ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

F. LUCAS, J. MADDEN, D. SCHAUB, M. SPIVAKOVSKY
Approximate roots of a valuation and the Pierce-Birkhoff conjecture

Tome XXI, n°2 (2012), p. 259-342.
<http://afst.cedram.org/item?id=AFST_2012_6_21_2_259_0>

© Université Paul Sabatier, Toulouse, 2012, tous droits réservés.

L’acces aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal /). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que I’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2012_6_21_2_259_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XXI, n® 2, 2012
pp. 259-342

Approximate roots of a valuation
and the Pierce-Birkhoff conjecture

F. Lucas® J. MaDDEN®) | D. ScuauB®, M. SPIvAKOVSKY ¥

ABSTRACT. — In this paper, we construct an object, called a system of
approximate roots of a valuation, centered in a regular local ring, which
describes the fine structure of the valuation (namely, its valuation ideals
and the graded algebra). We apply this construction to valuations asso-
ciated to a point of the real spectrum of a regular local ring A. We give
two versions of the construction: the first, much simpler, in a special case
(roughly speaking, that of rank 1 valuations), the second — in the case of
complete regular local rings and valuations of arbitrary rank.

We then describe certain subsets C' C Sper A by explicit formulae in terms
of approximate roots; we conjecture that these sets satisfy the Connected-
ness (respectively, Definable Connectedness) conjecture. Establishing this
for a certain regular ring A would imply that A is a Pierce-Birkhoff ring
(this means that the Pierce-Birkhoff conjecture holds in A).

Finally, we use these constructions and results to prove the Definable
Connectedness conjecture (and hence a fortior: the Pierce-Birkhoff con-
jecture) in the special case when dim A = 2.

RESUME. — Les résultats contenus dans ce papier constituent une étape
dans notre tentative de démontrer la Conjecture de Pierce-Bikhoff pour
des anneaux réguliers en toute dimension (et en particulier la conjec-
ture classique pour un anneau de polyndémes sur un corps réel clos).
On commence par rappeler les conjectures de Connexité et de Connexité
Définissable, qui ont toutes deux pour conséquence la conjecture de Pierce-
Birkhoff.

Nous introduisons alors la notion de systéme de racines approchées pour
une valuation v sur un anneau A : c’est une collection @ d’éléments de A
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telle que tout v-idéal est engendré par un produit d’éléments de Q). On se
sert alors des racines approchées pour définir, par des formules explicites,
des sous-ensembles du spectre réel de A, fortement susceptibles de vérifier
la conjecture de Connexité Définissable.

On prouve ainsi la conjecture de Pierce-Birkhoff pour un anneau régulier
arbitraire de dimension 2.

Introduction

All the rings in this paper will be commutative with 1. Let R be a real
closed field. Let B = R[z1,...,2,]. If A is a ring and p a prime ideal of A,
k(p) will denote the residue field of p.

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial
function

f:R" >R

can be expressed as a maximum of minima of a finite family of polynomials
in n variables. We start by giving the precise statement of the conjecture
as it was first stated by M. Henriksen and J. Isbell in the early nineteen
sixties.

DEFINITION 0.1. — A function f : R™ — R is said to be piecewise
polynomial if R™ can be covered by a finite collection of closed semi-
algebraic sets P; such that for each i there exists a polynomial f; € B

satisfying f|p, = fi

P;

Clearly, any piecewise polynomial function is continuous. Piecewise poly-
nomial functions form a ring, containing B, which is denoted by PW (DB).

On the other hand, one can consider the (lattice-ordered) ring of all the
functions obtained from B by iterating the operations of sup and inf. Since
applying the operations of sup and inf to polynomials produces functions
which are piecewise polynomial, this ring is contained in PW (B) (the latter
ring is closed under sup and inf). It is natural to ask whether the two rings
coincide. The precise statement of the conjecture is:

CONJECTURE 0.2 (Pierce-Birkhoft). — If f : R* — R is in PW(B),
then there exists a finite family of polynomials g;; € B such that f =
supinf{g;;} (in other words, for all x € R™, f(x) = supinf{g;;(x)}).

i J i J
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This paper represents the second step of our program for proving the
Pierce-Birkhoff conjecture in its full generality. The starting point of this
program is the abstract formulation of the conjecture in terms of the real
spectrum of B and separating ideals proposed by J. Madden in 1989 [26],
which we now recall, together with the relevant definitions. For a general
introduction to real spectrum, we refer the reader to [7], Chapter 7, [3],
Chapter 1T or [33], 4.1, page 81 and thereafter; see also “Bibliographical
and historical comments” on p. 109 at the end of that chapter.

Let A be a ring. A point « in the real spectrum of A is, by definition,
the data of a prime ideal p of A, and a total ordering < of the quotient
ring A/p, or, equivalently, of the field of fractions of A/p. Another way of
defining the point « is as a homomorphism from A to a real closed field,
where two homomorphisms are identified if they have the same kernel p and
induce the same total ordering on A/p.

The ideal p is called the support of o and denoted by p,, the quotient
ring A/po by Alal], its field of fractions by A(«) and the real closure of A(«)
by k(«). The total ordering of A(«) is denoted by <,. Sometimes we write

a= (Pa,<a)-

DEFINITION 0.3. — The real spectrum of A, denoted by Sper A, is the
collection of all pairs o = (Pu, <a), wWhere Py is a prime ideal of A and <,
is a total ordering of A/pq.

We use the following notation: for an element f € A, f(a) stands for
the natural image of f in A[a] and the inequality f(«) > 0 really means
fla) >4 0.

The real spectrum Sper A is endowed with two natural topologies. The
first one, called the spectral (or Harrison) topology, has basic open sets
of the form

U(fri,-- s fx)={a | ila) >0,..., fr(a) >0}
with f1,..., fx € A.

The second is the constructible topology whose basic open sets are
of the form

V(fi, s fr9) ={a | file) >0,..., fu(a) >0,9(ct) =0},

where f1, ..., fn, g € A. Boolean combinations of sets of the form V(f1,..., fn,9)
are called constructible sets of Sper A.
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For more information about the real spectrum, see [7]; there is also a brief
introduction to the real spectrum and its relevance to the Pierce-Birkhoff
conjecture in the Introduction to [21].

DEFINITION 0.4. — Let

f: Sper A — H A(w)
acSper A

be a map such that, for each o € Sper A, f(a) € A(a). We say that f is
piecewise polynomial (denoted by f € PW(A)) if there exists a covering
of Sper A by a finite family (S;)ic1 of constructible sets, closed in the spectral
topology, and a family (f;)icr, fi € A such that, for each a € S;, f(a) =

fz(a)

We call f; a local representative of f at a and denote it by fo (fa is,
in general, not uniquely determined by f and «; this notation means that
one such local representative has been chosen once and for all).

Note that PW(A) is naturally a lattice ring: it is equipped with the
operations of maximum and minimum. Each element of A defines a piecewise
polynomial function. In this way we get a natural injection A C PW(A).

DEFINITION 0.5. — A ring A is a Pierce-Birkhoff ring if, for each f €
PW(A), there exist a finite collection of fij € A such that f = supinf f;;.
i J

In [26] Madden reduced the Pierce-Birkhoff conjecture to a purely local
statement about separating ideals and the real spectrum. Namely, he gave
the following definition:

DEFINITION 0.6. — Let A be a ring. For o, 5 € Sper A, the separating
ideal of o and 8, denoted by < a, B >, is the ideal of A generated by all the
elements f € A which change sign between « and (3, that is, all the f such
that f(a) =0 and f(B) <0.

DEFINITION 0.7. — A ring A is locally Pierce-Birkhoff at o, if
the following condition holds. Let f be a piecewise polynomial function, let
fo € A be a local representative of f at o and fg € A a local representative

of f at B. Then fo — fs €< a,  >.

THEOREM 0.8 (Madden). — A ring A is Pierce-Birkhoff if and only if
it is locally Pierce-Birkhoff for all a, € Sper(A).

Let «, 8 be points in Sper A.
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CONJECTURE 0.9 (local Pierce-Birkhoff conjecture at «, 8). — Let A
be a reqular ring and [ a piecewise polynomial function. Let f, € A be a
local representative of f at o and fg € A a local representative of f at B.
Then fo — fg €<, B >.

There are known counterexamples in the case A is not regular (eg. A =
R[z,y]/(y? — 2%)) and even with A normal.

Remark 0.10. — Assume that B is a specialization of a. Then
(1) < o, B >=pg.

(2) fo — f3 € pg. Indeed, we may assume that fo # fg, otherwise there
is nothing to prove. Since B € {a}, fo is also a local representative of f at

B. Hence fo(B) — f3(8) =0, so fo — fs € ps.

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to
verify Definition 0.7 for all o, B such that neither of v, B is a specialization
of the other.

In [21], we introduced

CONJECTURE 0.11 (the Connectedness conjecture). — Let A be a regu-
lar ring. Let
a, € Sper A

and let g1,...,gs be a finite collection of elements of A\ < «,8 >. Then
there exists a connected set C C Sper A such that o, € C and C N {g; =
0} = 0 fori € {1,...,s} (in other words, a and B belong to the same
connected component of the set Sper A\ {g1...9s =0}).

DEFINITION 0.12. — A subset C of Sper(A) is said to be definably
connected if it is not a union of two non-empty disjoint constructible sub-
sets, relatively closed for the spectral topology.

CONJECTURE 0.13 (Definable connectedness conjecture). — Let A be a
reqular Ting. Let o, B € Sper A and let g1,...,gs be a finite collection of
elements of A, not belonging to < «, 5 >. Then there exists a definably
connected set C C Sper A such that a,8 € C and CN{g; = 0} =0
fori € {1,...,s} (in other words, o and B belong to the same definably
connected component of the set Sper A\ {g1...9s =0}).

- 263 -



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky

In the earlier paper [21] we stated the Connectedness conjecture (in
the special case A = B) and proved that it implies the Pierce-Birkhoff
conjecture. Exactly the same proof applies verbatim to show that the De-
finable Connectedness conjecture implies the Pierce-Birkhoff conjecture for
any ring A.

One advantage of the Connectedness conjecture is that it is a statement
about A (respectively, about the polynomial ring if A = B) which makes
no mention of piecewise polynomial functions.

Our problem is therefore the one of constructing connected subsets of
Sper A having certain properties.

Terminology. — If A is an integral domain, the phrase “valuation of
A” will mean “a valuation of the field of fractions of A, non-negative on A”.
Also, we will sometimes commit the following abuse of notation. Given a
ring A, a prime ideal p C A, a valuation v of % and an element x € A, we will
write v(z) instead of v(x mod p), with the usual convention that v(0) = oo,
which is taken to be greater than any element of the value group.

Given any ordered domain D, let D denote the convex hull of D in its
field of fractions D g):

D:={f€Dy)| d>|f| for somed e D}.

The ring D is a valuation ring, since for any element f € D gy, either f € D
or f~' € D. For a point o € Sper A, we define R, := A[a]. In this way,
to every point a € Sper A we can canonically associate a valuation v, of

A(a), determined by the valuation ring R,. The maximal ideal of R, is
M, = {x € A(a) ‘ |z < ﬁ, Vz € Ala] \ {O}}; its residue field k, comes
equipped with a total ordering, induced by <,.

Let U(R,) denote the multiplicative group of units of R, and T, the
value group of v,. Recall that

Aa) \ {0}

Y= T (R

1

and that the valuation v, can be identified with the natural homomorphism

A(e) \ {0}
A\ 0} = =5
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By definition, we have a natural ring homomorphism
A— R, (0.1)

whose kernel is p,,.

Conversely, the point « can be reconstructed from the ring R, by speci-
fying a certain number of sign conditions (finitely many conditions when A
is noetherian) ([5], [17], [7] 10.1.10, p. 217).

The valuation v, has the following properties:

(1) va(Ala]) =0

(2) If A is an R-algebra then for any positive elements y, z € A(«),
Vo(y) < Va(2) =y > Nz, VN € R. (0.2)

A v,-ideal of A is the preimage in A of an ideal of R,. See [32] or [3], §I1.3

for more information on this subject.

As pointed out in [21], the points of Sper A admit the following geometric
interpretation (see also [10], [15], [32], p. 89 and [34] for the construction
and properties of generalized power series rings and fields).

DEFINITION 0.14. — Let k be a field and " an ordered abelian group. The
generalized formal power series field k ((tr)) is the field formed by elements

of the form % a,t?, ay € k such that the set {y | a, # 0} is well ordered.
yel

The field & ((tF )) is equipped with the natural t-adic valuation v with
values in I, defined by v(f) = inf{y | ay # 0} for f = > a,t? € k((t")).
&t

The valuation ring of this valuation is the ring k [[tFH formed by all the

elements of k ((tr)) of the form ) a,t7. Specifying a total ordering on
velry

k and dimp, (I'/2T) sign conditions defines a total ordering on k ((¢V)). In
this ordering [t| is smaller than any positive element of k. For example, if
t7 >0 for all v € T then f > 0 if and only if a, ) > 0.

For an ordered field k, let k denote the real closure of k. The following
result is a variation on a theorem of Kaplansky ([15], [16]) for valued fields
equipped with a total ordering.
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THEOREM 0.15 ([34], p. 62, Satz 21). — Let K be a real valued field,
with residue field k and value group I'. There exists an injection K <
k ((tr)) of real valued fields.

Let o € Sper A. In view of (0.1) and the Remark above, specifying a
point o € Sper A is equivalent to specifying a total order of k,, a morphism

Alo] = ko [[t"]] (0.3)

and dimp, (I's /2T, ) sign conditions.

We may pass to Zariski spectra to obtain morphisms
Spec (l?:a [[tP“]]) — Spec Ala] — Spec A,

induced by the ring homomorphism (0.3) and the natural surjective homo-
morphism A — Ala], respectively.

In particular, if T, = Z, we obtain a formal curve in Spec A (an
analytic curve if the series are convergent). This motivates the following
definition:

DEFINITION 0.16. — Let k be an ordered field. A k-curvette on Sper(A)
is a morphism of the form

oA E[[1]],

where I' is an ordered group. A k-semi-curvette is a k-curvette a together
with a choice of the sign data sgn x1,..., sgn x,, where x1, ..., x, are elements
of A whose t-adic values induce an Fy-basis of T'/2T.

We have thus explained how to associate to a point o of Sper A a
kq-semi-curvette. Conversely, given an ordered field k, a k-semi-curvette o
determines a prime ideal p,, (the ideal of all the elements of A which vanish
identically on «) and a total ordering on A/p, induced by the ordering of
the ring k [[tr]] of formal power series.

Below, we will often describe points in the real spectrum by specifying
the corresponding semi-curvettes.

Let v be a valuation centered in a regular local ring A (see §1.1), let
® =v(A\ {0}); ® is a well-ordered set. For an ordinal A < @, let v be the
element of ® corresponding to A.
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DEFINITION 0.17. — A system of approximate roots of v is a well-ordered
set of elements

Q ={Qi}ier C 4,

satisfying the following condition: for every v-ideal I in A, we have

J

1=<[J@7 Z%‘V(Qj)%/(f) A; (0.4)

furthermore, we require the set Q to be minimal in the sense of inclusion
among those satisfying (0.4).

A system of approximate roots of v up to 7y is a well-ordered set of
elements of A satisfying (0.4) for all the v-ideals I such that v(I) < 7.

The main results of this paper are:

1. Given a regular local ring (A, m, k), a valuation v centered at A, as
above, and an element v, € ® such that the v-ideal determined by
v is m-primary, we construct a system of approximate roots up to

-

2. We construct a system of approximate roots for A and v under the
assumption that A is m -adically complete.

3. In the situation of the Connectedness (or Definable Connectedness)
conjecure we describe certain subsets C' C Sper A by explicit formulae
in terms of approximate roots; we conjecture that these sets satisfy
the Connectedness (respectively, Definable Connectedness) conjec-
ture.

4. In the special case dim A = 2, we use the above results and construc-
tions to prove the Definable Connectedness conjecture (and hence a
fortiori the Pierce-Birkhoff conjecture). We also prove the Connect-
edness conjecture in dimension 2, provided the ring A is excellent.

The paper is organized as follows. Sections 1.1 to 1.5 are purely valuation-
theoretic; sections 1.2 and 1.4 are devoted to the construction of a system
of approximate roots.

The approximate roots @Q; are constructed recursively in i. Roughly
speaking, ;41 is the lifting to A of the minimal polynomial equation satis-

fied by in, Q; over k [{inij}jQ.] in gr, A. In sections 1.1 to 1.5, we prove
that such systems of approximate roots exist in two situations: first, for
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any m-primary v-ideal J there exists a system of approximate roots up to
v(J); secondly, there exists a system of approximate roots whenever A is
m-adically complete.

Once these valuation-theoretic tools are developed, we continue with
the program announced in [21] for proving the Pierce-Birkhoff conjecture.
We place ourselves in the situation of Conjectures 0.11 and 0.13. In §2.1
we describe the separating ideal < «, 8 > by describing monomials in the
approximate roots (common to the valuations v, and vg) which generate it.
In section 2.2, we give an explicit description of a set C C SperA\{g; ...gs =
0}, containing v and 8, which we conjecture to be connected. The set C' is
described in terms of a finite family of approximate roots, common to the
valuations v, and vg.

Finally, we prove the Definable connectedness conjecture and hence the
Pierce-Birkhoff conjecture for an arbitrary regular 2-dimensional local ring
A; we also prove Conjecture 0.11 assuming that A is excellent which provides
a second proof of the Pierce-Birkhoff conjecture in the case of excellent rings.
The outline of the proof of the two conjectures is as follows. First, we use
a sequence of point blowings up and Zariski’s theory of complete ideals
(recalled and refined in §3.1) to transform the set C' into a set U of a very
simple form, which informally we call a quadrant. Namely, U is the set of
all the points ¢ of Sper A’ (where A’ is a regular two-dimensional local ring
obtained after a sequence of blowings up with regular system of parameters
a',y"), centered at the origin, which induce a specified total order on k and
which satify the sign conditions z'(6) > 0, 3/(6) > 0. This is accomplished
in §3.3.

In the special case when A’ is essentially of finite type over a real closed
field the connectedness of U is well known and follows easily from the results
of [7] (which allow to reduce connectedness of U to that of a quadrant in the
usual Euclidean plane). However, for more general regular rings this result
seems to us to be new and non-trivial.

In §3.4, we use results from [3] to reduce the connectedness of U to that
of a quadrant in the usual Euclidean space, assuming the ring A is excel-
lent. This completes the proof of the connectedness conjecture for excellent
regular 2-dimensional rings. In §3.5 we prove the definable connectedness of
U, without any excellence assumptions, by using a new notion of a graph,
associated to a sequence of point blowings-up of a real surface.

Our proof is based on Madden’s unpublished preprint [27]. As well, we
would like to acknowledge a recent paper by S. Wagner [44] which gives
a proof of the Definable Connectedness and the Pierce-Birkhoff conjecture
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in the case of smooth 2-dimensional algebras of finite type over real closed
fields.

The overall structure of our proof is similar to that of [27] and [44], with
the following differences:

1. Here, we have tried to present a proof which should provide a pattern
for a general proof of the conjecture, that is, have a hope of gener-
alizing to higher dimensions. In particular, we went to great lengths
to phrase everything in terms of approximate roots rather than work
directly with connected sets as in [27] and [44].

