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Additive Covariance kernels for high-dimensional
Gaussian Process modeling

Nicolas Durrande(1), David Ginsbourger(2),
Olivier Roustant(3)

ABSTRACT. — Gaussian Process models are often used for predicting and
approximating expensive experiments. However, the number of observa-
tions required for building such models may become unrealistic when the
input dimension increases. In oder to avoid the curse of dimensionality,
a popular approach in multivariate smoothing is to make simplifying as-
sumptions like additivity. The ambition of the present work is to give an
insight into a family of covariance kernels that allows combining the fea-
tures of Gaussian Process modeling with the advantages of generalized
additive models, and to describe some properties of the resulting models.

RÉSUMÉ. — La modélisation par processus gaussiens – aussi appelée
krigeage – est souvent utilisée pour obtenir une approximation mathéma-
thique d’une fonction dont l’évaluation est coûteuse. Cependant, le nom-
bre d’évaluations nécessaires pour construire un modèle peut devenir
démesuré lorsque la dimension du domaine de définition augmente. Afin
de contourner le fléau de la dimension, une alternative bien connue est de
se tourner vers des modèles simplifiés comme les modèles additifs. Nous
présentons ici une famille de noyaux de covariance permettant de combiner
les caractéristiques des modèles de krigeage et les avantages des modèles
additifs puis nous décrivons certaines propriétés des modèles obtenus.
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1. Introduction

High-fidelity numerical simulation studies typically involve calculation
intensive computer codes, which underlying costs often imply a drastically
limited number of calls to the numerical simulator. Thus, directly coupling a
simulator with uncertainty propagation, sensitivity analysis, or global opti-
mization methods is often unaffordable. A well-known approach to circum-
vent time limitations is to replace the numerical simulator by a mathemat-
ical approximation called metamodel (but also emulator, response surface
or surrogate model) based on the responses of the simulator for a limited
number of inputs called the Design of Experiments (DoE). There are serval
families of metamodels, among which the most popular ones include re-
gression, splines, neural networks, and Kriging. In this article, we focus on
Kriging, also more recently referred to as Gaussian Process modeling [16].
Originally presented in spatial statistics [5] as an optimal linear unbiased
predictor of square integrable random processes, Kriging has become very
popular in machine learning, where its interpretation is usually restricted to
the convenient framework of Gaussian Processes (GP). The latter point of
view allows the explicit derivation of conditional probability distributions
for the response values at any point or set of points in the input space.

Since Kriging is usually based on local basis functions, it requires an
exponentially increasing number of design points to cover the input space
D ⊂ Rd when the dimension d increases [19, 6]. A popular approach in
multivariate smoothing to get around this issue is to make simplifying as-
sumptions for this case, the emulator m can be decomposed as a sum of
univariate functions:

m(x) = µ +

d∑

i=1

mi(xi), (1.1)

where µ ∈ R and the mi’s may be non-linear. Since their introduction by
Stones in 1985 [21], many methods have been proposed for the estimation of
additive models. We can cite the method of marginal integration [15], and
a very popular procedure described by Hastie and Tibshirani in [3, 12]: the
GAM backfitting algorithm.

However, whatever the chosen estimation technique, the obtained addi-
tive models do not completely share the convenient probabilistic framework
of GP modeling, including in particular a simply interpretable prediction
variance at any input point, or joint conditional distributions at any set of
candidate points. Combining the high-dimensional advantages of additive
models with the versatility of GPs is the main goal of the present work. For
the study of functions that contain an additive part plus a limited number
of interactions, developments can be found in [2, 10, 14].
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The first part of this article introduces additive Gaussian Processes,
their covariance kernels, and the properties of associated Additive Kriging
Models (AKM). The second part focuses on the unsuitability of usual sep-
arable kernels (e.g. power exponential and Matérn) for high-dimensional
modeling and discusses the issue of choosing between a separable or addi-
tive kernel. Finally, AKM is compared with standard Kriging models on
a well known test function: the Sobol’s g-function [18]. It is shown within
the latter example that AKM outperforms standard Kriging and produces
similar performances as GAM. Due to its approximation performances and
its built-in probabilistic framework, the proposed AKM appears as a serious
and promising challenger for high-dimensional modeling.

