prime ideal p of A, and a total ordering � of the quotient
ring A/p, or, equivalently, of the field of fractions of A/p. Another way of
defining the point α is as a homomorphism from A to a real closed field,
where two homomorphisms are identified if they have the same kernel p and
induce the same total ordering on A/p.

The ideal p is called the support of α and denoted by pα, the quotient
ring A/pα by A[α], its field of fractions by A(α) and the real closure of A(α)
by k(α). The total ordering of A(α) is denoted by �α. Sometimes we write
α = (pα,�α).

Definition 0.3. — The real spectrum of A, denoted by Sper A, is the
collection of all pairs α = (pα,�α), where pα is a prime ideal of A and �α
is a total ordering of A/pα.

We use the following notation: for an element f ∈ A, f(α) stands for
the natural image of f in A[α] and the inequality f(α) > 0 really means
f(α) >α 0.

The real spectrum Sper A is endowed with two natural topologies. The
first one, called the spectral (or Harrison) topology, has basic open sets
of the form

U(f1, . . . , fk) = {α | f1(α) > 0, . . . , fk(α) > 0}

with f1, ..., fk ∈ A.

The second is the constructible topology whose basic open sets are
of the form

V (f1, . . . , fk, g) = {α | f1(α) > 0, . . . , fk(α) > 0, g(α) = 0} ,

where f1, ..., fn, g ∈ A. Boolean combinations of sets of the form V (f1, . . . , fn, g)
are called constructible sets of Sper A.
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For more information about the real spectrum, see [7]; there is also a brief
introduction to the real spectrum and its relevance to the Pierce-Birkhoff
conjecture in the Introduction to [21].

Definition 0.4. — Let

f : Sper A→
∐

α∈Sper A

A(α)

be a map such that, for each α ∈ Sper A, f(α) ∈ A(α). We say that f is
piecewise polynomial (denoted by f ∈ PW (A)) if there exists a covering
of Sper A by a finite family (Si)i∈I of constructible sets, closed in the spectral
topology, and a family (fi)i∈I , fi ∈ A such that, for each α ∈ Si, f(α) =
fi(α).

We call fi a local representative of f at α and denote it by fα (fα is,
in general, not uniquely determined by f and α; this notation means that
one such local representative has been chosen once and for all).

Note that PW (A) is naturally a lattice ring: it is equipped with the
operations of maximum and minimum. Each element ofA defines a piecewise
polynomial function. In this way we get a natural injection A ⊂ PW (A).

Definition 0.5. — A ring A is a Pierce-Birkhoff ring if, for each f ∈
PW (A), there exist a finite collection of fij ∈ A such that f = sup

i
inf
j
fij.

In [26] Madden reduced the Pierce-Birkhoff conjecture to a purely local
statement about separating ideals and the real spectrum. Namely, he gave
the following definition:

Definition 0.6. — Let A be a ring. For α, β ∈ Sper A, the separating
ideal of α and β, denoted by < α, β >, is the ideal of A generated by all the
elements f ∈ A which change sign between α and β, that is, all the f such
that f(α) � 0 and f(β) � 0.

Definition 0.7. — A ring A is locally Pierce-Birkhoff at α, β if
the following condition holds. Let f be a piecewise polynomial function, let
fα ∈ A be a local representative of f at α and fβ ∈ A a local representative
of f at β. Then fα − fβ ∈< α, β >.

Theorem 0.8 (Madden). — A ring A is Pierce-Birkhoff if and only if
it is locally Pierce-Birkhoff for all α, β ∈ Sper(A).

Let α, β be points in Sper A.
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Conjecture 0.9 (local Pierce-Birkhoff conjecture at α, β). — Let A
be a regular ring and f a piecewise polynomial function. Let fα ∈ A be a
local representative of f at α and fβ ∈ A a local representative of f at β.
Then fα − fβ ∈< α, β >.

There are known counterexamples in the case A is not regular (eg. A =
R[x, y]/(y2 − x3)) and even with A normal.

Remark 0.10. — Assume that β is a specialization of α. Then

(1) < α, β >= pβ.

(2) fα − fβ ∈ pβ. Indeed, we may assume that fα �= fβ, otherwise there

is nothing to prove. Since β ∈ {α}, fα is also a local representative of f at
β. Hence fα(β)− fβ(β) = 0, so fα − fβ ∈ pβ.

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to
verify Definition 0.7 for all α, β such that neither of α, β is a specialization
of the other.

In [21], we introduced

Conjecture 0.11 (the Connectedness conjecture). — Let A be a regu-
lar ring. Let

α, β ∈ Sper A

and let g1, . . . , gs be a finite collection of elements of A\ < α, β >. Then
there exists a connected set C ⊂ Sper A such that α, β ∈ C and C ∩ {gi =
0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same
connected component of the set Sper A \ {g1 . . . gs = 0}).

Definition 0.12. — A subset C of Sper(A) is said to be definably
connected if it is not a union of two non-empty disjoint constructible sub-
sets, relatively closed for the spectral topology.

Conjecture 0.13 (Definable connectedness conjecture). — Let A be a
regular ring. Let α, β ∈ Sper A and let g1, . . . , gs be a finite collection of
elements of A, not belonging to < α, β >. Then there exists a definably
connected set C ⊂ Sper A such that α, β ∈ C and C ∩ {gi = 0} = ∅
for i ∈ {1, . . . , s} (in other words, α and β belong to the same definably
connected component of the set Sper A \ {g1 . . . gs = 0}).
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In the earlier paper [21] we stated the Connectedness conjecture (in
the special case A = B) and proved that it implies the Pierce-Birkhoff
conjecture. Exactly the same proof applies verbatim to show that the De-
finable Connectedness conjecture implies the Pierce-Birkhoff conjecture for
any ring A.

One advantage of the Connectedness conjecture is that it is a statement
about A (respectively, about the polynomial ring if A = B) which makes
no mention of piecewise polynomial functions.

Our problem is therefore the one of constructing connected subsets of
Sper A having certain properties.

Terminology. — If A is an integral domain, the phrase “valuation of
A” will mean “a valuation of the field of fractions of A, non-negative on A”.
Also, we will sometimes commit the following abuse of notation. Given a
ring A, a prime ideal p ⊂ A, a valuation ν of A

p and an element x ∈ A, we will

write ν(x) instead of ν(x mod p), with the usual convention that ν(0) =∞,
which is taken to be greater than any element of the value group.

Given any ordered domain D, let D̄ denote the convex hull of D in its
field of fractions D(0):

D̄ :=
{
f ∈ D(0)

∣∣ d > |f | for some d ∈ D
}
.

The ring D̄ is a valuation ring, since for any element f ∈ D(0), either f ∈ D̄
or f−1 ∈ D̄. For a point α ∈ Sper A, we define Rα := A[α]. In this way,
to every point α ∈ Sper A we can canonically associate a valuation να of
A(α), determined by the valuation ring Rα. The maximal ideal of Rα is

Mα =
{
x ∈ A(α)

∣∣∣ |x| < 1
|z| , ∀z ∈ A[α] \ {0}

}
; its residue field kα comes

equipped with a total ordering, induced by ≤α.

Let U(Rα) denote the multiplicative group of units of Rα and Γα the
value group of να. Recall that

Γα
∼= A(α) \ {0}

U(Rα)

and that the valuation να can be identified with the natural homomorphism

A(α) \ {0} → A(α) \ {0}
U(Rα)

.
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By definition, we have a natural ring homomorphism

A→ Rα (0.1)

whose kernel is pα.

Conversely, the point α can be reconstructed from the ring Rα by speci-
fying a certain number of sign conditions (finitely many conditions when A
is noetherian) ([5], [17], [7] 10.1.10, p. 217).

The valuation να has the following properties:

(1) να(A[α]) � 0

(2) If A is an R-algebra then for any positive elements y, z ∈ A(α),

να(y) < να(z) =⇒ y > Nz, ∀N ∈ R. (0.2)

A να-ideal of A is the preimage in A of an ideal of Rα. See [32] or [3], §II.3
for more information on this subject.

As pointed out in [21], the points of Sper A admit the following geometric
interpretation (see also [10], [15], [32], p. 89 and [34] for the construction
and properties of generalized power series rings and fields).

Definition 0.14. — Let k be a field and Γ an ordered abelian group. The
generalized formal power series field k

((
tΓ

))
is the field formed by elements

of the form
∑
γ∈Γ

aγt
γ , aγ ∈ k such that the set {γ | aγ �= 0} is well ordered.

The field k
((
tΓ

))
is equipped with the natural t-adic valuation v with

values in Γ, defined by v(f) = inf{γ | aγ �= 0} for f =
∑
γ
aγt

γ ∈ k
((
tΓ

))
.

The valuation ring of this valuation is the ring k
[[
tΓ

]]
formed by all the

elements of k
((
tΓ

))
of the form

∑
γ∈Γ+

aγt
γ . Specifying a total ordering on

k and dimF2
(Γ/2Γ) sign conditions defines a total ordering on k

((
tΓ

))
. In

this ordering |t| is smaller than any positive element of k. For example, if
tγ > 0 for all γ ∈ Γ then f > 0 if and only if av(f) > 0.

For an ordered field k, let k̄ denote the real closure of k. The following
result is a variation on a theorem of Kaplansky ([15], [16]) for valued fields
equipped with a total ordering.
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Theorem 0.15 ([34], p. 62, Satz 21). — Let K be a real valued field,
with residue field k and value group Γ. There exists an injection K ↪→
k̄

((
tΓ

))
of real valued fields.

Let α ∈ Sper A. In view of (0.1) and the Remark above, specifying a
point α ∈ Sper A is equivalent to specifying a total order of kα, a morphism

A[α]→ k̄α
[[
tΓα

]]
(0.3)

and dimF2
(Γα/2Γα) sign conditions.

We may pass to Zariski spectra to obtain morphisms

Spec
(
k̄α

[[
tΓα

]])
→ Spec A[α]→ Spec A,

induced by the ring homomorphism (0.3) and the natural surjective homo-
morphism A � A[α], respectively.

In particular, if Γα = Z, we obtain a formal curve in Spec A (an
analytic curve if the series are convergent). This motivates the following
definition:

Definition 0.16. — Let k be an ordered field. A k-curvette on Sper(A)
is a morphism of the form

α : A→ k
[[
tΓ

]]
,

where Γ is an ordered group. A k-semi-curvette is a k-curvette α together
with a choice of the sign data sgn x1,..., sgn xr, where x1, ..., xr are elements
of A whose t-adic values induce an F2-basis of Γ/2Γ.

We have thus explained how to associate to a point α of Sper A a
k̄α-semi-curvette. Conversely, given an ordered field k, a k-semi-curvette α
determines a prime ideal pα (the ideal of all the elements of A which vanish
identically on α) and a total ordering on A/pα induced by the ordering of
the ring k

[[
tΓ

]]
of formal power series.

Below, we will often describe points in the real spectrum by specifying
the corresponding semi-curvettes.

Let ν be a valuation centered in a regular local ring A (see §1.1), let
Φ = ν(A \ {0}); Φ is a well-ordered set. For an ordinal λ < Φ, let γλ be the
element of Φ corresponding to λ.
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Definition 0.17. — A system of approximate roots of ν is a well-ordered
set of elements

Q = {Qi}i∈Λ ⊂ A,
satisfying the following condition: for every ν-ideal I in A, we have

I =





∏

j

Q
γj
j

∣∣∣∣∣∣
∑

j

γjν(Qj) � ν(I)



A; (0.4)

furthermore, we require the set Q to be minimal in the sense of inclusion
among those satisfying (0.4).

A system of approximate roots of ν up to γλ is a well-ordered set of
elements of A satisfying (0.4) for all the ν-ideals I such that ν(I) ≤ γλ.

The main results of this paper are:

1. Given a regular local ring (A,m, k), a valuation ν centered at A, as
above, and an element γλ ∈ Φ such that the ν-ideal determined by
γλ is m-primary, we construct a system of approximate roots up to
γλ.

2. We construct a system of approximate roots for A and ν under the
assumption that A is m -adically complete.

3. In the situation of the Connectedness (or Definable Connectedness)
conjecure we describe certain subsets C ⊂ Sper A by explicit formulae
in terms of approximate roots; we conjecture that these sets satisfy
the Connectedness (respectively, Definable Connectedness) conjec-
ture.

4. In the special case dim A = 2, we use the above results and construc-
tions to prove the Definable Connectedness conjecture (and hence a
fortiori the Pierce-Birkhoff conjecture). We also prove the Connect-
edness conjecture in dimension 2, provided the ring A is excellent.

The paper is organized as follows. Sections 1.1 to 1.5 are purely valuation-
theoretic; sections 1.2 and 1.4 are devoted to the construction of a system
of approximate roots.

The approximate roots Qi are constructed recursively in i. Roughly
speaking, Qi+1 is the lifting to A of the minimal polynomial equation satis-

fied by inνQi over k
[
{inνQj}j<i

]
in grνA. In sections 1.1 to 1.5, we prove

that such systems of approximate roots exist in two situations: first, for

– 267 –



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky

any m-primary ν-ideal J there exists a system of approximate roots up to
ν(J); secondly, there exists a system of approximate roots whenever A is
m-adically complete.

Once these valuation-theoretic tools are developed, we continue with
the program announced in [21] for proving the Pierce-Birkhoff conjecture.
We place ourselves in the situation of Conjectures 0.11 and 0.13. In §2.1
we describe the separating ideal < α, β > by describing monomials in the
approximate roots (common to the valuations να and νβ) which generate it.
In section 2.2, we give an explicit description of a set C ⊂ SperA\{g1 . . . gs =
0}, containing α and β, which we conjecture to be connected. The set C is
described in terms of a finite family of approximate roots, common to the
valuations να and νβ .

Finally, we prove the Definable connectedness conjecture and hence the
Pierce-Birkhoff conjecture for an arbitrary regular 2-dimensional local ring
A; we also prove Conjecture 0.11 assuming that A is excellent which provides
a second proof of the Pierce-Birkhoff conjecture in the case of excellent rings.
The outline of the proof of the two conjectures is as follows. First, we use
a sequence of point blowings up and Zariski’s theory of complete ideals
(recalled and refined in §3.1) to transform the set C into a set U of a very
simple form, which informally we call a quadrant. Namely, U is the set of
all the points δ of Sper A′ (where A′ is a regular two-dimensional local ring
obtained after a sequence of blowings up with regular system of parameters
x′, y′), centered at the origin, which induce a specified total order on k and
which satify the sign conditions x′(δ) > 0, y′(δ) > 0. This is accomplished
in §3.3.

In the special case when A′ is essentially of finite type over a real closed
field the connectedness of U is well known and follows easily from the results
of [7] (which allow to reduce connectedness of U to that of a quadrant in the
usual Euclidean plane). However, for more general regular rings this result
seems to us to be new and non-trivial.

In §3.4, we use results from [3] to reduce the connectedness of U to that
of a quadrant in the usual Euclidean space, assuming the ring A is excel-
lent. This completes the proof of the connectedness conjecture for excellent
regular 2-dimensional rings. In §3.5 we prove the definable connectedness of
U , without any excellence assumptions, by using a new notion of a graph,
associated to a sequence of point blowings-up of a real surface.

Our proof is based on Madden’s unpublished preprint [27]. As well, we
would like to acknowledge a recent paper by S. Wagner [44] which gives
a proof of the Definable Connectedness and the Pierce-Birkhoff conjecture
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in the case of smooth 2-dimensional algebras of finite type over real closed
fields.

The overall structure of our proof is similar to that of [27] and [44], with
the following differences:

1. Here, we have tried to present a proof which should provide a pattern
for a general proof of the conjecture, that is, have a hope of gener-
alizing to higher dimensions. In particular, we went to great lengths
to phrase everything in terms of approximate roots rather than work
directly with connected sets as in [27] and [44].

2. We make no assumptions on the real closedness of the residue field
of A which introduces certain extra complications.

3. Because we work with arbitrary regular two-dimensional rings, we
have to overcome a serious difficulty: proving that the “quadrant” U ,
defined above, is connected. This is well known for algebras of finite
type over a real closed field (see, for example, [7]) but as far as we
can tell, for general rings this result is new and non-trivial. Its proof
occupies most of section 3.5.

We thank the referee for his very careful reading of the manuscript and
for many useful suggestions which helped improve the paper.

1. Valuations and approximate roots

1.1. Generalities on valuations

In this section we review some basic facts of valuation theory.

Let A be a noetherian ring and ν : A → Γ ∪ {∞} a valuation centered
at a prime ideal of A. Let Φ = ν(A \ {0}) ⊂ Γ.

For each γ ∈ Φ, consider the ideals

Pγ = {x ∈ A | ν(x) � γ }
Pγ+ = {x ∈ A | ν(x) > γ } . (1.1)

Pγ is called the ν-ideal of A of value γ.

Remark 1.1. — It is easy to see that, as A is noetherian, ν(A) is well-
ordered.
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Notation. — If I is an ideal of A and ν a valuation of A, ν(I) will
denote min{ν(x) | x ∈ I}.

We now define certain natural graded algebras associated to a valuation.
Let A, ν and Φ be as above. For γ ∈ Φ, let Pγ and Pγ+ be as in (1.1). We
define

grνA =
⊕

γ∈Φ

Pγ
Pγ+
.

The algebra grν(A) is an integral domain. For any element f ∈ A with

ν(f) = γ, we may consider the natural image of f in
Pγ
Pγ+

⊂ grν(A). This

image is a homogeneous element of grν(A) of degree γ, which we denote by
inνf . The grading induces an obvious valuation on grν(A) with values in Φ;
this valuation will be denoted by ord.

We end this section with the notion of a monomial valuation. Let (A,m, k)
be a regular local ring, and u = (u1, . . . , un) a regular system of parame-
ters of A. Let Φ be an ordered semigroup and let β1, . . . , βn be strictly
positive elements of Φ. Let Φ∗ denote the ordered semigroup, contained in
Φ, consisting of all the N0-linear combinations of β1, . . . , βn. For γ ∈ Φ∗,
let Iγ denote the ideal of A, generated by all the monomials uα such that
n∑

j=1

αjβj � γ (we take I0 = A). Let x be a non-zero element of A. Let

Φx = {γ ∈ Φ∗ | x ∈ Iγ }. Then it is not difficult to prove that the set Φx

contains a maximal element and there exists a unique valuation ν, centered
at m, such that

ν(uj) = βj , 1 � j � n (1.2)

and
ν(x) = max{γ ∈ Φx}, x ∈ A \ {0}. (1.3)

This valuation is called the monomial valuation of A, associated to u and
the n-tuple (β1, . . . , βn). A valuation ν, with values in a group Γ, centered in
m, is said to be monomial with respect to u if there exist β1, . . . , βn ∈ Γ+

such that (1.3) holds for all x ∈ A \ {0}.

For further results on valuations, see also [43] or [45].

The following result is an immediate consequence of definitions:

Proposition 1.2. — Let Gν be the graded algebra associated to a val-

uation ν : K → Γ, as above. Consider a sum of the form y =
s∑

i=1

yi, with
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yi ∈ K. Let β = min
1≤i≤s

ν(yi) and

S = { i ∈ {1, . . . , n} | ν(yi) = β} .

The following two conditions are equivalent:

(1) ν(y) = β

(2)
∑
i∈S

inνyi �= 0.

1.2. Approximate roots up to ν(J) for an m-primary ideal J

Let A be a regular local ring of dimension n, m its maximal ideal, k =
A

m
,

u = (u1, . . . , un) a regular system of parameters and

ν : A \ {0} → Γ

a valuation, centered in m (this means ν(m) > 0).

Let 1 = ν(m) = min{γ ∈ Φ | γ > 0} and Φ1 = {γ ∈ Φ | ∃a ∈ N; γ <
a · 1}. For the sake of simplicity, we will write a instead of a · 1. We shall
study the structure of ν-ideals Pγ where γ ∈ Φ.

If ν were monomial with respect to u then inνu1, . . . , inνun would gen-
erate grνA as a k-algebra. We are interested in analyzing valuations which
are not necessarily monomial. We fix an m-primary valuation ideal J . The
purpose of sections 1.2 and 1.3 is to construct a system of approximate roots
up to ν(J), that is, a finite sequence of elements Q = {Qi}i∈Λ of A such
that for every ν-ideal I in A containing J we have

I =





∏

j

Q
γj
j

∣∣∣∣∣∣
∑

j

γjν(Qj) ≥ ν(I)



A (1.4)

(in particular, the images inνQi of the Qi in grνA generate grνA as a k-
algebra up to degree ν(J)). In this construction, each Qi+1 will be described
by an explicit formula (given later in this section) in terms of Q1, ..., Qi.

The earliest precursor of approximate roots appears in a series of papers
by Saunders MacLane and O.F.G. Schilling [23], [24] and [25]. In dimension
2, they were defined globally in k[x, y] by S. Abhyankar and T. T. Moh ([1],
[2]) and locally by M. Lejeune-Jalabert [20]. See also the papers [18] and [19]
by T. C. Kuo, [12] by R. Goldin and B. Teissier and [36] by M. Spivakovsky,
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[11] by F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, [39]-[42]
by Michel Vaquié. We also refer the reader to the paper [38] by B. Teissier for
a different approach to the theory of approximate roots in higher dimensions.

Let k =
A

m
=

A

mν ∩A
be the residue field of A. Fix an isomorphism

A

J
∼= k[u1, . . . , un]

J0
, where J0 is an ideal of k[u1, . . . , un]. In this way, we will

view k as a subring of A/J .