2. We make no assumptions on the real closedness of the residue field
of A which introduces certain extra complications.

3. Because we work with arbitrary regular two-dimensional rings, we
have to overcome a serious difficulty: proving that the “quadrant” U,
defined above, is connected. This is well known for algebras of finite
type over a real closed field (see, for example, [7]) but as far as we
can tell, for general rings this result is new and non-trivial. Its proof
occupies most of section 3.5.

We thank the referee for his very careful reading of the manuscript and
for many useful suggestions which helped improve the paper.

1. Valuations and approximate roots

1.1. Generalities on valuations

In this section we review some basic facts of valuation theory.

Let A be a noetherian ring and v : A — I' U {oo} a valuation centered
at a prime ideal of A. Let ® = v(A\ {0}) CT.

For each v € ®, consider the ideals

P, = {s€A|v@)=7)
P = {zeA|v@) >}, 1)

P, is called the v-ideal of A of value .

Remark 1.1. — It is easy to see that, as A is noetherian, v(A) is well-
ordered.
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NOTATION. — If T is an ideal of A and v a valuation of A, v(I) will
denote min{v(z) | € I}.

We now define certain natural graded algebras associated to a valuation.
Let A, v and ® be as above. For v € @, let P, and P, be as in (1.1). We

define P
— 0
gr,A = @ P

~eD Y+
The algebra gr,(A) is an integral domain. For any element f € A with

P.

v(f) = v, we may consider the natural image of f in P—’Y C gr,(A). This
v+

image is a homogeneous element of gr,(A) of degree 7, which we denote by

in, f. The grading induces an obvious valuation on gr,(A) with values in ®;
this valuation will be denoted by ord.

We end this section with the notion of a monomial valuation. Let (A, m, k)
be a regular local ring, and u = (uy,...,u,) a regular system of parame-
ters of A. Let ® be an ordered semigroup and let f(i,...,08, be strictly
positive elements of ®. Let @, denote the ordered semigroup, contained in
®, consisting of all the Ny-linear combinations of 51,...,8,. For v € ®,,
let I, denote the ideal of A, generated by all the monomials u® such that

n
> aif; = v (we take Iy = A). Let = be a non-zero element of A. Let
j=1
O, = {y€®, | zel,} Then it is not difficult to prove that the set ®,
contains a maximal element and there exists a unique valuation v, centered
at m, such that
v(u;) =B, 1<j<n (1.2)

and
v(z) = max{y € ®,}, v € A\ {0}. (1.3)

This valuation is called the monomial valuation of A, associated to u and
the n-tuple (81, ..., Bn). A valuation v, with values in a group I, centered in
m, is said to be monomial with respect to u if there exist 51,...,8, € '+
such that (1.3) holds for all z € A\ {0}.

For further results on valuations, see also [43] or [45].

The following result is an immediate consequence of definitions:

PROPOSITION 1.2. — Let G, be the graded algebra associated to a val-

S
uation v : K — T, as above. Consider a sum of the form y = > y;, with
i=1

- 270 —



Approximate roots of a valuation and the Pierce-Birkhoff conjecture
y; € K. Let f = min v(y;) and
1<i<s

S={ie{l,....n} | v(y:) = B},

The following two conditions are equivalent:

(1) vly) =5
(2) %:S inyy; # 0.

1.2. Approximate roots up to v(J) for an m-primary ideal J

A
Let A be a regular local ring of dimension n, m its maximal ideal, k = m’

u = (ug,...,u,) aregular system of parameters and
v:A\{0} =T
a valuation, centered in m (this means v(m) > 0).

Let 1 =v(m) =min{y € ® | v>0}tand &; = {y € ® | dJa € N;y <
a - 1}. For the sake of simplicity, we will write a instead of a - 1. We shall
study the structure of v-ideals P, where v € ®.

If v were monomial with respect to u then in,uy,...,in,u, would gen-
erate gr, A as a k-algebra. We are interested in analyzing valuations which
are not necessarily monomial. We fix an m-primary valuation ideal J. The
purpose of sections 1.2 and 1.3 is to construct a system of approximate roots
up to v(J), that is, a finite sequence of elements Q = {Q;}ica of A such
that for every v-ideal I in A containing J we have

1= 107 | 2@ = v(D) p A (14)

J

(in particular, the images in,Q; of the Q; in gr, A generate gr, A as a k-
algebra up to degree v(.J)). In this construction, each @;11 will be described
by an explicit formula (given later in this section) in terms of @1, ..., Q;.

The earliest precursor of approximate roots appears in a series of papers
by Saunders MacLane and O.F.G. Schilling [23], [24] and [25]. In dimension
2, they were defined globally in k[z,y] by S. Abhyankar and T. T. Moh ([1],
[2]) and locally by M. Lejeune-Jalabert [20]. See also the papers [18] and [19]
by T. C. Kuo, [12] by R. Goldin and B. Teissier and [36] by M. Spivakovsky,
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[11] by F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, [39]-[42]
by Michel Vaquié. We also refer the reader to the paper [38] by B. Teissier for
a different approach to the theory of approximate roots in higher dimensions.

A A
Let k= — = be the residue field of A. Fix an isomorphism
m m,nNA
A _k RO 7
7 o M, where Jj is an ideal of k[uq, ..., u,]. In this way, we will
0

view k as a subring of A/J.

We fix, once and for all, a section k¥ — A of the natural map A — k

A
which composed with the natural map A — i maps k isomorphically onto

A
its image in 7 The image of k in A will be denoted by k.

According to Definition 0.17, we are looking for a finite set of elements
Q = {Qi}ien, Qi € A satisfying (1.4).

Remark 1.83. — This means, in particular, that the initial forms
in, (Q1),in,(Q2), ... generate gr,(A), up to degree v(J). In other words,
we want to build Q such that, for f € A, we have in,(f) € k[in, Q] pro-
vided v(f) < v(J).

Since J is an m-primary ideal, there are only finitely many elements of
® less than or equal to v(J). We proceed by induction on the finite set

{reelv<v()}

DEFINITION 1.4. — Let E be an ordered set of elements of A. A gener-
alized monomial Q% in E is a formal expression

Q=[] e

where ag € N and ag = 0 for all Q outside of a finite subset of .

We view the set N¥ as being ordrered lexicographically and order the set
of generalized monomials by the lexicographical order of the pairs (v(Q%), a).

The semigroup ® is well ordered. For a natural number A, v, will denote
the A-th element of ®.

We start by choosing a coordinate system adapted to the situation.

DEFINITION 1.5. — Takej € {2,...,n}. We say that u; is (v, J)-prepared
if either uj € J or there does not exist f € A such that

inyu; = in,f and (1.5)
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k[ul, .. .,'Llljfl]
k[ul,. .. ,Uj_l] n JO'

fmodJ € (1.6)

The coordinate system u = {u1,...,un} is (v, J)-prepared if u; is (v, J)-
prepared for all j € {2,...,n}.

PROPOSITION 1.6. — There exists a (v, J)-prepared coordinate system.

Proof. — We construct a (v, J)-prepared coordinate system recursively
in j. Assume that wug,...,u;_1 are already (v, J)-prepared, but u; is not.
Take f € A satisfying (1.5) and (1.6).

Let 4; = uj — f; then v(4;) > v(u;).

Since there are only finitely many elements of ® less than v(J), after
finitely many repetitions of the above procedure, we may assume that u; is
(v, J)-prepared. This completes the proof by induction on j. O

We construct, recursively in A, two finite ordered sets A(y,) and O(7,)

with
A C (J emw),
N<A
and a total ordering of the set A(yy) U ©(vyx—1), compatible with the or-
ders on A(yy) and ©(yx—1). We do not impose a total order on the union
Uy <r ©(7a). At each step we define additional finite ordered sets

V(7a) C ¥ () C A, (1.7)

where the inclusions in (1.7) are inclusions of ordered sets. Both collections
of sets A(7yx) and V() will be increasing with A. A typical element of each
of those sets will have the form (Q, Ex(Q)) where Q € A and Ex(Q) is a sum
of monomials in A(yy) U®O(yx_1), written in the increasing order according
to the on monomials, defined above.

Given an element (Q, Ex(Q)) € A(yA)UO(71), Q is called an approximate
root and Ex(Q) is called the expression of @. In what follows, we adopt the
convention

O() = V() =¥ (1) = Aln) =0
whenever \ < 0.

For a natural number ¢, v, < v(J), and for (Q, Ex(Q)) € A(ye) U O(ve),
let In @ denote the smallest monomial of Ex(Q). Let

() = {a e NV ‘ 3(Q, Ex(Q)) € A(y) such that Q® = In Q} .

- 273 -



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky

THEOREM 1.7. — For a natural number X\, vy < v(J), there exist finite
ordered sets

V(7a) C ¥ () C A1)

and O(yy) (and a total ordering of A(vx)UO(yr—1)) consisting of elements
(Q, Fx(Q)), with Q € A and Ex(Q) a sum of monomials in V(yA)UO(yr-1),
increasing with respect to the given order on monomials, and having the
following properties:

v(Q) < yx whenever (Q, Ex(Q)) € A(yx) (1.8)
v(Q) = ya whenever (Q, Ex(Q)) € O(va). (1.9)

Moreover, for any (Q, Fx(Q)) € A(yx), any monomial Q% appearing
in Ex(Q) is a monomial in V(yr—1) provided Q&{u,...,u,}. For any
(Q, Ex(Q)) € O(yx), any monomial Q% appearing in Ex(Q) is a monomial
in (V(yag1) NO(ya—1)) UV(7a) provided Qg{ua, ..., un}. An element

(Q, Ex(Q)) € ¥(12) UO(M)

is completely determined by In Q.

Proof. — We proceed by induction on .
First define ¥(1) = A(1) = 0 and ©(1) = {(u1,u1),. .., (un, u,)} where

we assume
v(uy) < v(ug) < - - < v(uy).

We define the total ordering on ©(1) by (u1,u1) < (ug,uz2) < -+ < (Up, Up).

Let A > 0 be a natural number such that vy < v(J). Assume that for
each £ < X we have constructed sets V(v¢) C U(v,) C A(ye) and O(v,)
having the properties required in the theorem.

Let

A1) = Ava1) U{(Q,Ex(Q)) € (1) | (@) <m}.  (1.10)

DEFINITION 1.8. — An element (Q, Ex(Q)) € A(yx) is an inessential
predecessor of an approzimate root (Q', Fz(Q')) € A(yy) if Fx(Q') =
Ex(Q) + > caQ, where ¢, € k and the Q* are monomials in V().

An element (Q, Ez(Q)) € A(ya) is said to be essential at the level v,
if Q is not an inessential predecessor of an element of A(vy).
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Let W(~,) be the subset of A(y)) consisting of all the essential roots at
the level vx. Let V(7x) be the subset of ¥(y,) consisting of all (Q,Ex(Q))
such that in, (@) does not belong to the k-vector space of G = gr,(A) gen-
erated by the set {in, Q7} where Q" runs over the set of all the generalized
monomials on roots preceding @ in the above ordering.

We extend the total ordering from A(yy—1) to A(x) by postulating that
A(yx—1) is the initial segment of A(yy). Moreover, we extend this order to
A(v2)UO(yr—1) by postulating that A(v,) is the initial segment of A(yy)U
O(7a-1).

For a natural number £, let E(f) = In(¢) + NY(0) ¢ NV,

Now consider the ordered set {Q®,..., Q% } of monomials

Q" =@, (@ Ex(Q) € Vi) U{(Q,Ex(Q)) € O(m-1) | (@) =}

(1.11)
of value 7y, such that the natural projection of o to NY(*) does not belong
to E(\).

Let i1 = maxqi€ {1,...,s}
j=it1

S
in,(Q*)e > k inu(Qo‘J‘)} and con-
S
sider the unique relation in,(Q®1) — > ¢ in,(Q%) = 0. Let P, =
j=i1+1
S
Q%1 — > 1;Q% where ¢1; € k is the image of ¢;; under the chosen

Jj=ti1+1
section k — A.

Letigzmax{ie{l,...,il—l}

n,(Q)e 3 kiny(Q%)} and,

j=it+1

as before, consider the unique P, = Q%2 — Z c2;Q% such that the vec-

j=ig+1
J#i1
tor (ej)j=iy+1,...s, C2; # 0, is minimal in the lexicographical order. We
continue in this way and define P, ..., P;.
Let
O() ={(Q,Ex(Q)) €O (A1) ¥(Q) 2 }U{(P1, Ex(Py)), ..., (P, Ex(P))}
(1.12)
where
Ex(P)) = Ex(Q) — Y cjxQ™ (1.13)
k
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if Q" = @ with (Q,Ex(Q)) € {(Q,Ex(Q)) € O(7a-1) | ¥(Q) =7} and
Ex(P) = Q% =) " cjnQ™ (1.14)
k

otherwise.

We define the order on ©(7,) by O(ya-1) < {(P1,Ex(P1)), ..., (P, Ex(P))}
and (P1,Ex(P))) < --- < (P, Ex(P,)).

Remark 1.9. — Note that, because the coordinate system is prepared,
U, ..., U, are always essential.

Remark 1.10. — Suppose given two approximate roots (J1 and Q)5 such
that

In(@1) = In(Q2) = Q"
and suppose that () appears before Q5 in the process of construction of

the approximate roots decribed above. Because of the uniqueness of the
construction of the P;’s above, we have

v(Q2) > v(Q1).

Now, if v(Q®) = 74, then « € E({), so the only way the monomial Q* can
appear as an initial form of ()3 is when P, = Q'+ )" ¢; Q% where In(Q’) =
Q® and then v(Q’) < v(Q2). Then, either v(Q’) = v(Q1) and so Q' = Q1
because of the uniqueness in the construction process, or v(Q') > v(Q1),
but we conclude by descending induction that Q2 = Q1 + Y ¢;Q% and

Ex(Q2) = Ex(Q1) + > ¢; Q.

So finally, the expression of an approximate root has the form
Ex(Q) = Q" + ) a,Q** (1.15)
k
the sum being written in the increasing order of the monomials.

Remark 1.11. — This construction is very similar to finding a basis of
the space of relations by row reduction.

Remark 1.12. — We just showed that there is a one to one correspon-
dence @ <> In(Q) between the approximate roots Q € ¥(+,) and the set
of monomials which are the first term of the expression Ex(Q) of such an
approximate root ). Let us denote by M({) the set of those monomials.

The last part of the theorem holds by construction. O
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1.3. Standard form up to v(J)

Consider the integer A such that v, = v(J). Assume that the system of
coordinates u of A is (v, J)-prepared.

DEFINITION 1.13. — A monomial in ¥(yx) U O(ya) is called standard
with respect to )\ if all the approximate roots appearing in it belong to
V(va) and it is not divisible by any In(Q) where Q is an approzimate root

in (W(y) UO(m)) \ {(ur,u1), .-+, (un,un)

DEFINITION 1.14. — Let f € A and let £ be a positive integer, £ < .
An expression of the form

[ = ZCQQQ,

where the Q% are monomials in U(yy\) U O(vy), written in the increasing
order, is a standard form of level v, with respect to X\ if for all v' <
and for all a such that v(Q%) =" and co # 0, Q¥ is a standard monomial
with respect to \.

We now construct, by induction on ¢, a standard form of f of level ;.
We will write this standard form as

f:ff"_ZCaQa

where, for all a, Q% is a generalized monomial in ¥(y,)UO(yx), »(Q%) > e
and f; is a sum of standard monomials in V() of value strictly less than

Ye-

To start the induction, let fo = 0. The standard form of f of level 0 with
respect to A will be its expansion f = fo+ > c,u® as a formal power series
in the u;, with the monomials written in the increasing order according to
the monomial order defined above,.

Let ¢ be a natural number, ¢ < A. Let us define f;11 and the standard
form of f of level vy as follows. Assume we already have an expression
f=fe+> caQ with v(Q®*) > ~, for all «, and the value of any monomial
of fy is strictly less than ~,.

Take the homogeneous part of > ¢, Q® of value ~y,, with the monomials
arranged in the increasing order, and consider the first monomial Q® which
is not standard. Since Q% is not standard, one of the following two conditions
holds:
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1. There exists an approximate root @ € (U(vx) U O(vx))\{(u1,u1),...,
(n,up,)} such that In(Q) divides Q*. Write Q = In(Q) + > csQ”
and replace In(Q) by @ — > czQ” in Q°.

2. There exists @ € U(vy) \ V(ya) which divides Q*. Since Q&V(yx),
there exists

Q' € T(\)UB(1a)
of the form Q' = Q + 3" dsQ° where Q° are monomials in V(vy) of
5

value greater than or equal to .. Replace Q by Q' — 3" dsQ°.
5

In both cases, those changes introduce new monomials, but either they
are of value strictly greater than +, or they are of value exactly 7, but
greater than Q% in the monomial ordering. We repeat this procedure as
many times as we can. After a finite number of steps, no more changes are
available at level v41. Then, let friq = fo + >, dsQ? with v(QP) = v, so
that f = for1 + D caQ® where v(Q%) > ~,.

The expression thus constructed satisfies the definition of standard form
of level 7,41 because all the non-standard monomials Q% of value less than
or equal to v, have been eliminated.

PROPOSITION 1.15. — Let

f=fi+) caQ”
be a standard form of f of level vy and v < ~¢ an element of ®. Then
> csQPgPy.
v(QP)=y

Proof. — We give a proof by contradiction. Suppose there exists a rela-
tion of the form

> Qe py,. (1.16)

v(QPF)=y
Let Q® be the smallest monomial on the left hand side of (1.16). By con-
struction of approximate roots, there exists a finite collection @Q1,...,Qs €

A(v+) UB(v+) and generalized monomials Q“*, ..., Q% such that

S

QQ“ = > Q.

i=1 v(QF)=y

There exists ¢ € {1,...,s} such that one of the two conditions holds :
either

Q" = Q¥ - In(Q)
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or

Qi =Q;+ Y _bQ%, Q) € Aly+) \ U(y+).

In either case, the monomial Q% is not standard, which gives the desired
contradiction. O

For each ¢, the part f, of a standard form of f of level v, is uniquely
determined. This is a straightforward consequence of the Proposition.

As a consequence of Proposition 1.15, note that if v, > v(f) then v(f)
equals the smallest value of a monomial appearing in the standard form of
f of level ~,.

P
THEOREM 1.16. — (1) Take v € ®, v < 5. Then P—V is generated as
Y+

a k-vector space by {in, QP} where Q® runs over the set of all the standard
monomials with respect to \, satisfying v(QP) = ~.

(2) The part of the graded k-algebra gr,(A) of degree strictly less than
v is generated by the initial forms of the approzimate roots of V().

Proof.— Take an element v € ®, v < yx. Let h € P, /P,+ be a homoge-
neous element of degree v of gr,,(A) and let f € P, be such that in, (f) = h.
Let > c5QP denote the homogeneous part of least value of a standard form
of f of level vx. Then the initial form of f is " in, (c5Q¥). O

The Alvis-Johnston-Madden example. Let o be the point of
Sper(R[z,y, z]) given by the curvette z(t) = 5, y(t) = 10 + ut'l, 2(t) =
t' +¢1% where u is some fixed element of R with v > 2. Let J be a v4-ideal
of value greater than or equal to 37.