2. Towards additive Kriging

2.1. Additive random processes

Let us here introduce the mathematical construction of additive GPs. A
function f : D ⊂ Rd → R is said additive whenever it can be written as a
sum of the form f(x) =

∑d
i=1 fi(xi), where xi is the i-th component of the

d-dimensional input vector x and the fi’s are arbitrary univariate functions.
Let us first consider two independent real-valued Gaussian processes Z1 and
Z2 defined over the same probability space (Ω,F , P ) and indexed by R, so
that their trajectories Zi(·;ω) : t ∈ R → Zi(t;ω) are univariate real-valued
functions. Let Ki : R × R → R be their respective covariance kernels and
µ1, µ2 ∈ R their means. Then, the process Z defined over (Ω,F , P ) and
indexed by R2, characterized by

∀ω ∈ Ω ∀x ∈ R2 Z(x;ω) = Z1(x1;ω) + Z2(x2;ω) (2.1)

clearly has additive paths. Z is a Gaussian Process with mean µ = µ1 +
µ2 and kernel K(x, y) = K1(x1, y1) + K2(x2, y2). In this document, we
call additive any kernel of the form K : (x, y) ∈ Rd × Rd → K(x, y) =∑d
i=1 Ki(xi, yi) where the Ki’s are symmetric positive-semidefinite (s.p.)

kernels over R × R. Although not commonly encountered in practice, it is
well known that such a combination of s.p. kernels is also a s.p. kernel [16, 8].
Moreover, one can show that the paths of any random process with additive
kernel are additive in a certain sense:

Proposition 1. — Any (square integrable) random process Zx possess-
ing an additive kernel is additive up to a modification. In essence, it means
that there exists a process Ax which paths are additive, and such that ∀x ∈
D, P(Zx = Ax) = 1.
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The proof of this proposition is given in the appendix for d = 2. For
d ∈ N the proof follows the same pattern but the notations are more cum-
bersome. Note that the class of additive processes is actually not limited to
processes with additive kernels. For example, let us consider Z1 and Z2 two
correlated Gaussian processes on (Ω,F , P ) such that the couple (Z1, Z2) is
Gaussian. Then Z1(x1) + Z2(x2) is also a Gaussian process with additive
paths but its kernel is not additive. However, the term additive process will
always refer to GPs with additive kernels in this article.

2.2. Invertibility of covariance matrices

As mentioned in [4] the covariance matrix K of observations of an addi-
tive process Z at a design of experiments X = {x(1), . . . , x(n)} may not be
invertible even if there is no redundant point in X . Indeed, the additivity of
Z may introduce linear relationships (that hold almost surely) between the
observed values of Z and lead to the singularity of K. Figure 1 shows two ex-
amples of designs leading to a linear relationship between the observations.
For the left panel, the additivity of Z implies that Z(x(4)) = Z(x(2)) +
Z(x(3)) − Z(x(1)) a.s., so that there is a linear relationship between the
columns of K : K(x(i), x(2))+K(x(i), x(3))−K(x(i), x(1))−K(x(i), x(4)) = 0.
Therefore, the matrix is not invertible.

e1

e2

x(1) x(2)

x(3) x(4)

e1

e2

x(1) x(2)

x(3) x(4)

x(6)x(5)

Figure 1. — 2-dimensional examples of DoEs leading to non-invertible covariance
matrices when using additive kernels. In both cases, one point can be removed

from the DoE without any loss of information.