We fix, once and for all, a section k → A of the natural map A → k
which composed with the natural map A→ A

J
maps k isomorphically onto

its image in
A

J
. The image of k in A will be denoted by k.

According to Definition 0.17, we are looking for a finite set of elements
Q = {Qi}i∈Λ, Qi ∈ A satisfying (1.4).

Remark 1.3. — This means, in particular, that the initial forms
inν(Q1), inν(Q2), . . . generate grν(A), up to degree ν(J). In other words,
we want to build Q such that, for f ∈ A, we have inν(f) ∈ k[inνQ] pro-
vided ν(f) ≤ ν(J).

Since J is an m-primary ideal, there are only finitely many elements of
Φ less than or equal to ν(J). We proceed by induction on the finite set
{γ ∈ Φ | γ ≤ ν(J)}.

Definition 1.4. — Let E be an ordered set of elements of A. A gener-
alized monomial Qα in E is a formal expression

Qα =
∏

Q∈E
QαQ

where αQ ∈ N and αQ = 0 for all Q outside of a finite subset of E.

We view the set NE as being ordrered lexicographically and order the set
of generalized monomials by the lexicographical order of the pairs (ν(Qα), α).

The semigroup Φ is well ordered. For a natural number λ, γλ will denote
the λ-th element of Φ.

We start by choosing a coordinate system adapted to the situation.

Definition 1.5. — Take j ∈ {2, . . . , n}. We say that uj is (ν, J)-prepared
if either uj ∈ J or there does not exist f ∈ A such that

inνuj = inνf and (1.5)
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f mod J ∈ k[u1, . . . , uj−1]

k[u1, . . . , uj−1] ∩ J0
. (1.6)

The coordinate system u = {u1, . . . , un} is (ν, J)-prepared if uj is (ν, J)-
prepared for all j ∈ {2, . . . , n}.

Proposition 1.6. — There exists a (ν, J)-prepared coordinate system.

Proof. — We construct a (ν, J)-prepared coordinate system recursively
in j. Assume that u2, . . . , uj−1 are already (ν, J)-prepared, but uj is not.
Take f ∈ A satisfying (1.5) and (1.6).

Let ũj = uj − f ; then ν(ũj) > ν(uj).

Since there are only finitely many elements of Φ less than ν(J), after
finitely many repetitions of the above procedure, we may assume that uj is
(ν, J)-prepared. This completes the proof by induction on j. �

We construct, recursively in λ, two finite ordered sets Λ(γλ) and Θ(γλ)
with

Λ(γλ) ⊂
⋃

λ′<λ

Θ(γλ′),

and a total ordering of the set Λ(γλ) ∪ Θ(γλ−1), compatible with the or-
ders on Λ(γλ) and Θ(γλ−1). We do not impose a total order on the union⋃

λ′<λ Θ(γλ′). At each step we define additional finite ordered sets

V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ), (1.7)

where the inclusions in (1.7) are inclusions of ordered sets. Both collections
of sets Λ(γλ) and V(γλ) will be increasing with λ. A typical element of each
of those sets will have the form (Q,Ex(Q)) where Q ∈ A and Ex(Q) is a sum
of monomials in Λ(γλ)∪Θ(γλ−1), written in the increasing order according
to the on monomials, defined above.

Given an element (Q,Ex(Q)) ∈ Λ(γλ)∪Θ(γλ),Q is called an approximate
root and Ex(Q) is called the expression of Q. In what follows, we adopt the
convention

Θ(γλ) = V(γλ) = Ψ(γλ) = Λ(γλ) = ∅
whenever λ < 0.

For a natural number 2, γ� � ν(J), and for (Q,Ex(Q)) ∈ Λ(γ�) ∪Θ(γ�),
let In Q denote the smallest monomial of Ex(Q). Let

In(2) =
{
α ∈ NV(γ�)

∣∣∣ ∃(Q,Ex(Q)) ∈ Λ(γ�) such that Qα = In Q
}
.
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Theorem 1.7. — For a natural number λ, γλ ≤ ν(J), there exist finite
ordered sets

V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ)

and Θ(γλ) (and a total ordering of Λ(γλ)∪Θ(γλ−1)) consisting of elements
(Q,Ex(Q)), with Q ∈ A and Ex(Q) a sum of monomials in V(γλ)∪Θ(γλ−1),
increasing with respect to the given order on monomials, and having the
following properties:

ν(Q) < γλ whenever (Q,Ex(Q)) ∈ Λ(γλ) (1.8)

ν(Q) � γλ whenever (Q,Ex(Q)) ∈ Θ(γλ). (1.9)

Moreover, for any (Q,Ex(Q)) ∈ Λ(γλ), any monomial Qα appearing
in Ex(Q) is a monomial in V(γλ−1) provided Q∈/{u1, . . . , un}. For any
(Q,Ex(Q)) ∈ Θ(γλ), any monomial Qα appearing in Ex(Q) is a monomial
in (V(γλ+1) ∩Θ(γλ−1)) ∪ V(γλ) provided Q∈/{u1, . . . , un}. An element

(Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ)

is completely determined by In Q.

Proof. — We proceed by induction on λ.

First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u1, u1), . . . , (un, un)} where
we assume

ν(u1) � ν(u2) � · · · � ν(un).

We define the total ordering on Θ(1) by (u1, u1) < (u2, u2) < · · · < (un, un).

Let λ > 0 be a natural number such that γλ � ν(J). Assume that for
each 2 < λ we have constructed sets V(γ�) ⊂ Ψ(γ�) ⊂ Λ(γ�) and Θ(γ�)
having the properties required in the theorem.

Let

Λ(γλ) = Λ(γλ−1) ∪ {(Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) < γλ}. (1.10)

Definition 1.8. — An element (Q,Ex(Q)) ∈ Λ(γλ) is an inessential
predecessor of an approximate root (Q′,Ex(Q′)) ∈ Λ(γλ) if Ex(Q′) =
Ex(Q) +

∑
α
cαQ

α, where cα ∈ k and the Qα are monomials in V(γλ).

An element (Q,Ex(Q)) ∈ Λ(γλ) is said to be essential at the level γλ
if Q is not an inessential predecessor of an element of Λ(γλ).
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Let Ψ(γλ) be the subset of Λ(γλ) consisting of all the essential roots at
the level γλ. Let V(γλ) be the subset of Ψ(γλ) consisting of all (Q,Ex(Q))
such that inν(Q) does not belong to the k-vector space of G = grν(A) gen-
erated by the set {inνQγ} where Qγ runs over the set of all the generalized
monomials on roots preceding Q in the above ordering.

We extend the total ordering from Λ(γλ−1) to Λ(γλ) by postulating that
Λ(γλ−1) is the initial segment of Λ(γλ). Moreover, we extend this order to
Λ(γλ)∪Θ(γλ−1) by postulating that Λ(γλ) is the initial segment of Λ(γλ)∪
Θ(γλ−1).

For a natural number 2, let E(2) = In(2) + NV(γ�) ⊂ NV(γ�).

Now consider the ordered set {Qα1 , . . . ,Qαs} of monomials

Qα =
∏
QαQ , (Q,Ex(Q)) ∈ V(γλ)∪{ (Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) = γλ}

(1.11)
of value γλ, such that the natural projection of α to NV(γλ) does not belong
to E(λ).

Let i1 = max

{
i ∈ {1, . . . , s}

∣∣∣∣∣ inν(Q
αi) ∈

s∑
j=i+1

k inν(Q
αj )

}
and con-

sider the unique relation inν(Q
αi1 ) −

s∑
j=i1+1

c1j inν(Q
αj ) = 0. Let P1 =

Qαi1 −
s∑

j=i1+1

c1jQ
αj where c1j ∈ k is the image of c1j under the chosen

section k → A.

Let i2 = max

{
i ∈ {1, . . . , i1 − 1}

∣∣∣∣∣ inν(Q
αi) ∈

s∑
j=i+1

k inν(Q
αj )

}
and,

as before, consider the unique P2 = Qαi2 −
s∑

j=i2+1

j �=i1

c2jQ
αj such that the vec-

tor (αj)j=i1+1,...,s, c2j �= 0, is minimal in the lexicographical order. We
continue in this way and define P3, . . . , Pt.

Let

Θ(γλ)={ (Q,Ex(Q))∈Θ(γλ−1)| ν(Q)�γλ}∪{(P1,Ex(P1)), . . . , (Pt,Ex(Pt))}
(1.12)

where
Ex(Pj) = Ex(Q)−

∑

k

cjkQ
αk (1.13)
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if Qαij = Q with (Q,Ex(Q)) ∈ { (Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) = γλ} and

Ex(Pj) = Qαij −
∑

k

cjkQ
αk (1.14)

otherwise.

We define the order on Θ(γλ) by Θ(γλ−1) < {(P1,Ex(P1)), . . . , (Pt,Ex(Pt))}
and (P1,Ex(P1)) < · · · < (Pt,Ex(Pt)).

Remark 1.9. — Note that, because the coordinate system is prepared,
u1, . . . , un are always essential.

Remark 1.10. — Suppose given two approximate roots Q1 and Q2 such
that

In(Q1) = In(Q2) = Qα

and suppose that Q1 appears before Q2 in the process of construction of
the approximate roots decribed above. Because of the uniqueness of the
construction of the Pi’s above, we have

ν(Q2) > ν(Q1).

Now, if ν(Qα) = γ�, then α ∈ E(2), so the only way the monomial Qα can
appear as an initial form of Q2 is when Pk = Q′+

∑
cjQ

αj where In(Q′) =
Qα and then ν(Q′) < ν(Q2). Then, either ν(Q′) = ν(Q1) and so Q′ = Q1

because of the uniqueness in the construction process, or ν(Q′) > ν(Q1),
but we conclude by descending induction that Q2 = Q1 +

∑
cjQ

αj and
Ex(Q2) = Ex(Q1) +

∑
cjQ

αj .

So finally, the expression of an approximate root has the form

Ex(Q) = Qαij +
∑

k

akQ
αk (1.15)

the sum being written in the increasing order of the monomials.

Remark 1.11. — This construction is very similar to finding a basis of
the space of relations by row reduction.

Remark 1.12. — We just showed that there is a one to one correspon-
dence Q ↔ In(Q) between the approximate roots Q ∈ Ψ(γ�) and the set
of monomials which are the first term of the expression Ex(Q) of such an
approximate root Q. Let us denote by M(2) the set of those monomials.

The last part of the theorem holds by construction. �
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1.3. Standard form up to ν(J)

Consider the integer λ such that γλ = ν(J). Assume that the system of
coordinates u of A is (ν, J)-prepared.

Definition 1.13. — A monomial in Ψ(γλ) ∪Θ(γλ) is called standard
with respect to λ if all the approximate roots appearing in it belong to
V(γλ) and it is not divisible by any In(Q) where Q is an approximate root
in (Ψ(γλ) ∪Θ(γλ)) \ {(u1, u1), . . . , (un, un)}.

Definition 1.14. — Let f ∈ A and let 2 be a positive integer, 2 ≤ λ.
An expression of the form

f =
∑
cαQ

α,

where the Qα are monomials in Ψ(γλ) ∪ Θ(γλ), written in the increasing
order, is a standard form of level γ� with respect to λ if for all γ′ < γ�
and for all α such that ν(Qα) = γ′ and cα �= 0, Qα is a standard monomial
with respect to λ.

We now construct, by induction on 2, a standard form of f of level γ�.
We will write this standard form as

f = f� +
∑
cαQ

α

where, for all α, Qα is a generalized monomial in Ψ(γλ)∪Θ(γλ), ν(Qα) � γ�
and f� is a sum of standard monomials in V(γλ) of value strictly less than
γ�.

To start the induction, let f0 = 0. The standard form of f of level 0 with
respect to λ will be its expansion f = f0 +

∑
cαu

α as a formal power series
in the ui, with the monomials written in the increasing order according to
the monomial order defined above,.

Let 2 be a natural number, 2 < λ. Let us define f�+1 and the standard
form of f of level γ�+1 as follows. Assume we already have an expression
f = f�+

∑
cαQ

α with ν(Qα) � γ�, for all α, and the value of any monomial
of f� is strictly less than γ�.

Take the homogeneous part of
∑
cαQ

α of value γ�, with the monomials
arranged in the increasing order, and consider the first monomial Qα which
is not standard. Since Qα is not standard, one of the following two conditions
holds:
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1. There exists an approximate rootQ ∈ (Ψ(γλ) ∪Θ(γλ))\{(u1, u1), . . . ,
(un, un)} such that In(Q) divides Qα. Write Q = In(Q) +

∑
cβQ

β

and replace In(Q) by Q−∑
cβQ

β in Qα.

2. There exists Q ∈ Ψ(γλ) \ V(γλ) which divides Qα. Since Q∈/V(γλ),
there exists

Q′ ∈ Ψ(γλ) ∪Θ(γλ)

of the form Q′ = Q +
∑
δ

dδQ
δ where Qδ are monomials in V(γλ) of

value greater than or equal to γ�. Replace Q by Q′ −∑
δ

dδQ
δ.

In both cases, those changes introduce new monomials, but either they
are of value strictly greater than γ� or they are of value exactly γ� but
greater than Qα in the monomial ordering. We repeat this procedure as
many times as we can. After a finite number of steps, no more changes are
available at level γ�+1. Then, let f�+1 = f� +

∑
dβQ

β with ν(Qβ) = γ�, so
that f = f�+1 +

∑
cαQ

α where ν(Qα) > γ�.

The expression thus constructed satisfies the definition of standard form
of level γ�+1 because all the non-standard monomials Qα of value less than
or equal to γ� have been eliminated.

Proposition 1.15. — Let

f = f� +
∑
cαQ

α

be a standard form of f of level γ� and γ < γ� an element of Φ. Then∑
ν(Qβ)=γ

cβQ
β∈/Pγ+.

Proof. — We give a proof by contradiction. Suppose there exists a rela-
tion of the form ∑

ν(Qβ)=γ

cβQ
β ∈ Pγ+. (1.16)

Let Qα be the smallest monomial on the left hand side of (1.16). By con-
struction of approximate roots, there exists a finite collection Q1, . . . , Qs ∈
Λ(γ+) ∪ θ(γ+) and generalized monomials Qω1 , . . . ,Qωs such that
s∑

i=1

QiQ
ωi =

∑
ν(Qβ)=γ

cβQ
β .

There exists i ∈ {1, . . . , s} such that one of the two conditions holds :
either

Qα = Qωi · In(Qi)
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or
Qi = Q′i +

∑

ε

bεQ
ε, Q′i ∈ Λ(γ+) \Ψ(γ+).

In either case, the monomial Qα is not standard, which gives the desired
contradiction. �

For each 2, the part f� of a standard form of f of level γ� is uniquely
determined. This is a straightforward consequence of the Proposition.

As a consequence of Proposition 1.15, note that if γ� > ν(f) then ν(f)
equals the smallest value of a monomial appearing in the standard form of
f of level γ�.

Theorem 1.16. — (1) Take γ ∈ Φ, γ < γλ. Then
Pγ
Pγ+

is generated as

a k-vector space by {inνQβ} where Qβ runs over the set of all the standard
monomials with respect to λ, satisfying ν(Qβ) = γ.

(2) The part of the graded k-algebra grν(A) of degree strictly less than
γλ is generated by the initial forms of the approximate roots of V(γλ).

Proof. — Take an element γ ∈ Φ, γ < γλ. Let h ∈ Pγ/Pγ+ be a homoge-
neous element of degree γ of grν(A) and let f ∈ Pγ be such that inν(f) = h.
Let

∑
cβQ

β denote the homogeneous part of least value of a standard form
of f of level γλ. Then the initial form of f is

∑
inν(cβQ

β). �

The Alvis-Johnston-Madden example. Let α be the point of
Sper(R[x, y, z]) given by the curvette x(t) = t6, y(t) = t10 + ut11, z(t) =
t14 + t15 where u is some fixed element of R with u > 2. Let J be a να-ideal
of value greater than or equal to 37.

The calculation of the first few approximate roots gives

Q1 = x, (1.17)

Q2 = y, (1.18)

Q3 = z, (1.19)

Q4 = y2 − xz = (2u− 1)t21 + u2t22, ν(Q4) = 21 (1.20)

Q5 = yz − x4 = (u+ 1)t25 + ut26, ν(Q5) = 25 (1.21)

Q6 = z2 − x3y = (2− u)t29 + t30, ν(Q6) = 29 (1.22)

Q
(31)
7 = yQ4 − α(u)xQ5, α(u) = (2u− 1)/(u+ 1), ν

(
Q

(31)
7

)
(1.23)

= 32 (1.24)

Q
(32)
7 = yQ4 − α(u)xQ5 − β(u)x3z, ν

(
Q

(32)
7

)
= 33 (1.25)
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Q
(33)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 (1.26)

Q
(34)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 − δ(u)x4y (1.27)

Q
(35)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 − δ(u)x4y (1.28)

−ε(u)xQ6 (1.29)

Q
(35)
8 = zQ4 + ζ(u)xQ6 (1.30)

Q
(35)
9 = yQ5 + η(u)xQ6, (1.31)

where β(u), γ(u), δ(u), ε(u), ζ(u), η(u) are functions of u which can be
calculated explicitly.

The elements listed above belong to Λ(37); we chose to index them as

Q
(j)
i . In this notation, the approximate rootQ

(j)
i is an inessential predecessor

of Q
(j+1)
i whenever Q

(j+1)
i is defined.

We also note the relation xQ6 − yQ5 + zQ4 = 0, which is the simplest
example of a syzygy, an important phenomenon, responsible for much of the
difficulty of the Pierce-Birkhoff conjecture.

In the same vein, we can describe the standard form of different levels
of an element of A, say for instance,

f = x3 + y3 + z3 (1.32)

(which is a standard form of level 0). For γ ≤ 30, the standard form of
f of level γ is given by (1.32). Then, as y2 ∈ E(8) (this is so because 21
is the eighth positive element of the value semigroup Φ), we replace y3 by
y(Q4 + xz) to obtain

f = x3 + yQ4 + xyz + z3. (1.33)

Since yz ∈ E(11) (note that 25 is the eleventh positive element of the value
semigroup Φ), we replace xyz in (1.33) by xQ5 +x5, to obtain the standard
form of level 31:

f = x3 + x5 + yQ4 + xQ5 + z3 (1.34)

(the monomials being written in the order of increasing values 18, 30, 31,
31, 42). Next, we replace yQ4 by α(u)xQ5 in (1.34), so the standard form
of levels 32, 33, 34 and 35 is given by

f = x3 + x5 + (1 +α(u))xQ5 + β(u)x3z+ γ(u)x2Q4 + δ(u)x4y+Q
(34)
7 + z3,

and so on ...
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Let 2 be an integer such that γ� � γλ. Let X = XV(γ�) be a set of
independent variables, indexed by V(γ�), and consider the graded k-algebra
k

[
XV(γ�)

]
, where we define

deg Xj = ν(Qj).

Let P denote the homogeneous monomial ideal of k
[
XV(γ�)

]
generated by

all the monomials in XV(γ�) of degree greater than or equal to γ�. We have
a natural map

φ� :
k[XV(γ�)]

P → grνA
Pγ�

Xj �→ inνQj .

Now, for 2 = 0, let I0 = (0). For 2 > 0, let I� denote the ideal of
k[XV(γ�)]

P
generated by all the homogeneous polynomials of the form

Xα0 + λ1X
α1 + λ2X

α2 + · · ·+ λb0Xαb0 (1.35)

where Qα0 + λ1Q
α1 + λ2Q

α2 + · · · + λb0Qαb0 is the homogeneous part of
least degree of Ex(Q) for an approximate root Q ∈ V(γ�) ∪Θ(γ�).

Corollary 1.17. — We have ker φ� = I�.

Proof. — The inclusion I� ⊂ ker φ� is immediate. To prove the opposite
inclusion, we argue by contradiction. Take a homogeneous element

h = aλ1X
λ1 + aλ2X

λ2 + . . .+ aλsX
λs ∈ ker(φ�) \ I� (1.36)

of degree b, b < γ�, such that λ1 is lexicographically smallest among all the
elements h ∈ ker(φ�) \ I� of degree b.

The inclusion (1.36) implies that

aλ1 inνQ
λ1 + aλ2 inνQ

λ2 + . . .+ aλs inνQ
λs = 0. (1.37)

in Pb/Pb+.

By definition of I�, there exists an element g ∈ I� of the form Xε +∑
p cpX

εp and a monomial Xδ with εp > ε for all p and λ1 = ε+δ. Then, as

g ∈ I� ⊂ ker(φ�), we have h− aλ1X
δg ∈ ker(φ�) and the greatest monomial

of h− aλ1X
δg is strictly bigger than Xλ1 . This contradicts the choice of h.

�
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Corollary 1.18. — Take an element γ ∈ Φ, γ < γλ. The valuation
ideal Pγ is generated by all the generalized monomials of value greater than
or equal to γ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ)}. The ideal Pγλ is generated
by all the generalized monomials of value greater than or equal to γλ in
{Q | (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ)}.

Proof. — Let f ∈ Pγ (resp. f ∈ Pγλ). By the very definition of the
standard form of level 2 such that γ� = γ, f can be written as an A-linear
combination of generalized monomials of value greater than or equal to γ
in {Q | (Q,Ex(Q)) ∈ Ψ(γλ)} (resp. ∈ Ψ(γλ) ∪Θ(γλ)). Thus Pγ (resp. Pγλ)
is generated by the generalized monomials of value at least γ, as desired.

�

1.4. Approximate roots in a complete regular local ring

We now generalize the notion of approximate root to a complete regular

local ring A of dimension n, with maximal ideal m, and residue field k =
A

m
.