The calculation of the first few approximate roots gives

Q1 =z, (1.17)
Q2 = v, (1.18)
Qs = z, (1.19)
Qs = y? —xz = (2u— D + 42?2 v(Qq) =21 (1.20)
Qs = yz — 2t = (u+ )t* +ut™, v(Qs) =25 (1.21)
Qs = 22—y =2 —u)t*® +t%°, v(Qs) =29 (1.22)
QY = yQi — a(weQs, alw) = (2u—1)/(u+1), v (QFV) (1.23)
= 32 (1.24)

(732) = yQ4 — a(u)xQs — Blu)z®z, v ( 92)) =33 (1.25)
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B9 = yQu — a(w)eQs — Blu)r®z — 1 (u)z*Qy (1.26)
BY — 04— a(w)zQs — Bu)e®s — y(w)z2Qq — d(u)zty (1.27)
B9 = yQu — a(u)zQs — Bu)z®z — v(u)z2 Qs — d(uw)aty  (1.28)
()2 (1.29)

(1.30)

(1.31)

Qz(g35) = 2Q4 + ((u)zQs
5(335) = yQs5 + n(u)rQs,

where B(u), y(u), 6(u), €(u), {(u), n(u) are functions of u which can be
calculated explicitly.

The elements listed above belong to A(37) we chose to index them as

Q(j ) In this notation, the approx1mate root Q is an inessential predecessor
of Q(] 1 whenever Q(J 1 s defined.

We also note the relation 2Qg — yQs + 2Q4 = 0, which is the simplest
example of a syzygy, an important phenomenon, responsible for much of the
difficulty of the Pierce-Birkhoff conjecture.

In the same vein, we can describe the standard form of different levels
of an element of A, say for instance,

f=a®+y° + 2 (1.32)

(which is a standard form of level 0). For v < 30, the standard form of
f of level v is given by (1.32). Then, as y? € E(8) (this is so because 21
is the eighth positive element of the value semigroup ®), we replace y® by
y(Q4 + 2z) to obtain

f=a24+yQs+ zyz + 2°. (1.33)

Since yz € E(11) (note that 25 is the eleventh positive element of the value
semigroup ®), we replace zyz in (1.33) by #Q5 + z°, to obtain the standard
form of level 31:

f=2"+2" +yQu+2Q5 +2° (1.34)

(the monomials being written in the order of increasing values 18, 30, 31,
31, 42). Next, we replace yQ4 by a(u)z@Qs in (1.34), so the standard form
of levels 32, 33, 34 and 35 is given by

f=a%+2%+ (1+ o(u)2Qs + B(w)a’z + 7 (w)a?Qu + S(w)a'y + QP + 22,
and so on ...
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Let £ be an integer such that v, < 7x. Let X = Xy(,,) be a set of
independent variables, indexed by V(7¢), and consider the graded k-algebra
k [Xv(,m], where we define

deg X; =v(Q;).

Let P denote the homogeneous monomial ideal of k [XV(W)] generated by
all the monomials in Xy,(,,) of degree greater than or equal to v,. We have
a natural map

bo : k[X\I))w)] N gr,A

e
Xj — IHVQj.

Now, for £ = 0, let Iy = (0). For £ > 0, let I, denote the ideal of M
generated by all the homogeneous polynomials of the form

X0 4 A X 4 A X0 4o Ay X0 (1.35)

where Q@ 4+ A1 Q" 4+ A2Q2 4 -+ + X, Q%0 is the homogeneous part of
least degree of Ex(Q) for an approximate root @ € V() U O(7y).

COROLLARY 1.17. — We have ker ¢y = I,.

Proof.— The inclusion I, C ker ¢, is immediate. To prove the opposite
inclusion, we argue by contradiction. Take a homogeneous element

h=ax XM +ax, X+ ... +ay, X € ker(dp) \ I (1.36)

of degree b, b < 4, such that \; is lexicographically smallest among all the
elements h € ker(¢y) \ Iy of degree b.

The inclusion (1.36) implies that
a,\linl,Q)‘1 + ct>\2irl,,(;2>‘2 + ...+ aAsin,,Q)‘s =0. (1.37)
in Pb/Pb+.

By definition of I;, there exists an element g € I, of the form X°¢ +
>, cpX @ and a monomial X0 with €, > € for all p and A\; = e+ 6. Then, as
g € I, C ker(¢y), we have h — ay, X°g € ker(¢,) and the greatest monomial
of h —ay, X%g is strictly bigger than X*1. This contradicts the choice of h.

]
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COROLLARY 1.18. — Take an element v € ®, v < vx. The valuation
ideal P, is generated by all the generalized monomials of value greater than
or equal to v in {Q | (Q,Ex(Q)) € ¥(ya)}. The ideal P,, is generated
by all the generalized monomials of value greater than or equal to ~yy in

{Q (@ Exz(Q)) € ¥(1a) UO()}-

Proof.— Let f € P, (resp. f € P,,). By the very definition of the
standard form of level £ such that v, = 7, f can be written as an A-linear
combination of generalized monomials of value greater than or equal to ~

in {Q | (Q,Ex(Q)) € T(yx)} (resp. € ¥(ya) UO(va)). Thus Py (resp. P,,)
is generated by the generalized monomials of value at least -, as desired.

O

1.4. Approximate roots in a complete regular local ring

‘We now generalize the notion of approximate root to a complete regular
local ring A of dimension n, with maximal ideal m, and residue field k = —.
m

Let u = (uq,...,u,) be a regular system of parameters and
v:A\{0} =T
a valuation, centered in m. Denote by 14, the m-adic valuation.
We keep the same notation as in §2.

The purpose of this section is to construct, for a general v, a system
of approximate roots of v, that is, a well-ordered collection of elements
Q = {Q;}ica of A such that for every v-ideal I in A, we have

I=qIQF | 2owum@) v p A (1.38)

(in particular, the images in,Q; of the @; in gr, A generate gr, A as a k-
algebra). Each @;4+1 will be described by an explicit formula (given later in
this section) in terms of the Q;, j < i.

In this general setting, we have to proceed by transfinite induction on
the well-ordered semigroup ®. Since we are not assuming that 7k ' = 1
or that ® is Archimedean, we have to work with ordinals other than the
natural numbers.

Remark on the use of transfinite induction. — Since the ring A is noethe-
rian, the group I' of values of v has finite rank. Therefore all the ordinals
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¢ we will encounter in this paper will be of type £ < w™ (cf. [43] and [8]).
Thus we will be using a very special form of transfinite induction, which
amounts to usual induction, applied finitely many times. We will, however,
stick to the language of transfinite induction to simplify the exposition.

Recall the definition of generalized monomial with respect to a totally
ordered set E C A (Definition 1.4). Assume in addition that E is well-
ordered. We well-order the set N¥ by the lexicographical ordering and the
set of generalized monomials by the lexicographical ordering on the set of

triples (v (Q%), vm (Q%), ).

The semigroup @ is well ordered. By abuse of notation, we will sometimes
write @ for the ordinal given by the order type of ®. Let A < ® be an ordinal
and ) the element of ® corresponding to A.

We start by choosing a coordinate system adapted to the situation. Fix an
isomorphism

A2 kfug, ..., un]l. (1.39)

DEFINITION 1.19. — Take j € {2,...,n}. We say that u; is v-prepared
if there does not exist f € A such that inyuj; = in, f and f € kf[uq, ..., uj_1]].
The coordinate system u = {u1,...,un} is v-prepared if u; is v-prepared for
allj€{2,...,n}.

PRrROPOSITION 1.20. — There exists a v-prepared coordinate system.

Proof. — We construct a v-prepared coordinate system recursively in j.
Assume that ua, ..., uj—1 are v-prepared, but u; is not.

We will construct the prepared coordinate %; recursively by transfinite
induction on ®. More precisely, we will construct a well ordered set {u;;} of
successive approximation to @; in the m-adic topology. We will show that
this set satisfies the hypothesis of Zorn’s lemma and let %, be its maximal
element.

The details go as follows. Let ujo = u;. Suppose that u;; is constructed
and that it is not prepared. Let fj; be the element f of k[[ui,...,u;_1]]
appearing in the definition of “not prepared”. Put u; ;41 = uj; — fji- Then
v(uj;) = v(fji) < v(uji+1). Next, suppose given a sequence g, Uj i+1,- - -
of elements of k[[u, ..., u;]] such that (uq,...,u;_1,u;q) is a regular system
of parameters of k[[uq,...,u;]] for each ¢ and

v(uji) <v(ujivr) < v(ugipe) <---.
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Let B, = v(ujq). Since the ring A is noetherian, the semi-group ® is well-
ordered. Let f =min {5 € ® | § > f,,Vq € N}. By Chevalley’s lemma, ap-
PBq n k[[ul, PN 7Uj_1]]
Pﬁ n k[[ul, ey uj_l]]

plied to the nested sequence of ideals in the complete

k[[ul, ey u]‘_lﬂ
N k[[ul, RN ,Uj,ﬂ]
(u1,...,uj—1)-adic topology.

local ring P, , we see that qli)rgo(qu mod Pj) = 0 in the

Hence, modifying each f;; by an element of Pz if necessary, we may
assume that

li o = 0.
Jim S
We define u; ;4. to be the formal power series uj; — fj: — fji+1 — -+ By

construction,
V(uj7i+w) > B

To complete our construction , we need to consider countable well ordered
sets {u;; } of order type greater than w. This presents no problem: by count-
ability, we can always choose a cofinal subsequence in each such set. Then
the above construction of u; ;. applies verbatim. O

We construct, inductively in A, two well-ordered sets A(vx) and O(vy)
and, in the case A is not a limit ordinal, a well ordering of the set A(yy) U
©(ya—1), compatible with the orders on A(yy) and ©(yx_1). At each step
we define two additional well-ordered sets V(va) C ¥(yx) C A(ya) where
the inclusions are inclusions of ordered sets. Both collections of sets A(7,)
and V(7)) will be increasing with .

A typical element of each of those sets will have the form (Q,Ex(Q))
where @ € A and Ex(Q) is an increasing sum of monomials in V(y,) U
O(ya—1) if A is not a limit ordinal, resp. monomials in V() if A is a
limit ordinal. The sum in Ex(Q) may be finite or infinite, but it is always
convergent in the m-adic topology. Given an element (Q,Ex(Q)) € A(ys) U
O(va), @Q is called an approzimate root and Ex(Q) is called the expression
of Q.

For an ordinal £ < ® and for (Q, Ex(Q)) € A(y.)UB(ye), let In () denote
the smallest monomial of Ex(Q).
Let In(¢) = {a € NV () ’ HQ,Ex(Q)) € A(7ye) such that Q* =In Q}.

THEOREM 1.21. — For A < ®, there exist well ordered sets V(yx) C
U(vyx) C A(ya) and O(vr), and a well ordering of A(yx) UO(ya—1) when A
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is mot a limit ordinal, having the following properties. Let

U(<yr) = U(ya—1) 4f A is not a limit ordinal and  (1.40)
U(<yr) = ¥(a) otherwise (1.41)

and similarly for V(< vx). Then each set V(vx), U(vx), A(yr), ©(7a) con-
sists of elements of the form (Q, Ex(Q)), with Q € A and Fx(Q) is an
increasing (with respect to the monomial order defined above) sum of mono-
mials in V(< y2) UO(ya—1) when A is not a limit ordinal, resp. V(v») when
A is a limit ordinal, of value < v(Q), provided Q&/{u1, ... ,un}, such that

v(Q) < va whenever (Q, Ex(Q)) € A(vx) (1.42)
v(Q) = vn whenever (Q, Ex(Q)) € O(7a) (1.43)
and the sets
{(Q, Ex(Q)) € O(m) UA(W) [ v(@) =7}, 7€ @ (1.44)
and
{(Q, Ex(Q)) € ¥(1n) UO() | Qgm®}, s €N (1.45)

are finite. An element (Q, Ex(Q)) € U(yx)UO(yx) is completely determined
by In Q; moreover vy (In Q) = vn(Q).

In what follows, A(< ) will stand for |J A(ve).
L

Proof.— We proceed by transfinite induction.
First define ¥(1) = A(1) = 0 and ©(1) = {(u1,u1), ..., (un, un)} where
we assurie
v(up) <vlug) <+ < vuy).
We define the well ordering on ©(1) by (u1,u1) < (ug,u2) < -+ < (Up, Up).

Let A < ® be an ordinal. Assume that for each £ < A we have constructed
sets U(ye) C A(7y,) and O(v,) and a well ordering of A(y,)UO(y¢—1), having
the properties required in the theorem.

Let

A(ya) = A(< ) if A is a limit ordinal (1.46)
A(ya) = Alva-1) U{(Q, Ex(Q)) €O(ya—1)[¥(Q) <} otherwise. (1.47)
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DEFINITION 1.22. — An element (Q, Ex(Q)) € A(7yx) is an inessential

predecessor of a root (Q', Ex(Q')) € A(v) if Bx(Q') = Ex(Q)+ >, caQ®,
where each cq is a unit in A and Q% a monomial in V().

An element (Q, Ex(Q)) € A(vy) is said to be essential at the level )
if @ is not an inessential predecessor of an element of A(vy).

Let W(~vy) be the subset of A(y,) consisting of all the essential roots at
the level vy. Let V(y,) be the subset of ¥(y,) consisting of all (Q,Ex(Q))
such that in, (@) does not belong to the k-vector space of gr,(A) gener-
ated by the set {in, Q7} where Q" runs over the set of all the generalized
monomials on roots preceding @ in the above ordering.

We extend the well ordering from A(< v)) to A(x) by postulating that
A(< 7y) is the initial segment of A(yx). Moreover, we extend this well
ordering from A(yy) to A(yx) U©O(ya-1).

If £ is not a limit ordinal, let F(£) = In(¢) +NY) ¢ NV(0). Now, if £/ <
2", we have V(yp) C V(A\gr), which induces an inclusion NY(ve) ¢ NY(ver),
If ¢ is a limit ordinal, define E(¢) = |J E(¢).

<L

Notation.— Denote by O(< ~,) the set U O(ve) \ A(< 7).
L

Remark 1.23. — We have
T(yan) UB(< va) = U(< a) UB(< 7). (1.48)

Indeed, consider an element (Q, Ex(Q)) € U(yx) UO(< ). If A is a limit
ordinal, then

(Q; Ex(Q)) € ¥(< ) UO(< 1) (1.49)
by (1.41). If X is not a limit ordinal and (Q, Ex(Q)) € ¥(yA)\ ¥(ya—1) then

(Q, Ex(Q)) € O(12-1)

by (1.47). Thus (1.49) holds in all the cases and (1.48) is proved.

LEMMA 1.24. — The set Q(h) = {(Q, Ez(Q)) € ¥(7x) UO(< )| Qgm" }
is finite for every h € N.

Proof.— Consider an element (Q,Ex(Q)) € Q(h). If (Q,Fz(Q)) €
O(< 7a), then there exists £ < A such that (Q, Ez(Q)) € O(< 7). If
(Q,Ex(Q)) € ¥(< vx) € A(ya) = Uper Al7e), then there exists £ < A such
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that (Q, Fz(Q)) € A(7y¢). Since @ is essential at level vy, it is also essential
at level vy, so (Q, Ex(Q)) € ¥(7¢). Thus by the induction hypothesis on A,

for any @ € Q(h), we have vy (Q) = vn(In Q).

Write Ex(Q) = Q®° + - - - where, by construction, Q° is either a w,. or
a product of at least 2 terms, Q*° =[] Q%.

In the first case, the number of such Q®° is finite, because the number
of uy, is finite.

In the second case, Vn(Qs) < vm(Q*) < vn(Q) < h. So vy (Qs) < h—1
and, by induction on A, the number of such @, is finite. If

m = min {y(Qs) | Qs divides Q*° },

then |aglm < vp(Q®) < h — 1, so there is a finite number of such ag
possible which means that the number of such Q®° is finite. By the induction
hypothesis, @) is completely determined by In @ whenever (Q,Ex(Q)) €
U(y2) UO(< 7a). Therefore Q(h) is finite. O

COROLLARY 1.25. — The set of monomials {Q® | Q¥¢m?®} in U(y,)U
O(< va) s finite for every s € N.

COROLLARY 1.26. — (1) Any infinite sequence of generalized monomi-
als in W(yy) UO(< va), all of whose members are distinct, converges to 0
in the m-adic topology.

(2) Any infinite series, all of whose terms are distinct generalized mono-
mials in W(yx) UO(< va) converges in the m-adic topology.

LEMMA 1.27. — The set
Q=[] Q" such that (Q, Ex(Q)) € ¥ () H{(Q,, Ex(Q)) €O(< 1) |(Q) =1}
and v(Q%) = v\ is finite.
Proof. — By the Artin-Rees lemma, there exists pg such that, for p > po,
mP NP, =mP P (mPNP,,).

Take p > pg, then
mPN P, CmP,, CP, . (1.50)

This equation shows that the set of the lemma is disjoint from mP. So by
the above corollary, the set of the lemma is finite. O

— 287 —



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky

Consider now the ordered set {Q“,..., Q% } of monomials

Q* =[], (Q,Ex(Q)) € V(1) U{(Q,Ex(Q)) € O(< 1) | »(Q) =1}

(1.51)
of value 7y such that the natural projection of o to NY(™) does not belong
to E(A). The fact that this set is finite follows from the above Lemma and
the fact that V(vx) C ¥(7ya).

Letilzmax{ie{l,...,s}

in, (Q%*) € i: kin, (Q%/) } and con-

j=it1

S
sider the unique relation in, (Q%1) — >  ¢; in, (Q*) = 0. Let P, =

j=i1+1
S
Q%1 — Y ¢1;Q% where we view k as a subring of A via the identifica-
j=i1+1
tion (1.39).

Letigzmax{ie{l,...,il—l}

S
in, (Q*) e Y kin, (Q*) » and,
j=it1
as before, consider the unique P, = Q%2 — Z ¢2; Q% such that the vec-
j=ig+1
J#i
tor (e)j=iy+1,...s, C2; # 0, is minimal in the lexicographical order and
define so on uniquely Ps, ..., P;.

Now, if A has a predecessor, we let

O(m) ={(Q,Ex(Q)) € O(<m)[v(Q) 2 mIU{(P1, Ex(P1)), - .., (P, Ex(F1)) }

(1.52)
where
Ex(P;) = Q% — ) ¢;xQ™ (1.53)
k
if Q5 is not a preceding root @ and
Ex(P;) = Ex(Q) — ) _ c;x Q™ (1.54)
k

in the other case.
We define the order on ©(vy) by ©(ya—1) < {(P1,Ex(P1)), ..., (P, Ex(P))}
and (Pl,EX(Pl)) <0 < (Pt,EX(Pt)).

Remark 1.28. — Note that, because the system of coordinates is pre-
pared, u1,...,u, are always essential.
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Remark 1.29. — Note that Remark 1.10 remains valid in this context,
with the obvious modification that the expressions of approximate roots are
now allowed to be infinite, but convergent in the m-adic topology.

Suppose now A is a limit ordinal. Let (Qo, Ez(Qo)) € A(7y,) for some
ly < X and Q% = In(Qo). Let L(Qo) be the following infinite well ordered
set of approximate roots, indexed by ordinals ¢, fo < ¢ < A

L(Qo) = { (@, B2(Q"))) € ¥(%) }ep<e<a
such that InQ®¥) = Q.
By Remarks 1.10 and 1.29, for £y < £ < ¢/ < X, we have
Ex(QY) =Ex(Q“) + 3 _ ¢,Q (1.55)
jeEW
where v(Q%) > v(QW).

Let p be a positive integer. By induction assumption, all the approximate
roots @) appearing in any of the monomials Q% belong to V() and, by
lemma 1.24, the number of such roots outside mP is finite. Thus, all but
finitely many Q% belong to mP. This proves that L(Qo) has a limit in A
with respect to the m-adic topology : (ll_r)n Q, li_r>n Ex(Q)).