An approach in accordance with the aim of parsimoniously evaluating
the simulator would be to remove some points from the DoE in order to
avoid linear combinations. Algebraic methods may be used for determining
the subset of points leading to a linear relationship. Indeed, the linear com-
binations are given by the eigenvectors associated with the null eigenvalues,
so the subset of points leading to the non-invertibility of the covariance ma-
trix can be obtained easily. However, the study of a procedure allowing to
put aside unnecessary training points is out of the scope of this paper.
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An alternative to ensure the invertibility of the covariance matrix is to
use a DoE based on Latin Hypercube (LH) sampling. For such designs,

the marginals of the DoE {x(1)
i , . . . , x

(n)
i } are composed of distinct points.

The use of usual stationary kernels implies that the set of random variables

Zi(x
(1)
i ), . . . , Zi(x

(n)
i ) has a non-degenerate distribution [1, Ex. 3.4] (i.e.

the covariance matrix Ki is positive definite). As the sum of positive definite
matrices is a still a positive definite matrix, K =

∑
Ki is then invertible.

2.3. Additive Kriging

Let f : D → R be the function of interest (representing for instance the
input-output map of a deterministic numerical simulator), where D ⊂ Rd.
The responses of f at the DoE X are noted F = (f(x(1)) ... f(x(n)))T .
Simple Kriging relies on the hypothesis that f is one path of a centered
square integrable random process Z with kernel K. The formulae for the
best predictor and the mean square error (also called Kriging mean and
Kriging variance) are given by:

m(x) = E [Z(x)|Z(X ) = F ] = k(x)TK−1F (2.2)

v(x) = var [Z(x)|Z(X ) = F ] = K(x, x)− k(x)TK−1k(x)

where k(·) =
(
K(·, x(1)) . . . K(·, x(n))

)T
and K is the covariance matrix

with entries Ki,j = K(x(i), x(j)). In practice, the structure of K is sup-
posed to be known (e.g. squared-exponential) but its parameters may be
unknown. A common way to estimate them is to maximize the likelihood
of the parameters given Z(X ) = F [9, 16].

In some cases, the evaluation of f includes an observational noise. Taking
this into account in the expression of m and v corresponds to taking the
conditional expectation and variance of Z knowing Z(X )+ε = F . Assuming
that ε is a vector of uncorrelated Gaussian variables (white noise) with
variance τ2, we obtain:

m(x) = E [Z(x)|Z(X ) + ε = F ] = k(x)T (K + τ2Id)−1F (2.3)

v(x) = var [Z(x)|Z(X ) + ε = F ] = K(x, x)− k(x)T (K + τ2Id)−1k(x).

The difference with Eq. 2.2 is that the covariance matrix of ε(X ) is added
to K in the expression of m and v. As we will use later, this remark is still
valid when ε is a correlated Gaussian vector.

Equations 2.2 and 2.3 hold for any s.p. kernel, so they can be applied
with additive kernels. In this case, the additivity of the kernel implies the
additivity of the Kriging mean so m can be split into a sum of univariate
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submodels m1, . . . ,md. For example, in dimension 2, with a kernel K(x, y) =
K1(x1, y1) + K2(x2, y2), we have

m(x) = (k1(x1) + k2(x2))
T (K1 + K2)

−1F

= k1(x1)
T (K1 + K2)

−1F + k2(x2)
T (K1 + K2)

−1F (2.4)

= m1(x1) + m2(x2).

Another interesting property concerns the variance: v can be null at
points that do not belong to the DoE. Let us consider a two dimensional
example where the DoE is composed of the 3 points represented on the left
panel of Figure 1: X = {x(1), x(2), x(3)}. A direct calculation (see Appendix
B) shows that the prediction variance at the point x(4) is equal to 0. This
particularity follows from the fact that given the observations at X , the
value of the additive process at x(4) is known almost surely. In the next
section, we illustrate the potential of AKM on an a toy example.