Let u = (u1, . . . , un) be a regular system of parameters and

ν : A \ {0} → Γ

a valuation, centered in m. Denote by νm the m-adic valuation.

We keep the same notation as in §2.

The purpose of this section is to construct, for a general ν, a system
of approximate roots of ν, that is, a well-ordered collection of elements
Q = {Qi}i∈Λ of A such that for every ν-ideal I in A, we have

I =





∏

j

Q
γj
j

∣∣∣∣∣∣
∑

j

γjν(Qj) ≥ ν(I)



A (1.38)

(in particular, the images inνQi of the Qi in grνA generate grνA as a k-
algebra). Each Qi+1 will be described by an explicit formula (given later in
this section) in terms of the Qj , j < i.

In this general setting, we have to proceed by transfinite induction on
the well-ordered semigroup Φ. Since we are not assuming that rk Γ = 1
or that Φ is Archimedean, we have to work with ordinals other than the
natural numbers.

Remark on the use of transfinite induction. — Since the ringA is noethe-
rian, the group Γ of values of ν has finite rank. Therefore all the ordinals
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2 we will encounter in this paper will be of type 2 � ωn (cf. [43] and [8]).
Thus we will be using a very special form of transfinite induction, which
amounts to usual induction, applied finitely many times. We will, however,
stick to the language of transfinite induction to simplify the exposition.

Recall the definition of generalized monomial with respect to a totally
ordered set E ⊂ A (Definition 1.4). Assume in addition that E is well-
ordered. We well-order the set NE by the lexicographical ordering and the
set of generalized monomials by the lexicographical ordering on the set of
triples (ν (Qα) , νm (Qα) , α).

The semigroup Φ is well ordered. By abuse of notation, we will sometimes
write Φ for the ordinal given by the order type of Φ. Let λ < Φ be an ordinal
and γλ the element of Φ corresponding to λ.

We start by choosing a coordinate system adapted to the situation. Fix an
isomorphism

A ∼= k[[u1, . . . , un]]. (1.39)

Definition 1.19. — Take j ∈ {2, . . . , n}. We say that uj is ν-prepared
if there does not exist f ∈ A such that inνuj = inνf and f ∈ k[[u1, . . . , uj−1]].
The coordinate system u = {u1, . . . , un} is ν-prepared if uj is ν-prepared for
all j ∈ {2, . . . , n}.

Proposition 1.20. — There exists a ν-prepared coordinate system.

Proof. — We construct a ν-prepared coordinate system recursively in j.
Assume that u2, . . . , uj−1 are ν-prepared, but uj is not.

We will construct the prepared coordinate ũj recursively by transfinite
induction on Φ. More precisely, we will construct a well ordered set {uji} of
successive approximation to ũj in the m-adic topology. We will show that
this set satisfies the hypothesis of Zorn’s lemma and let ũj be its maximal
element.

The details go as follows. Let uj0 = uj . Suppose that uji is constructed
and that it is not prepared. Let fji be the element f of k[[u1, . . . , uj−1]]
appearing in the definition of “not prepared”. Put uj,i+1 = uji − fji. Then
ν(uji) = ν(fji) < ν(uj,i+1). Next, suppose given a sequence uji, uj,i+1, . . .
of elements of k[[u1, . . . , uj ]] such that (u1, . . . , uj−1, ujq) is a regular system
of parameters of k[[u1, . . . , uj ]] for each q and

ν(uji) < ν(uj,i+1) < ν(uj,i+2) < · · · .
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Let βq = ν(ujq). Since the ring A is noetherian, the semi-group Φ is well-
ordered. Let β̄ = min {β ∈ Φ | β > βq,∀q ∈ N}. By Chevalley’s lemma, ap-

plied to the nested sequence of ideals
Pβq ∩ k[[u1, . . . , uj−1]]

Pβ̄ ∩ k[[u1, . . . , uj−1]]
in the complete

local ring
k[[u1, . . . , uj−1]]

Pβ̄ ∩ k[[u1, . . . , uj−1]]
, we see that lim

q→∞
(fjq mod Pβ̄) = 0 in the

(u1, . . . , uj−1)-adic topology.

Hence, modifying each fjq by an element of Pβ̄ if necessary, we may
assume that

lim
q→∞

fjq = 0.

We define uj,i+ω to be the formal power series uji − fji − fj,i+1 − · · ·. By
construction,

ν(uj,i+ω) � β̄.

To complete our construction , we need to consider countable well ordered
sets {ujt} of order type greater than ω. This presents no problem: by count-
ability, we can always choose a cofinal subsequence in each such set. Then
the above construction of uj,i+ω applies verbatim. �

We construct, inductively in λ, two well-ordered sets Λ(γλ) and Θ(γλ)
and, in the case λ is not a limit ordinal, a well ordering of the set Λ(γλ) ∪
Θ(γλ−1), compatible with the orders on Λ(γλ) and Θ(γλ−1). At each step
we define two additional well-ordered sets V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ) where
the inclusions are inclusions of ordered sets. Both collections of sets Λ(γλ)
and V(γλ) will be increasing with λ.

A typical element of each of those sets will have the form (Q,Ex(Q))
where Q ∈ A and Ex(Q) is an increasing sum of monomials in V(γλ) ∪
Θ(γλ−1) if λ is not a limit ordinal, resp. monomials in V(γλ) if λ is a
limit ordinal. The sum in Ex(Q) may be finite or infinite, but it is always
convergent in the m-adic topology. Given an element (Q,Ex(Q)) ∈ Λ(γΦ)∪
Θ(γΦ), Q is called an approximate root and Ex(Q) is called the expression
of Q.

For an ordinal 2 < Φ and for (Q,Ex(Q)) ∈ Λ(γ�)∪Θ(γ�), let In Q denote
the smallest monomial of Ex(Q).
Let In(2) =

{
α ∈ NV(γ�)

∣∣ ∃(Q,Ex(Q)) ∈ Λ(γ�) such that Qα = In Q
}
.

Theorem 1.21. — For λ < Φ, there exist well ordered sets V(γλ) ⊂
Ψ(γλ) ⊂ Λ(γλ) and Θ(γλ), and a well ordering of Λ(γλ) ∪Θ(γλ−1) when λ

– 284 –



Approximate roots of a valuation and the Pierce-Birkhoff conjecture

is not a limit ordinal, having the following properties. Let

Ψ(< γλ) = Ψ(γλ−1) if λ is not a limit ordinal and (1.40)

Ψ(< γλ) = Ψ(γλ) otherwise (1.41)

and similarly for V(< γλ). Then each set V(γλ),Ψ(γλ), Λ(γλ), Θ(γλ) con-
sists of elements of the form (Q,Ex(Q)), with Q ∈ A and Ex(Q) is an
increasing (with respect to the monomial order defined above) sum of mono-
mials in V(< γλ)∪Θ(γλ−1) when λ is not a limit ordinal, resp. V(γλ) when
λ is a limit ordinal, of value < ν(Q), provided Q∈/{u1, . . . , un}, such that

ν(Q) < γλ whenever (Q,Ex(Q)) ∈ Λ(γλ) (1.42)

ν(Q) � γλ whenever (Q,Ex(Q)) ∈ Θ(γλ) (1.43)

and the sets

{(Q,Ex(Q)) ∈ Θ(γλ) ∪ Λ(γλ) | ν(Q) = γ}, γ ∈ Φ (1.44)

and

{ (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ) | Q∈/ms} , s ∈ N (1.45)

are finite. An element (Q,Ex(Q)) ∈ Ψ(γλ)∪Θ(γλ) is completely determined
by In Q; moreover νm(In Q) = νm(Q).

In what follows, Λ(< γλ) will stand for
⋃
�<λ

Λ(γ�).

Proof. — We proceed by transfinite induction.

First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u1, u1), . . . , (un, un)} where
we assume

ν(u1) � ν(u2) � · · · � ν(un).

We define the well ordering on Θ(1) by (u1, u1) < (u2, u2) < · · · < (un, un).

Let λ < Φ be an ordinal. Assume that for each 2 < λ we have constructed
sets Ψ(γ�) ⊂ Λ(γ�) and Θ(γ�) and a well ordering of Λ(γ�)∪Θ(γ�−1), having
the properties required in the theorem.

Let

Λ(γλ) = Λ(< γλ) if λ is a limit ordinal (1.46)

Λ(γλ) = Λ(γλ−1) ∪ {(Q,Ex(Q))∈Θ(γλ−1)|ν(Q)<γλ} otherwise. (1.47)
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Definition 1.22. — An element (Q,Ex(Q)) ∈ Λ(γλ) is an inessential
predecessor of a root (Q′,Ex(Q′)) ∈ Λ(γλ) if Ex(Q′) = Ex(Q)+

∑
α cαQ

α,
where each cα is a unit in A and Qα a monomial in V(γλ).

An element (Q,Ex(Q)) ∈ Λ(γλ) is said to be essential at the level γλ
if Q is not an inessential predecessor of an element of Λ(γλ).

Let Ψ(γλ) be the subset of Λ(γλ) consisting of all the essential roots at
the level γλ. Let V(γλ) be the subset of Ψ(γλ) consisting of all (Q,Ex(Q))
such that inν(Q) does not belong to the k-vector space of grν(A) gener-
ated by the set {inνQγ} where Qγ runs over the set of all the generalized
monomials on roots preceding Q in the above ordering.

We extend the well ordering from Λ(< γλ) to Λ(γλ) by postulating that
Λ(< γλ) is the initial segment of Λ(γλ). Moreover, we extend this well
ordering from Λ(γλ) to Λ(γλ) ∪Θ(γλ−1).

If 2 is not a limit ordinal, let E(2) = In(2)+NV(γ�) ⊂ NV(γ�). Now, if 2′ <
2′′, we have V(γ�′) ⊂ V(λ�′′), which induces an inclusion NV(γ�′ ) ⊂ NV(γ�′′ ).
If 2 is a limit ordinal, define E(2) =

⋃
�′<�

E(2′).

Notation. — Denote by Θ(< γλ) the set
⋃

�<λ

Θ(γ�) \ Λ(< γλ).

Remark 1.23. — We have

Ψ(γλ) ∪Θ(< γλ) = Ψ(< γλ) ∪Θ(< γλ). (1.48)

Indeed, consider an element (Q,Ex(Q)) ∈ Ψ(γλ) ∪ Θ(< γλ). If λ is a limit
ordinal, then

(Q,Ex(Q)) ∈ Ψ(< γλ) ∪Θ(< γλ) (1.49)

by (1.41). If λ is not a limit ordinal and (Q,Ex(Q)) ∈ Ψ(γλ)\Ψ(γλ−1) then

(Q,Ex(Q)) ∈ Θ(γλ−1)

by (1.47). Thus (1.49) holds in all the cases and (1.48) is proved.

Lemma 1.24. — The set Q(h) =
{

(Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ)|Q∈/mh
}

is finite for every h ∈ N.

Proof. — Consider an element (Q,Ex(Q)) ∈ Q(h). If (Q,Ex(Q)) ∈
Θ(< γλ), then there exists 2 < λ such that (Q,Ex(Q)) ∈ Θ(< γ�). If
(Q,Ex(Q)) ∈ Ψ(< γλ) ⊂ Λ(γλ) =

⋃
�<λ Λ(γ�), then there exists 2 < λ such
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that (Q,Ex(Q)) ∈ Λ(γ�). Since Q is essential at level γλ, it is also essential
at level γ�, so (Q,Ex(Q)) ∈ Ψ(γ�). Thus by the induction hypothesis on λ,
for any Q ∈ Q(h), we have νm(Q) = νm(In Q).

Write Ex(Q) = Qα0 + · · · where, by construction, Qα0 is either a ur or
a product of at least 2 terms, Qα0 =

∏
Qβs
s .

In the first case, the number of such Qα0 is finite, because the number
of uk is finite.

In the second case, νm(Qs) < νm(Qα0) � νm(Q) < h. So νm(Qs) < h− 1
and, by induction on h, the number of such Qs is finite. If

m = min {νm(Qs) | Qs divides Qα0 } ,

then |α0|m � νm(Qα0) ≤ h − 1, so there is a finite number of such α0

possible which means that the number of such Qα0 is finite. By the induction
hypothesis, Q is completely determined by In Q whenever (Q,Ex(Q)) ∈
Ψ(γλ) ∪Θ(< γλ). Therefore Q(h) is finite. �

Corollary 1.25. — The set of monomials {Qα | Qα∈/ms } in Ψ(γλ)∪
Θ(< γλ) is finite for every s ∈ N.

Corollary 1.26. — (1) Any infinite sequence of generalized monomi-
als in Ψ(γλ) ∪ Θ(< γλ), all of whose members are distinct, converges to 0
in the m-adic topology.

(2) Any infinite series, all of whose terms are distinct generalized mono-
mials in Ψ(γλ) ∪Θ(< γλ) converges in the m-adic topology.

Lemma 1.27. — The set

Qα=
∏
QαQ such that (Q,Ex(Q))∈Ψ(γλ)∪{(Q, ,Ex(Q))∈Θ(<γλ)|ν(Q)=γλ}

and ν(Qα) = γλ is finite.

Proof. — By the Artin-Rees lemma, there exists p0 such that, for p � p0,

mp ∩ Pγλ = mp−p0(mp0 ∩ Pγλ).

Take p > p0, then
mp ∩ Pγλ ⊂ mPγλ ⊂ Pγλ+. (1.50)

This equation shows that the set of the lemma is disjoint from mp. So by
the above corollary, the set of the lemma is finite. �
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Consider now the ordered set {Qα1 , . . . ,Qαs} of monomials

Qα =
∏
QαQ , (Q,Ex(Q)) ∈ V(γλ) ∪ {(Q,Ex(Q)) ∈ Θ(< γλ) | ν(Q) = γλ}

(1.51)
of value γλ such that the natural projection of α to NV(γλ) does not belong
to E(λ). The fact that this set is finite follows from the above Lemma and
the fact that V(γλ) ⊂ Ψ(γλ).

Let i1 = max

{
i ∈ {1, . . . , s}

∣∣∣∣∣ inν (Qαi) ∈
s∑

j=i+1

k inν (Qαj )

}
and con-

sider the unique relation inν (Qαi1 ) −
s∑

j=i1+1

c1j inν (Qαj ) = 0. Let P1 =

Qαi1 −
s∑

j=i1+1

c1jQ
αj where we view k as a subring of A via the identifica-

tion (1.39).

Let i2 = max

{
i ∈ {1, . . . , i1 − 1}

∣∣∣∣∣ inν (Qαi) ∈
s∑

j=i+1

k inν (Qαj )

}
and,

as before, consider the unique P2 = Qαi2 −
s∑

j=i2+1

j �=i1

c2jQ
αj such that the vec-

tor (αj)j=i1+1,...,s, c2j �= 0, is minimal in the lexicographical order and
define so on uniquely P3, . . . , Pt.

Now, if λ has a predecessor, we let

Θ(γλ)={ (Q,Ex(Q))∈Θ(<γλ)| ν(Q)�γλ}∪{(P1,Ex(P1)), . . . , (Pt,Ex(Pt))}
(1.52)

where

Ex(Pj) = Qαij −
∑

k

cjkQ
αk (1.53)

if Qαij is not a preceding root Q and

Ex(Pj) = Ex(Q)−
∑

k

cjkQ
αk (1.54)

in the other case.
We define the order on Θ(γλ) by Θ(γλ−1) < {(P1,Ex(P1)), . . . , (Pt,Ex(Pt))}
and (P1,Ex(P1)) < · · · < (Pt,Ex(Pt)).

Remark 1.28. — Note that, because the system of coordinates is pre-
pared, u1, . . . , un are always essential.
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Remark 1.29. — Note that Remark 1.10 remains valid in this context,
with the obvious modification that the expressions of approximate roots are
now allowed to be infinite, but convergent in the m-adic topology.

Suppose now λ is a limit ordinal. Let (Q0, Ex(Q0)) ∈ Λ(γ�0) for some
20 < λ and Qα = In(Q0). Let L(Q0) be the following infinite well ordered
set of approximate roots, indexed by ordinals 2, 20 � 2 < λ

L(Q0) = { (Q(�), Ex(Q(�))) ∈ Ψ(γ�) }�0��<λ

such that InQ(�) = Qα.

By Remarks 1.10 and 1.29, for 20 � 2 < 2′ < λ, we have

Ex(Q(�′)) = Ex(Q(�)) +
∑

j∈W
cjQ

αj (1.55)

where ν(Qαj ) � ν(Q(�)).

Let p be a positive integer. By induction assumption, all the approximate
roots Q appearing in any of the monomials Qαj belong to V(γλ) and, by
lemma 1.24, the number of such roots outside mp is finite. Thus, all but
finitely many Qαj belong to mp. This proves that L(Q0) has a limit in A
with respect to the m-adic topology : (lim

→
Q, lim
→

Ex(Q)).

Let
Θ(γλ) = {(Q,Ex(Q)) ∈ Θ(< γλ) | ν(Q) � γλ} ∪ L̂ (1.56)

where L̂ consists of all couples of the form (lim
→
Q, lim
→

Ex(Q)).

So finally, the expression of an approximate root has the form

Ex(Q) = Qα +
∑

k

akQ
αk (1.57)

the sum, written in the increasing order of the monomials, being finite or
infinite.

We now prove the finiteness of sets (1.44) and (1.45). First, note that
the set

{(Q,Ex(Q)) ∈ Θ(< γλ) ∪ Λ(γλ) | ν(Q) = γ}, γ ∈ Φ (1.58)

is finite by the induction hypothesis and the set

{ (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ) | Q∈/mp} , p ∈ N (1.59)
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is finite by the induction hypothesis and lemma (1.27). If λ is not a limit
ordinal, the finiteness of (1.44) and (1.45) follows from the fact that the set
Θ(γλ) \ Θ(< γλ) is finite by construction. If λ is a limit ordinal, to prove
finiteness of (1.44) and (1.45), it remains to prove that the set

{(Q,Ex(Q)) ∈ L̂ | ν(Q) = γ} (1.60)

is finite. This is proved in exactly the same way as lemma (1.27). This
completes the proof of the finiteness of (1.44) and (1.45).

The property that the monomials appearing in Ex(Q) are arranged in
increasing order with respect to the ν-adic value holds for all the newly
constructed approximate roots. Next we show that νm(InQ) = νm(Q) for all
those new approximate roots. Indeed, if λ is not a limit ordinal and Ex(Q)
is given by formula (1.53), all the monomials appearing in Ex(Q) have the
same ν-adic value and their νm-adic values are increasing because of the
order we imposed on monomials which proves that νm(InQ) = νm(Q). If
(Q′,Ex(Q′)) is an approximate root whose expression is given by formula
(1.54), with Pj playing the role of Q′, let Qα0 = In Q. We have Q′ =
Q+

∑
cαQ

α, where ν(Qα) = ν(Q). Then νm(Q) � νm(Qα) for all α, because
of the order on monomials. So that finally, νm(Qα0) � νm(Q) � νm(Qα),
which proves that νm(InQ′) = νm(Q′). The property that νm(InQ) = νm(Q)
is clearly preserved by passing to the limit, so it also holds in the case when
λ is a limit ordinal.

Remark 1.30. — We just showed that there is a one to one correspon-
dence between the approximate roots Q ∈ Ψ(γ�) and the set of monomials
which are the first term of the expression Ex(Q) of such an approximate
root Q. Let us denote by M(2) the set of those monomials.

We well order L̂ by the lexicographical order of the triples (ν(Q), νm(Q),
In(Q)), Q ∈ L̂. We extend this ordering to Θ(γλ) by postulating that L̂ is
the final segment in Θ(γλ).

The rest of Theorem 1.21 holds by construction.

1.5. Standard form in the case of complete regular local rings

Let Ψ(γΦ) =
⋃

�<Φ

⋂
���′<Φ Ψ(γ�′) and let V(γΦ) be the set of approxi-

mate roots, essential at the level γΦ.

In this section, we fix an ordinal λ � Φ.

Definition 1.31. — A monomial in Ψ(γλ) ∪ Θ(γλ) is called standard
with respect to λ if all the approximate roots appearing in it belong to V(γλ)
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and it is not divisible by any InQ where Q is an approximate root in (Ψ(γλ)∪
Θ(γλ)) \ {(u1, u1), . . . , (un, un)}.

Take an ordinal 2 ≤ λ.

Definition 1.32. — Let f ∈ A. An expansion of f of the form f =∑
cαQ

α where the Qα are monomials in Ψ(γλ)∪Θ(γλ), written in increas-
ing order, is a standard form of level γ� if ∀γ′ < γ� and for all α such that
ν(Qα) = γ′, Qα is a standard monomial.

We now construct by induction on 2 a standard form of f of level γ�. We
will write this standard form as

f = f� +
∑
cαQ

α

where, for all α, Qα is a generalized monomial in Ψ(γλ)∪Θ(γλ), ν(Qα) ≥ γ�
and f� is a sum of standard monomials in V(γλ) of value strictly less than
γ�.

To start the induction, let f0 = 0. The standard form of f of level 0 will
be its expansion, f = f0 +

∑
cαu

α, written in increasing order according to
the monomial order defined above, as a formal power series in the ui.

Let 2 < λ be an ordinal. Let us define f�+1 and the standard form of f
of level γ�+1 as follows. Assume, inductively, that a standard form of level
γ� is already defined: f = f� +

∑
cαQ

α with ν(Qα) � γ�, for all α, and the
value of any monomial of f� is strictly less than γ�.