Let
() = {(Q,Ex(Q)) € ©(< 1) | ¥(Q) = m}IUL (1.56)

where L consists of all couples of the form (lim @, lim Ex(Q)).
— —
So finally, the expression of an approximate root has the form
Ex(Q) = Q" + Y axQ (157
k
the sum, written in the increasing order of the monomials, being finite or

infinite.

We now prove the finiteness of sets (1.44) and (1.45). First, note that
the set

{(QEx(Q)) e ©(<m)UA() [v(Q) =7}, 7€ @ (1.58)
is finite by the induction hypothesis and the set
{(QEx(Q)) € Y (M) UB(< ) | Q¢m”}, pe N (1.59)
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is finite by the induction hypothesis and lemma (1.27). If A is not a limit
ordinal, the finiteness of (1.44) and (1.45) follows from the fact that the set
O(yr) \ ©(< 7x) is finite by construction. If A is a limit ordinal, to prove
finiteness of (1.44) and (1.45), it remains to prove that the set

{(Q.Ex(Q) € L | v(Q) =~} (1.60)

is finite. This is proved in exactly the same way as lemma (1.27). This
completes the proof of the finiteness of (1.44) and (1.45).

The property that the monomials appearing in Ex(Q) are arranged in
increasing order with respect to the v-adic value holds for all the newly
constructed approximate roots. Next we show that vy, (InQ) = v, (Q) for all
those new approximate roots. Indeed, if A is not a limit ordinal and Ex(Q)
is given by formula (1.53), all the monomials appearing in Ex(Q) have the
same v-adic value and their vy-adic values are increasing because of the
order we imposed on monomials which proves that vy,(InQ) = v (Q). If
(Q',Ex(Q")) is an approximate root whose expression is given by formula
(1.54), with P; playing the role of @', let Q* = In Q. We have Q' =
Q4> caQ%, where v(Q%) = v(Q). Then vy (Q) < vn(Q®) for all a, because
of the order on monomials. So that finally, vm(Q*) < vn(Q) < vn(Q%),
which proves that vy, (InQ") = v (Q’). The property that vy, (InQ) = vy (Q)
is clearly preserved by passing to the limit, so it also holds in the case when
A is a limit ordinal.

Remark 1.30. — We just showed that there is a one to one correspon-
dence between the approximate roots @) € ¥(+,) and the set of monomials
which are the first term of the expression Ex(Q) of such an approximate
root Q. Let us denote by M(¢) the set of those monomials.

We well order L by the lexicographical order of the triples v(Q), vn(Q),

n(Q)), Q € L. We extend this ordering to ©(y») by postulating that L is
the final segment in ©(7y).

The rest of Theorem 1.21 holds by construction.

1.5. Standard form in the case of complete regular local rings

Let ¥(v8) = Upco Nicprco Y(7e) and let V(vs) be the set of approxi-
mate roots, essential at the level ~vg.

In this section, we fix an ordinal \ < ®.

DEFINITION 1.31. — A monomial in U(vyy) U O(vx) is called standard
with respect to A if all the approximate roots appearing in it belong to V(vx)
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and it is not divisible by any InQ where Q is an approzimate root in (V(y,)U

@(r}/)\)) \ {(u17u1)7 LR (unvun)}

Take an ordinal ¢ < A.

DEFINITION 1.32. — Let f € A. An expansion of f of the form f =
> caQ where the Q% are monomials in U(yy)UO(yx), written in increas-
ing order, is a standard form of level vp if V' < ¢ and for all o such that
v(Q*) =4/, Q% is a standard monomial.

We now construct by induction on ¢ a standard form of f of level v,. We
will write this standard form as

f:f€+ZCaQa

where, for all a, Q¢ is a generalized monomial in W(v,)UB (), ¥(Q%) > e
and f; is a sum of standard monomials in V() of value strictly less than

Ye-

To start the induction, let fo = 0. The standard form of f of level 0 will
be its expansion, f = fo+ > c,u®, written in increasing order according to
the monomial order defined above, as a formal power series in the u;.

Let £ < X be an ordinal. Let us define f;11 and the standard form of f
of level 741 as follows. Assume, inductively, that a standard form of level
ve is already defined: f = fo+ > ¢, Q™ with v(Q%) > ~, for all «, and the
value of any monomial of fy is strictly less than ~,.

Take the homogeneous part of Y ¢, Q* of value v, the monomials be-
ing written in increasing order. Assume that not all the Q% are standard
with respect to A, and take the smallest non standard Q. Since Q¢ is not
standard, one of the two following conditions holds:

1. There exists an approximate root @ € (V(vx) U O(yx))\{(u1,u1),...,
(n,u,)} such that In(Q) divides Q*. Write Q@ = In(Q) + > csQ”
and replace In(Q) by Q — 3" csQ” in Q.

2. An approximate root @ € ¥(yx)\ V(yx) divides Q®. Since Q€ V(7x),
there exists

Q € V() UB(M)

of the form Q" = Q+3 5 dg QF, where the Q° are monomials in V(7y)
of value greater than or equal to .. Replace Q by Q" — 34 dsQP.
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In both cases, those changes introduce new monomials, with increasing
Uy value, but either they are of value strictly greater than ~, or they are of
value exactly v, but greater than Q in the monomial ordering. We repeat
this procedure as many times as we can. After a finite number of steps, no
more changes are available involving monomials of value exactly ;. Then,
let for1 = fo+ d,QF with v(QP) = e, so that f = for1 4+ caQ where
I/(Qa) > Y.

Suppose now that p is a limit ordinal. For each ¢ < pu, write f = f, + &,
where f; is a sum of standard monomials, with respect to A, of value strictly
less than 7, and J; is a sum of monomials in W(v,)UO(7»), of value greater
than or equal to v,. We assume inductively that, for each ¢ < p and for each
generalized monomial Q7 in U(v,) U O(y,), there exist ¢,,b, € k and an
ordinal £y < ¢ such that, for all ¢/, ¢y < ¢’ < ¢, the monomial Q7 appears in
fer with coefficient ¢, and in §p with coefficient b,. Moreover, assume that
fo=1tim fo =, Q7 and & = lim 6y = 30, b,Q".

o<t o<t

LEMMA 1.33. — Consider a generalized monomial QT in U (y,)UO(7y).
There ezist c+,br € k and an ordinal ¢y < p such that, for all £, by < £ < p,
the monomial QT appears in fo with coefficient ¢ and in 6y with coefficient
br.

COROLLARY 1.34. — The limits 1i£n fo and lgn dp exist in the m-adic
L<p L<pn
topology.

Proof of Corollary 1.34.— This is an immediate consequence of the

Lemma and Corollary 1.26. O

Proof of Lemma 1.33.— The existence of ¢, in the lemma follows im-
mediately from the construction and the induction hypothesis.

If v(Q7) < yu, put b, = 0. Assume v(Q7) > 7,. For £ < p, let b,(¢)
denote the coefficient of Q™ in ;. Take an ordinal ¢ < u. Suppose

by (€) # b (£ + 1). (1.61)

This means that in the above construction of fy1q1 + dpy1 from f; + o,
« «

Q ngQB (case 1 of the
B

Q7 appears in one of the expressions

Q
InQ “'InQ

construction) or HQ', % Z dsQP (case 2 of the construction). Then
B

" (Q%) < vm(QT). (1.62)
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Suppose that there were infinitely many ¢ for which (1.61) holds. This would
mean that there are infinitely many monomials Q% (all distinct because
v(Q®) = 7¢), satisfying (1.62). This contradicts Lemma 1.24; hence there
are finitely many such £. Together with the induction hypothesis, this proves
that b, (¢) stabilizes for ¢ sufficiently large. This completes the proof of the
lemma. O

For each Q" as above, let ¢;, b, be as in Lemma 1.33. Let f, = liin fo=
<p
>, ¢ Q7 and 0, = liin d¢ =Y b-Q". We define the standard form of f of
<
level v, as f = fu, +6,.

This completes the construction of standard form of level v, for £ < A.

PROPOSITION 1.35. — Let

f=Ff+) cQ”
be a standard form of f of level vy and v < ¢ an element of ®. Then
> CBQﬁQ/P'H-
v(QP)=vy

The proof is entirely the same as the proof of the analogous Proposition
1.15.

For each ¢, the part f, of a standard form of f of level v, is uniquely
determined. This is a straightforward consequence of the proposition.

By Proposition 1.35, if v, > v(f) then v(f) equals the smallest value of
a monomial appearing in the standard form of f of level ;.

P
THEOREM 1.36. — (1) Take v € ®, v < 5. Then P—V is generated as
Y+

a k-vector space by {in,Q%} where Q° runs over the set of all standard
monomials with respect to \, satisfying v(QP) = ~.

(2) The part of the graded k-algebra gr,(A) of degree strictly less than
v is generated by the initial forms of the approzimate roots of V(7y).

The same proof as that of Theorem 1.16 works here.

Now, for each ordinal /, let X = Xy(,,) be a set of independent variables,
indexed by V(v,) and consider the graded k-algebra k [XV(W)], where we
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define deg X; = v(Q;). Let P denote the homogeneous monomial ideal of
k [Xv(w)} generated by all the monomials in Xy,(,,) of degree greater than
or equal to ys41. We have the natural map

k[XW’Yz)] N gr A
Ge: P Prega
X]’ — in,,Qj

Now, for ¢ =0, let Iy = (0). For £ > 0, let I, denote the ideal of k[LP(”)]
generated by I, and all the homogeneous polynomials of the form

X £ A X% 4 A X 4o My X0 (1.63)

where Q®° + A\ Q% + AaQ%2 + -+ + Ap, Q%0 is the homogeneous part of
least degree of Ez(Q), @ € V(v¢) U O(7e).

Once again the proofs of Corollary 1.17 and Corollary 1.18 give the
analogous corollaries :

COROLLARY 1.37. — We have Ker ¢ = Iy.

COROLLARY 1.38. — Take an element v € ®, v < vx. The valuation
ideal Py is generated by all the generalized monomials of value > v in
{Q | (Q,Ex(Q)) € ¥(yr)}. The ideal P,, is generated by all the gener-
alized monomials of value > vy in {Q | (Q, Ex(Q)) € ¥(ya)UB(yA)}-

2. Separating ideal and connectedness

2.1. A description of the separating ideal

Let A be a noetherian ring and « and 5 points in Sper A. The purpose
of this section is twofold. First we prove a general result on the behaviour of
< «, > under localization. Secondly, we restrict attention to the case when
A is regular and is either complete or < «, 8 > is primary to a maximal ideal
of A. In this case, we describe generators of the separating ideal < «, 8 >
as generalized monomials in those approximate roots ¢); which are common
to v, and vg.

We will need the following basic properties of the separating ideal, proved
in [26]:

PROPOSITION 2.1. — Let the notation be as above. We have:
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(1) < a, B> is both a vo-ideal and a vg-ideal.

(2) o and S induce the same ordering on ﬁ (in particular, the set of
Ve -tdeals containing < a, f > coincides with the set of vg-ideals containing
<a,fB>).

(8) < a, 8 > is the smallest ideal (in the sense of inclusion), satisfying

(1) and (2).

(4) If « and B have no common specialization then < o, >= A.

Notation. — If p € Sper A, p, C p, the notation a4, will stand for the

point of Sper A, with support poA, and the total order on P_ given by
Sa- o
PROPOSITION 2.2. — Let A be a ring. Consider points «, 3 € SperA

whose respective supports are pq,pg and let € be a common specialization of
a and B with support p.

(1) We have < o, § > A, =< a4y, BA, >.
(2) Let p be a prime ideal of A, containing < «, 8 >. Then
<o,B>C<a,8>A,NA. (2.1)
with equality if < o, f > is p-primary.

(3) If p = pe with € the unique common specialization of a and 8 (in

particular, whenever
p=v<apf>

and p is mazimal), we have equality in (2.1).

Remark 2.3. — In (2) of the Proposition, the special case of interest for
applications is p = p., with € € Sper A a common specialization of o and (.

Proof.— Let f be a generator of < «a, > such that f changes sign
between « and . Say, f(«) > 0 and f(8) < 0. As the orders on A/p, and
Ay /pa Ay are the same (the quotient field is the same) — and similarly for
pg — f changes sign between a4, and SA,. Thus f €< a4y, BA, >.

Conversely, a generator of < aA,, BA, > is of the form g/s, s¢p, such
that g(OzAp) > 0 and g(BAP) < 0, for instance. But, as p is a specialisation
s

of a and 8 and s¢p, s has the same sign on o and 5 (and is non-zero at both

- 295 —



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky

points), so g keeps different signs on « and 8 which means that g €< a, 8 >,
and, consequently, g €< a,f > Ay. This proves (1) of the Proposition.
s

(2) of the Proposition is a standard general statement about localization
of ideals at a prime ideal.

(3) of the Proposition follows immediately from the fact that p is the
center of the valuation v, and < «, 8 > is a v,-ideal. O

Let (A, m, k) be a regular local ring and « and § two points of Sper(A)
having a common specialization ¢ whose center is the maximal ideal m of
A. Then v, and vg are both centered at m.

Let &, = v4(A\{0}) and @5 = vg(A\ {0}). Let o5 be the s-th element
of &, and similarly for 8. Let P, . denote the v,-ideal of value v,s and
similarly for P,, . Let r be the ordinal such that v., = va(< a,f >).
Then 75, = vp(< a,B >) by Proposition 2.1. We have P,, = P,, for
s=1,...,7 by Proposition 2.1.

Let Q,(a) denote the j-th approximate root for v, (in the case when A
is complete j is an ordinal rather than a natural number); we will denote the
monomials in these approximate roots by Q(«)?; similarly for @;(38) and
Q(/)7. Let us consider the sequences of vectors m; = (m;1, mia, ..., M., ),
mgj € Py, /Py, .., which are the initial forms of the monomials Q(c)®# of
value 7,; (see section 1.2 and (1.51)). We do the same with vg and write
np, no, ... the corresponding sequences of initial forms.

Let M, be the set of all the generalized monomials in Q(a), of value
Yok With respect to v,. Let Mgy, be the same kind of set with respect to v3.
Now, let s, denote the cardinality of M,y ; similarly for sgy.

For a given ¢, consider the following three conditions (1), (2)¢, (3)e:
(1) Sai = 8pi, 1 <i <L

(2)g M, = Mgi fori< ¥

(3)¢ Forany i < £and Ay, ..., \s., € k, the sign on « of the linear combi-

s NSai
Sai _

Sai _

nation ) A;jm;; is the same as the sign on 5 of Y A;jn;; (here we adopt the
Jj=1 J=1

convention that the sign can be strictly positive, strictly negative or zero)

where m;j,n;; are the initial forms of the monomials Q(a)®¥,Q(5)* in
the graded rings gr, (A), gr,,(A4). Note that if conditions (1),-(3), hold
then the set of k-linear relations among the m;;, ¢ < ¢, is the same as the
set of k-linear relations among the n;;.
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PROPOSITION 2.4. — The ordinal v is the smallest ordinal v’ such that
at least one of the conditions (1)y-(3)y does not hold.

Proof.— Let r' be the smallest ordinal such that at least one of the
conditions (1),+-(3),» does not hold. By definitions, we have M, # () and
Mpg,» # 0. We have the following 2 possibilities:

First, suppose My, # Mpg,» (which includes the case sq, # Sgr). Say,
My, ¢ Mpg,s. Take generalized monomials Q¥ € M, \ Mg, and Q’ €
Mpg,r. Then v, (Q") < Va(Q6)7 but v5(Q7) > Vﬁ(Q§)~

Then there exists a linear combination, with coefficients in (A4 \ m), of
Q" and Q?, of value v, with respect to v, which changes sign between «
and (3. This shows that

Va(< Oé,ﬂ >) < Yor!

in this case.

The second case is Mq,» = Mg, and there exist 5\1, ey S\Sw, such that

Sar! _ Sar! _
the sign on « of Y Ajm,.; differs from the sign on S of > Ajn,; (by
j=1 j=1
assumption, we are in the case sq,» = sg,v). By a small perturbation of the

j\j (for instance, by adding or subtracting a “small” element of k to \;), we

Ser

g Sar! _
can ensure both that > A\jm,; #0in gr,, A and ) \jn.; # 0in gr,, A.
j=1 j=1

But this gives an f = ZT: AjQ%'i € A which changes signs between o and
7j=1

B. We have vo(f) = Yar (and va(f) = v8r), 50 Vo (< @, 5 >) < Yo also in

this case.

o

Now take an f € A with vo(f) < Yar. Then f € P,__,

Yas < Yar’, (22)
soin,, (f) € P,,./P,.,.. . By theorem 1.36, in,_(f) is a k-linear combination
of mgy, ..., mst.. By (2.2) and the definition of 7, this linear combination

has the same sign for a and for 3 (in other words, P, /P, ., = Py,./Py,.,
with same order induced by « and by /. This means that in,_(f) has the
same sign on « and 3, 80 v, (< a, 8 >) > Yar ). This completes the proof. O

COROLLARY 2.5. — Let a, 8 € Sper(A), both centered in the maximal
ideal. Let r be as above. Denote by v = 7o, the vy-value of < «, 3 >. Let
Q1,...,Qq be the common approximate roots of the valuations v, and vg.
Then < «, B > is generated by the generalized monomials in Q1,...,Qq of
Vo-value >y (and the same with vg instead of vy ).
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Proof.— As < a, > is a v,-ideal (and a vg-ideal), this is a consequence
of Corollary 1.38.

DEFINITION 2.6. — For a graded algebra G, we define

G* = {g ’ f.g€G,g#0 and homogeneous} / ~.

!
where = ~ — whenever fgd =1fyg.
g g

The Alvis-Johnston-Madden example. Let us consider o and 3 in
Sper(R[z,y, z]) given by curvettes

z(t) = 5, (2.3)
yt) = ' +ut'h (2.4)
2(t) = 4P (2.5)

where u takes 2 distinct values u, > 2 and ug > 2. Applying the above
procedure, we show that v, (< a, >) = 31.

Indeed, we have Q1 = z,Q2 = y, Q3 = z for o and S. The first level
approximate roots are

Qi = > —wz=2u— 1)t +u?t*2, (2.6)
Qs = yz—a = (ut+ )t* +ut?®®, .
Qs = 22—ady=2—-ut?® 4% (2.8)

for both v and . Let T denote the preimage of in,¢ under the natural map

(grv. Rlz,y, 2])" = (er, R[[t]])",
so that
(grv. Rlz,y, 2])" = (R[T])".

Then in,_ (yQ4) = (2uq —1)T?! and in,, (2Q5) = (ue+1)T3!, and similarly
for 8. Since ua # ug, the matrix

< (2uq — 1) (uq +1) )

(2ug —1) (ug—1)

is non-singular, so there exists an R-linear combination of in,_(yQ4) and
in,_ (zQs) which is strictly positive on « and strictly negative on 3. Accord-
ing to Proposition 2.4,

Vo(< a, 8 >) < 31.
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One can check that 31 is the lowest value for which either there is a lin-
ear combination of generalized monomials with this property or the set of
monomials of that value for o does not equal the corresponding set for 3,
so that in fact v, (< o, 8 >) = 31.

For the next approximate root

Q7 =yQ4+
we have Q7(a) # Q7(8).