2.4. Illustration and further considerations on a 2D example

We present here a first basic example of an additive Kriging model.
We consider D = [0, 1]2, and a set of 5 points in D where the value of
observations are arbitrarily chosen. Figure 2 shows the obtained Kriging
model. We can see on this figure the properties mentioned above: the Kriging
mean is an additive function and the prediction variance can be null for
points that do no belong to the DoE.

x1

0

1

x2

0

1

m 0

1

x1

0

1

x2

0

1

v

0.00

0.01

Figure 2. — Approximation by additive Kriging, based on five observations (black dots).
The left panel represents the best predictor and the right panel the prediction variance.

The kernel here is the additive squared-exponential kernel with parameters
σ = (1 1) and θ = (0.6 0.6).
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As seen in Eq. 2.4, the expression of the first univariate model is

m1(x1) = k1(x1)
T (K1 + K2)

−1F. (2.5)

Since the matrix K2 is added to K1, the contribution of direction 2 appears
as observation noise in m1. We thus get the following expression for the
prediction variance

v1(x1) = K1(x1, x1)− k1(x1)
T (K1 + K2)

−1k1(x1). (2.6)

0.0 0.2 0.4 0.6 0.8 1.0

x1

m
1

0.0 0.2 0.4 0.6 0.8 1.0

x1

m
1*

– 
1.

5
 1

.5
– 

0.
5

 0
.5

– 
1.

5
 1

.5
– 

0.
5

 0
.5

Figure 3. — Univariate models for the 2-dimensional example. The left panel plots m1

and the 95% confidence intervals c1(x1) = m1(x1)± 2
√
v1(x1).

The right panel shows the submodel of the centered univariate effect m̃1

and c̃1(x1) = m̃1(x1)± 2
√
ṽ1(x1).

The left panel of Figure 3 shows the submodel m1 and the associated
95% confidence intervals. However, it appears that the confidence intervals
are wide. This is because the submodels are defined up to a constant. If
we assume that

∫
Zi(si)dsi exist a.s. [7], we can get rid of the effect of

such a translation by emulating Zi(xi) −
∫
Zi(si)dsi conditionally on the

observations:

m̃i(xi) = E

[
Zi(xi)−

∫
Zi(si)dsi

∣∣∣∣Z(X ) = F

]
(2.7)

ṽi(xi) = var

[
Zi(xi)−

∫
Zi(si)dsi

∣∣∣∣Z(X ) = F

]

The expression of m̃i(xi) is straightforward whereas ṽi(xi) requires more
calculations, given in Appendix C.
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m̃i(xi) = mi(xi)−
∫

mi(si)dsi

ṽi(xi) = vi(xi)− 2

∫
Ki(xi, si)dsi + 2

∫
ki(xi)

TK−1ki(si)dsi (2.8)

+Ki(si, ti)dsidti − ki(ti)
TK−1ki(si)dsidti

The benefits of using m̃i and ṽi, and to define the submodels up to a constant
can be seen on the right panel of Figure 3. Furthermore, as the submodels
m̃i are univariate and centered, they may give a good approximation of the
main effects of the objective function, with relevant confidence intervals. In
the end, the probabilistic framework gives an insight on the error for the
whole metamodel, but also for each submodel.

3. Kriging, high-dimensional input space and linear budget

We will see in this section that additive Kriging models can outperform
usual Kriging models when the dimension of the input space becomes large.
The notion of high-dimensional input space can be interpreted differently
depending on the context. In our case, we will consider that an input space is
high-dimensional when its dimension is larger than 10 and we will consider
examples in dimension up to 50. This excludes simulators for which one of
the inputs is a picture or a map (e.g., groundwater flow simulators depending
on permeability and porosity maps), and for which it is not unusual to deal
with 50000-dimensional input spaces.

Most of the time, kernels used in computer experiment are power expo-
nential or Matérn kernels [16]. For those kernels and for all other stationary
kernels such that lim||x−y||→+∞K(x, y) = 0, an observation at a point x(i)

of the DoE has only a local influence on the emulator. This implies that the
number of points required for modeling accurately a function increases ex-
ponentially with the dimension d of the input space. However, large training
sets are rather inconsistent with the context of emulating costly-to-evaluate
functions and, in contrast, a common total budget is rather of the order of
magnitude of 10× d evaluations, as advocated in [13].