Take the homogeneous part of
∑
cαQ

α of value γ�, the monomials be-
ing written in increasing order. Assume that not all the Qα are standard
with respect to λ, and take the smallest non standard Qα. Since Qα is not
standard, one of the two following conditions holds:

1. There exists an approximate rootQ ∈ (Ψ(γλ) ∪Θ(γλ))\{(u1, u1), . . . ,
(un, un)} such that In(Q) divides Qα. Write Q = In(Q) +

∑
cβQ

β

and replace In(Q) by Q−∑
cβQ

β in Qα.

2. An approximate root Q ∈ Ψ(γλ) \V(γλ) divides Qα. Since Q∈/V(γλ),
there exists

Q′ ∈ Ψ(γλ) ∪Θ(γλ)

of the form Q′ = Q+
∑

β dβQ
β , where the Qβ are monomials in V(γλ)

of value greater than or equal to γ�. Replace Q by Q′ −∑
β dβQ

β .
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In both cases, those changes introduce new monomials, with increasing
νm value, but either they are of value strictly greater than γ� or they are of
value exactly γ� but greater than Qα in the monomial ordering. We repeat
this procedure as many times as we can. After a finite number of steps, no
more changes are available involving monomials of value exactly γ�. Then,
let f�+1 = f�+

∑
dρQ

ρ with ν(Qρ) = γ�, so that f = f�+1 +
∑
cαQ

α where
ν(Qα) > γ�.

Suppose now that µ is a limit ordinal. For each 2 < µ, write f = f� + δ�
where f� is a sum of standard monomials, with respect to λ, of value strictly
less than γ� and δ� is a sum of monomials in Ψ(γλ)∪Θ(γλ), of value greater
than or equal to γ�. We assume inductively that, for each 2 < µ and for each
generalized monomial Qτ in Ψ(γλ) ∪ Θ(γλ), there exist cτ , bτ ∈ k and an
ordinal 20 < 2 such that, for all 2′, 20 < 2′ < 2, the monomial Qτ appears in
f�′ with coefficient cτ and in δ�′ with coefficient bτ . Moreover, assume that
f� = lim

→
�′<�

f�′ =
∑

τ cτQ
τ and δ� = lim

→
�′<�

δ�′ =
∑

τ bτQ
τ .

Lemma 1.33. — Consider a generalized monomial Qτ in Ψ(γλ)∪Θ(γλ).
There exist cτ , bτ ∈ k and an ordinal 20 < µ such that, for all 2, 20 < 2 < µ,
the monomial Qτ appears in f� with coefficient cτ and in δ� with coefficient
bτ .

Corollary 1.34. — The limits lim
→
�<µ

f� and lim
→
�<µ

δ� exist in the m-adic

topology.

Proof of Corollary 1.34. — This is an immediate consequence of the
Lemma and Corollary 1.26. �

Proof of Lemma 1.33. — The existence of cτ in the lemma follows im-
mediately from the construction and the induction hypothesis.

If ν(Qτ ) < γµ, put bτ = 0. Assume ν(Qτ ) � γµ. For 2 < µ, let bτ (2)
denote the coefficient of Qτ in δ�. Take an ordinal 2 < µ. Suppose

bτ (2) �= bτ (2+ 1). (1.61)

This means that in the above construction of f�+1 + δ�+1 from f� + δ�,

Qτ appears in one of the expressions
Qα

InQ
Q,

Qα

InQ

∑

β

dβQ
β (case 1 of the

construction) or
Qα

Q
Q′,

Qα

Q

∑

β

dβQ
β (case 2 of the construction). Then

νm(Qα) � νm(Qτ ). (1.62)
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Suppose that there were infinitely many 2 for which (1.61) holds. This would
mean that there are infinitely many monomials Qα (all distinct because
ν(Qα) = γ�), satisfying (1.62). This contradicts Lemma 1.24; hence there
are finitely many such 2. Together with the induction hypothesis, this proves
that bτ (2) stabilizes for 2 sufficiently large. This completes the proof of the
lemma. �

For each Qτ as above, let cτ , bτ be as in Lemma 1.33. Let fµ = lim
→
�<µ

f� =

∑
τ cτQ

τ and δµ = lim
→
�<µ

δ� =
∑

τ bτQ
τ . We define the standard form of f of

level γµ as f = fµ + δµ.

This completes the construction of standard form of level γ� for 2 � λ.

Proposition 1.35. — Let

f = f� +
∑
cαQ

α

be a standard form of f of level γ� and γ < γ� an element of Φ. Then∑
ν(Qβ)=γ

cβQ
β∈/Pγ+.

The proof is entirely the same as the proof of the analogous Proposition
1.15.

For each 2, the part f� of a standard form of f of level γ� is uniquely
determined. This is a straightforward consequence of the proposition.

By Proposition 1.35, if γ� > ν(f) then ν(f) equals the smallest value of
a monomial appearing in the standard form of f of level γ�.

Theorem 1.36. — (1) Take γ ∈ Φ, γ < γλ. Then
Pγ
Pγ+

is generated as

a k-vector space by {inνQβ} where Qβ runs over the set of all standard
monomials with respect to λ, satisfying ν(Qβ) = γ.

(2) The part of the graded k-algebra grν(A) of degree strictly less than
γλ is generated by the initial forms of the approximate roots of V(γλ).

The same proof as that of Theorem 1.16 works here.

Now, for each ordinal 2, letX = XV(γ�) be a set of independent variables,

indexed by V(γ�) and consider the graded k-algebra k
[
XV(γ�)

]
, where we
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define deg Xj = ν(Qj). Let P denote the homogeneous monomial ideal of
k

[
XV(γ�)

]
generated by all the monomials in XV(γ�) of degree greater than

or equal to γ�+1. We have the natural map

φ� :
k[XV(γ�)]

P → grνA
Pγ�+1

Xj �→ inνQj

.

Now, for 2 = 0, let I0 = (0). For 2 > 0, let I� denote the ideal of
k[XV(γ�)]

P
generated by I<� and all the homogeneous polynomials of the form

Xα0 + λ1X
α1 + λ2X

α2 + · · ·+ λb0Xαb0 (1.63)

where Qα0 + λ1Q
α1 + λ2Q

α2 + · · · + λb0Qαb0 is the homogeneous part of
least degree of Ex(Q), Q ∈ V(γ�) ∪Θ(γ�).

Once again the proofs of Corollary 1.17 and Corollary 1.18 give the
analogous corollaries :

Corollary 1.37. — We have Ker φ� = I�.

Corollary 1.38. — Take an element γ ∈ Φ, γ < γλ. The valuation
ideal Pγ is generated by all the generalized monomials of value � γ in
{Q | (Q,Ex(Q)) ∈ Ψ(γλ)}. The ideal Pγλ is generated by all the gener-
alized monomials of value � γλ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ)}.

2. Separating ideal and connectedness

2.1. A description of the separating ideal

Let A be a noetherian ring and α and β points in Sper A. The purpose
of this section is twofold. First we prove a general result on the behaviour of
< α, β > under localization. Secondly, we restrict attention to the case when
A is regular and is either complete or < α, β > is primary to a maximal ideal
of A. In this case, we describe generators of the separating ideal < α, β >
as generalized monomials in those approximate roots Qj which are common
to να and νβ .

We will need the following basic properties of the separating ideal, proved
in [26]:

Proposition 2.1. — Let the notation be as above. We have:
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(1) < α, β > is both a να-ideal and a νβ-ideal.

(2) α and β induce the same ordering on A
<α,β> (in particular, the set of

να-ideals containing < α, β > coincides with the set of νβ-ideals containing
< α, β >).

(3) < α, β > is the smallest ideal (in the sense of inclusion), satisfying
(1) and (2).

(4) If α and β have no common specialization then < α, β >= A.

Notation. — If p ∈ Sper A, pα ⊂ p, the notation αAp will stand for the

point of Sper Ap with support pαAp and the total order on
Ap

pαAp
given by

�α.

Proposition 2.2. — Let A be a ring. Consider points α, β ∈ SperA
whose respective supports are pα, pβ and let ε be a common specialization of
α and β with support p.

(1) We have < α, β > Ap =< αAp, βAp >.

(2) Let p be a prime ideal of A, containing < α, β >. Then

< α, β >⊂< α, β > Ap ∩A. (2.1)

with equality if < α, β > is p-primary.

(3) If p = pε with ε the unique common specialization of α and β (in
particular, whenever

p =
√
< α, β >

and p is maximal), we have equality in (2.1).

Remark 2.3. — In (2) of the Proposition, the special case of interest for
applications is p = pε, with ε ∈ Sper A a common specialization of α and β.

Proof. — Let f be a generator of < α, β > such that f changes sign
between α and β. Say, f(α) � 0 and f(β) � 0. As the orders on A/pα and
Ap/pαAp are the same (the quotient field is the same) – and similarly for
pβ – f changes sign between αAp and βAp. Thus f ∈< αAp, βAp >.

Conversely, a generator of < αAp, βAp > is of the form g/s, s∈/p, such

that
g

s
(αAp) � 0 and

g

s
(βAp) � 0, for instance. But, as p is a specialisation

of α and β and s∈/p, s has the same sign on α and β (and is non-zero at both
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points), so g keeps different signs on α and β which means that g ∈< α, β >,

and, consequently,
g

s
∈< α, β > Ap. This proves (1) of the Proposition.

(2) of the Proposition is a standard general statement about localization
of ideals at a prime ideal.

(3) of the Proposition follows immediately from the fact that p is the
center of the valuation να and < α, β > is a να-ideal. �

Let (A,m, k) be a regular local ring and α and β two points of Sper(A)
having a common specialization ε whose center is the maximal ideal m of
A. Then να and νβ are both centered at m.

Let Φα = να(A\{0}) and Φβ = νβ(A\{0}). Let γαs be the s-th element
of Φα and similarly for β. Let Pγαs denote the να-ideal of value γαs and
similarly for Pγβs . Let r be the ordinal such that γαr = να(< α, β >).
Then γβr = νβ(< α, β >) by Proposition 2.1. We have Pγαs = Pγβs for
s = 1, . . . , r by Proposition 2.1.

Let Qj(α) denote the j-th approximate root for να (in the case when A
is complete j is an ordinal rather than a natural number); we will denote the
monomials in these approximate roots by Q(α)γ ; similarly for Qj(β) and
Q(β)γ . Let us consider the sequences of vectors mi = (mi1,mi2, . . . ,mitiα),
mij ∈ Pγαi/Pγα,i+1 which are the initial forms of the monomials Q(α)αij of
value γαi (see section 1.2 and (1.51)). We do the same with νβ and write
n1,n2, . . . the corresponding sequences of initial forms.

Let Mαh be the set of all the generalized monomials in Q(α), of value
γαh with respect to να. Let Mβh be the same kind of set with respect to νβ .
Now, let sαh denote the cardinality of Mαh; similarly for sβh.

For a given 2, consider the following three conditions (1)�, (2)�, (3)�:

(1)� sαi = sβi, 1 � i � 2

(2)� Mαi =Mβi for i � 2

(3)� For any i � 2 and λ̄1, . . . , λ̄sαi ∈ k, the sign on α of the linear combi-

nation
sαi∑
j=1

λ̄jmij is the same as the sign on β of
sαi∑
j=1

λ̄jnij (here we adopt the

convention that the sign can be strictly positive, strictly negative or zero)
where mij , nij are the initial forms of the monomials Q(α)αij ,Q(β)αij in
the graded rings grνα(A), grνβ (A). Note that if conditions (1)�-(3)� hold
then the set of k-linear relations among the mij , i � 2, is the same as the
set of k-linear relations among the nij .
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Proposition 2.4. — The ordinal r is the smallest ordinal r′ such that
at least one of the conditions (1)r′-(3)r′ does not hold.

Proof. — Let r′ be the smallest ordinal such that at least one of the
conditions (1)r′ -(3)r′ does not hold. By definitions, we have Mαr′ �= ∅ and
Mβr′ �= ∅. We have the following 2 possibilities:

First, suppose Mαr′ �= Mβr′ (which includes the case sαr′ �= sβr′). Say,
Mαr′ �⊂ Mβr′ . Take generalized monomials Qγ ∈ Mαr′ \Mβr′ , and Qδ ∈
Mβr′ . Then να(Qγ) � να(Qδ), but νβ(Qγ) > νβ(Qδ).

Then there exists a linear combination, with coefficients in (A \ m), of
Qγ and Qδ, of value γαr′ with respect to να, which changes sign between α
and β. This shows that

να(< α, β >) � γαr′

in this case.

The second case is Mαr′ =Mβr′ and there exist λ̄1, . . . , λ̄sαr′ such that

the sign on α of
sαr′∑
j=1

λ̄jmr′j differs from the sign on β of
sαr′∑
j=1

λ̄jnr′j (by

assumption, we are in the case sαr′ = sβr′). By a small perturbation of the
λ̄j (for instance, by adding or subtracting a “small” element of k to λ̄1), we

can ensure both that
sαr′∑
j=1

λ̄jmr′j �= 0 in grναA and
sαr′∑
j=1

λ̄jnr′j �= 0 in grνβA.

But this gives an f =
sαr′∑
j=1

λjQ
αr′j ∈ A which changes signs between α and

β. We have να(f) = γαr′ (and νβ(f) = γβr′), so να(< α, β >) � γαr′ also in
this case.

Now take an f ∈ A with να(f) < γαr′ . Then f ∈ Pγαs ,
γαs < γαr′ , (2.2)

so inνα(f) ∈ Pγαs/Pγαs+ . By theorem 1.36, inνα(f) is a k-linear combination
of ms1, . . . , mstsα . By (2.2) and the definition of r′, this linear combination
has the same sign for α and for β (in other words, Pγαs/Pγαs+ = Pγβs/Pγβs+
with same order induced by α and by β. This means that inνα(f) has the
same sign on α and β, so να(< α, β >) � γαr′). This completes the proof. �

Corollary 2.5. — Let α, β ∈ Sper(A), both centered in the maximal
ideal. Let r be as above. Denote by γ = γαr the να-value of < α, β >. Let
Q1, . . . , Qq be the common approximate roots of the valuations να and νβ.
Then < α, β > is generated by the generalized monomials in Q1, . . . , Qq of
να-value � γ (and the same with νβ instead of να).
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Proof. — As < α, β > is a να-ideal (and a νβ-ideal), this is a consequence
of Corollary 1.38.

Definition 2.6. — For a graded algebra G, we define

G∗ =

{
f

g

∣∣∣∣ f, g ∈ G, g �= 0 and homogeneous

}
/ ∼.

where
f

g
∼ f

′

g′
whenever fg′ = f ′g.

The Alvis-Johnston-Madden example. Let us consider α and β in
Sper(R[x, y, z]) given by curvettes

x(t) = t6, (2.3)

y(t) = t10 + ut11, (2.4)

z(t) = t14 + t15 (2.5)

where u takes 2 distinct values uα > 2 and uβ > 2. Applying the above
procedure, we show that να(< α, β >) = 31.

Indeed, we have Q1 = x,Q2 = y,Q3 = z for α and β. The first level
approximate roots are

Q4 = y2 − xz = (2u− 1)t21 + u2t22, (2.6)

Q5 = yz − x4 = (u+ 1)t25 + ut26, (2.7)

Q6 = z2 − x3y = (2− u)t29 + t30 (2.8)

for both α and β. Let T denote the preimage of invt under the natural map

(grναR[x, y, z])∗ ↪→ (grvR[[t]])∗,

so that
(grναR[x, y, z])∗ ∼= (R[T ])∗.

Then inνα(yQ4) = (2uα−1)T 31 and inνα(xQ5) = (uα+1)T 31, and similarly
for β. Since uα �= uβ , the matrix

(
(2uα − 1) (uα + 1)
(2uβ − 1) (uβ − 1)

)

is non-singular, so there exists an R-linear combination of inνα(yQ4) and
inνα(xQ5) which is strictly positive on α and strictly negative on β. Accord-
ing to Proposition 2.4,

να(< α, β >) ≤ 31.
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One can check that 31 is the lowest value for which either there is a lin-
ear combination of generalized monomials with this property or the set of
monomials of that value for α does not equal the corresponding set for β,
so that in fact να(< α, β >) = 31.

For the next approximate root

Q7 = yQ4 +
2u− 1

u+ 1
Q5, (2.9)

we have Q7(α) �= Q7(β).

2.2. Some sets which are conjecturally connected

Let (A,m, k) be a regular local ring. Take α, β ∈ SperA, both centered at
m, and elements f1, . . . , fr ∈ A\ < α, β >. The Connectedness Conjecture
0.11 asserts that there exists a connected set C, containing α, β, such that
C is disjoint from the zero set of f1 · · · fr.

Assume that either A is complete or
√
< α, β > = m.

In this section, we describe a set C, which contains α, β, disjoint from
the set f1 · · · fr = 0, and which we conjecture to be connected. Under the
above assumptions, this reduces the Connectedness Conjecture for α and β
to proving the connectedness of C.

Let QΛ = {Qλ, λ ∈ Λ} be the approximate roots common to α and β.
Let Qγ1 ,Qγ2 , . . . be the list of monomials in QΛ, arranged in the increasing
order of the να values. There exists an ordinal s such that < α, β > is
generated by the set {Qγj ; j � s, Qγj ∈< α, β >}. Let σ be the unique
ordinal such that Qγa∈/ < α, β > for a < σ and Qγσ ,Qγσ+1 , . . . ∈< α, β >.

Next, we study the standard form of fi of level να(< α, β >). In the
case when A is complete, this standard form may contain infinitely many
generalized monomials Qγ . Since A is noetherian, we can choose a finite
subset Qεji , 1 � j � ni, of these monomials such that all of the others lie
in the ideal (Qεji , 1 � j � ni)A. For i ∈ {1, . . . , r}, let

fi =

mi∑

j=1

bjiQ
θji +

ni∑

j′=1

cj′iQ
εj′i (2.10)

be the standard expansion of fi of level να(< α, β >) where να(Qθji) =
να(fi) < να(Qεj′i) for all j ∈ {1, . . . ,mi} and j′ ∈ {1, . . . , ni}.

Remark 2.7. — 1. If k = kα (in particular, if k is real closed), then
mi = 1.
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2. By Proposition 1.35,
∑mi

j=1 bjiinναQ
θji �= 0.

Conjecture 2.8. — 1. Let

C =

{
δ ∈ SperA

∣∣∣∣∣
νδ(Q

θji ) < νδ(Q
ε
j′i ) for all j ∈ {1, . . . ,mi}, j′ ∈ {1, . . . , ni}

sgnδ(Qq) = sgnα(Qq) for all Qq appearing in Qθji

sgnδ(
∑mi

j=1
bjiQ

θji ) = sgnα(
∑mi

j=1
bjiQ

θji )

}
.

(2.11)

Then C is connected.

2. Let C ′ defined by the inequalities
∣∣∣∣∣∣

mi∑

j=1

bjiQ
θji

∣∣∣∣∣∣
>δ ni|Qεj′i | ∀i ∈ {1, . . . , r}, ∀j′ ∈ {1, . . . , ni} (2.12)

and the two sign conditions appearing in (2.11). Then C ′ is connected.

Remark 2.9. — 1. We have α, β ∈ C.

2. C ∩ {f1 · · · fr = 0} = ∅. Indeed, inequalities (2.11) imply that, for
every δ ∈ C, fi has the same sign as

∑mi

j=1 bjiQ
θji ; in particular, none of

the fi vanish on C.

3. Either of those conjectures implies the Connectedness Conjecture.

3. A proof of the conjecture for arbitrary regular
2-dimensional rings

We start with a general plan of the proof and an outline of different
sections of Part 3. In §3.1 we recall Zariski’s theory of complete ideals. We
explain how the construction of approximate roots in arbitrary dimension
restricts to the special case of dimension 2 (and that the standard construc-
tion in dimension 2 is, indeed, recovered from the general one as a special
case) and prove some general lemmas about approximate roots in regular
two dimensional local rings and their behaviour under sequences of point
blowings up. In §3.2 we define the notion of real geometric surfaces which
are glued from affine charts of the form Sper Aj , where Aj is a regular
two-dimensional ring, in order to be able to talk about point blowings up of
Sper A. We also define the notion of a segment on the exceptional divisor
of a blowing up and prove that such a segment is connected; another notion
useful later in the proof is that of a maximal segment. One slightly delicate
point here is that since the residue field k of A is not assumed real closed
we need to fix an order on k and always restrict attention to points of the
real spectra of various Aj which induce the given order on k. The bulk of
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the proof per se is contained in §§3.3-3.5. As explained above, our problem
is one of proving connectedness (resp. definable connectedness) of the set
C.

In §3.3 we use Zariski’s theory and other results from §3.1 to construct
a sequence of point blowings up which transform C into a quadrant, that
is, a set Ũ of all points δ of a suitable affine chart Sper Aj centered at
the origin satisfying either x′(δ) > 0, y′(δ) > 0, or just x′(δ) > 0. In §3.4
we use results from [3] to prove connectedness of Ũ by reducing it to that
of a quadrant in the usual Euclidean space, assuming that A is excellent.
In §3.5 we prove the definable connectedness of Ũ (without any excellence
assumptions) after introducing a new object called the graph associated to
Ũ and a finite sequence of point blowings up of Sper A.

3.1. Approximate roots in dimension 2 and Zariski’s theory

In the special case of regular 2-dimensional local rings, the theory of
approximate roots is well known: see, for instance [45], Appendix 5 or [36].
We briefly recall the construction here since it is much simpler than in the
general case.

We start with two purely combinatorial lemmas about semigroups. Take
an integer g � 2.