2u—1
2.9
w41 Q57 ( )

2.2. Some sets which are conjecturally connected

Let (A, m, k) be a regular local ring. Take «, 5 € SperA, both centered at
m, and elements fi,..., f, € A\ < «, 8 >. The Connectedness Conjecture
0.11 asserts that there exists a connected set C, containing «, 3, such that
C is disjoint from the zero set of f--- f.

Assume that either A is complete or /< o, 8 > = m.

In this section, we describe a set C', which contains «, 3, disjoint from
the set fi--- f, = 0, and which we conjecture to be connected. Under the
above assumptions, this reduces the Connectedness Conjecture for o and 3
to proving the connectedness of C.

Let Qo = {Qx, A € A} be the approximate roots common to « and .
Let Q, Q... be the list of monomials in Q,, arranged in the increasing
order of the v, values. There exists an ordinal s such that < «a,8 > is
generated by the set {Q%; j < s, Q% €< «,f >}. Let ¢ be the unique
ordinal such that Q"¢ < a, > for a < 0 and Q¥, QY+, ... €< o, >.

Next, we study the standard form of f; of level v,(< a,f >). In the
case when A is complete, this standard form may contain infinitely many
generalized monomials Q7. Since A is noetherian, we can choose a finite
subset Q%i, 1 < j < n;, of these monomials such that all of the others lie
in the ideal (Q%i,1 < j < m;)A. Fori e {1,...,r}, let

fi = ijlqgﬂ + Z Cj/ier/'i (210)
j=1 =1
be the standard expansion of f; of level v, (< «a, >) where v, (Q%") =
Vo (fi) <va(Q%') for all j € {1,...,m;} and j' € {1,...,n;}.

Remark 2.7. — 1. If k = ko (in particular, if &k is real closed), then

- 299 -



F. Lucas, J. Madden, D. Schaub, M. Spivakovsky
2. By Proposition 1.35, 2;21 bjiin,, QY £ 0.

CONJECTURE 2.8. — 1. Let

C = {5 € SperA

Then C' is connected.

vs(QY1) <ws(Q'H)  forallje{l,....,mi}. 5 €{1,...,ni}
sgns(Qq) = sgna(Qq) for all Q4 appearing in Qeii
A S/ OB RN, 5

(2711)
2. Let C' defined by the inequalities

D biQY| > m Q| Vi€ {1,...,r}, Vi € {1, i} (2.12)

j=1
and the two sign conditions appearing in (2.11). Then C’ is connected.

Remark 2.9. — 1. We have o, 8 € C.

2. Cn{fy---fr = 0} = 0. Indeed, inequalities (2.11) imply that, for
every § € C, f; has the same sign as Z;i‘l bineji; in particular, none of
the f; vanish on C.

3. Either of those conjectures implies the Connectedness Conjecture.

3. A proof of the conjecture for arbitrary regular
2-dimensional rings

We start with a general plan of the proof and an outline of different
sections of Part 3. In §3.1 we recall Zariski’s theory of complete ideals. We
explain how the construction of approximate roots in arbitrary dimension
restricts to the special case of dimension 2 (and that the standard construc-
tion in dimension 2 is, indeed, recovered from the general one as a special
case) and prove some general lemmas about approximate roots in regular
two dimensional local rings and their behaviour under sequences of point
blowings up. In §3.2 we define the notion of real geometric surfaces which
are glued from affine charts of the form Sper A;, where A; is a regular
two-dimensional ring, in order to be able to talk about point blowings up of
Sper A. We also define the notion of a segment on the exceptional divisor
of a blowing up and prove that such a segment is connected; another notion
useful later in the proof is that of a maximal segment. One slightly delicate
point here is that since the residue field k of A is not assumed real closed
we need to fix an order on k£ and always restrict attention to points of the
real spectra of various A; which induce the given order on k. The bulk of
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the proof per se is contained in §§3.3-3.5. As explained above, our problem
is one of proving connectedness (resp. definable connectedness) of the set

C.

In §3.3 we use Zariski’s theory and other results from §3.1 to construct
a sequence of point blowings up which transform C' into a quadrant, that
is, a set U of all points & of a suitable affine chart Sper A; centered at
the origin satisfying either 2/(§) > 0, y'(d) > 0, or just 2/(§) > 0. In §3.4
we use results from [3] to prove connectedness of U by reducing it to that
of a quadrant in the usual Euclidean space, assuming that A is excellent.
In §3.5 we prove the definable connectedness of U (without any excellence
assumptions) after introducing a new object called the graph associated to
U and a finite sequence of point blowings up of Sper A.

3.1. Approximate roots in dimension 2 and Zariski’s theory

In the special case of regular 2-dimensional local rings, the theory of
approximate roots is well known: see, for instance [45], Appendix 5 or [36].
We briefly recall the construction here since it is much simpler than in the
general case.

We start with two purely combinatorial lemmas about semigroups. Take
an integer g > 2.

LEMMA 3.1. — Let B1,82...,084 be positive elements in some ordered
group. Let aj, j € {2,..., g} be positive integers. Assume

Bi = ai—1fBi—1, 1 € {3,...9}. (3.1)

Let v1,...,74 be integers such that 0 < 7v; < o for 2 < j < g and
d9_17iB; = agBy. Then v > 0.

Proof.— We prove by descending induction that E; 1785 = a;B; for

> 2. The case i = g is given by hypothesis. Assume then that Z e 1 Vi85 =
a7,+1/81+1~4 Subtracting v;+18;+1 and using the fact that v;41 < @41, we
obtain 22:1 viBi = (tit1—7it1)Bi+1 = o, This completes the induction.
So for ¢ = 2, we obtain v; 81 + V282 > a2f2; subtracting 232 and using the
fact that vo < ag, we get y181 > (a2 — ¥2)P2 > 0, hence 1 > 0. O

Notation. — Let B1, B2 .. ., B4 be positive elements in some ordered group.
We will denote by (81,...,08;—1) the group generated by fi,...,8;—1 and
by sg(51,...,08i—1) the semigroup generated by f,...,5;—1, that is, the
semigroup formed by all the N-linear combinations of (i,...,05;_1. For
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i€{2,...,g}, o will denote the smallest positive integer such that o}3; €

(B, .., Bi—1). If there is no such integer, we put o = co. Write
i—1
= Zaﬁﬁj wherea;; € Z. (3.2)
j=1

LEMMA 3.2. — Let 31,B2..., B, be positive rational numbers such that
By =y 1Bg-1. If g > 3, assume that

{a € (517 ) ﬁg—l)‘a 2 a;—lﬁg—l}:{a € Sg(ﬁla s aﬂg—1)|a 2 a;—lﬁg—l};

(3.3)
in particular, we can choose ajg > 0 for all j € {1,...,9—1} in (3.2) when
i =g. Then

fac (Br,.-,By) | a>ayBy} ={a€sg(Br,...,B) la>ayBy}.  (3.4)

Proof. — Multiplying all the §; by the same rational number does not
change the problem, so we may assume that 31, 32,..., 3, are positive in-
tegers, such that ged(51, B2, ..., 8q) = 1.

For g = 2, we have o, = 81. If a € (51) and a > 3182, then a > 0, hence
a € sg(f1); thus

{ac(Br) [ az e Clacsg(B)|az=pifa},

the opposite inclusion being obvious.

Assume that g > 3. Write

g—1
oBe = Zajgﬁj* (3.5)
j=1

To prove (3.4), let B =181 + 7202 + - - - + 7484 be an element of
{a € (B1,..-By) | a>ayfy}.

Using the relation (3.5) we can write, for each n € Z,
g—1
g = Z —najg)B; + (v + ”a;)ﬁg = Z'Vg/ﬂj + (g + na;)ﬁg.
j=1

After replacing v4 by v4 + na; for a suitable n € Z, we may assume that
0 <y < ay. Since B > ay By, this implies that

Z'YJBJ Z g 1Bg-1- (3.6)
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By (3.3), we may take ; > 0 in (3.6). This completes the proof of the
Lemma. O

COROLLARY 3.3. — Let B1,..., By be positive rational numbers satisfy-
mng
Bizai_1fic1, i€{3,...g}. (3.7)
Then equalities (3.3) and (3.4) hold.

Proof.— For ¢ = 3, (3.3) is immediate. Now the corollary follows from
Lemma 3.2 by induction on q. O

Let v be a valuation centered at A and let (x,y) be a v-prepared system
of coordinates, such that v(x) = v(m). In what follows, we will omit the
description of V(7), A(v),O(y), since in the simplified situation of n = 2,
the sets W(~) suffice to carry out the entire construction.

Put Q1 = z, Ex(Q1) = 7, Q2 = y, Ex(Q2) = y and 8; = v(Qi),
i € {1,2}. If By, B are rationally independent, then oy = co and the con-
struction stops, there are no more approximate roots. In this case, all the
v-ideals are generated by monomials in (x,y). Assume then «of < oo. This
means that there is a relation o8y = 1281 for a positive integer ais.

Let af and a2 be as above. Let W(51) = 0. For v € @, 81 < v < B2,

U(y) = {2} and U(Bat) = {,y}. Let ki = k, ks — k %
in, (Qf

We prove that (3.3) is satisfied for i = 3. Let 8 = 7151 + 7202 be an
element of

{a € (B1,52) | a > ayf}.

As oy By = @191, we have, for each n € Z, 8 = (y1 —nai2) 1+ (v2 +nab) fe.
After replacing v2 by 72 + naj for a suitable n, we may assume that 0 <
Yo < ad. Since B > b By, this implies that v; > 0.

, L nad
Then we have v (Qg2> = v (Q7"?), hence the image of in, () in k,

in, (Q7"*)
| in, (Q5°) | | o
is not zero. If W is algebraic over k, this means that it satisfies an
in, (@]

algebraic equation of the form
Xlta X+ 4a3,=0,a k. (3.8)
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Let a; be a representative of @; in A. Let as = daj, and

d
5= Q50+ Qs o, (3.9)
=1

The expression Ex (le)) is just the right hand side of this formula.

Let ﬁél) =v (Q§1)>7 then ﬁél) > v(Q5?%) = asfz > ahf2 and the ele-

ments (61, B2, Bgl)) satisfy the conclusion of Lemma 3.2.

By construction, asfs is the smallest element of ® such that the mono-
mials

{Q1'Q3* | v(Q1'Q3%) =711 +72B2 = azfa }
are k-linearly dependent. The unique k-linear dependence relation is given
by le). Hence, according to the general construction of §2, we have ©(8) =

{QSY for anfs > B> AY and U(BY +) = {Q1, @2, Q).

Assume that ¢ > 3 and that elements Ql,...,Qi,l,QEj) are already
defined. Let

By = v(Qq): (3.10)
5 = v(Q). (3.11)
Assume that the initial form in, @, is algebraic over k[in,Q1,...,in,Q4—1]

for g € {2,...,i— 1}. Let gy denote the degree of its minimal polynomial.
Note that, in particular, all of fBs,...,5;_1 are rational multiples of f;.

Assume that 5, > ag—184-1,9 € {3,...,i—1} and 5i(j) > ay;—13—1. Assume
that, in the notation of §1.2, we have

v (87)) ={@u..Q1.Q" ).

i—1
A monomial H Q;' is standard if
=1

OLe<apforle{2,...,i—1}. (3.12)

This allows us to extend the notion of standard to monomials with ¢; < 0:
such a monomial is called standard if (3.12) is satisfied. Similarly, we may
talk about standard monomials in in,Q1,...,in,Q;_1.
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Assume, in addition, that we have defined elements zo,...,2;_1 € k.,
algebraic over k, where 2, is a k-linear combination of standard monomials
in in,Q1,...,in,Qp of degree 0. Let ky = k(za,...,2¢). We obtain a tower
of finite field extensions k = k1 C ko--- C k;_1 C k,.

If in,jQZ(-j) is transcendental over k[in,Q1,...,in,Q;—1], put Q; = QZ(-j)
and the construction stops.

Assume inl,QZ(-j) is algebraic over k[in,Q1,...,in,Q;—1]. Then ﬂi(j) €
i—1 _ N
> QpB,. Let a;(]) be the smallest positive integer such that a;(j)ﬂi(]) €
=1

q

(Br,... Bic1).

. a‘.(j
P i-1 G in, (QEJ)) ’
Then v (QEJ)) =v < IT @ ) , hence the image of —————

. [€)]
r=1 in, le;ll Q?ri

in k, is not zero. By Corollary 3.3, we may take ozg) >0for1<r<i—1.

The assumption on in,,QZ(-j ) implies that oy satisfies an al-

gebraic equation of the form

Xl4m Xt 4a,=0, @ € ki_y. (3.13)

For ¢ € {1,...,d}, write

i—1 R i—1
e - :
ar <H in, Qpri ) = > by [mer (3.14)
r=1 Y=V, Yi—1) r=1

as a k-linear combination of standard monomials. By Lemma 3.1, we have
7 = 0 whenever b, # 0.

0 _ gar®

Let by, be a representative of by, in A. Let a; 277 and

o (@=0)

N al?) d i—1
Q:<Ql@)l > > b ]ler)e . (3.15)

=1 \v=(v1,--,7i-1) r=1

v(Q) >v <(Q5j)) ' > = aﬁj)ﬁi(” > Oé;(j)ﬂi(j) > o-10i-1 > a)_1Bi-1.
(3.16)
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If mUQ(])eZk[m Q1,...,in,Q;—1] (which is equivalent to saying that
o > 1), put @ = QY Eal@) = EalQY), 6 = 6, a; = o,

7

a; —oz(]7QZ 1 =Q, 514_1:”(@521)-

Formulae (3.15) and (3.16) become

QY = + Z > e ler e (3.17)
and
BY =y (Qgﬁl) > v(QY) = aif; > . (3.18)

The expression Ez Q(-l) is just the right hand side of (3.17).
1+1

For ,6(]) <7< 3@+17 we have ¥(y) = ¥ (ﬁfj)—i—) and ¥ (5f+)1 )
Q1,-..,Q;, Qzﬂ} Moreover, the elements (,81, . ,6&1) satisfy the hy-

pothesis of Corollary 3.3, hence also its conclusion.

If 1n,,Q € k[in,Q1,...,in,Q;—1] (which is equivalent to saying that
( ) _ 1), put Q! G — 0 and 51(j+1) — (Q§j+1)>.

Formulae (3.15) and (3.16) become

i—1
Q(J+1) Q(]) + Z b, H Qr (3.19)
r=1

Y=(715--Yi-1)

and

6(]+1 (Q(JJFl)) > ﬁ(] > az 162 1. (320)
The expression Ex (ngﬂ)) is just the right hand side of (3.19).
For ﬂi(j) <~y < ﬁi(j'H) we have

U(y) = \IJ(B§'+) and (3.21)
v (84) = {Qn Qi (3.22)
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Moreover, the elements (,6’1, ey Bila, 6£j+1)) satisfy the hypothesis of Corol-
lary 3.3, hence also its conclusion.

Remark 3.4. — Either the process stops after a finite number of steps or
we obtain an infinite sequence
Q=01,Q2,...,Q, ... (3.23)

Oor a sequence )
Q=Q1,Q2....Qi-1,QY), jeN (3.24)

In the case when Q is given by (3.23), it is a system of approximate roots,
whether or not A is complete. In the case (3.24) assume, in addition, that
the ring A is m-adically complete. In that case,

Qoo = lim QY
]—)OO

is a well defined element of A and Q U {Q} is a system of approximate
roots.

We recall some basic facts from Zariski’s theory of complete ideals in
regular two-dimen- sional local rings.

Let (A,m) be a regular 2-dimensional local ring, z,y a regular system
of parameters and let v be a valuation centered at A.

DEFINITION 3.5. — Anideal Z in a normal ring B is said to be integrally
closed or complete if it contains all the elements z of B satisfying a monic
equation of the form

2", 12"+ ap =0
where a,_; € I"°.

An ideal T in A is said to be simple if it cannot be factored in a non
trivial way as a product of two other ideals.

A local blowing up of A with respect to v along m is the map
A — A[%]n,, where my is the center of v in A[Y].

For an element f € A, we have 2| f in A[¥],. The strict trans-
form of f in A[Y], is the element x= () f.

x

Remark 3.6. — Any v-ideal is a complete ideal.
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Now let I be a simple m-primary r-ideal. Then

(1) The set
m=IyDL D ---DI)=1

of simple v-ideals of A containing I is entirely determined by I (it does not
depend on v).

(2) Let A — A; be the local blowing up with respect to v along m and, for
i > 1, let I/ be the transform of I; (that is, I} = x7*1; A1 with pn = ordyI;).
Then

my=L2>I> --D>I_=T
is the set.

(3) Tterating this procedure ¢-times, we obtain a sequence of local blowing
ups
(A,m) = (A, my) = - = (A, my) (3.25)

such that the transform I¥) of I is my. For any f € A\ I, the strict transform
of fin Ay is a unit of Ay.

We recall the following general result from the theory of approximate
roots in regular 2-dimensional local rings ([36]).

Let A be a 2-dimensional regular local ring, v a valuation on A. Now let
Qk, k=1,...,9+1 be the approximate roots of v such that Q1,...,Q,¢I
and Qg+1 € I. Each I; is generated by the generalized monomials ] ;’j ,
v; € N, such that > ~,;8; > v(L;).

PROPOSITION 3.7. — There exist natural numbers {1 < ly < --- < {4 <
£ and a regular system of parameters xy,,ys, for each i € {1,...,g} having
the following properties :

i—1
(1) x4, is a monomial of the form H Q;j, v; €N,
j=1
(2) ye, is the strict transform of Q; in Ay,,
(3) Q1,...,Qi—1 are monomials in xy,,ye, times a unit of (Ae,)(z,. .y )-
For «, B € SperA, let @4, ...,Qs be the approximate roots common to
«a and .

COROLLARY 3.8. — Ifi < s, both v, and vg are centered at (xy,,ye,)-
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Let A be a 2-dimensional regular local ring, v a valuation on A. Keep
all the above notations.

Convention : below, we adopt the convention that a; = 1.

LEMMA 3.9. — Fori >3, vn(Q;) = H;;ll Q.

Proof.— Let i = 3, then we can write Q3 = y*2 + > ¢s2"y® where
¢rs 18 a unit in A, with v(z"y®) > aqv(y). As v(y) > v(z), this implies

I/m(Qg) = Q9.
Recall (cf. (3.15)) that

d i—1
Q=@+ | X w]ler e
{=1

= Y=(V15e-yYi—1) r=1

Now to prove the lemma, it suffices to prove that

i—1
Qi (Q1) < vm <<H Q;’r> Qj“i(d‘f)) (3.26)

r=1
for all £ and ~ such that by, # 0.

First remark that, according to the inequalities (3.18) and (3.20), we
deduce by an easy induction on i — ¢ that

Bi

: > Be. (3.27)
i—1
Hq:é Qq

We have o;3; = Z;;ll v;B5 + ol (d —€)f;, so

i—1 i—1 B
QB =Y B <Y V=i —
j=1 i | PRV
by (3.27).

fﬁ , we get,

Hq:l q
i—1 -1 j-1

all H ay < Z'yj H ag. (3.28)
q=1 j=1 q=1
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By the induction assumptiqn, the left hand side equals Vm(Q?;e) and
the right hand side equals l/m(H;;ll Q;’j ). Therefore inequality (3.26) follows
from inequality (3.28). o

7
In what follows, we study standard monomials H Q}j, with ¢ < s, that

Jj=1
is monomials such that 0 < v; < o for j € {2,...,4}.