In the next example, we illustrate that usual separable kernels are not
appropriate for emulating high-dimensional functions based on such a linear
budget, while additive kernels can be used advantageously to extract the
additive trend.
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Let Z be a centered Gaussian Process over [0, 1]d with unit variance
(σ2 = 1) and an isotropic squared-exponential kernel

K(x, y) = σ2
d∏

i=1

exp

(
− (xi − yi)

2

θ2

)
. (3.1)

Let X be a LH design of size 10×d. Our aim here is to investigate the evolu-
tion of the approximation’s quality obtained when conditioning Z on the ob-
servations at X , when d increases. In order to quantify the proportion of vari-
ance explained by the emulator, we consider a test set Y = {y(1), . . . , y(nt)}
drawn from uniform distribution and we compute the following criterion

PK,X = 1−
∑nt
i=1 var

(
Z(y(i))|Z(X )

)
∑nt
i=1 var

(
Z(y(i))

) =

∑nt
i=1 k(y(i))TK−1k(y(i))∑nt

i=1 K(y(i), y(i))
. (3.2)

The values of PK,X are in [0, 1] and, as for a Q2 criterion (see Eq. 5.4), a
value PK,X = 1 implies that Z(y(i)) is known a.s. for all test points whereas
PK,X = 0 indicates that E (Z(·)|Z(X )) is no more predictive than E (Z(·)).
As it is based on a the IMSE, PK,X quantifies the reduction of variance due
to the knowledge of Z(X ) so it asses if a model is a priori predictive or not.
However, it is not meant to quantify the accuracy the approximation of f
by m and v.

As shown on Figure 4, the proportion of explained variance collapses
when the dimension increases, and this fall is all the more important as the
range parameter θ is small. For d > 15 and θ < 0.5 (i.e. θ is lower than half
of the length of the marginals of [0, 1]d), a budget of 10 × d observations
is not sufficient for Kriging models based on usual separable covariance.
However, further tests showed that for θ =

√
d such budget allows to build

very predictive GP emulator up to d = 100.

We will now consider a second example where the GP to be approxi-
mated has an explicit additive component and compare the results of addi-
tive and classical Kriging emulators. Let YA and YS be independant centered
GPs indexed by [0, 1]d with respectively an additive and a separable kernel:

KA(x, y) =
1

d

d∑

i=1

exp

(
− (xi − yi)

2

0.52

)
(3.3)

KS(x, y) =

d∏

i=1

exp

(
− (xi − yi)

2

0.52

)
.
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Figure 4. — Proportion of variance explained by the knowledge of Z(X )

versus dimension. The PK,X criteria is computed for nt = 10000 test points

uniformly distributed on [0, 1]d. The 3 curves correspond to different values

of the range parameter θ, as detailed on the figure.

We define Y as Y = YA+YS so that the first half of the variance of Y is
explained by its additive part ZA and the second one by its separable part
ZS . We now compare the predictivity of 2 emulators:

mA(x) = E(YA(x)|YA(X ) + YS(X ))

= kA(x)t(KA + KS)−1(YA(X ) + YS(X ))

mS(x) = E(YS(x)|YA(X ) + YS(X ))

= kS(x)t(KA + KS)−1(YA(X ) + YS(X )). (3.4)

As we have seen previously, mA corresponds to the best predictor of an ad-
ditive Kriging model with an observation noise given by KS . This emulator
cannot explain the non additive part of Y . Reciprocally, mS is based on the
separable kernel KS with an observation noise KA. This second model can
potentially cover both the additive and non additive part of Y for a large
number of observations.