Lemma 3.1. — Let β1, β2 . . . , βg be positive elements in some ordered
group. Let αj, j ∈ {2, . . . , g} be positive integers. Assume

βi � αi−1βi−1, i ∈ {3, . . . g}. (3.1)

Let γ1, . . . , γg be integers such that 0 � γj < αj for 2 � j � g and∑g
j=1 γjβj � αgβg. Then γ1 > 0.

Proof. — We prove by descending induction that
∑i

j=1 γjβj � αiβi for

i � 2. The case i = g is given by hypothesis. Assume then that
∑i+1

j=1 γjβj �
αi+1βi+1. Subtracting γi+1βi+1 and using the fact that γi+1 < αi+1, we
obtain

∑i
j=1 γjβj � (αi+1−γi+1)βi+1 � αiβi. This completes the induction.

So for i = 2, we obtain γ1β1 + γ2β2 � α2β2; subtracting γ2β2 and using the
fact that γ2 < α2, we get γ1β1 � (α2 − γ2)β2 > 0, hence γ1 > 0. �

Notation. — Let β1, β2 . . . , βg be positive elements in some ordered group.
We will denote by (β1, . . . , βi−1) the group generated by β1, . . . , βi−1 and
by sg(β1, . . . , βi−1) the semigroup generated by β1, . . . , βi−1, that is, the
semigroup formed by all the N-linear combinations of β1, . . . , βi−1. For
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i ∈ {2, . . . , g}, α′i will denote the smallest positive integer such that α′iβi ∈
(β1, . . . , βi−1). If there is no such integer, we put α′i =∞. Write

α′iβi =

i−1∑

j=1

αjiβj whereαji ∈ Z. (3.2)

Lemma 3.2. — Let β1, β2 . . . , βg be positive rational numbers such that
βg � α′g−1βg−1. If g ≥ 3, assume that

{a ∈ (β1, . . . , βg−1)|a ≥ α′g−1βg−1}={a ∈ sg(β1, . . . , βg−1)|a ≥ α′g−1βg−1};
(3.3)

in particular, we can choose αjg ≥ 0 for all j ∈ {1, . . . , g−1} in (3.2) when
i = g. Then

{a ∈ (β1, . . . , βg) | a ≥ α′gβg} = {a ∈ sg(β1, . . . , βg) |a ≥ α′gβg}. (3.4)

Proof. — Multiplying all the βi by the same rational number does not
change the problem, so we may assume that β1, β2, . . . , βg are positive in-
tegers, such that gcd(β1, β2, . . . , βg) = 1.

For g = 2, we have α′2 = β1. If a ∈ (β1) and a � β1β2, then a > 0, hence
a ∈ sg(β1); thus

{a ∈ (β1) | a � β1β2} ⊂ {a ∈ sg(β1) | a � β1β2},
the opposite inclusion being obvious.

Assume that g � 3. Write

α′gβg =

g−1∑

j=1

αjgβj . (3.5)

To prove (3.4), let β = γ1β1 + γ2β2 + · · ·+ γgβg be an element of

{a ∈ (β1, . . . βg) | a � α′gβg}.
Using the relation (3.5) we can write, for each n ∈ Z,

β =

g−1∑

j=1

(γj − nαjg)βj + (γg + nα′g)βg =

g−1∑

j=1

γ′jβj + (γg + nα′g)βg.

After replacing γg by γg + nα′g for a suitable n ∈ Z, we may assume that
0 � γg < α′g. Since β � α′gβg, this implies that

g−1∑

j=1

γjβj � βg � α′g−1βg−1. (3.6)
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By (3.3), we may take γj � 0 in (3.6). This completes the proof of the
Lemma. �

Corollary 3.3. — Let β1, . . . , βg be positive rational numbers satisfy-
ing

βi � α′i−1βi−1, i ∈ {3, . . . g}. (3.7)

Then equalities (3.3) and (3.4) hold.

Proof. — For i = 3, (3.3) is immediate. Now the corollary follows from
Lemma 3.2 by induction on i. �

Let ν be a valuation centered at A and let (x, y) be a ν-prepared system
of coordinates, such that ν(x) = ν(m). In what follows, we will omit the
description of V(γ),Λ(γ),Θ(γ), since in the simplified situation of n = 2,
the sets Ψ(γ) suffice to carry out the entire construction.

Put Q1 = x, Ex(Q1) = x, Q2 = y, Ex(Q2) = y and βi = ν(Qi),
i ∈ {1, 2}. If β1, β2 are rationally independent, then α′2 = ∞ and the con-
struction stops, there are no more approximate roots. In this case, all the
ν-ideals are generated by monomials in (x, y). Assume then α′2 < ∞. This
means that there is a relation α′2β2 = α12β1 for a positive integer α12.

Let α′2 and α12 be as above. Let Ψ(β1) = ∅. For γ ∈ Φ, β1 < γ < β2,

Ψ(γ) = {x} and Ψ(β2+) = {x, y}. Let k1 = k, k2 = k




inν

(
Q
α′2
2

)

inν (Qα12
1 )


.

We prove that (3.3) is satisfied for i = 3. Let β = γ1β1 + γ2β2 be an
element of

{a ∈ (β1, β2) | a ≥ α′2β2}.

As α′2β2 = α12β1, we have, for each n ∈ Z, β = (γ1−nα12)β1+(γ2+nα′2)β2.
After replacing γ2 by γ2 + nα′2 for a suitable n, we may assume that 0 �
γ2 < α

′
2. Since β ≥ α′2β2, this implies that γ1 � 0.

Then we have ν
(
Q
α′2
2

)
= ν (Qα12

1 ), hence the image of
inν(Q

α′2
2 )

inν(Q
α12
1 )

in kν

is not zero. If
inν(Q

α′2
2 )

inν(Q
α12
1 )

is algebraic over k, this means that it satisfies an

algebraic equation of the form

Xd + a1X
d−1 + · · ·+ ad = 0, ai ∈ k. (3.8)
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Let ai be a representative of ai in A. Let α2 = dα′2 and

Q
(1)
3 = Qα2

2 +

d∑

�=1

a�Q
α′2(d−�)
2 Qα12�

1 . (3.9)

The expression Ex
(
Q

(1)
3

)
is just the right hand side of this formula.

Let β
(1)
3 = ν

(
Q

(1)
3

)
, then β

(1)
3 > ν(Qα2

2 ) = α2β2 � α′2β2 and the ele-

ments
(
β1, β2, β

(1)
3

)
satisfy the conclusion of Lemma 3.2.

By construction, α2β2 is the smallest element of Φ such that the mono-
mials

{Qγ1

1 Q
γ2

2 | ν(Qγ1

1 Q
γ2

2 ) = γ1β1 + γ2β2 = α2β2 }
are k-linearly dependent. The unique k-linear dependence relation is given

by Q
(1)
3 . Hence, according to the general construction of §2, we have Θ(β) =

{Q(1)
3 } for α2β2 � β � β

(1)
3 and Ψ(β

(1)
3 +) = {Q1, Q2, Q

(1)
3 }.

Assume that i � 3 and that elements Q1, . . . , Qi−1, Q
(j)
i are already

defined. Let

βq = ν(Qq), (3.10)

β
(j)
i = ν

(
Q

(j)
i

)
. (3.11)

Assume that the initial form inνQq is algebraic over k[inνQ1, . . . , inνQq−1]
for q ∈ {2, . . . , i − 1}. Let αq denote the degree of its minimal polynomial.
Note that, in particular, all of β2, . . . , βi−1 are rational multiples of β1.

Assume that βq > αq−1βq−1, q ∈ {3, . . . , i−1} and β
(j)
i > αi−1βi−1. Assume

that, in the notation of §1.2, we have

Ψ
(
β

(j)
i +

)
=

{
Q1, . . . , Qi−1, Q

(j)
i

}
.

A monomial

i−1∏

�=1

Qε�
� is standard if

0 � ε� < α� for 2 ∈ {2, . . . , i− 1}. (3.12)

This allows us to extend the notion of standard to monomials with ε1 < 0:
such a monomial is called standard if (3.12) is satisfied. Similarly, we may
talk about standard monomials in inνQ1, . . . , inνQi−1.
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Assume, in addition, that we have defined elements z2, . . . , zi−1 ∈ kν ,
algebraic over k, where z� is a k-linear combination of standard monomials
in inνQ1, . . . , inνQ� of degree 0. Let k� = k(z2, . . . , z�). We obtain a tower
of finite field extensions k = k1 ⊂ k2 · · · ⊂ ki−1 ⊂ kν .

If inνQ
(j)
i is transcendental over k[inνQ1, . . . , inνQi−1], put Qi = Q

(j)
i

and the construction stops.

Assume inνQ
(j)
i is algebraic over k[inνQ1, . . . , inνQi−1]. Then β

(j)
i ∈

i−1∑
q=1

Qβq. Let α
,(j)
i be the smallest positive integer such that α

,(j)
i β

(j)
i ∈

(β1, . . . , βi−1).

Then ν

((
Q

(j)
i

)α,(j)
i

)
= ν

(
i−1∏
r=1
Q
α

(j)
ri

r

)
, hence the image of

inν

(
Q

(j)
i

)α,(j)
i

inν
∏i−1

r=1Q
α

(j)
ri

r

in kν is not zero. By Corollary 3.3, we may take α
(j)
ri ≥ 0 for 1 ≤ r ≤ i− 1.

The assumption on inνQ
(j)
i implies that

inν

(
Q

(j)
i

)α,(j)
i

inν
∏i−1

r=1Q
α

(j)
ri

r

satisfies an al-

gebraic equation of the form

Xd + a1X
d−1 + · · ·+ ad = 0, a� ∈ ki−1. (3.13)

For 2 ∈ {1, . . . , d}, write

a�

(
i−1∏

r=1

inνQ
α

(j)
ri

r

)�

=
∑

γ=(γ1,...,γi−1)

b�γ

i−1∏

r=1

inνQ
γr
r (3.14)

as a k-linear combination of standard monomials. By Lemma 3.1, we have
γ1 � 0 whenever b�γ �= 0.

Let b�γ be a representative of b�γ in A. Let α
(j)
i = dα

,(j)
i and

Q =
(
Q

(j)
i

)α(j)
i

+

d∑

�=1


 ∑

γ=(γ1,...,γi−1)

b�γ

i−1∏

r=1

Qγr
r


Qα

,(j)(d−�)
i

i . (3.15)

Then

ν(Q) > ν

((
Q

(j)
i

)α(j)
i

)
= α

(j)
i β

(j)
i ≥ α,(j)i β

(j)
i > αi−1βi−1 ≥ α,i−1βi−1.

(3.16)
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If inνQ
(j)
i ∈/k[inνQ1, . . . , inνQi−1] (which is equivalent to saying that

α
(j)
i > 1), put Qi = Q

(j)
i , Ex(Qi) = Ex(Q

(j)
i ), βi = β

(j)
i , αi = α

(j)
i ,

α,i = α
,(j)
i , Q

(1)
i+1 = Q, β

(1)
i+1 = ν

(
Q

(1)
i+1

)
.

Formulae (3.15) and (3.16) become

Q
(1)
i+1 = Qαi

i +

d∑

�=1


 ∑

γ=(γ1,...,γi−1)

b�γ

i−1∏

r=1

Qγr
r


Qα,

i
(d−�)

i . (3.17)

and

β
(1)
i+1 = ν

(
Q

(1)
i+1

)
> ν(Qαi

i ) = αiβi ≥ α,iβi. (3.18)

The expression Ex
(
Q

(1)
i+1

)
is just the right hand side of (3.17).

For β
(j)
i < γ ≤ β(1)

i+1, we have Ψ(γ) = Ψ
(
β

(j)
i +

)
and Ψ

(
β

(1)
i+1+

)
=

{
Q1, . . . , Qi, Q

(1)
i+1

}
. Moreover, the elements

(
β1, . . . , β

(1)
i+1

)
satisfy the hy-

pothesis of Corollary 3.3, hence also its conclusion.

If inνQ
(j)
i ∈ k[inνQ1, . . . , inνQi−1] (which is equivalent to saying that

α
(j)
i = 1), put Q

(j+1)
i = Q and β

(j+1)
i = ν

(
Q

(j+1)
i

)
.

Formulae (3.15) and (3.16) become

Q
(j+1)
i = Q

(j)
i +

∑

γ=(γ1,...,γi−1)

b1γ

i−1∏

r=1

Qγr
r (3.19)

and

β
(j+1)
i = ν

(
Q

(j+1)
i

)
> β

(j)
i > α,i−1βi−1. (3.20)

The expression Ex
(
Q

(j+1)
i

)
is just the right hand side of (3.19).

For β
(j)
i < γ ≤ β(j+1)

i we have

Ψ(γ) = Ψ
(
βji +

)
and (3.21)

Ψ
(
β

(j+1)
i +

)
=

{
Q1, . . . , Qi−1, Q

(j+1)
i

}
. (3.22)

– 306 –



Approximate roots of a valuation and the Pierce-Birkhoff conjecture

Moreover, the elements
(
β1, . . . , βi−1, β

(j+1)
i

)
satisfy the hypothesis of Corol-

lary 3.3, hence also its conclusion.

Remark 3.4. — Either the process stops after a finite number of steps or
we obtain an infinite sequence

Q = Q1, Q2, . . . , Qi, . . . (3.23)

or a sequence

Q = Q1, Q2, . . . , Qi−1, Q
(j)
i , j ∈ N. (3.24)

In the case when Q is given by (3.23), it is a system of approximate roots,
whether or not A is complete. In the case (3.24) assume, in addition, that
the ring A is m-adically complete. In that case,

Q∞ = lim
j→∞

Q
(j)
i

is a well defined element of A and Q ∪ {Q∞} is a system of approximate
roots.

We recall some basic facts from Zariski’s theory of complete ideals in
regular two-dimen- sional local rings.

Let (A,m) be a regular 2-dimensional local ring, x, y a regular system
of parameters and let ν be a valuation centered at A.

Definition 3.5. — An ideal I in a normal ring B is said to be integrally
closed or complete if it contains all the elements z of B satisfying a monic
equation of the form

zn + an−1z
n−1 + · · ·+ a0 = 0

where an−i ∈ In−i.

An ideal I in A is said to be simple if it cannot be factored in a non
trivial way as a product of two other ideals.

A local blowing up of A with respect to ν along m is the map
A→ A[ yx ]m1 , where m1 is the center of ν in A[ yx ].

For an element f ∈ A, we have xνm(f)| f in A[ yx ]m. The strict trans-

form of f in A[ yx ]m is the element x−νm(f)f .

Remark 3.6. — Any ν-ideal is a complete ideal.
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Now let I be a simple m-primary ν-ideal. Then

(1) The set
m = I0 ⊃ I1 ⊃ · · · ⊃ I� = I

of simple ν-ideals of A containing I is entirely determined by I (it does not
depend on ν).

(2) Let A→ A1 be the local blowing up with respect to ν along m and, for
i � 1, let I ′i be the transform of Ii (that is, I ′i = x−µIiA1 with µ = ordmIi).
Then

m1 = I ′1 ⊃ I ′2 ⊃ · · · ⊃ I ′�−1 = I ′

is the set.

(3) Iterating this procedure 2-times, we obtain a sequence of local blowing
ups

(A,m)→ (A1,m1)→ · · · → (A�,m�) (3.25)

such that the transform I(�) of I is m�. For any f ∈ A\I, the strict transform
of f in A� is a unit of A�.

We recall the following general result from the theory of approximate
roots in regular 2-dimensional local rings ([36]).

Let A be a 2-dimensional regular local ring, ν a valuation on A. Now let
Qk, k = 1, . . . , g + 1 be the approximate roots of ν such that Q1, . . . , Qg∈/I
and Qg+1 ∈ I. Each Ii is generated by the generalized monomials

∏
Q
γj
j ,

γj ∈ N, such that
∑
γjβj � ν(Ii).

Proposition 3.7. — There exist natural numbers 21 < 22 < · · · < 2g �
2 and a regular system of parameters x�i , y�i for each i ∈ {1, . . . , g} having
the following properties :

(1) x�i is a monomial of the form

i−1∏

j=1

Q
γj
j , γj ∈ N,

(2) y�i is the strict transform of Qi in A�i ,

(3) Q1, . . . , Qi−1 are monomials in x�i , y�i times a unit of (A�i)(x�i ,y�i ).

For α, β ∈ SperA, let Q1, . . . , Qs be the approximate roots common to
α and β.

Corollary 3.8. — If i � s, both να and νβ are centered at (x�i , y�i).
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Let A be a 2-dimensional regular local ring, ν a valuation on A. Keep
all the above notations.

Convention : below, we adopt the convention that α1 = 1.

Lemma 3.9. — For i � 3, νm(Qi) =
∏i−1

j=1 αj.

Proof. — Let i = 3, then we can write Q3 = yα2 +
∑
crsx

rys where
crs is a unit in A, with ν(xrys) � α2ν(y). As ν(y) � ν(x), this implies
νm(Q3) = α2.

Recall (cf. (3.15)) that

Qi+1 = Qαi
i +

d∑

�=1


 ∑

γ=(γ1,...,γi−1)

b�γ

i−1∏

r=1

Qγr
r


Qα′i(d−�)

i .

Now to prove the lemma, it suffices to prove that

αiνm(Qi) � νm

((
i−1∏

r=1

Qγr
r

)
Q
α′i(d−�)
i

)
(3.26)

for all 2 and γ such that b�γ �= 0.

First remark that, according to the inequalities (3.18) and (3.20), we
deduce by an easy induction on i− 2 that

βi∏i−1
q=� αq

� β�. (3.27)

We have αiβi =
∑i−1

j=1 γjβj + α′i(d− 2)βi, so

α′i2βi =

i−1∑

j=1

γjβj �
i−1∑

j=1

γj
βi∏i−1

q=j αq

by (3.27).

Dividing both sides by βi∏i−1

q=1
αq

, we get

α′i2
i−1∏

q=1

αq �
i−1∑

j=1

γj

j−1∏

q=1

αq. (3.28)
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By the induction assumption, the left hand side equals νm(Q
α′i�
i ) and

the right hand side equals νm(
∏i−1

j=1Q
γj
j ). Therefore inequality (3.26) follows

from inequality (3.28). �

In what follows, we study standard monomials

i∏

j=1

Q
γj
j , with i < s, that

is monomials such that 0 � γj < αj for j ∈ {2, . . . , i}.

Corollary 3.10. — Consider two standard monomials
∏i

j=1Q
γj
j and

∏i
j=1Q

γ′j
j such that (γi, γi−1, . . . , γ1) <lex (γ′i, γ

′
i−1, . . . , γ

′
1) and having the

same ν-value. We have

νm




i∏

j=1

Q
γj
j


 > νm




i∏

j=1

Q
γ′j
j


 .

Let n = νm(Q3); note that α2 = n. Moreover [k2 : k] | n and [k2 : k] = n
if and only if β1 | β2.

Corollary 3.11. — Consider two standard monomials
i∏

j=1

Q
γj
j and

i∏
j=1

Q
γ′j
j ,

with 3 � i < s, such that (γi, γi−1, . . . , γ3) <lex (γ′i, γ
′
i−1, . . . , γ

′
3). We have

νm




i∏

j=3

Q
γj
j


 � νm




i∏

j=3

Q
γ′j
j


− n.

Proof. — Let j � 3 be the greatest integer such that γj < γ
′
j . We have

νm




i∏

j=3

Q
γ′j
j


− νm




i∏

j=3

Q
γj
j


 =

j∑

�=3

γ′�

�−1∏

q=1

αq −
j∑

�=3

γ�

�−1∏

q=1

αq

= (γ′j − γj)
j−1∏

q=1

αq +

j−1∑

�=3

(γ′� − γ�)
�−1∏

q=1

αq.

Claim. — For j � 4 and c� < α�, we have

j−1∑

�=3

c�

�−1∏

q=1

αq <

j−1∏

q=1

αq. (3.29)
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Proof of Claim. — By induction on j. For j = 4, the inequality is imme-
diate. Assume the Claim is true for j − 1. The left hand side of (3.29) can
be rewritten as

j−1∑

�=3

c�

�−1∏

q=1

αq =

j−2∑

�=3

c�

�−1∏

q=1

αq + cj−1

j−2∏

q=1

αq <

j−2∏

q=1

αq + cj−1

j−2∏

q=1

αq �
j−1∏

q=1

αq.

The Claim is proved.

The monomials being standard, 0 � γ�, γ′� < α�, so γ′� − γ� > −α� and
applying the Claim, we deduce that

j−1∑

�=3

(γ′� − γ�)
�−1∏

q=1

αq > −
j−1∏

q=1

αq.

Since γ′j − γj � 1, we get

(γ′j − γj)
j−1∏

q=1

αq +

j−1∑

�=3

(γ′� − γ�)
�−1∏

q=1

αq > 0.

Each term being an integer divisible by α2, the above expression is greater
or equal to α2 = n.

3.2. Real geometric surfaces and their blowings up

Let A be a ring and U an open subset of Sper(A). Let SU denote the
multiplicative set

SU = {g ∈ A | g(α) �= 0 for all α ∈ U}.

Let AU = ASU . We have a natural ring homomorphism

ρU : AU →
∏

α∈U
A(α).

Define the ring OU to be the ring of all maps

f : U →
∐

α∈U
A(α)

satisfying the following conditions :

(1) ∀α ∈ U , f(α) ∈ A(α);
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(2) there exists an open covering

U =
⋃

i∈Λ

Ui (3.30)

and, for each i, an element fi ∈ AUi
such that ∀β ∈ Ui, we have ρUi

(fi)β =
f(β).