COROLLARY 3.10. — Consider two standard monomials H;’:l Q;“ and

[Tisy Q) such that (YiyYit---s11) <tew (VisTVio1s---7}) and having the
same v-value. We have

i

i ’
w | [ @7 ) > (1107
j=1

j=1

Let n = vy (Q3); note that as = n. Moreover [k : k] | n and [k2 : k] =n
if and only if 31 | Sa.
COROLLARY 3.11. — Consider two standard monomials [] Q;” and || Q;j,
j=1 j=1
with 3 <@ < s, such that (Vi,Yi—1s---,73) <tex (VisYi_1s---+7%). We have

%

i
’
. ~
Vm | I Q;h < Vnm | I Qj] - n.
Jj=3

Jj=3

Proof.— Let j > 3 be the greatest integer such that v; < ’y}. We have

%

i , J
v | JIQF | =w [[TQF | = D
j=3

=3 (=3 q=1 £=3 q=1

j—1 Jj—1 -1
= ('Y;_'YJ)HO‘q"‘Z(%_W)HO‘q
qg=1 =3 q=1
Claim.— For j > 4 and ¢y < ay, we have
j—1 -1 j—1
ce || g < H ay. (3.29)
=3 q=1 q=1
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Proof of Claim.— By induction on j. For j = 4, the inequality is imme-
diate. Assume the Claim is true for j — 1. The left hand side of (3.29) can
be rewritten as

j—2

j—1 -1 j—2  0-1 Jj— Jj—2 Jj—2 j—1
>eToa=3 e [Tau+era o< [Taw+ e [Ta < [Jan
(=3 q=1 (=3 q=1 g=1 g=1 q=1 q=1

The Claim is proved.

The monomials being standard, 0 < ve,7; < ag, 80 v, — Y > —oyp and
applying the Claim, we deduce that

j—1 £—1 j—1
Z('Yé — ) Haq > = H Qq-
g=1 g=1

(=3

Since v; —7; > 1, we get

j—1 j—1 -1
(’Y} =) Haq +Z(’Yé —Ye) Haq > 0.
qg=1 (=3 g=1

Each term being an integer divisible by as, the above expression is greater
or equal to as = n. O

3.2. Real geometric surfaces and their blowings up

Let A be a ring and U an open subset of Sper(A4). Let Sy denote the
multiplicative set

Su={g9g€A|gla)#£0foral a € U}.

Let Ay = Ag,,. We have a natural ring homomorphism
ou Ay — H A(a).
acU

Define the ring Oy to be the ring of all maps

f:U— HA(a)

acU

satisfying the following conditions :
(1) Ya € U, f(a) € Afa);
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(2) there exists an open covering

Uv=JUu (3.30)

iEA

and, for each ¢, an element f; € Ay, such that V3 € U;, we have py,(fi)s =
f(B).

The functor which sends U to Oy makes Sper(A) into a locally ringed
space which we will call an affine real geometric space. This notion is inspired
by the notion of real closed spaces defined by Niels Schwartz ([35]).

From now till the end of this section we will assume that all our rings
are integral domains.

Remark 3.12. — Note that + : Ay — Oy and, if U is connected, this
inclusion becomes an equality. Indeed, consider an element f € Oy, the
open covering (3.30) and the local representatives f; € Ay, of f as above.
Let K denote the common field of fractions of A and all of the Ay . Finding
an element g € Ay such that «(g) = f amounts to proving that for each
1,7 € A we have

fi =1, (3.31)

viewed as elements of K. By connectedness of U, it is sufficient to prove
(3.31) under the assumption that U; N U; # 0. Take a non-empty basic
open subset V' C U; N Uj, defined by finitely many inequalities V = {«a €
Sper A | g1(a) > 0,...,gs(a) > 0}. Since V' # ), Propositions 4.3.8 and
4.4.1 (Formal Positivestellensatz) of [7] imply that V contains a point o
such that p, = (0). Then A(a) = K, so the equality py,(fi)a = f(a) =
pu; (fj)a € A(a) implies that f; = f; in A(a) = K, as desired.

Notation. — To simplify the notation, we will write A, instead of Ay,.

DEFINITION 3.13. — A real geometric space is a locally ringed space

S
(X,0x) which admits an open covering X = U Sper(A;) such that each
i=1
(Ui, Ox|U;) is isomorphic (as locally ringed space) to an affine real geomet-
TiC Space.

DEFINITION 3.14. — A real geometric surface is a real geometric space
X where all A; can be chosen to be regular 2-dimensional noetherian rings.

Let k be a field and z an independent variable. Let A be a regular two-
dimensional ring, x,y elements of A, p a maximal ideal of A of height 2,
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containing z. Suppose given an isomorphism ¢ : (‘%%k[z]g such that y mod
() is sent to z and 6 is a non-zero polynomial in z. Let g = 2% + ;29471 +
...+ ag denote the monic generator of the ideal ¢ ((;;)) Let a; be an element

of the coset L’l(&i). Then (x, yd + alyd*1 + ...+ ad) is a set of generators
of p; it induces a regular system of parameters of A,.

DEFINITION 3.15. — The pair (z,yd +ay?t+. o+ ad) will be called
a privileged system of parameters of A, with respect to the ordered

pair (x,y).

DEFINITION 3.16. — A marked real geometric surface is a real geometric
surface X together with the following additional data:

S
(1) A finite covering X = U Sper(A;) where each A; is a regular 2-
i=1
dimensional noetherian ring.

(2) For each i, a pair of elements x;,y; € A; and a field k;, which admits
a total ordering.

(3) A subset A; C Sper A;, called the privileged subset of Sper A;. Let
z,w be independent variables. We require one of the following to hold:

(a) There exists an irreducible polynomial h € k;[w] and a homo-
morphism
kilz, wlo.o,,
(zh)
where 0, € ki[z,w]\ (z,h), 0y € k;[w]\ (h), which maps x; to z mod (zh),
yi tow mod (zh) such that A; is the set of points of Sper A; defined by the

LA —

ki )
vanishing of all the elements of Ker v (in particular, A; = Sper%);
z
(b) A; = {x; = 0}; there is an isomorphism 1 : — — k;[wg,, ,

K3
where 0, is a non-zero polynomial in k;[w], which sends y; mod (z;) to w;

in particular, A; = Sper k;[wlg,, ;

(c) A; = {z; = y; = 0}; we have & ks in particular, A; =

A
(zi,9i)
Sper k;.

(4) For each i and each o € {x; = 0} C A; with ht p, = 2, a reqular
system of parameters of (A;),,, , privileged with respect to (z;, h) in case (a)
and with respect to (z;,y;) in case (b).
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(5) In case (a), for each i and each o € {h =0} C A; with ht p, = 2,

a reqular system of parameters of (A;)p, , privileged with respect to (h,x;).

Remark 3.17. — Let A be a regular 2-dimensional ring, m a maximal
ideal of A and (z,y) a regular system of parameters of Ay,. Then Sper A is
a marked real geometric surface.

We now define the notion of blowing up of a real marked geometric
surface. Let X = |J, Sper A; be a marked real geometric surface and take
a point 6 € X. Assume that § belongs to the privileged set and ht(ps;) = 2
in every affine chart Sper A; containing . We want to define the blowing
up of X along §. First consider the case X = Sper A. Let z,y € A and k
be the pair of elements and the field appearing in the definition of marked
real geometric surface.

Let (u,v) be the privileged system of regular parameters of A, given
by the definition. It follows from definition that (u,v) = (z,y) in Case (c),
u = x in Case (a) provided § € {z = 0} as well as in Case (b), and u = h
in Case (a) if § € {h =0} \ {x = 0}.

A blowing up of Sper A along ps (or, by abuse of language, blowing
up along ¢) is the marked real geometric surface X’ defined as follows. As
a topological space, we put X’ = Sper A} U Sper A}, where A} = A[%],
Ay =A[%] and

Sper A} N Sper Af = Sper A} \ {E = O} = Sper A} \ {E = 0}.
u v
We have a natural surjective morphism 7 : X’ — Sper A.

To define a structure of marked real geometric surface on X', we let the
two elements required in Definition 3.16 (2) be z} = u,y} = = € Aj for
Sper A} and x5 = v,y; = © € A for Sper Aj. Below, for ¢ € {1,2}, we
denote the privileged set of Aj by A and the field required in the Definition

3.16 (2) for Sper A} by k. We now define A} and k; in the different cases.

e If Case (c) holds for Sper A: let k;, = k, for ¢ € {1,2}. For Sper A the
privileged set is A] = {x} = 0}. The existence of a privileged regular system
of parameters required by the Definition 3.16 comes from the isomorphism

Ay

(1)

= k[y}]. For Sper A} the situation is entirely analogous.

e If Case (b) holds for Sper A : let k7 = k(ps) and A} = {2} = 0}.

The existence of a privileged regular system of parameters required by the
!

Definition 3.16 comes from — -k} [y1].

(1)
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Let kf, = k and A}, = {a, = 0}U{y5 = 0}. By the definition of privileged
regular system of parameters of A,,, there is an irreducible polynomial
vy € klw], relatively prime to 6, such that L(("m—‘;)) = (vy). The existence of
a privileged regular system of parameters at any point of A}, required by
Ay k[w, e,

(z595) — (vuwys)

the Definition 3.16, comes from

o If Case (a) holds, there are three cases to consider :

(i) 0 € {x = 0} \ {h = 0}, ALLKl, ¢ = 1,2, are given by the

o
same formulas as in Case (b). Let A = A,. The structure of marked real
geometric surface on Sper A% is induced from that of Sper A. We have

Ay K[z, Wl 0,0.
by =k and Ay = {z =0} U {h =0} and 755 [ <z]h)

(i) 0 € {h = 0} \ {w = 0}, let k| = r(ps) and ky = 741, A7 =
{z§ = 0}, A} = {2}, = 0} U{y, = 0}. By the definition of privileged
regular system of parameters of Ay, there is a polynomial v, € k[z,w],
Po ) _ (h, vz )k[z, wlo.0,,
@) = @)

lar system of parameters comes from the isomorphisms

Ay - kalz 0)e.
(z5y5) — (vzy5)

such that ¢( . The existence of a privileged regu-

A

(1)

=k1[y] and

Let AL = A,. The structure of marked real geometric surface on Sper A}
is induced from that of Sper A. We have k5 = k, AL, = {x =0} U{h = 0}
Av ~ k[zaw]vzeuﬁz

=
(xh) (zh)

(iii) 6 = {h = 0} N{z = 0}, recall that v = z,v = h. Let k} = x(ps)
and ky = k. Let A} = {z;, = 0} U {y, = 0}, ¢ = 1,2. The existence
of a privileged regular system of parameters comes from the isomorphisms

A Klnole oAb kol
(1) (1) (zoy) — (hys)

and

(recall that in this case h = z).

P
We then define the real marked geometric surface X’ to be X’ = J Sper A4}
i=1

where p = 2 in cases (b), (¢) and (a) (iii) and p = 3 in cases (a) (i) and (ii).

Remark 3.18. — Note that Sper A5 C Sper A}, i = 1,2; but, in the ap-
plications, we need to have the set A% defined by fixed elements x5, y5.
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S
Let X = |J Sper A; be a marked real geometric surface and 6 € X

=1
belonging to the privileged set and supported in a height 2 ideal ps; in
some affine chart Sper A;.

If 6¢Sper A;, let X/ = Sper A; with the identity map X — Sper A4,. If
0 € Sper A;, let X! — Sper A; be the blowing up of Sper A; along ps ;. Let
(u, v) be the regular system of parameters of (4;),, , given by the definition
of real marked geometric surface. We have X/ = ’;:1 Sper A;i where p = 2
or 3 as above.

The marked real geometric surfaces X7,..., X, and the maps X! —
Sper A; glue together in a natural way to give a marked real geometric
S

surface X' = |J X/ and the map X' — X.
=1

1=

DEFINITION 3.19. — We call X' the blowing up of X along § or the
point blowing up of X along 6. The point § is called the center of this
blowing up. If X = Sper A, the blowing up of X along § depends only on
the ideal ps and not on the ordering <s, so we may speak also about blowing
up along ps.

DEFINITION 3.20. — Let «,§ be two distinct points of the real marked
surface Sper A with
ht(ps) = 2.

Let: X' — Sper A be a blowing up along 6. Let (u,v) be the given privileged
system of parameters at 0. Since o # 8, {u,v} € po. If uep,, the strict
transform o' of a is defined as follows. Let po be the strict transform
of po tn A} and < be the order of k(pa) induced by <, via the natural
isomorphism K(Pa) =2 K(Por). If v&€pa, o € Sper Al is defined similarly.

On the way to prove the connectedness of C' of (2.11), we will now prove
a preliminary result on connectedness of a certain type of subsets (intervals)
of the exceptional divisor on a suitable blowing up of Sper A.

Remark 3.21. — Fix an order on k. Let D be the set of points § €
Sper(k[z]) which induce the given order on k. Given two points 01 # d2 € D
such that ht(ps,) = 1, we view d1,d2 as elements of the real closure k
of k with respect to the given order. We may speak about the interval
(01,02) ={6 € D | 01 < 2(0) < d2}. If p5 = (0), we compare J; and z(J) via
the natural embeddings k[z](8) — k(z) and k C k().

Now, let m be an ideal of A with ht m = 2 and % = k. Given a blowing
up along m as above, consider the open set Sper(A[¥]). The set of points
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€ Sper(A[2]) such that 2(0) = 0 and which induce the given order on &
is homeomorphic to D.

Finally, let X be a real algebraic surface such that D C Sper k[z] C X.
Let 400 denote the point of D with support (0) such that z(4+o00) > ¢ for
all ¢ € k. Let 50 be the closed point of X such that 30 € {4+00}. Assume
there is an open set Sper A; C X such that pz in A; has height 2. We
extend the above notion of interval to include the case when o = & with
the obvious meaning assigned to [61,50] = U [01,d] U {5}, (61,39),....

>0,
Similarly, we may take a closed point —30 € {—oo}. As points of X, we
have 50 = —&G. However, our ordering on D provides us with a well defined
notion of intervals of the form (—33, 1), [—30,d1) and so on.

LEMMA 3.22. — Let D be as in the remark before and 6, < d € D such
that hit(ps,) = 1. The closed interval [0, d2], the semi-open interval [0, d2)
and the open interval (01,92) are connected.

Proof.— We will prove it for the open case, the closed and the semi-
open being similar. Let k& < k be the inclusion of k into its real clo-
sure determined by the given order. This map corresponds to a morphism
Sper(k[z]) — Sper(k[z]) which induces a homeomorphism between D and
Sper(k[z]) sending (d1,d2) to an interval (81, 02) where 81,0 € k. It is well-
known and easy to prove that such an interval is connected - in the spectral
topology (see for instance [7]). O

Remark 8.28. — Let 0 € k[z] be a non-zero polynomial. We have natural
homeomorphisms Sper k[z]p=Sper k[z] \ {ai,...,a:} and A
D N Sper k[z]p=D \ {a1,...,a:} where {a1,...,a:} is the set of points
a; € Sper k[z] such that 6 € p,,. Let §1,02 € D be as above. Assume
that «;¢(01,d2) for all ¢ € {1,...,t}. Then A((d1,02)) is connected in
D\ {ag,...,c}.

DEFINITION 3.24. — Let m be a mazimal ideal of A of height 2. Let
X' — Sper A be the blowing up along m. Let & = {e € Sper A | p. = m}.
The sets m=1(¢), € € € are called the components of 7~ (m).

Let (A, m, k) be aregular 2-dimensional local ring and (z, y) a regular system
of parameters. Now consider a sequence

X, 5 B X, B Sper A (3.32)

of point blowings up where the first blowing up 7 : X; — Sper A is the
blowing up along m.
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Fix a point € € Sper A such that p. = m - this is equivalent to fixing a
total ordering on k. For ¢ € {0,...,t — 1}, let n, € X, be the closed point,
compatible with the given order, such that m, is a blowing up along 7,.

S;
For ¢ € {1,...,t}, let X; = |J Sper Aj; be the open affine covering in
j=1
the definition of marked real geometric surface.

Let pj=mgo...om_1: X; = Sper A.

Remark 3.25. — The real geometric space p; ' (m) has the form p; ! (m) =
\JSper Bj; with By = kp[zi¢] where k;; is a finite algebraic extension of k
¢

and z;¢ is an independant variable.

DEFINITION 3.26. — A subset E C p; '(€) is a component of p; ' (€) if
E is either a component of Wf_ll(m,l) or a strict transform of a component

of pi*,(€) when i > 1.

DEFINITION 3.27. — Let p; : X; — Sper(A). Fiz a component E C
p; t(€). Fiz an index j € {1,...,s;}. A j-distinguished point of E is a
point § € E such that either §¢Sper Aj; or p;'({xy = 0}) D {2’y = 0}
and z'(8) = y'(8) = 0 where (2',y") € Aj; is the privileged regular system
of parameters at 6 (in particular, the privileged set of Sper Aj; is given by

{z' =0} u{y =0}).

A j-mazximal interval I is a subset I C E such that there exist j-
distinguished points 61,92 € E, 81 # 02, such that

(1) I = [01,02] and I is connected;
(2) There are no j-distinguished points in I\ {d1,02}.
A mazimal interval is an interval which is j-mazximal for some j.

Remark 3.28. — Note that a j-maximal interval may contain a j-distin-
guished point, where j # 7. This occurs if [01,d2] is a j-maximal interval,
d € (61,02) and 3j € {1,...,s;}, J# j, such that (61,82) NSper Az # 0 and
0 & Sper Aj.

PROPOSITION 3.29. — Fiz a component E C p;*(¢) and a mazimal in-
terval [01,02] C E. Take q € {1 ,2}. There exists j € {1,...,s;} such
that [01,02] is j-mazimal and letting x;,y; € Aj; be the elements given by
Definition 3.16 we have:

(1)i [61,62] \ {04} C Sper Ay,
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(2); for all § € [01,02) \ {04} with ht(ps) = 2, z; is a part of the given
privileged reqular system of parameters of (Aji)p,,

(3); [61,62]NSper Aj; = {n € Sper Aj; | zi(n) =0 and 61 < yi(n) <02}

where
01,0 € kj; U{—00,5},

with the notation of Remark 3.21 and the proof of Lemma 3.22.

Proof. — First, let ¢ = 1. We have X; = Sper A [Q] U Sper A {z] De-
x y

note A [Q} by A1 and A {f] by As1. Let 1 = x,y1 = 2 Fixing the com-
T y x

ponent F is equivalent to fixing a total order on k; this data is already given.
We have

E N Sper Aly;] C Sper k[y1].
Let the notation be as in Remark 3.21 with y; playing the role of z.

There are exactly two maximal intervals [0,30] and [—3q,0]. Say, for
example, I = [0,30], ¢ = 2, then j = 1 satisfies the conclusion of the
Proposition. And similarly for the other three cases.

Now take ¢ > 2 and suppose the result true for ¢ — 1. Let 6,,;—1 =
mi—1(6p), p = 1,2. Let n;_1 be the center of the blowing up m;_;. First,
assume that

EcCr Y (niey). (3.33)

Take j € {1,...,s;—1} such that 7;,_; belongs to the privileged set of
Sper Aj;—1. Let (u,v) be the given privileged regular system of parame-
ters at 7;_1. If j is such that (d1,d2) C Sper Aj; then Aj; is one of Aj;_1[%]
or Aj,;_1[2]; pick one of these two possible choices j such that [d;,ds] is
j-maximal. In this case (1); is equivalent to saying that

[01,02] # [-30, ). (3.34)

Now, if we had [d1,d2] = [-30,<], the point 2; = y; = 0 would be a
distinguished point in (d1,d2) (by definition of distinguished point). This
is a contradiction and (1); is proved in the case when (3.33). (2); and (3);
of the Proposition follow immediately from the definition of marked real
geometric surface.