The functor which sends U to OU makes Sper(A) into a locally ringed
space which we will call an affine real geometric space. This notion is inspired
by the notion of real closed spaces defined by Niels Schwartz ([35]).

From now till the end of this section we will assume that all our rings
are integral domains.

Remark 3.12. — Note that ι : AU ↪→ OU and, if U is connected, this
inclusion becomes an equality. Indeed, consider an element f ∈ OU , the
open covering (3.30) and the local representatives fi ∈ AUi

of f as above.
Let K denote the common field of fractions of A and all of the AU . Finding
an element g ∈ AU such that ι(g) = f amounts to proving that for each
i, j ∈ Λ we have

fi = fj , (3.31)

viewed as elements of K. By connectedness of U , it is sufficient to prove
(3.31) under the assumption that Ui ∩ Uj �= ∅. Take a non-empty basic
open subset V ⊂ Ui ∩ Uj , defined by finitely many inequalities V = {α ∈
Sper A | g1(α) > 0, . . . , gs(α) > 0}. Since V �= ∅, Propositions 4.3.8 and
4.4.1 (Formal Positivestellensatz) of [7] imply that V contains a point α
such that pα = (0). Then A(α) = K, so the equality ρUi

(fi)α = f(α) =
ρUj

(fj)α ∈ A(α) implies that fi = fj in A(α) = K, as desired.

Notation. — To simplify the notation, we will write Ai instead of AUi .

Definition 3.13. — A real geometric space is a locally ringed space

(X,OX) which admits an open covering X =

s⋃

i=1

Sper(Ai) such that each

(Ui, OX |Ui) is isomorphic (as locally ringed space) to an affine real geomet-
ric space.

Definition 3.14. — A real geometric surface is a real geometric space
X where all Ai can be chosen to be regular 2-dimensional noetherian rings.

Let k be a field and z an independent variable. Let A be a regular two-
dimensional ring, x, y elements of A, p a maximal ideal of A of height 2,
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containing x. Suppose given an isomorphism ι : A
(x)→̃k[z]θ such that y mod

(x) is sent to z and θ is a non-zero polynomial in z. Let g = zd + ā1z
d−1 +

. . .+ād denote the monic generator of the ideal ι
(

p
(x)

)
. Let ai be an element

of the coset ι−1(āi). Then
(
x, yd + a1y

d−1 + . . .+ ad
)

is a set of generators
of p; it induces a regular system of parameters of Ap.

Definition 3.15. — The pair
(
x, yd + a1y

d−1 + . . .+ ad
)

will be called
a privileged system of parameters of Ap with respect to the ordered
pair (x, y).

Definition 3.16. — A marked real geometric surface is a real geometric
surface X together with the following additional data:

(1) A finite covering X =

s⋃

i=1

Sper(Ai) where each Ai is a regular 2-

dimensional noetherian ring.

(2) For each i, a pair of elements xi, yi ∈ Ai and a field ki, which admits
a total ordering.

(3) A subset ∆i ⊂ Sper Ai, called the privileged subset of Sper Ai. Let
z, w be independent variables. We require one of the following to hold:

(a) There exists an irreducible polynomial h ∈ ki[w] and a homo-
morphism

ι : Ai →
ki[z, w]θzθw

(zh)
,

where θz ∈ ki[z, w] \ (z, h), θw ∈ ki[w] \ (h), which maps xi to z mod (zh),
yi to w mod (zh) such that ∆i is the set of points of Sper Ai defined by the

vanishing of all the elements of Ker ι (in particular, ∆i
∼= Sper

ki[z, w]θzθw
(zh)

);

(b) ∆i = {xi = 0}; there is an isomorphism ι :
Ai
(xi)

→ ki[w]θw ,

where θw is a non-zero polynomial in ki[w], which sends yi mod (xi) to w;
in particular, ∆i

∼= Sper ki[w]θw ;

(c) ∆i = {xi = yi = 0}; we have
Ai

(xi, yi)
∼= ki; in particular, ∆i

∼=
Sper ki.

(4) For each i and each α ∈ {xi = 0} ⊂ ∆i with ht pα = 2, a regular
system of parameters of (Ai)pα , privileged with respect to (xi, h) in case (a)
and with respect to (xi, yi) in case (b).
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(5) In case (a), for each i and each α ∈ {h = 0} ⊂ ∆i with ht pα = 2,
a regular system of parameters of (Ai)pα , privileged with respect to (h, xi).

Remark 3.17. — Let A be a regular 2-dimensional ring, m a maximal
ideal of A and (x, y) a regular system of parameters of Am. Then Sper A is
a marked real geometric surface.

We now define the notion of blowing up of a real marked geometric
surface. Let X =

⋃
i Sper Ai be a marked real geometric surface and take

a point δ ∈ X. Assume that δ belongs to the privileged set and ht(pδ,i) = 2
in every affine chart Sper Ai containing δ. We want to define the blowing
up of X along δ. First consider the case X = Sper A. Let x, y ∈ A and k
be the pair of elements and the field appearing in the definition of marked
real geometric surface.

Let (u, v) be the privileged system of regular parameters of Apδ given
by the definition. It follows from definition that (u, v) = (x, y) in Case (c),
u = x in Case (a) provided δ ∈ {x = 0} as well as in Case (b), and u = h
in Case (a) if δ ∈ {h = 0} \ {x = 0}.

A blowing up of Sper A along pδ (or, by abuse of language, blowing
up along δ) is the marked real geometric surface X ′ defined as follows. As
a topological space, we put X ′ = Sper A′1 ∪ Sper A′2, where A′1 = A

[
v
u

]
,

A′2 = A
[
u
v

]
and

Sper A′1 ∩ Sper A′2 = Sper A′1 \
{ v
u

= 0
}

= Sper A′2 \
{u
v

= 0
}
.

We have a natural surjective morphism π : X ′ → Sper A.

To define a structure of marked real geometric surface on X ′, we let the
two elements required in Definition 3.16 (2) be x′1 = u, y′1 = v

u ∈ A′1 for
Sper A′1 and x′2 = v, y′2 = u

v ∈ A′2 for Sper A′2. Below, for q ∈ {1, 2}, we
denote the privileged set of A′q by ∆′q and the field required in the Definition
3.16 (2) for Sper A′q by k′q. We now define ∆′q and k′q in the different cases.

• If Case (c) holds for Sper A: let k′q = k, for q ∈ {1, 2}. For Sper A′1 the
privileged set is ∆′1 = {x′1 = 0}. The existence of a privileged regular system
of parameters required by the Definition 3.16 comes from the isomorphism
A′1
(x′1)

∼= k[y′1]. For Sper A′2 the situation is entirely analogous.

• If Case (b) holds for Sper A : let k′1 = κ(pδ) and ∆′1 = {x′1 = 0}.
The existence of a privileged regular system of parameters required by the

Definition 3.16 comes from
A′1
(x′1)
→̃k′1[y′1].
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Let k′2 = k and ∆′2 = {x′2 = 0}∪{y′2 = 0}. By the definition of privileged
regular system of parameters of Apδ , there is an irreducible polynomial
vw ∈ k[w], relatively prime to θw such that ι( pδ

(x) ) = (vw). The existence of

a privileged regular system of parameters at any point of ∆′2, required by

the Definition 3.16, comes from
A′2

(x′2y
′
2)
→̃k[w, y

′
2]θw

(vwy′2)
.

• If Case (a) holds, there are three cases to consider :

(i) δ ∈ {x = 0} \ {h = 0}, ∆′q, k
′
q, q = 1, 2, are given by the

same formulas as in Case (b). Let A′3 = Av. The structure of marked real
geometric surface on Sper A′3 is induced from that of Sper A. We have

k′3 = k and ∆′3 = {x = 0} ∪ {h = 0} and
Av

(xh)
→̃k[z, w]vwθwθz

(zh)
.

(ii) δ ∈ {h = 0} \ {x = 0}, let k′1 = κ(pδ) and k′2 = k[w]
(h) , ∆′1 =

{x′1 = 0}, ∆′2 = {x′2 = 0} ∪ {y′2 = 0}. By the definition of privileged
regular system of parameters of Apδ , there is a polynomial vz ∈ k[z, w],

such that ι(
pδ

(xh)
) =

(h, vz)k[z, w]θzθw
(xh)

. The existence of a privileged regu-

lar system of parameters comes from the isomorphisms
A′1
(x′1)
→̃k′1[y′1] and

A′2
(x′2y

′
2)
→̃k

′
2[z, y

′
2]θz

(vzy′2)
.

Let A′3 = Av. The structure of marked real geometric surface on Sper A′3
is induced from that of Sper A. We have k′3 = k, ∆′3 = {x = 0} ∪ {h = 0}
and

Av
(xh)

→̃k[z, w]vzθwθz
(zh)

.

(iii) δ = {h = 0}∩ {x = 0}, recall that u = x, v = h. Let k′1 = κ(pδ)
and k′2 = k. Let ∆′q = {x′q = 0} ∪ {y′q = 0}, q = 1, 2. The existence
of a privileged regular system of parameters comes from the isomorphisms
A′1

(x′1y
′
1)
→̃k

′
1[z, y

′
1]θz

(zy′1)
and

A′2
(x′2y

′
2)
→̃k[w, y

′
2]θw

(hy′2)
(recall that in this case h = x′2).

We then define the real marked geometric surfaceX ′ to beX ′ =
p⋃

i=1

SperA′i

where p = 2 in cases (b), (c) and (a) (iii) and p = 3 in cases (a) (i) and (ii).

Remark 3.18. — Note that SperA′3 ⊂ SperA′i, i = 1, 2; but, in the ap-
plications, we need to have the set ∆′3 defined by fixed elements x′3, y

′
3.
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Let X =
s⋃

i=1

SperAi be a marked real geometric surface and δ ∈ X
belonging to the privileged set and supported in a height 2 ideal pδ,i in
some affine chart Sper Ai.

If δ∈/SperAi, let X ′i = Sper Ai with the identity map X ′i → SperAi. If
δ ∈ SperAi, let X ′i → SperAi be the blowing up of SperAi along pδ,i. Let
(u, v) be the regular system of parameters of (Ai)pδ,i given by the definition
of real marked geometric surface. We have X ′i =

⋃p
j=1 SperA′ji where p = 2

or 3 as above.

The marked real geometric surfaces X ′1, . . . , X
′
s and the maps X ′i →

Sper Ai glue together in a natural way to give a marked real geometric

surface X ′ =
s⋃

i=1

X ′i and the map X ′ → X.

Definition 3.19. — We call X ′ the blowing up of X along δ or the
point blowing up of X along δ. The point δ is called the center of this
blowing up. If X = Sper A, the blowing up of X along δ depends only on
the ideal pδ and not on the ordering �δ, so we may speak also about blowing
up along pδ.

Definition 3.20. — Let α, δ be two distinct points of the real marked
surface Sper A with

ht(pδ) = 2.

Let π : X ′ → Sper A be a blowing up along δ. Let (u, v) be the given privileged
system of parameters at δ. Since α �= δ, {u, v} �⊂ pα. If u∈/pα, the strict
transform α′ of α is defined as follows. Let pα′ be the strict transform
of pα in A′1 and �α′ be the order of κ(pα′) induced by �α via the natural
isomorphism κ(pα) ∼= κ(pα′). If v∈/pα, α′ ∈ Sper A′2 is defined similarly.

On the way to prove the connectedness of C of (2.11), we will now prove
a preliminary result on connectedness of a certain type of subsets (intervals)
of the exceptional divisor on a suitable blowing up of Sper A.

Remark 3.21. — Fix an order on k. Let D be the set of points δ ∈
Sper(k[z]) which induce the given order on k. Given two points δ1 �= δ2 ∈ D
such that ht(pδi) = 1, we view δ1, δ2 as elements of the real closure k
of k with respect to the given order. We may speak about the interval
(δ1, δ2) = {δ ∈ D | δ1 < z(δ) < δ2}. If pδ = (0), we compare δi and z(δ) via
the natural embeddings k[z](δ) ↪→ k(z) and k ⊂ k(z).

Now, let m be an ideal of A with ht m = 2 and A
m = k. Given a blowing

up along m as above, consider the open set Sper(A[ yx ]). The set of points
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δ ∈ Sper(A[ yx ]) such that x(δ) = 0 and which induce the given order on k
is homeomorphic to D.

Finally, let X be a real algebraic surface such that D ⊂ Sper k[z] ⊂ X.
Let +∞ denote the point of D with support (0) such that z(+∞) > c for
all c ∈ k. Let ∞ be the closed point of X such that ∞ ∈ {+∞}. Assume
there is an open set Sper Ai ⊂ X such that p∞ in Ai has height 2. We
extend the above notion of interval to include the case when δ2 = ∞ with
the obvious meaning assigned to [δ1,∞] =

⋃
δ>δ1

[δ1, δ] ∪ {∞}, (δ1,∞), ....

Similarly, we may take a closed point −∞ ∈ {−∞}. As points of X, we
have∞ = −∞. However, our ordering on D provides us with a well defined
notion of intervals of the form (−∞, δ1), [−∞, δ1) and so on.

Lemma 3.22. — Let D be as in the remark before and δ1 < δ2 ∈ D such
that ht(pδi) = 1. The closed interval [δ1, δ2], the semi-open interval [δ1, δ2)
and the open interval (δ1, δ2) are connected.

Proof. — We will prove it for the open case, the closed and the semi-
open being similar. Let k ↪→ k be the inclusion of k into its real clo-
sure determined by the given order. This map corresponds to a morphism
Sper(k[z]) → Sper(k[z]) which induces a homeomorphism between D and
Sper(k[z]) sending (δ1, δ2) to an interval (δ1, δ2) where δ1, δ2 ∈ k. It is well-
known and easy to prove that such an interval is connected - in the spectral
topology (see for instance [7]). �

Remark 3.23. — Let θ ∈ k[z] be a non-zero polynomial. We have natural
homeomorphisms Sper k[z]θ→̃Sper k[z] \ {α1, . . . , αt} and λ :
D ∩ Sper k[z]θ→̃D \ {α1, . . . , αt} where {α1, . . . , αt} is the set of points
αi ∈ Sper k[z] such that θ ∈ pαi . Let δ1, δ2 ∈ D be as above. Assume
that αi∈/(δ1, δ2) for all i ∈ {1, . . . , t}. Then λ((δ1, δ2)) is connected in
D \ {α1, . . . , αt}.

Definition 3.24. — Let m be a maximal ideal of A of height 2. Let
X ′ → Sper A be the blowing up along m. Let E = {ε ∈ Sper A | pε = m}.
The sets π−1(ε), ε ∈ E are called the components of π−1(m).

Let (A,m, k) be a regular 2-dimensional local ring and (x, y) a regular system
of parameters. Now consider a sequence

Xt
πt−1→ · · · π1→ X1

π0→ Sper A (3.32)

of point blowings up where the first blowing up π0 : X1 → Sper A is the
blowing up along m.
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Fix a point ε ∈ Sper A such that pε = m - this is equivalent to fixing a
total ordering on k. For q ∈ {0, . . . , t− 1}, let ηq ∈ Xq be the closed point,
compatible with the given order, such that πq is a blowing up along ηq.

For i ∈ {1, . . . , t}, let Xi =
si⋃
j=1

Sper Aji be the open affine covering in

the definition of marked real geometric surface.

Let ρi = π0 ◦ . . . ◦ πi−1 : Xi → Sper A.

Remark 3.25. — The real geometric space ρ−1
i (m) has the form ρ−1

i (m) =⋃
�

Sper Bi� with Bi�
∼= ki�[zi�] where ki� is a finite algebraic extension of k

and zi� is an independant variable.

Definition 3.26. — A subset E ⊂ ρ−1
i (ε) is a component of ρ−1

i (ε) if
E is either a component of π−1

i−1(ηi−1) or a strict transform of a component

of ρ−1
i−1(ε) when i > 1.

Definition 3.27. — Let ρi : Xi → Sper(A). Fix a component E ⊂
ρ−1
i (ε). Fix an index j ∈ {1, . . . , si}. A j-distinguished point of E is a

point δ ∈ E such that either δ∈/Sper Aji or ρ−1
i ({xy = 0}) ⊃ {x′y′ = 0}

and x′(δ) = y′(δ) = 0 where (x′, y′) ∈ Aji is the privileged regular system
of parameters at δ (in particular, the privileged set of Sper Aji is given by
{x′ = 0} ∪ {y′ = 0}).

A j-maximal interval I is a subset I ⊂ E such that there exist j-
distinguished points δ1, δ2 ∈ E, δ1 �= δ2, such that

(1) I = [δ1, δ2] and I is connected;

(2) There are no j-distinguished points in I \ {δ1, δ2}.

A maximal interval is an interval which is j-maximal for some j.

Remark 3.28. — Note that a j-maximal interval may contain a ̃-distin-
guished point, where j �= ̃. This occurs if [δ1, δ2] is a j-maximal interval,
δ ∈ (δ1, δ2) and ∃̃ ∈ {1, . . . , si}, ̃ �= j, such that (δ1, δ2)∩SperA̃i �= ∅ and
δ ∈/ SperA̃i.

Proposition 3.29. — Fix a component E ⊂ ρ−1
i (ε) and a maximal in-

terval [δ1, δ2] ⊂ E. Take q ∈ {1 , 2}. There exists j ∈ {1, . . . , si} such
that [δ1, δ2] is j-maximal and letting xi, yi ∈ Aji be the elements given by
Definition 3.16 we have:

(1)i [δ1, δ2] \ {δq} ⊂ Sper Aji,
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(2)i for all δ ∈ [δ1, δ2] \ {δq} with ht(pδ) = 2, xi is a part of the given
privileged regular system of parameters of (Aji)pδ ,

(3)i [δ1, δ2]∩Sper Aji =
{
η ∈ Sper Aji

∣∣ xi(η) = 0 and δ1 � yi(η) � δ2
}

where

δ1, δ2 ∈ kji ∪ {−∞,∞},

with the notation of Remark 3.21 and the proof of Lemma 3.22.

Proof. — First, let i = 1. We have X1 = Sper A
[y
x

]
∪ Sper A

[
x

y

]
. De-

note A
[y
x

]
by A11 and A

[
x

y

]
by A21. Let x1 = x, y1 =

y

x
. Fixing the com-

ponent E is equivalent to fixing a total order on k; this data is already given.
We have

E ∩ Sper A[y1] ⊂ Sper k[y1].

Let the notation be as in Remark 3.21 with y1 playing the role of z.

There are exactly two maximal intervals [0,∞] and [−∞, 0]. Say, for
example, I = [0,∞], q = 2, then j = 1 satisfies the conclusion of the
Proposition. And similarly for the other three cases.

Now take i ≥ 2 and suppose the result true for i − 1. Let δp,i−1 =
πi−1(δp), p = 1, 2. Let ηi−1 be the center of the blowing up πi−1. First,
assume that

E ⊂ π−1
i−1(ηi−1). (3.33)

Take ̃ ∈ {1, . . . , si−1} such that ηi−1 belongs to the privileged set of
Sper A̃,i−1. Let (u, v) be the given privileged regular system of parame-
ters at ηi−1. If j is such that (δ1, δ2) ⊂ Sper Aji then Aji is one of A̃,i−1[

u
v ]

or A̃,i−1[
v
u ]; pick one of these two possible choices j such that [δ1, δ2] is

j-maximal. In this case (1)i is equivalent to saying that

[δ1, δ2] �= [−∞,∞]. (3.34)

Now, if we had [δ1, δ2] = [−∞,∞], the point xi = yi = 0 would be a
distinguished point in (δ1, δ2) (by definition of distinguished point). This
is a contradiction and (1)i is proved in the case when (3.33). (2)i and (3)i
of the Proposition follow immediately from the definition of marked real
geometric surface.

From now on, assume that

E �⊂ π−1
i−1(ηi−1). (3.35)
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Note that since [δ1, δ2] is a maximal interval of E, [δ1,i−1, δ2,i−1] is a max-
imal interval of πi−1(E). So, by the induction hypothesis, the Proposition
holds for [δ1,i−1, δ2,i−1] ⊂ πi−1(E). Take ̃ ∈ {1, . . . , si−1} which satisfies
the conclusion of the Proposition with i replaced by i − 1 (in particular,
[δ1,i−1, δ2,i−1] is ̃-maximal).

If ηi−1∈/ Sper A̃,i−1, take j ∈ {1, . . . , si} such that Aji = A̃,i−1. This j
satisfies the conclusion of the Proposition.

Next assume that ηi−1 ∈ Sper A̃,i−1. Take the elements u, v ∈ A̃,i−1

which induce the privileged regular system of parameters at ηi−1, given by
the definition of marked real geometric surface.

If ηi−1∈/πi−1([δ1, δ2]), take j such that Aji = A̃,i−1.

From now on, assume that ηi−1 ∈ πi−1 ([δ1, δ2]) ∩ Sper A̃,i−1. Then

ηi−1 ∈ {δ1,i−1, δ2,i−1} :

if not, π−1
i−1(ηi−1)∩(δ1, δ2) would be a j-distinguished point in (δ1, δ2), which

is impossible. The intersection is taken as subsets of the topological space
Xi; if ηi−1∈/{δ1,i−1, δ2,i−1}, this intersection is not empty and consists of
a single point. Let j ∈ {1, . . . , si} be such that Aji is one of A̃,i−1[

u
v ] or

A̃,i−1[
v
u ]; pick one of these two possible choices j such that [δ1, δ2] is j-

maximal.