From now on, assume that

B ¢ i (ni-1)- (3.35)
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Note that since [d1, J2] is a maximal interval of E, [61 ;1,02 ,—1] IS a max-
imal interval of m;_1(E). So, by the induction hypothesis, the Proposition
holds for [01,;-1,02,i—1] C mi—1(E). Take 7 € {1,...,s;_1} which satisfies
the conclusion of the Proposition with 4 replaced by ¢ — 1 (in particular,
[(51)1‘,1, (5271‘,1] is j—maximal).

If n;_1¢ Sper A;,; 1, take j € {1,...,s;} such that A;; = A5, 1. This j
satisfies the conclusion of the Proposition.

Next assume that 1,1 € Sper Aj;_1. Take the elements u,v € Aj;_1
which induce the privileged regular system of parameters at 7;_1, given by
the definition of marked real geometric surface.

If ﬂifléﬂifl([(sl,ég}% takej such that Aji = Aj’ifl.

From now on, assume that 1,1 € m;—1 ([61, 62]) N Sper Aj;_1. Then

Ni—1 € {51,1‘—1,52,1'—1} :

if not, 7ri__11 (ni—1)N(01, d2) would be a j-distinguished point in (d1, d2), which
is impossible. The intersection is taken as subsets of the topological space
Xi; if mi—1¢{01,i—1,02,,—1}, this intersection is not empty and consists of
a single point. Let j € {1,...,s;} be such that Aj; is one of Aj; 1[%] or
Aji-1[2]; pick one of these two possible choices j such that [d1,d2] is j-
maximal.

In all the cases the index j chosen in this way satisfies the conclusion of
the Proposition. O

3.3. A proof of the Pierce-Birkhoff conjecture for regular 2-dimen-
sional rings

Let A be a 2-dimensional regular local ring, v a valuation on A. In this
section, we prove that A is a Pierce-Birkhoff ring ([26]). Our proof is based
on Madden’s unpublished preprint ([27]), but there are some differences.
Here, we have tried to present a proof which should be a pattern for a
general proof of the conjecture in any dimension.

THEOREM 3.30. — Let A be a 2-dimensional reqular ring, then A is a
Pierce-Birkhoff ring.

Actually, we prove that A satisfies the Definable Connectedness Conjec-
ture and also, in the special case where A is excellent, the Connectedness
Conjecture.
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We start with some results which do not assume that A is excellent
and which are needed in the proof of both of the above versions of the
Connectedness Conjecture. Let «, 8 € Sper A. By Remark 0.10, we may
assume that neither of «, 8 is a specialization of the other.

There are two possibilities : either ht(< «, 8 >) =L or ht(< a, f >) = 2.
3.3.1. The case of height 1

Let § be the most general common specialization of o and 5 and let
p = /< o, B > be the support of . Then A, is a discrete valuation ring;
take an element ¢t € A whose image in A, is a regular parameter of A,.
Since ht(p) = 1 and neither of «, § is a specialization of the other, we have
Po = ps = (0). There are only two orders on A which induce the given order
on A/p : one with ¢ > 0 and one with ¢ < 0. Since a # 3, < o, 8 >=1p : of
course, any element g of p can be written as g = t7 %, a,bp. Ast €< a, 8 >,
if v>2, va(g) =vs(g) > va(t) so g €< a,f > and if v = 1, g changes sign
between « and 3, so again g €< «, 8 >.

Now let fi,..., frd < o, >=p, so f;(6) # 0 for i € {1,...,r}. As
§ € {a}and § € {8}, we conclude that o and 8 belong to the same connected
component of Sper A\ {f1--- f. = 0}.

3.3.2. The case of height 2
Now assume

ht(< «, 8 >) = 2, that is m = /< o, § > is maximal. By Proposition
2.2, replacing A by A, does not change the problem, so we may assume
that A is local with maximal ideal m.

Let g € N be such that Q1,...,Q.¢ < o, 8 >, Qg+1 €< «, 8 > be the
approximate roots common to v, and vg as in section 3.1.

Let (x,y) be a regular system of parameters of A such that v,(z) =
Vo (m) and vg(z) = vg(m).

Let 7 : A — A’ be a local blowing up with respect to v, and denote
by k' the residue field of A’. Recall from ([45], Appendix 5) that the weak
transform I’ C A’ of an ideal I C A is defined by I’ = 27 *IA’ where
a = vn(I).

PrOPOSITION 3.31. — We assume that 7 is also a local blowing up with
respect to vg. Let o and ' be the strict transforms of a and 3. Then the
separating ideal < o', 8" > is equal to the weak transform of < «, 8 >.
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Proof.— Since by hypothesis, o/, ' are both centered at a maximal
ideal m’, we have < a, 8 >S m. In particular, ¢ < «, >, hence x does
not change sign between o and 3. Then f € A changes sign between a and
B if and only if x~%f changes sign between o’ and 3'.

Since < «, 8 > is generated by elements changing sign between « and
B, its weak transform is generated by elements which change sign between
o' and ’; hence the weak transform of < «, 8 > is contained in < o/, 3’ >.

To prove the opposite inclusion, let I’ =< o', > and let I be the
inverse transform of I’, that is the unique complete ideal of A whose weak
transform is I’ ([45], Appendix 5, p. 388). It remains to prove that I C<
a, B >.

In order to do this, it suffices to find an element z € I which changes
sign between a and S and such that v, (2) = vo(I).
Let Jy be the greatest vo-ideal of A’ whose v,-value is strictly greater

li
than v, (I). Note that is a k’-vector space. Let by,...,bs, b; =

JyNIA
H:_:l QY. where i is the maximal index of the approximate roots Q, in-
!
volved, be a set of elements of I which induces a basis of ——————, each
JLNITA

monomial being standard. Moreover, since x divides y in A’, if v, (x) =
v (y), we may assume 7,2 = 0 for all j and b; is the unique monomial
which maximizes the vector (y;1,7vi—1,1,...,731) in the lexicographical or-
dering.

Let a = vy (I). Let 2 € I’ be such that v, (2) = v4(I’) and Z changes sign
between o/ and . Let 2! = 292, Then 2t € TA" and v, (2") = v, (1A") =
Vo (I). Write 21 = Zle zjbj. We may assume z; = 1. Denote by Z; the
image of z; in the residue field k'.

First, suppose vq(x) < v4(y). Then k' = k. For each j € {1,...,¢}, let
w; be a representative of Z; in A. Put z = Z§:1 w;b; .

Next, suppose vq(x) = vo(y), since by is the unique monomial which

maximizes the vector (v;1,vi—1,1,---,731), by the corollary (3.11), we have,
for j > 2,

Unm <f[ Q;W> < Un (ﬁ QZ“) —n<a—n.

r=3 r=3
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n—1

—t
Write 27 = by + Efzz(zjx”)(x_"bj). Write Z; = Z ct(%) where ¢; € k.

t=
So letting a; be an element of A such that @; = ¢; and v; € A be the element

_ N1 t .n—t
Vj = Zt:o aty T

, we have

Vo (vj — zj2™) > nvg(x). (3.36)

LEMMA 3.32. — For j > 2, 27 "b; € A.

Proof of lemma.— By Corollary 3.10, v (b;) > vn(b1) and by Corollary
3.11,

Um <ﬁ Q;Y;w) < Um (ﬁ Qzlr> - n.

r=3 r=3
Now 151 = vm(5) = v ( 1 @7 ) > vltn) = om (11 @3 ) 03 m.0
r=3 r=3
Put z =b; + Z§:2 vj(x~"b;) We have z € TA"'N A =1 (because I is a
contracted ideal).

In both cases, V4 (%) = va(y) and vo(z) < v4(y), since 2z changes sign
between o’ and 8’ and in view of (3.36), z changes sign between « and 3.
This ends the proof of the proposition. O

Remark 3.35. — If B = R[z,y]. Let
B — R[xlvyl] — R[xéayf]

be a sequence of blowings up induced by (3.25), where we take [ =< a, 8 >.
Let C; be the preimage of C' (see (2.11)) in Sper R[xy,y¢]. By proposition
(3.7), there exist monomials wy,...,ws,€1,...,€5,01,...,60;, A1,..., A in
Zg,ye such that

vs(wr) < wvs(er), ke {l,...,s}
Cy = ¢ 0 € Sper R[zy, yi] vs(6;) =vs(Ng), ge{1,...,t}
sgns(ve) = sgna(we), sgns(ye) = sgna(ye)

By connectedness theorem ([21]), Cy is connected, hence so is C. This com-
pletes the proof of the Connectedness Conjecture for R[z,y| and so provides
a new proof of the classical Pierce-Birkhoff Conjecture in dimension 2.
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Let A be a regular 2-dimensional local ring with regular parameters
(x,y). Consider the set C’ defined by the inequalities (2.12)

ZbﬁQeﬁ >5 ni|Q6j,7"| Vi€ {1a s 7T}, vjl € {13 s ani} (337)

j=1
and the two sign conditions appearing in (2.11).

Consider the sequence (3.25) of local blowings up with I =< «, 8 >. Let
C} be the preimage of C’ in Sper Ay. Rather than prove connectedness of
C}, we will prove that a® and B lie in the same connected component
of C}; this will imply that o and § lie in the same connected component of
C'. Let € denote the common specialization of a(®) and 3. By definition
of (3.25), we have p. = my. Let U be the subset of C} consisting of all the
generizations of € lying in Cj. It is sufficient to prove that a® and SO lie
in the same connected component of U.

There are two cases to consider.

Case 1. Only one component of the exceptional divisor (that is the
inverse image p, ', (m)) passes through 7.

Case 2. Two components of the exceptional divisor pass through 7.

Let (x¢,y¢) be a regular system of parameters of (Ay)m, such that the
local equation of the exceptional divisor at 7, is y = 0 in case 1 and xy, = 0
in case 2.

By Zariski’s theory of complete ideals, for any f € A\ < a,8 >, the
strict transform of f in Ay is a unit. In other words, f has the form f = zj}v
in case 1 (resp. f = z}y; v in case 2) where v denotes a unit in (Ag)m, .

The inequalities (3.37), appearing in the definition of C’, hold on all of
U. The set U is defined inside the set of generizations of € in Sper Ay either
by specifying sgn(z,) or by specifying both sgn(z,) and sgn(yp).

LEMMA 3.34. — Let E be an irreducible component of the exceptional
divisor passing through ng, defined by xy = 0. There exists f € A\ < o, >

such that f = xjv, v is a unit of (Ar)m, and n is odd.

Proof.— Let j € {1,...,£ — 1} be such that E is the strict transform
in X, of ﬂ'j__ll (nj—1). Let v; be the divisorial valuation corresponding to E;
this valuation is defined as follows : for each f € A,, write f = z}'g such
that ;g in (Ag)m,, then v;(f) =n.

- 324 —



Approximate roots of a valuation and the Pierce-Birkhoff conjecture

Let m = pg D --- D p; be the complete list of simple v;-ideals given by
Zariski’s theory of complete ideals. Note that, since j < £, p; D< a, 8 >.

It follows from Zariski’s factorization theorem for complete ideals that
vi(A\ {0}) is generated by v;(po),...,v;(p;). Since the value group of v,
is Z, the semigroup v;(A \ {0}) contains all the sufficiently large integers.
Hence one of v;(po), ..., v;(p;) is odd. O

The lemma shows that 2, does not change sign between a® and 8 in
Case 1 (resp. neither x, nor y, change sign between a(¥) and ) in Case 2).

Let
U= {(5 € Sper Ay ‘ sgn(xe(0)) = sgn(zi(a)), e € m}
in Case 1 and

U= {(56 Sper Ay ‘sgn(u(é)) =sgn(ze(a)), sgn(ye(d)) =sgn(ye(a)), eem}

in Case 2. The above reasoning shows that o9, ) ¢ U c U.

To prove the Definable Connectedness Conjecture (resp. the Connected-
ness Conjecture for excellent A), it remains to prove the definable connect-
edness of U (resp. connectedness of U whenever A is excellent).

We are now ready to prove the above two versions of the Connectedness
Conjecture.

3.4. Proof of the Connectedness Conjecture in the case of an ex-
cellent regular 2-dimensional ring

THEOREM 3.35. — Let A be an excellent regular local 2-dimensional
ring. Let C C Sper A be the subset satisfying the conditions of (2.11). Then
a and B belong to the same connected component of C'.

Proof.— Let ¢,£ and U as above. By the above considerations, it is
sufficient to prove that U is connected. Thus it remains to prove the following
lemma.

LEMMA 3.36. — Let A be an excellent reqular n-dimensional local ring,
T1,..., Ty regular parameters of A. Fir a subset T C {1,...,n} and let
D ={0¢€ Sper A| z;(6) >0, i €T and ¢ € {6}}. Then D is connected.
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Proof. — The point € determines an order on k. Let R denote the real
closure of k relative to this order. Consider the natural homomorphisms

A— A=Ek[X1,...,X,]] 2 R[[X1,..., X, (3.38)
where o is induced by e.

Let ¢ denote the point of Sper A such that pe = (X1,...,X,) and < is
the total ordering of k given by e.

Following ([3], proposition 8.6), D is connected if and only if
D = {6 e Sper k[[X1,...,X,]] | Xi(6) >0, i € T,é € {6}}

is connected (this is where we are using the fact that A is excellent). More-
over, D is the image of

D = {6 € Sper R[[X1,...,X,]] | X;(0) >0, ieT}
under the natural map induced by o
Sper R[[X1,...,X,]] = Sper k[[X1,...,X,]].

Thus it suffices to prove that D is connected.

By ([3], proposition 8.6), D is connected if and only if the set

D' = {§ € Sper R[X1,...,Xn)(x,...x,) | Xi(6) >0, i €T,
0 is centered at (Xi,...,X,)}

is connected.

We have the following natural homomorphisms

R[X:,..., X0 — % s RIX1,..., Xulx,x,

&
R[Xy,. .., Xl (x1,,x0)
and the corresponding maps of real spectra
Sper R[X1,..., Xu]xy...x, ——— Sper R[X1,...,X,]
|
Sper R[X1,... ,Xn](Xh“_,Xn)
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Define
Dy = {6 € Sper R[X1,...,X,] | Xi(6) >0, i €T,

0 is centered at (X1,...,X,)}

and

Do = {(5 € Sper R[Xl, . 7Xn}X1---Xn

X,(8)> 0, i €T, 6*(5)
is centered at (Xy,...,X,)}.

Now the maps ¢* and ¥* induce homeomorphisms

Do : Dioe = Do and (3.39)
¥*|pr : DI Dy. (3.40)

I

Thus it suffices to prove that D, is connected. But

Dloc: ﬂ DN
NeN
where
1
Dy = {(5 S Sper R[Xl,. . ';Xn]Xl-an N = Xl(é) >0,1¢€ T} .

By Proposition 7.5.1. of [7], each Dy is a non-empty closed connected
subset of
Sper R[X1,...,Xn]x, X, , hence Dj,. is connected by ([21], lemma 7.1). O

The lemma proves that any “quadrant” is connected, U is a quadrant,
hence it is connected. This completes the proof of the Connectedness Con-
jecture for any excellent 2-dimensional ring A.

Remark 3.87. — The above proof is a special case of the following general
principle. Let A be an excellent regular local ring with reqular parameters
x = (x1,...,2T,) whose residue field k is equipped with a total ordering. Let
R be the real closure of k. We have natural morphisms

Sper A AN Sper R[[X1,...,X,]]

Sper R[Xla s 7Xn](X1,...,Xn)
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Let D C Sper A be a constructible set such that all the elements of A
appearing in the definition of D belong to AN R[X1,..., Xn](x,,.. x,) Let

D= ¢~1(D), let U be the subset of all points of Sper R[ X1, ... s Xnl(x1,,x0)
centered at the origin. Let Dy, be the subset of U defined by the same
formulae as D. By ([3], proposition 8.6), to show that D is connected, it is
enough to prove that Dy, is connected.

In many cases, this principle applies also to nested intersection D = ﬂ Dy

NeN
of constructible sets defined by elements of AN R[X1,..., Xn](x,,...x.)-

This allows to transpose all the results of ([21]) from the case of polyno-
mial Tings to that of arbitrary excellent reqular local rings.

3.5. Proof of the Definable Connectedness Conjecture for regular
2-dimensional local rings

Next we prove the Definable Connectedness Conjecture, hence the Pierce-
Birkhoff Conjecture, without the excellence hypothesis on A.

THEOREM 3.38 Let (A, m, k) be a regular 2-dimensional local ring, (z,y)
a regular system of parameters of A. The sets

U = {0 SperA|z(d)>0,ec{d}} (3.41)
V = {6 Sper A|xz(8)>0,y(6) >0,ec{6}} (3.42)

are definably connected.

y y

U & \
Figure 1. — The sets U and V.

Proof.— We argue by contradiction. Let £ be either U or V. Write
Q=F]]G, F=UF;, G=G; where {F;}, {G;} are finite collections
of basic open sets. Each F; and G; is defined by finitely many inequalities
of the form g > 0, g € A. Let gs3,...,9- € A be the list of elements of
A, appearing in the definition of all of F; and G; and let g1 = z, g2 = .
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A proof of the Theorem will be given after a few auxiliary definitions and
results.

Let Sper A < X; < --- < X, be a sequence of point blowings up. Let
S
Xt = |J Sper Aj; be the open covering of Xy, given by the definition of real
j=1
geometric surface.

DEFINITION 3.39. — We say that a collection {hi,...,h.} of elements
of A are simultaneously locally monomial in X, if for all j € {1,...,s} and
any mazimal ideal m' C Ajy, there exists a regular system of parameters
(@',y') of A" == (Ajt)w such that all of hy, ..., h, are monomials in (z',y")
multiplied by units of (Aj¢)m -

Let g1,...,9- € A be as above. By standard results on resolution of
singularities, there exists a sequence Sper A < X; « --- + X; of point
blowings up such that g1, ..., g, are simultaneously locally monomial in Xj;.
Denote by p; : Xy — Sper A the composition of all the morphisms in that
sequence (with the notations following (3.32)).

Let Q) = pH(Q), FO = p7H(F), G0 = p71(G), UD = p 1 (U).

Take a point & € p; *(e), let A w’ 2’y Ajy be as in the definition of
simultaneously locally monomial.

DEFINITION 3.40. — We say that § is a special point of p; * (¢) if ht(ps) =
2 and
{2y =0} =p; (U {g -9, =0}

locally near 9.

Given a special point § € p; '(¢) and (u/,v’) a regular system of para-
meters at J, let

C,u',v")={ye X; | v(y) >0, v'(y) >0, 6 € {7}}.

LEMMA 3.41. — Take a point € € p; '(€), not lying on the strict trans-
form of {x = 0}. Take j € {1,...,s;} such that p; *(€) is contained in the
privileged set of Sper Aj: near €. Let xj:,y;+ € Ajr be the elements given
in Definition 3.16. Assume that the privileged set is given by {x;; = 0} and
is homeomorphic to Sper k'[z]g., where 8, is a non-zero polynomial, with
k' finite over k and that ht(pe)=2. Let (z',y") be as in the definition of
simultaneously locally monomial where we take m’ = pe (we may assume
' =wxj;). We view k' as an ordered field via the inclusion k' C Ajy(€). Let

E={6€Sper Ajs|z;:(6) =0 and k' C A;1(8) is an inclusion of ordered fields}.
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Take special points 81,02 € E such that the intervals (01,€) and (€, 02)
are connected and contain no special points.