In all the cases the index j chosen in this way satisfies the conclusion of
the Proposition. �

3.3. A proof of the Pierce-Birkhoff conjecture for regular 2-dimen-
sional rings

Let A be a 2-dimensional regular local ring, ν a valuation on A. In this
section, we prove that A is a Pierce-Birkhoff ring ([26]). Our proof is based
on Madden’s unpublished preprint ([27]), but there are some differences.
Here, we have tried to present a proof which should be a pattern for a
general proof of the conjecture in any dimension.

Theorem 3.30. — Let A be a 2-dimensional regular ring, then A is a
Pierce-Birkhoff ring.

Actually, we prove that A satisfies the Definable Connectedness Conjec-
ture and also, in the special case where A is excellent, the Connectedness
Conjecture.
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We start with some results which do not assume that A is excellent
and which are needed in the proof of both of the above versions of the
Connectedness Conjecture. Let α, β ∈ Sper A. By Remark 0.10, we may
assume that neither of α, β is a specialization of the other.

There are two possibilities : either ht(< α, β >) = 1 or ht(< α, β >) = 2.

3.3.1. The case of height 1

Let δ be the most general common specialization of α and β and let
p =

√
< α, β > be the support of δ. Then Ap is a discrete valuation ring;

take an element t ∈ A whose image in Ap is a regular parameter of Ap.
Since ht(p) = 1 and neither of α, β is a specialization of the other, we have
pα = pβ = (0). There are only two orders on A which induce the given order
on A/p : one with t > 0 and one with t < 0. Since α �= β, < α, β >= p : of
course, any element g of p can be written as g = tγ a

b , a, b∈/p. As t ∈< α, β >,
if γ � 2, να(g) = νβ(g) > να(t) so g ∈< α, β > and if γ = 1, g changes sign
between α and β, so again g ∈< α, β >.

Now let f1, . . . , fr∈/ < α, β >= p, so fi(δ) �= 0 for i ∈ {1, . . . , r}. As
δ ∈ {α} and δ ∈ {β}, we conclude that α and β belong to the same connected
component of Sper A \ {f1 · · · fr = 0}.

3.3.2. The case of height 2

Now assume

ht(< α, β >) = 2, that is m =
√
< α, β > is maximal. By Proposition

2.2, replacing A by Am does not change the problem, so we may assume
that A is local with maximal ideal m.

Let g ∈ N be such that Q1, . . . , Qg∈/ < α, β >, Qg+1 ∈< α, β > be the
approximate roots common to να and νβ as in section 3.1.

Let (x, y) be a regular system of parameters of A such that να(x) =
να(m) and νβ(x) = νβ(m).

Let π : A → A′ be a local blowing up with respect to να and denote
by k′ the residue field of A′. Recall from ([45], Appendix 5) that the weak
transform I ′ ⊂ A′ of an ideal I ⊂ A is defined by I ′ = x−aIA′ where
a = νm(I).

Proposition 3.31. — We assume that π is also a local blowing up with
respect to νβ. Let α′ and β′ be the strict transforms of α and β. Then the
separating ideal < α′, β′ > is equal to the weak transform of < α, β >.
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Proof. — Since by hypothesis, α′, β′ are both centered at a maximal
ideal m′, we have < α, β >� m. In particular, x∈/ < α, β >, hence x does
not change sign between α and β. Then f ∈ A changes sign between α and
β if and only if x−af changes sign between α′ and β′.

Since < α, β > is generated by elements changing sign between α and
β, its weak transform is generated by elements which change sign between
α′ and β′; hence the weak transform of < α, β > is contained in < α′, β′ >.

To prove the opposite inclusion, let I ′ =< α′, β′ > and let I be the
inverse transform of I ′, that is the unique complete ideal of A whose weak
transform is I ′ ([45], Appendix 5, p. 388). It remains to prove that I ⊆<
α, β >.

In order to do this, it suffices to find an element z ∈ I which changes
sign between α and β and such that να(z) = να(I).

Let J+ be the greatest να-ideal of A′ whose να-value is strictly greater

than να(I). Note that
IA′

J+ ∩ IA′
is a k′-vector space. Let b1, . . . , b�, bj =

∏i
r=1Q

γjr
r , where i is the maximal index of the approximate roots Qs in-

volved, be a set of elements of I which induces a basis of
IA′

J+ ∩ IA′
, each

monomial being standard. Moreover, since x divides y in A′, if να(x) =
να(y), we may assume γj2 = 0 for all j and b1 is the unique monomial
which maximizes the vector (γi1, γi−1,1, . . . , γ31) in the lexicographical or-
dering.

Let a = νm(I). Let z̃ ∈ I ′ be such that να(z̃) = να(I ′) and z̃ changes sign
between α′ and β′. Let z† = xaz̃. Then z† ∈ IA′ and να(z†) = να(IA′) =

να(I). Write z† =
∑�

j=1 zjbj . We may assume z1 = 1. Denote by zj the
image of zj in the residue field k′.

First, suppose να(x) < να(y). Then k′ = k. For each j ∈ {1, . . . , 2}, let

wj be a representative of zj in A. Put z =
∑�

j=1 wjbj .

Next, suppose να(x) = να(y), since b1 is the unique monomial which
maximizes the vector (γi1, γi−1,1, . . . , γ31), by the corollary (3.11), we have,
for j � 2,

νm

(
i∏

r=3

Qγjr
r

)
� νm

(
i∏

r=3

Qγ1r
r

)
− n � a− n.
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Write z† = b1 +
∑�

j=2(zjx
n)(x−nbj). Write zj =

n−1∑

t=0

ct

(y
x

)t
where ct ∈ k.

So letting at be an element of A such that at = ct and vj ∈ A be the element

vj =
∑n−1

t=0 aty
txn−t, we have

να(vj − zjxn) > nνα(x). (3.36)

Lemma 3.32. — For j � 2, x−nbj ∈ A.

Proof of lemma. — By Corollary 3.10, νm(bj) > νm(b1) and by Corollary
3.11,

νm

(
i∏

r=3

Qγjr
r

)
� νm

(
i∏

r=3

Qγ1r
r

)
− n.

Now γj1 = νm(bj)− νm
(

i∏
r=3
Q
γjr
r

)
> νm(b1)− νm

(
i∏

r=3
Qγ1r
r

)
+ n � n.

Put z = b1 +
∑�

j=2 vj(x
−nbj) We have z ∈ IA′ ∩ A = I (because I is a

contracted ideal).

In both cases, να(x) = να(y) and να(x) < να(y), since z† changes sign
between α′ and β′ and in view of (3.36), z changes sign between α and β.
This ends the proof of the proposition. �

Remark 3.33. — If B = R[x, y]. Let

B → R[x1, y1]→ · · · → R[x�, y�]

be a sequence of blowings up induced by (3.25), where we take I =< α, β >.
Let C� be the preimage of C (see (2.11)) in Sper R[x�, y�]. By proposition
(3.7), there exist monomials ω1, . . . , ωs, ε1, . . . , εs, θ1, . . . , θt, λ1, . . ., λt in
x�, y� such that

C� =



δ ∈ Sper R[x�, y�]

∣∣∣∣∣∣

νδ(ωk) < νδ(εk), k ∈ {1, . . . , s}
νδ(θj) = νδ(λj), j ∈ {1, . . . , t}

sgnδ(x�) = sgnα(x�), sgnδ(y�) = sgnα(y�)



 .

By connectedness theorem ([21]), C� is connected, hence so is C. This com-
pletes the proof of the Connectedness Conjecture for R[x, y] and so provides
a new proof of the classical Pierce-Birkhoff Conjecture in dimension 2.
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Let A be a regular 2-dimensional local ring with regular parameters
(x, y). Consider the set C ′ defined by the inequalities (2.12)

∣∣∣∣∣∣

mi∑

j=1

bjiQ
θji

∣∣∣∣∣∣
>δ ni|Qεj′i | ∀i ∈ {1, . . . , r}, ∀j′ ∈ {1, . . . , ni} (3.37)

and the two sign conditions appearing in (2.11).

Consider the sequence (3.25) of local blowings up with I =< α, β >. Let
C ′� be the preimage of C ′ in Sper A�. Rather than prove connectedness of
C ′�, we will prove that α(�) and β(�) lie in the same connected component
of C ′�; this will imply that α and β lie in the same connected component of
C ′. Let ε denote the common specialization of α(�) and β(�). By definition
of (3.25), we have pε = m�. Let U be the subset of C ′� consisting of all the
generizations of ε lying in C ′�. It is sufficient to prove that α(�) and β(�) lie
in the same connected component of U .

There are two cases to consider.

Case 1. Only one component of the exceptional divisor (that is the
inverse image ρ−1

�−1(m)) passes through η�.

Case 2. Two components of the exceptional divisor pass through η�.

Let (x�, y�) be a regular system of parameters of (A�)m�
such that the

local equation of the exceptional divisor at η� is x� = 0 in case 1 and x�y� = 0
in case 2.

By Zariski’s theory of complete ideals, for any f ∈ A\ < α, β >, the
strict transform of f in A� is a unit. In other words, f has the form f = xn� v
in case 1 (resp. f = xn� y

m
� v in case 2) where v denotes a unit in (A�)m�

.

The inequalities (3.37), appearing in the definition of C ′, hold on all of
U . The set U is defined inside the set of generizations of ε in Sper A� either
by specifying sgn(x�) or by specifying both sgn(x�) and sgn(y�).

Lemma 3.34. — Let E be an irreducible component of the exceptional
divisor passing through η�, defined by x� = 0. There exists f ∈ A\ < α, β >
such that f = xn� v, v is a unit of (A�)m�

and n is odd.

Proof. — Let j ∈ {1, . . . , 2 − 1} be such that E is the strict transform
in X� of π−1

j−1(ηj−1). Let νj be the divisorial valuation corresponding to E;
this valuation is defined as follows : for each f ∈ A�, write f = xn� g such
that x� � g in (A�)m�

, then νj(f) = n.
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Let m = p0 ⊃ · · · ⊃ pj be the complete list of simple νj-ideals given by
Zariski’s theory of complete ideals. Note that, since j < 2, pj ⊃< α, β >.

It follows from Zariski’s factorization theorem for complete ideals that
νj(A \ {0}) is generated by νj(p0), . . . , νj(pj). Since the value group of νj
is Z, the semigroup νj(A \ {0}) contains all the sufficiently large integers.
Hence one of νj(p0), . . . , νj(pj) is odd. �

The lemma shows that x� does not change sign between α(�) and β(�) in
Case 1 (resp. neither x� nor y� change sign between α(�) and β(�) in Case 2).

Let

Ũ =
{
δ ∈ Sper A�

∣∣∣ sgn(x�(δ)) = sgn(x�(α)), ε ∈ {δ}
}

in Case 1 and

Ũ=
{
δ∈Sper A�

∣∣∣sgn(x�(δ))=sgn(x�(α)), sgn(y�(δ))=sgn(y�(α)), ε∈{δ}
}

in Case 2. The above reasoning shows that α(�), β(�) ∈ Ũ ⊂ U .

To prove the Definable Connectedness Conjecture (resp. the Connected-
ness Conjecture for excellent A), it remains to prove the definable connect-
edness of Ũ (resp. connectedness of Ũ whenever A is excellent).

We are now ready to prove the above two versions of the Connectedness
Conjecture.

3.4. Proof of the Connectedness Conjecture in the case of an ex-
cellent regular 2-dimensional ring

Theorem 3.35. — Let A be an excellent regular local 2-dimensional
ring. Let C ⊂ Sper A be the subset satisfying the conditions of (2.11). Then
α and β belong to the same connected component of C.

Proof. — Let ε, 2 and Ũ as above. By the above considerations, it is
sufficient to prove that Ũ is connected. Thus it remains to prove the following
lemma.

Lemma 3.36. — Let A be an excellent regular n-dimensional local ring,
x1, . . . , xn regular parameters of A. Fix a subset T ⊂ {1, . . . , n} and let
D = {δ ∈ Sper A | xi(δ) > 0, i ∈ T and ε ∈ {δ}}. Then D is connected.
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Proof. — The point ε determines an order on k. Let R denote the real
closure of k relative to this order. Consider the natural homomorphisms

A→ Â = k[[X1, . . . , Xn]]
σ→ R[[X1, . . . , Xn]] (3.38)

where σ is induced by ε.

Let ε̂ denote the point of Sper Â such that pε̂ = (X1, . . . , Xn) and �ε̂ is
the total ordering of k given by ε.

Following ([3], proposition 8.6), D is connected if and only if

D̂ = {δ ∈ Sper k[[X1, . . . , Xn]] | Xi(δ) > 0, i ∈ T, ε̂ ∈ {δ}}

is connected (this is where we are using the fact that A is excellent). More-
over, D̂ is the image of

D̃ = {δ ∈ Sper R[[X1, . . . , Xn]] | Xi(δ) > 0, i ∈ T}

under the natural map induced by σ

Sper R[[X1, . . . , Xn]]→ Sper k[[X1, . . . , Xn]].

Thus it suffices to prove that D̃ is connected.

By ([3], proposition 8.6), D̃ is connected if and only if the set

D† = {δ ∈ Sper R[X1, . . . , Xn](X1,...,Xn) | Xi(δ) > 0, i ∈ T,

δ is centered at (X1, . . . , Xn)}
is connected.

We have the following natural homomorphisms

R[X1, . . . , Xn]
φ−−−−→ R[X1, . . . , Xn]X1···Xn

ψ

.

R[X1, . . . , Xn](X1,...,Xn)

and the corresponding maps of real spectra

Sper R[X1, . . . , Xn]X1,...,Xn

φ∗−−−−→ Sper R[X1, . . . , Xn]

ψ

/

Sper R[X1, . . . , Xn](X1,...,Xn)

.
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Define

D0 = {δ ∈ Sper R[X1, . . . , Xn] | Xi(δ) > 0, i ∈ T,

δ is centered at (X1, . . . , Xn)}
and

Dloc = {δ ∈ Sper R[X1, . . . , Xn]X1···Xn
| Xi(δ) > 0, i ∈ T, φ∗(δ)

is centered at (X1, . . . , Xn)}.
Now the maps φ∗ and ψ∗ induce homeomorphisms

φ∗|Dloc
: Dloc

∼= D0 and (3.39)

ψ∗|D† : D† ∼= D0. (3.40)

Thus it suffices to prove that Dloc is connected. But

Dloc =
⋂

N∈N
DN

where

DN =

{
δ ∈ Sper R[X1, . . . , Xn]X1···Xn

∣∣∣∣
1

N
� Xi(δ) � 0, i ∈ T

}
.

By Proposition 7.5.1. of [7], each DN is a non-empty closed connected
subset of
Sper R[X1, . . . , Xn]X1···Xn , hence Dloc is connected by ([21], lemma 7.1).

The lemma proves that any “quadrant” is connected, Ũ is a quadrant,
hence it is connected. This completes the proof of the Connectedness Con-
jecture for any excellent 2-dimensional ring A.

Remark 3.37. — The above proof is a special case of the following general
principle. Let A be an excellent regular local ring with regular parameters
x = (x1, . . . , xn) whose residue field k is equipped with a total ordering. Let
R be the real closure of k. We have natural morphisms

Sper A
φ∗−−−−→ Sper R[[X1, . . . , Xn]]

π

.

Sper R[X1, . . . , Xn](X1,...,Xn)
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Let D ⊂ Sper A be a constructible set such that all the elements of A
appearing in the definition of D belong to A ∩ R[X1, . . . , Xn](X1,...,Xn). Let

D̂ = φ−1(D), let U be the subset of all points of Sper R[X1, . . . , Xn](X1,...,Xn)

centered at the origin. Let Dpol be the subset of U defined by the same
formulae as D. By ([3], proposition 8.6), to show that D is connected, it is
enough to prove that Dpol is connected.

In many cases, this principle applies also to nested intersection D =
⋂

N∈N
DN

of constructible sets defined by elements of A ∩R[X1, . . . , Xn](X1,...,Xn).

This allows to transpose all the results of ([21]) from the case of polyno-
mial rings to that of arbitrary excellent regular local rings.

3.5. Proof of the Definable Connectedness Conjecture for regular
2-dimensional local rings

Next we prove the Definable Connectedness Conjecture, hence the Pierce-
Birkhoff Conjecture, without the excellence hypothesis on A.

Theorem 3.38 Let (A,m, k) be a regular 2-dimensional local ring, (x, y)
a regular system of parameters of A. The sets

U = {δ ∈ Sper A | x(δ) > 0, ε ∈ {δ}} (3.41)

V = {δ ∈ Sper A | x(δ) > 0, y(δ) > 0, ε ∈ {δ}} (3.42)

are definably connected.

U V

yy

xx

Figure 1. — The sets U and V .

Proof. — We argue by contradiction. Let Ω be either U or V . Write
Ω = F

∐
G, F =

⋃
Fi, G =

⋃
Gi where {Fi}, {Gi} are finite collections

of basic open sets. Each Fi and Gi is defined by finitely many inequalities
of the form g > 0, g ∈ A. Let g3, . . . , gr ∈ A be the list of elements of
A, appearing in the definition of all of Fi and Gi and let g1 = x, g2 = y.
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A proof of the Theorem will be given after a few auxiliary definitions and
results.

Let SperA ← X1 ← · · · ← Xt be a sequence of point blowings up. Let

Xt =
s⋃

j=1

SperAjt be the open covering of Xt, given by the definition of real

geometric surface.

Definition 3.39. — We say that a collection {h1, . . . , hr} of elements
of A are simultaneously locally monomial in Xt if for all j ∈ {1, . . . , s} and
any maximal ideal m′ ⊂ Ajt, there exists a regular system of parameters
(x′, y′) of A′ := (Ajt)m′ such that all of h1, . . . , hr are monomials in (x′, y′)
multiplied by units of (Ajt)m′ .

Let g1, . . . , gr ∈ A be as above. By standard results on resolution of
singularities, there exists a sequence SperA ← X1 ← · · · ← Xt of point
blowings up such that g1, . . . , gr are simultaneously locally monomial in Xt.
Denote by ρt : Xt → SperA the composition of all the morphisms in that
sequence (with the notations following (3.32)).

Let Ω(t) = ρ−1
t (Ω), F (t) = ρ−1

t (F ), G(t) = ρ−1
t (G), U (t) = ρ−1

t (U).

Take a point δ ∈ ρ−1
t (ε), let A′,m′, x′, y′, Ajt be as in the definition of

simultaneously locally monomial.

Definition 3.40. — We say that δ is a special point of ρ−1
t (ε) if ht(pδ) =

2 and
{x′y′ = 0} = ρ−1

t (ε) ∪ {g1 · · · gr = 0}
locally near δ.

Given a special point δ ∈ ρ−1
t (ε) and (u′, v′) a regular system of para-

meters at δ, let

C(δ, u′, v′) = {γ ∈ Xt | u′(γ) > 0, v′(γ) > 0, δ ∈ {γ}}.

Lemma 3.41. — Take a point ξ ∈ ρ−1
t (ε), not lying on the strict trans-

form of {x = 0}. Take j ∈ {1, . . . , si} such that ρ−1
t (ε) is contained in the

privileged set of Sper Ajt near ξ. Let xjt, yjt ∈ Ajt be the elements given
in Definition 3.16. Assume that the privileged set is given by {xjt = 0} and
is homeomorphic to Sper k′[z]θz , where θz is a non-zero polynomial, with
k′ finite over k and that ht(pξ)=2. Let (x′, y′) be as in the definition of
simultaneously locally monomial where we take m′ = pξ (we may assume
x′ = xjt). We view k′ as an ordered field via the inclusion k′ ⊂ Ajt(ξ). Let

E={δ∈Sper Ajt|xjt(δ) = 0 and k′⊂Ajt(δ) is an inclusion of ordered fields}.
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Take special points δ1, δ2 ∈ E such that the intervals (δ1, ξ) and (ξ, δ2)
are connected and contain no special points.

For i ∈ {1, 2}, let (x′, v′i) be a regular system of parameters at δi such
that {v′i > 0} ∩ (δ1, δ2) �= ∅.

Then the set

D(δ1, δ2) = C(δ1, x
′, v′1)∪C(δ2, x

′, v′2)∪{δ ∈ U (t)|x′(δ) > 0, {δ}∩(δ1, δ2) �= ∅}

is contained either in F (t) or in G(t).

Proof. — First, assume ξ is not special. Then there are no special points

in (δ1, δ2). Let F† = F (t) ∩ [δ1, δ2] and G† = G(t) ∩ [δ1, δ2]. Then F†, G†
are relatively closed in [δ1, δ2] and [δ1, δ2] is connected (Lemma 3.22) , so
F† ∩G† �= ∅.

Take a point η ∈ F† ∩ G†. Replacing η by its specialization, we may
assume that ht(pη) = 2. For each i ∈ {1, . . . , r}, locally near η, write gi =
x′ag′i if η∈/{δ1, δ2} and gi = x′ay′bg′i if η = δ�, 2 ∈ {1, 2} with y′ = v′i, where,
in both cases, g′i is invertible locally near η.

Take an open set W , containing η, such that for all δ ∈ W and all
i ∈ {1, . . . , r}, we have

sgn(g′i(δ)) = sgn(g′i(η)). (3.43)

Since η ∈ F (t) ∩ G(t), there exist δ ∈ F (t) ∩W , γ ∈ G(t) ∩W and an
i ∈ {1, . . . , r} such that gi changes sign between δ and γ.

Since x′ (resp. x′, y′) does not change sign between γ and δ this contra-
dicts (3.43).

Therefore ξ must be special. Let δ ∈ D(δ1, δ2) be the unique point such
that

x′(δ) > 0, y′(δ) = 0.

We have {δ} = D(δ1, δ2) ∩ {y′ = 0}. Then

D(δ1, δ2) = {δ}
∐
D(δ1, ξ)

∐
D(ξ, δ2).

Let δ− ∈ D(δ1, ξ) be the unique point such that x′(δ−) > 0, y′(δ−) < 0
and |y′(δ−)|N < |x′(δ−)|,∀N ∈ N. Then δ ∈ {δ−}, in particular,

δ ∈ D(δ1, ξ). (3.44)
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Similarly

δ ∈ D(ξ, δ2). (3.45)

By the previous case, each of D(δ1, ξ), D(ξ, δ2) is contained either in
F (t) or G(t).

Without loss of generality, assume that D(δ1, ξ) ⊂ F (t). By (3.44) and
the relative closedness of F (t), we have δ ∈ F (t). By (3.45) and the relative
closedness of G(t), we have D(ξ, δ2) ⊂ F (t), so D(δ1, δ2) ⊂ F (t) as desired.

�

Corollary 3.42. — Let [δ1, δ2] be a maximal interval. Then D(δ1, δ2)
is entirely contained either in F (t) or in G(t).

Proof. — This follows from the preceding lemma by induction on the
number of special points inside [δ1, δ2].

In order to address the global connectedness, we need a notion of signed
dual graph associated to a sequence of point blowings up of a point ε ∈
SperA and a subset W of SperA.

For each maximal interval I (see Definition 3.27), take Sper Ajt ⊂ Xt

such that I \ Sper Ajt is either empty or consists of one distinguished point
(such an Ajt exists by Proposition 3.29). When necessary, we will denote
this j by j(I). Let xjt, yjt ∈ Ajt be the elements given in the Definition
3.16. By Proposition 3.29, we have I ∩ Sper Ajt ⊂ {xjt = 0}.

Let W (t) = ρ−1
t (W ). Let I a maximal interval, denote by I◦ its interior,

and s ∈ {+,−}, let

W (I, s) = {δ ∈ SperAjt | sgn(xjt(δ)) = s, {δ} ∩ I◦ �= ∅}. (3.46)

Definition 3.43. — Consider a pair (I, s) as above. We say that (I, s)
is admissible if

W (t) ∩ Sper Ajt ⊃W (I, s) �= ∅. (3.47)

Consider two admissible pairs (I, s), (Ĩ , s̃). We say that these two pairs
are equivalent if the following conditions hold :

(a) I ∩ Sper Ajt ∩ Sper A̃t = Ĩ ∩ Sper Ajt ∩ Sper A̃t,
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(b) the sets

{δ ∈ Sper Ajt ∩ Sper A̃t | sgn(xjt(δ)) = s}

and

{δ ∈ Sper Ajt ∩ Sper A̃t | sgn(x̃t(δ)) = s̃}

coincide in a neighbourhood of I ∩ Sper Ajt ∩ Sper A̃t.

Given two equivalent admissible pairs (I, s) and (Ĩ , s̃), the set of end-
points of I coincides with the set of endpoints of Ĩ (viewed as points of the
marked real geometric surface Xt). In this way, given an equivalence class of
admissible pairs {(I, s)}, it makes sense to talk about endpoints of {(I, s)}.

Definition 3.44 1. A vertex of the signed dual graph Γt associated to
Xt and W is an equivalence class of an admissible pair (I, s), which we will
still denote, by abuse of notation, by (I, s).

2. By definition, two distinct vertices (I, s) and (Ĩ , s̃) of Γt are connected
by an edge of Γt if the following conditions hold :

(a) I and Ĩ share a common endpoint ξ and suppose that Ĩ⊂/{xji = 0};

(b) we have

W (t) ∩ {δ ∈ Xt | sgn(xjt(δ)) = s, sgn(x̃t(δ)) = s̃, {δ} ! ξ} �= ∅.

x jt

x j̃t

ξ

Figure 2. — This figure represents an edge of Γt connecting two vertices (I, s)

and (Ĩ, s̃). Here I = [0,∞], Ĩ = [0,∞], s = s̃ = +.

Example. — If W = U or W = V then Γ1 consists of one vertex and
no edges (see Figure 3 for a picture of U (1); the case of V 1 is similar but
easier).
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x

y
x

y

x
y

Sper A [x
y ] Sper A [y

x ]

Figure 3. — This figure shows the set U(1) in the affine charts.

Proposition 3.45. — If W = U or W = V , the graph Γi is a bamboo,
that is, a connected, simply connected graph every one of whose vertices
belongs to at most two edges.

Proof. — By induction on i. For i = 1, the graph consisting of one vertex
is connected and satisfies the conclusion of the Proposition. The induction
step follows from the next Lemma, which describes the transformation law
from Γi to Γi+1 in the case when W = U or W = V .

Consider the point blowing up πi : Xi+1 → Xi. Let ξ be the center of
the blowing up; recall that, by definition of blowing up in the category of
real marked geometric surfaces, ξ belongs to the distinguished set of Xi. Let
SperAji be an affine chart of Xi containing ξ. Let pξ be the support of ξ in
Aji. Let kji be the field of Definition 3.16 (2). Let E1, . . . , Ep be the compo-
nents of the set {xji = 0}∩ ρ−1

i (ε). Picking a component Eq, q ∈ {1, . . . , p}
amounts to fixing a total order on kji, which induces the order on k given by

ε. For q ∈ {1, . . . , p}, let {ξ(q)1 , . . . , ξ
(q)
� } be the set of points of Eq supported

at pξ. For each q ∈ {1, . . . , p}, the total order on kji corresponding to Eq in-

duces a total order on the set {ξ(q)1 , . . . , ξ
(q)
� }. Renumbering {ξ(q)1 , . . . , ξ

(q)
� },

we may assume ξ
(q)
1 < ξ

(q)
2 < · · · < ξ(q)� .

It follows from the definition of distinguished that one of the points ξ
(q)
t

is j-distinguished if and only if all of them are.
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Fix a pair (q, t), q ∈ {1, . . . , p}, t ∈ {1, . . . , 2}. Two cases are possible :

• Case 1 : There exist a = (I, s), b = (Ĩ , s̃) two vertices of Γi connected

by an edge (a, b) such that ξ
(q)
t is the point common to I and Ĩ (note that

the pair a, b is not, in general uniquely determined by ξ
(q)
t ). In particular,

the points ξ
(q)
t are j-distinguished. In this case, we have p = 1, so we may

denote our points by ξ1, . . . , ξ�. Let xji, x̃ji be a privileged regular system
of parameters at the points ξt.

• Case 2 : We are not in Case 1.

– Case 2.1. : None of the points ξ
(q)
t is j-distinguished. Let (xji, y

′) be

a regular system of parameters of the local ring Apξ . The set π−1
i (ξ

(q)
t ) is

covered by two affine charts : SperAji[
xji
y′ ] and SperAji[

y′

xji
]. Let x′ji =

xji
y′ .

– Case 2.2 : The point ξ is j-distinguished and lies on the strict transform
of {x = 0} or {y = 0}. In this case, p = 2 = 1.

Next, we study the neighbourhood of π−1
i (ξ

(q)
t ) for each q ∈ {1, . . . , p}, t ∈

{1, . . . , 2} and analyze the changes from Γi to Γi+1 induced by the blowing-

up πi locally on the part of Γi which represents a neighbourhood of ξ
(q)
t .

Since πi induces an isomorphism outside the points ξ
(a)
t , the rest of the

graph Γi remains unchanged under the blowing-up πi.

In the statement of the following lemma, we refer to the cases 1 and 2
defined above.

Lemma 3.46. —

• Case 1 : Fix t ∈ {1, . . . , 2}. For each pair of vertices a, b as above,
remove the edge (a, b) and add a new vertex c and two new edges (a, c) and
(b, c). The graph Γi+1 is obtained from Γi by successively performing the
above operation for each of ξ1, . . . , ξ�.

• Case 2 : Consider a vertex a = (I, s) such that ξ
(q)
t ∈ I for some

t ∈ {1, . . . , 2} and q ∈ {1, . . . , p}. Write I = [δ1, δ2] (again, the vertex a is

not, in general, uniquely determined by ξ
(q)
t ).

– Case 2.1: Take λ ∈ {0, . . . , 2− 1} and ω ∈ {1, . . . , 2− λ} such that

[δ1, δ2] ∩ {ξ(q)t | t ∈ {1, . . . , 2}, q ∈ {1, . . . , p}} = {ξ(q)λ+1, ξ
(q)
λ+2, . . . , ξ

(q)
λ+ω}
(3.48)
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for some q ∈ {1, . . . , p}. Replace a by a bamboo with 2ω + 1 vertices. More
precisely, we distinguish three cases :

(a) If a belongs to two edges (a, b), (a, c) of Γi, remove a and the
two edges (a, b), (a, c). Introduce the bamboo

b •−−•−− •−− •−− • · · · · · · •−−•︸ ︷︷ ︸−−• c
2ω + 1

(b) If a belongs to only one edge (a, b), remove a and the edge (a, b)
and introduce the bamboo

b •−−•−− •−− •−− • · · · · · · •−−•︸ ︷︷ ︸
2ω + 1

(c) If a belongs to no edges (in other words, if i = 1) then

Γ2 =

•−− •−− •−− • · · · · · · •−−•︸ ︷︷ ︸
2ω + 1

is a chain of 2ω + 1 vertices and 2ω edges.

The graph Γi+1 is obtained from Γi by performing successively the above
operation for each vertex a as above.

– Case 2.2:

(a) i = 1 and W = U , then Γ2 = •−−•−−• is a chain of three
vertices and two edges

(b) i > 1 or W = V , then each vertex a = (I, s) such that ξ ∈ I is
an endpoint of Γi. For each such vertex a, we add a new vertex b and a new
edge (a, b).

Proof. — Case 1 : Let δ1, δ2 be points of Sper Aji such that I = [δ1, ξt],

Ĩ = [ξt, δ2]. Let δ′1 = π−1
i (δ1), δ

′
2 = π−1

i (δ2). Let xji, x̃,i ∈ Aji be as in the

Definition 3.43 applied to (I, s) and (Ĩ , s̃), respectively. The pair (xji, x̃,i)
forms a regular system of parameters at ξt. Let x′ji =

xji
x̃,i

and x′̃,i =
x̃,i
xji

.

Let
ξa ∈

{
x′ji = 0

}
∩ π−1

i (ξt) ⊂ SperAji[x
′
ji]

and
ξb ∈

{
x′̃i = 0

}
∩ π−1

i (ξt) ⊂ SperAji[x
′
̃,i];
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note that these conditions characterize ξa and ξb uniquely. Let J = [ξa, ξb],
viewed as a maximal interval of SperAji[x

′
ji]. Let σ = s · s̃.

Let ai+1, bi+1, ci+1 be the vertices of Γi+1 defined by ai+1 = ([ξa, δ
′
1], σ),

bi+1 = ([ξb, δ
′
2], σ), ci+1 = (J, s̃). We have to verify that those three pairs

are admissible; first, we will show the admissibility of ([ξa, δ
′
1], σ).

Since (I, s) is admissible, we know that

∅ �=W (I, s) ⊂W (i) ∩ SperAji

and we need to show that

∅ �=W ([ξa, δ
′
1], σ) ⊂W (i+1) ∩ SperAji[x

′
ji]. (3.49)

To prove (3.49), note that πi induces an isomorphism outside the set {ξt′ | 1 �
t′ � 2}; in particular, it induces an isomorphism of a neighbourhood of the
open interval (ξa, δ

′
1) onto a neighbourhood of (ξt, δ1). Moreover, the fact

that a and b are connected by an edge of Γi implies that sgn(x̃,i(δ)) = s̃

for δ ∈ W (I, s). Hence δ′ ∈ π−1
i (W (I, s)) if and only if {δ′} ∩ (ξa, δ

′
1) �= ∅

and sgn(x′ji(δ
′)) = s · s̃. In other words, W ([ξa, δ

′
1], σ) = π−1

i (W (I, s)). This
proves (3.49), so ([ξa, δ

′
1], σ) is admissible. By symmetry, the pair ([ξb, δ

′
2], σ)

is also admissible.

To prove the admissibility of (J, s̃), we note that x̃,i = 0 is the local
equation of the exceptional divisor in SperAji[x

′
ji] and hence

πi(W (J, s̃)) = {δ ∈ SperAji | {δ} ! ξt, sgn(x̃,i(δ)) = s̃, sgn(xji(δ)) = s}.

Now the fact that a and b are connected by an edge of Γi (see Definition
3.44 (b)) implies that

∅ �=W (J, s̃) ⊂W (i+1) ∩ SperAji[x
′
ji],

so (J, s̃) is admissible.

To check that ai+1 and ci+1 are connected by an edge of Γi+1, consider
the set

{δ′ ∈ SperAji[x
′
ji] | {δ′} ! ξa, sgn(x̃,i(δ′)) = s̃, sgn(x′ji(δ

′)) = σ}.

We have 1

(1) By δ tangent to {xji = 0}, we mean δ such that ∀N ∈ N, N |xji(δ)| < |x̃,i(δ)|
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πi({δ′ ∈ SperAji[x
′
ji] | {δ′} ! ξa, sgn(x̃,i(δ′)) = s̃, sgn(x′ji(δ

′)) = σ})
= {δ ∈ SperAji | {δ} ! ξt, sgn(x̃,i(δ)) = s̃, sgn(xji(δ)) = s,

δ tangent to {xji = 0}}
⊂ {δ ∈ SperAji | {δ} ! ξt, sgn(x̃,i(δ)) = s̃, sgn(xji(δ)) = s} ⊂W (i),

where the last inclusion comes from the fact that a and b are connected by
an edge in Γi.

Hence

∅ �= {δ′∈SperAji[x
′
ji]|{δ′} ! ξa, sgn(x̃,i(δ′)) = s̃, sgn(x′ji(δ

′)) = σ}
⊂W (i+1) ∩ SperAji[x

′
ji],

(3.50)

which proves that ai+1 is connected to ci+1. By symmetry, bi+1 is also
connected to ci+1.

δ2δ1 ζ λ +1 ζ λ +2

ζ λ+3{ xji = 0}

a

cb

ξ
( q )
λ +1

ξ
( q )
λ +2

ξ
( q )
λ +3

δ2δ1

{ xji = 0 } π i

Figure 4. — This figure shows, in the Case 2.1 (a), with ω = 3,

the transformation of the dual graph under the blowing up πi.

Case 2.1 (a) Recall that (xji, y
′) is the chosen regular system of param-

eters at pξ.

Let δ′τ = π−1
i (δτ ), τ ∈ {1, 2}. Let ζt = π−1

i (ξ
(q)
t ) ∩ {x′ji = 0}, t ∈

{ λ + 1, . . . , λ + ω}. The new distinguished points in the open interval
(δ′1, δ

′
2) are ζt, t ∈ { λ + 1, . . . , λ + ω}. The components of π−1

i (pξ) are

π−1
i (ξ

(q)
λ+1), . . . , π

−1
i (ξ

(q)
λ+ω). For t ∈ {λ + 1, . . . , λ + ω}, let us denote the

interval [−∞,+∞] ⊂ π−1
i (ξ

(q)
t ) ∩ Sper Aji[

y′

xji
] by [−∞,∞]t.

Now, there are 2ω + 1 maximal intervals in π−1
i ((δ1, δ2)). They are :

[δ′1, ζλ+1], [ζλ+ω, δ
′
2], [ζt, ζt+1], t ∈ {λ + 1, . . . , λ + ω − 1} and [−∞,∞]t,

t ∈ {λ+ 1, . . . , λ+ ω}.

Without loss of generality, we may assume that y′(δ1) > 0. Each of this
maximal intervals gives rise to an admissible pair as follows.
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The intervals [ζt, ζt+1] ⊂ {x′ji = 0} give rise to admissible pairs
([ζt, ζt+1], (−1)t · s).

We have admissible pairs ([δ′1, ζλ+1], s) and ([ζλ+ω, δ
′
2], (−1)ω ·s). Finally,

the intervals [−∞,∞]t give rise to admissible pairs ([−∞,∞]t, s).

To see that the pair ([ζt, ζt+1], (−1)t ·s) is admissible, we use the fact that
πi is an isomorphism from a neighbourhood of the open interval (ζt, ζt+1)

to a neighbourhood of the open interval (ξ
(q)
t , ξ

(q)
t+1). Since y′(δ1) > 0 and

since y′ changes sign once at each point ξ
(q)
t the sign of y′ on (ξ

(q)
t , ξ

(q)
t+1) is

(−1)t. Hence

πi({δ′ ∈ Xi+1 | {δ′} ∩ (ζt, ζt+1) �= ∅, sgn(x′ji(δ′)) = (−1)t · s})
= {δ ∈ Xi | {δ} ∩ (ξ

(q)
t , ξ

(q)
t+1) �= ∅, sgn(xji(δ)) = s}. (3.51)

This proves the admissibility of ([ζt, ζt+1], (−1)t·s). The proof that ([δ′1, ζλ+1], s)
and ([ζλ+ω, δ

′
2], (−1)ω · s) are admissible is similar and we omit it.

To prove the admissibility of ([−∞,∞]t, s), note that

π−1
i ({δ ∈ Xi | {δ} ! ξ(q)t , sgn(xji(δ)) = s}) ⊃W ([−∞,∞]t, s),

where the notationW ([−∞,∞]t, s) is applied to the affine chart SperAji[
y′

xji
]

and the element xji ∈ Sper Aji[
y′

xji
].

We claim that the graph Γi+1 contains a bamboo consisting of the above
2ω + 1 vertices, arranged in the following order :

([δ′1, ζλ+1], s), ([−∞,∞]λ+1, s), ([ζλ+1, ζλ+2],−s), ([−∞,∞]λ+2, s),
([ζλ+2, ζλ+3], s), . . . , ([−∞,∞]λ+ω, s), ([ζλ+ω, δ

′
2], (−1)ωs).

(3.52)

We discuss a sample of edge of this bamboo, for example, ([ζt, ζt+1], (−1)ts),
([−∞,∞]t+1, s). The existence of the other edges can be proved in a similar
way.

The two maximal intervals ([ζt, ζt+1] and [−∞,∞]t+1 have a common
endpoint, namely, ζt+1. We must show that

W (i+1)∩{δ′ ∈ Xi+1 | sgn(x′ji(δ′)) = (−1)ts, sgn(xji(δ
′)) = s, {δ′} ! ζt+1} �= ∅.

The image of this set under πi is

W (i) ∩ {δ ∈ Xi | sgn(xji(δ)) = s, {δ} ! ξ(q)t+1, δ tangent to {xji = 0}}
and the result follows.

This proves 2.1(a). The cases 2.1(b) and (c) are similar but easier.
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Case 2.2: (a) Let a = (I, s). Then xji = y. Put y′ = x
y ; (xji, y

′) is

a regular system of parameters at ξ. Let A11 = A[xji, y
′]. The point ξ ∈

Sper A11 is the unique point such that supp(ξ)= (xji, y
′) and which induces

the given order on k. Let A12 = A11[x
′
ji, y

′] where x′ji =
xji
y′ .

Let I ′ ⊂ {x′ji = 0} be the 1-maximal interval given by −∞ � y′ � +∞
and Ĩ ′ ⊂ {y′ = 0} the 1-maximal interval given by 0 � x′ji � +∞.

Now the vertices of Γ2 are (Ĩ ′,+), (I ′,+), (Ĩ ′,−) with the edges clearly
defined.

I2

I

I

I

I

Ĩ

y

I1x ji

Figure 5. — This figure shows the set U(2) in the cases 2.2.a and 2.1.c respectively.

(b) Let a = (I, s) be a vertex such that ξ ∈ I; the vertex a is an
endpoint of Γi. Suppose that ξ ∈ SperAji. Let (xji, y

′) be a regular system
of parameters at ξ. Let Aj,i+1 = Aji[x

′
ji, y

′] where x′ji =
xji
y′ . Without loss

of generality, assume that xji > 0, y′ > 0 on W (i).

Let I ′ ⊂ {x′ji = 0} be the strict transform of I in Sper Aj,i+1. Then I ′

is an (i + 1)-maximal interval. Let Ĩ ′ ⊂ {y′ = 0} be the (i + 1)-maximal
interval given by 0 � x′ji � +∞. Now the new vertex b added to Γi+1 is

(Ĩ ′,+). It is connected by an edge to a which is represented in Sper Aj,i+
by (I ′,+). This completes the proof of Lemma 3.46 and with it Proposition
3.45. �

Let us finish the proof of Theorem 3.38. To each vertex (I = [δ1, δ2], s)
of Γt we associate the set D(δ1, δ2) ⊂ U (t) which by Corollary 3.42 is
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entirely contained in F (t) or G(t). This defines a partition
ΓF =

{
(I, s)

∣∣ D(δ1, δ2) ⊂ F (t)
}
, ΓG =

{
(I, s)

∣∣ D(δ1, δ2) ⊂ G(t)
}

of the
set of vertices of Γt. Assume that ΓF �= ∅ and ΓG �= ∅. Since Γt is con-
nected, there exist a = ([δ1a, δ2a], sa) ∈ ΓF , b = ([δ1b, δ2b], sb) ∈ ΓG such
that (a, b) is an edge of Γt. Then D(δ1a, δ2a) ⊂ F (t), D(δ1b, δ2b) ⊂ G(t) and
D(δ1a, δ2a) ∩ D(δ1b, δ2b) �= ∅. This is a contradiction. This concludes the
proof of Theorem 3.38.
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[39] Vaquié (M.). — Famille admise associée à une valuation de K[x], Séminaires et
Congrès 10, edited by Jean-Paul Brasselet and Tatsuo Suwa, 2p. 391-428 (2005).
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