For i € {1,2}, let (a',v}) be a regular system of parameters at §; such
that {v; > 0} N (01,02) # 0.

Then the set
D(81,05) = C(8y, 2, v))UC (82, 2", vh)U{6 € UD |2/ (8) > 0, {6YN(81,02) # 0}
is contained either in F) or in GO,

Proof. — First, assume ¢ is not special. Then there are no special points
in ((51,(52). Let Fy = F®N [(51,(52] and Gy = G N [(51,(52]. Then Fy, GT
are relatively closed in [d1, d2] and [01, d2] is connected (Lemma 3.22) , so
FinNGt # 0.

Take a point € F; N G4. Replacing n by its specialization, we may
assume that ht(p,) = 2. For each ¢ € {1,...,r}, locally near n, write g; =
x'%gl if ng{61,02} and g; = 2'%y'gl if n = &y, £ € {1,2} with v/ = v}, where,
in both cases, g} is invertible locally near 7.

Take an open set W, containing 7, such that for all § € W and all
ie{l,...,r}, we have

sgn(g;(9)) = sgn(gi(n))- (3.43)

Since n € F) N G®), there exist 6 € FO NW, v € GO NW and an
i€ {l,...,r} such that g; changes sign between ¢ and ~.

Since z’ (resp. 2, y’') does not change sign between ~ and ¢ this contra-
dicts (3.43).

Therefore £ must be special. Let § € D(d1,02) be the unique point such
that
2'(6) > 0,y'(6) = 0.

We have {6} = D(d1,02) N {y’ = 0}. Then

D(81,82) = {6} [[ D(61, &) T D (&, 62).

Let 6_ € D(d1,€) be the unique point such that 2'(6_) > 0,y'(6-) < 0
and |y’ (6_)|N < |2/(6-)|,YN € N. Then § € {6_}, in particular,

5 € D(6y,6). (3.44)
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Similarly

5 € D(E,5,). (3.45)

By the previous case, each of D(61,£), D(&,d2) is contained either in
F® or GO,

Without loss of generality, assume that D(8;,£) € F®). By (3.44) and
the relative closedness of F()| we have § € F(Y). By (3.45) and the relative
closedness of G), we have D(&,8,) € FW | so D(1,0,) € F® as desired.

O

COROLLARY 3.42. — Let [01,62] be a mazximal interval. Then D(61,d2)
is entirely contained either in F® or in G,

Proof.— This follows from the preceding lemma by induction on the
number of special points inside [d7, da].

In order to address the global connectedness, we need a notion of signed
dual graph associated to a sequence of point blowings up of a point € €
Sper A and a subset W of Sper A.

For each maximal interval I (see Definition 3.27), take Sper A;; C X,
such that I\ Sper Aj, is either empty or consists of one distinguished point
(such an Aj; exists by Proposition 3.29). When necessary, we will denote
this j by j(I). Let zjs,y;: € Aji be the elements given in the Definition
3.16. By Proposition 3.29, we have I N Sper Aj; C {z;; = 0}.

Let W® = p Y(W). Let I a maximal interval, denote by I° its interior,
and s € {4, —}, let

W(I,s) = {6 € Sper Aj; | sgn(x;:(8)) = s, {8} N 1° # B}. (3.46)

DEFINITION 3.43. — Consider a pair (I,s) as above. We say that (I, s)
is admissible if

WO N Sper Ajy D> W(I,s) # 0. (3.47)

Consider two admissible pairs (I, s), (I, 5). We say that these two pairs
are equivalent if the following conditions hold :

(a) I N Sper Aj;; N Sper Az = I N Sper Ajy N Sper Aj,
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(b) the sets
{6 € Sper A;; N Sper Ay | sgn(z;:(0)) = s}
and
{6 € Sper A;; N Sper Ay | sgn(z5(d)) = 5}
coincide in a neighbourhood of I N Sper A;; N Sper Aj.

Given two equivalent admissible pairs (I, s) and (f ,§), the set of end-
points of I coincides with the set of endpoints of I (viewed as points of the
marked real geometric surface X;). In this way, given an equivalence class of
admissible pairs {(I, s)}, it makes sense to talk about endpoints of {(, s)}.

DEFINITION 3.44 1. A vertex of the signed dual graph I'y associated to
X; and W is an equivalence class of an admissible pair (I, s), which we will
still denote, by abuse of notation, by (1,s).

2. By definition, two distinct vertices (I, s) and (I,3) of Iy are connected
by an edge of Ty if the following conditions hold :

(a) I and I share a common endpoint & and suppose that I:CZ{xﬂ =0};
(b) we have

WO N {5 e X, | sgn(z;e(9) = 5, sgn(wz(8)) = 5, {6} > €} # 0.

Xz
t

J =

=

=

=

=

g it
Figure 2. — This figure represents an edge of I'y connecting two vertices (1, s)

and (I,5). Here I = [0,00], I = [0,00], s = § = +.

Example.— If W = U or W = V then I'; consists of one vertex and
no edges (see Figure 3 for a picture of U(); the case of V! is similar but
easier).
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y y
= X
| =
= =
= =
= =
= =
=] y . X
~ =
- =
~ =
- =
-
X y
Sper A [;] Sper A[=]

Figure 3. — This figure shows the set U(1) in the affine charts.

PropoSITION 3.45. — If W =U or W =V, the graph T'; is a bamboo,
that is, a connected, simply connected graph every one of whose vertices
belongs to at most two edges.

Proof. — By induction on 7. For ¢ = 1, the graph consisting of one vertex
is connected and satisfies the conclusion of the Proposition. The induction
step follows from the next Lemma, which describes the transformation law
from I'; to I';41 in the case when W =U or W = V.

Consider the point blowing up m; : X;4+1 — X;. Let & be the center of
the blowing up; recall that, by definition of blowing up in the category of
real marked geometric surfaces, £ belongs to the distinguished set of X;. Let
Sper A;; be an affine chart of X; containing £. Let p¢ be the support of £ in
Aj;. Let kj; be the field of Definition 3.16 (2). Let E1, ..., E, be the compo-
nents of the set {z;; =0} ﬂpi_l(e). Picking a component E,, g € {1,...,p}
amounts to fixing a total order on k;;, which induces the order on k given by
e. For g e {1,...,p}, let {55’1), . ,féq)} be the set of points of E, supported
at pe. For each ¢ € {1,...,p}, the total order on k;; corresponding to E; in-

duces a total order on the set {f%q), . ,Qq)}. Renumbering {§§q)7 e ,fEQ)},
we may assume f;q) < §§q) << féq)-

It follows from the definition of distinguished that one of the points ft(Q)

is j-distinguished if and only if all of them are.
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Fix a pair (¢,t), ¢ € {1,...,p}, t € {1,...,£}. Two cases are possible :

e Case 1 : There exist a = (I,s), b = (I~7 3) two vertices of T'; connected
by an edge (a,b) such that ft(q) is the point common to I and I (note that
the pair a,b is not, in general uniquely determined by 5,5’1)). In particular,
the points ﬁt(Q) are j-distinguished. In this case, we have p = 1, so we may
denote our points by &i,...,&. Let x;;,2;; be a privileged regular system
of parameters at the points &;.

e Case 2 : We are not in Case 1.

— Case 2.1. : None of the points gt(‘” is j-distinguished. Let (zj;,y’) be

a regular system of parameters of the local ring A,,. The set W[l(fgq)) is

covered by two affine charts : Sper A;;[22] and Sper Ajlv[—/}. Let 27, =

y Zji
y’ Zji

y

— Case 2.2 : The point £ is j-distinguished and lies on the strict transform
of {x =0} or {y = 0}. In this case, p=/¢=1.

Next, we study the neighbourhood of W[l(fgq)) foreachq € {1,...,p}, t €
{1,...,¢} and analyze the changes from I'; to I';;1 induced by the blowing-

up 7; locally on the part of I'; which represents a neighbourhood of §t(q).

Since 7; induces an isomorphism outside the points §t(a), the rest of the
graph I'; remains unchanged under the blowing-up ;.

In the statement of the following lemma, we refer to the cases 1 and 2
defined above.

LEMMA 3.46. —

e Case 1 : Fixt € {1,...,4}. For each pair of vertices a, b as above,
remove the edge (a,b) and add a new vertex ¢ and two new edges (a,c) and
(b,c). The graph T';41 is obtained from T'; by successively performing the
above operation for each of &1,...,&.

o Case 2 : Consider a vertex a = (I,s) such that 5,5(1) € I for some
te{l,...,¢} and g € {1,...,p}. Write I = [01,02] (again, the vertex a is
not, in general, uniquely determined by 515‘1)).

— Case 2.1: Take A €{0,....£—1} andw € {1,...,£ — A} such that

61,8 N{ED | te (1,6, ge{l,....p}} = {£9,,69,,...,69 3
(3.48)
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for some g € {1,...,p}. Replace a by a bamboo with 2w + 1 vertices. More
precisely, we distinguish three cases :

(a) If a belongs to two edges (a,b), (a,c) of Ty, remove a and the
two edges (a,b), (a,c). Introduce the bamboo

be——@0—— @0 —— @—— @ - - - O——® ——ecC

2w+ 1

(b) If a belongs to only one edge (a,b), remove a and the edge (a,b)
and introduce the bamboo

be——@—— @— — @—— @ -« - o——e

2w+ 1

(c) If a belongs to no edges (in other words, if i = 1) then

I'y = 2w+1
is a chain of 2w + 1 vertices and 2w edges.

The graph T'; 11 is obtained from I'; by performing successively the above
operation for each vertexr a as above.

- Case 2.2:

(a)i =1 and W = U, then Ty = e——e——e is a chain of three
vertices and two edges

(b)i>1orW =V, then each vertex a = (I,s) such that £ € I is
an endpoint of I';. For each such vertex a, we add a new vertex b and a new
edge (a,b).

Proof.— Case 1 : Let 61, 02 be points of Sper Aj; such that I = [01,&],
I =[&,85). Let 8 = 7w, (61), 64 = m; *(d2). Let x5, 25, € Aj; be as in the
Definition 3.43 applied to (I, s) and (I, §), respectively. The pair (xj;, z;,)

forms a regular system of parameters at &;. Let 2; = ;c;z and %, = ?ﬂ
Let
£a € {a:;l =0}n 7N &) C Sper Aji[x;]
and

& € {;U}Z =0}n 7 (&) C Sper Aji[2 ];
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note that these conditions characterize &, and &, uniquely. Let J = [£,, &),
viewed as a maximal interval of Sper Aj;[z),]. Let 0 = s - 5.

Let a;q1,bi11,ci+1 be the vertices of I'; 11 defined by a;+1 = ([€q, 1], 0),
bit1 = ([, 05],0), cit1 = (J,5). We have to verify that those three pairs
are admissible; first, we will show the admissibility of ([£,, d}], o).

Since (I, s) is admissible, we know that
0+ W(I,s) c W nSper Aj;
and we need to show that
0 # W([&a,81],0) € WU N Sper Aji[a,]. (3.49)

To prove (3.49), note that m; induces an isomorphism outside the set {& | 1 <
t' < £}; in particular, it induces an isomorphism of a neighbourhood of the
open interval (£,,07) onto a neighbourhood of (&, d1). Moreover, the fact
that a and b are connected by an edge of I'; implies that sgn(z;:(d)) = §
for 6 € W(I,s). Hence &' € m; *(W(I,s)) if and only if {6’} N (&,,07) # 0
and sgn(z;(0")) = s-35. In other words, W ([£4,01],0) = 7, H(W(I,s)). This
proves (3.49), so ([€q, 1], ) is admissible. By symmetry, the pair ([£, 03], 0)
is also admissible.

To prove the admissibility of (J, ), we note that x;, = 0 is the local
equation of the exceptional divisor in Sper A;;[z’;] and hence
mi(W(J,3)) = {5 € Sper Aj; | {0} 3 &, sgn(a7:(9)) =3, sgn(z;i(9)) = s}.

Now the fact that a and b are connected by an edge of T'; (see Definition
3.44 (b)) implies that

0 # W(J,5) c WD N Sper Aji[af,],
so (J, §) is admissible.

To check that a;41 and ¢;11 are connected by an edge of I'; 11, consider
the set

{8" € Sper Aji[2,) [ {0} &, sgn(;4(8") = 3, sgn(a};(8") = o}

We have !

(1) By § tangent to {zj; = 0}, we mean § such that YN € N, Nl|z;;(8)| < |z7,:(5)|

- 336 —



Approximate roots of a valuation and the Pierce-Birkhoff conjecture

mi({6" € Sper Aj[a);] | {0} 2 &, sgn(w;:(8")) = 5, sgn(@);(6')) = 0})
= {0 € Sper 4;; | {0} 3 &, sgn(x;:(9)) =3, sgn(z;;()) = s,
o 0 tangent to {z;; = 0}}
C {6 € Sper Aj; | {6} 2 &, sgn(x;:(0)) = 3, sgn(z;;(8)) =s} C WO,
where the last inclusion comes from the fact that a and b are connected by
an edge in T';.

Hence

0 # {6" €Sper Ajil][{0} 3 €ay sgn(w;,:(8")) = 3, sgn(a,(8")) = o}

. 3.50
C WU N Sper Aj;[2,], (3:50)

which proves that a;;; is connected to c;yi. By symmetry, b;4; is also
connected to ¢;41.

Figure 4. — This figure shows, in the Case 2.1 (a), with w = 3,

the transformation of the dual graph under the blowing up ;.

Case 2.1 (a) Recall that (z;,y’) is the chosen regular system of param-
eters at p¢.

Let &, = m;'(0,), 7 € {1,2}. Let ¢ = m; (&) n{a}; = 0}, t €
{A+1,...,A + w}. The new distinguished points in the open interval
(61,05) are (, t € { A+ 1,...,A + w}. The components of 7; *(p¢) are

ngl(ggﬂ)l), . ,Wfl(fg\ﬁw). For t € {A+1,...,\A + w}, let us denote the

interval [—o0, +00] C ﬁfl(fiq)) N Sper Aji[wy—/] by [—o0, 00]+.

Ji

Now, there are 2w + 1 maximal intervals in 7; '((d1,82)). They are :

[5/17C>\+1]7 [C)me(;é]v [Ct,CtJrl]ﬂ te {>‘ + ]-7"'a>‘ +w — ]-} and [—O0,00]t,
te{A+1,..., A +w}

Without loss of generality, we may assume that y'(d1) > 0. Each of this
maximal intervals gives rise to an admissible pair as follows.
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The intervals [(;,Gi41] C {2}, = 0} give rise to admissible pairs

(¢t Gesa], (—1)7 - 5).
We have admissible pairs ([6], (x+1], $) and ([(y4w, 05], (—1)¢-s). Finally,

the intervals [—o00, 00]¢ give rise to admissible pairs ([—o0, 0], ).

To see that the pair ([, (41, (—1)!-s) is admissible, we use the fact that

7; is an isomorphism from a neighbourhood of the open interval (¢, (i41)

to a neighbourhood of the open interval ( (Q),gt(ffl) Since y'(d1) > 0 and

since y' changes sign once at each point § @ the sign of ¥/ on (&q>, ft(i)ﬁ

(—1)!. Hence
m({8' € Xira | T0F 0 (o, Gern) # 0, sgn(aly(8) = (~1)¢ - s})
= {6 € X; | POYN(e7,67) # 0, sgn(zji(6)) = s}.

This proves the admissibility of ([¢;, ¢s11], (—1)!-5). The proof that ([§7,xx1], 8)
and ([Cagw, 4], (—1)¥ - s) are admissible is similar and we omit it.

(3.51)

To prove the admissibility of ([—o0, 0], s), note that
C0 X | 1012 €7, sgn(r;i(0)) = s}) 5 W([—o0, 00, 5),
where the notation W ([—o0, 00]¢, s) is applied to the affine chart Sper Aﬂ[%]
and the element x;; € Sper A]l[%]

We claim that the graph I'; 11 contains a bamboo consisting of the above
2w + 1 vertices, arranged in the following order :

([01, O]y 8), ([—00,00)a415 8), ([Cnt1, Ora]s =), ([—00, 00] a2, 8), (3.52)
([C)\+2,<)\+3],8),...,([—OO,OO})\_H,J, ) ([C)\-HJ’(SQ] ( 1) S)

We discuss a sample of edge of this bamboo, for example, ([¢;, (1], (—1)%s),
([~00, 00]t+1, 8). The existence of the other edges can be proved in a similar
way.

The two maximal intervals ([, (s41] and [—00, 00]+1 have a common
endpoint, namely, (¢4+1. We must show that

WD € Ko | sgn(@y(07)) = (<1)'s, sgn(a() = s, T 5 G} # 0.
The image of this set under 7; is

WO {6 e X, | sgn(z;i(5) =s, {6} 3 €2, 6 tangent to {z;; = 0}}
and the result follows.

This proves 2.1(a). The cases 2.1(b) and (c) are similar but easier.
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Case 2.2: (a) Let a = (I,s). Then zj; = y. Put v/ = 3 ()i, y') is

a regular system of parameters at . Let Ay; = Afz;;,y’]. The point & €

Sper Aj; is the unique point such that supp(§)= (z;,y’) and which induces
ZTji

the given order on k. Let Ajo = An[z;i,y’] where x;Z =

Let I' C {; = 0} be the l-maximal interval given by —oo <y’ < +o0
and I’ € {y/ = 0} the 1-maximal interval given by 0 < 'l < +o0.

Now the vertices of T'y are (I’,4), (I, +), (I’,—) with the edges clearly
defined.

RERL

h bhhd
o

Figure 5. — This figure shows the set U(?) in the cases 2.2.a and 2.1.c respectively.

(b) Let a = (I,s) be a vertex such that & € I; the vertex a is an
endpoint of I';. Suppose that £ € Sper Aj;. Let (z;,y") be a regular system

of parameters at {. Let A; ;11 = Aji[2);,y'] where 2, = J;Jf Without loss

of generality, assume that z;; > 0,9’ > 0 on W,

Let I' C {; = 0} be the strict transform of I in Sper A; ;1. Then I’
is an (i + 1)-maximal interval. Let I’ C {y’ = 0} be the (i + 1)-maximal
interval given by 0 < z; < +00. Now the new vertex b added to I';yy is

(I',+). Tt is connected by an edge to a which is represented in Sper A;
by (I’,+). This completes the proof of Lemma 3.46 and with it Proposition
3.45. O

Let us finish the proof of Theorem 3.38. To each vertex (I = [01, d2], 5)
of Iy we associate the set D(d1,02) C U® which by Corollary 3.42 is
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entirely contained in F® or G®. This defines a partition
Ip = {(I,s) | D(61,62) CFW}, T = {(I,s) | D(61,02) C G®} of the
set of vertices of T';. Assume that I'r # @ and I'¢ # ). Since I'y is con-
nected, there exist @ = ([014,024],8a) € T'r, b = ([015, 28], $5) € ' such
that (a,b) is an edge of T'y. Then D (014, 024) C F® | D(61,02,) € G® and
D(614,024) N D(61p,25) # 0. This is a contradiction. This concludes the
proof of Theorem 3.38. O
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