The prediction variance associated with those emulators is known ana-
lytically, so PKA,X and PKS ,X can be compared as in the previous example.
We observe on Figure 5 that the explained variance falls quickly to 0 when
using a separable kernel whereas an emulator based on an additive kernel
can capture efficiently the additive part of the phenomena. In this example,
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it appears that for a budget of 10× d evaluations, additive Kriging models
clearly outperform Kriging based on standard kernels.
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Figure 5. — Comparison of the predictivity of the approximation

of Y = YA + YS by mA and mS .

4. The issue of choosing a kernel

Choosing between an additive and a tensor product kernel is an impor-
tant issue. In this section, we give some guidelines based on the predictivity
of the two types of models. Let f be a real-valued function over [0, 1]d,
assumed square integrable for the uniform measure µ. The ANOVA rep-
resentation of f is its decomposition as a sum of terms with increasing
interaction order

f(x) = f0 +

d∑

i=1

fi(xi) +

d∑

i<j

fi,j(xi,j) + . . . + f1,...,d(x1,...,d) (4.1)

where unicity is guaranteed by side conditions ∀I ⊂ {1, . . . , d}, ∀i ∈ I,∫
fI(xI)dxi = 0. The terms of Eq. 4.1 can be regrouped to obtain

f(x) = f0 + fadd(x) + fint(x) (4.2)

where fadd =
∑d
i=1 fi(xi) represents the additive part of f and fint stands

for all the interaction terms. Following the ANOVA framework [20], we
define the additivity ratio as

q =
var(fadd(X))

var(f(X))
(4.3)

where X is a random variable with distribution µ.
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Answering the question “Given my problem, would it be better to use a
tensor product or an additive kernel?” may have huge practical implications.
However, since the adequacy on one kernel or the other depends on f , there
is no universal answer to that question. Nevertheless, it is still possible
to compare the predictivity of the two models (as previously) in order to
choose the one with the best prediction ability. We thus reformulate the
previous question as “For given univariate kernels Ki, from which value of
the additivity ratio q is the additive model more predictive? (or inversely
less predictive?)”.

For these settings, we consider that the predictivity of the models based
on KS =

∏
Ki and KA =

∑
Ki are respectively given by PKS ,X and

q × PKA,X . Thus, the two models are equally predictive when PKS ,X =
q × PKA,X so the ratio q = PKS ,X /PKA,X corresponds to the percentage of
additivity such that the models have the same prediction ability.

Figure 6 shows PKS ,X /PKA,X as a function of d when Ki are squared
exponential kernels. For a given value of the range parameter θ, the points
above the curve correspond to values of d and q for which an additive model
is more likely to be appropriate whereas a tensor product kernel is more
suitable for the region below the curve. The comparison between the two
panels shows that increasing the number of points of the DoE benefits more
to the separable kernel than to the additive one.
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(a) n = 10× d
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(b) n = 50× d

Figure 6. — Additivity ratio q such that the predictivity of the additive model
q × PKA,X is equal to the one of an usual tensor product kernel (i.e. PKS ,X ). The

models are based on univariate squared exponential kernels with range parameter θ.
The actual percentage of predictivity, which is not represented, lies in the region

between the curves and the x axis. The comparison between the two panels gives an
insight on the influence of the DoE’s number of points.
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This type of graphics may be used to choose between an additive or
a tensor product kernel. However, it is important to recall that a good
predictivity criterion does not necessarily implies a good accuracy, and that
the estimation of the range parameter is likely to differ depending on the
kind of kernel (additive or of tensor product type). As a conclusion to this
section, it appears that additive models should be used in low dimension
only if the function to approximate has an important additive part. On the
other hand, in high dimension additive models can offer better predictions
than usual separable models even for functions with a small additivity ratio.

5. Application to the g-function of Sobol

In order to illustrate the methodology and to compare it to existing al-
gorithms, an analytical test case is considered. The function to approximate
is the g-function of Sobol defined over [0, 1]d by

g(x) =

d∏

k=1

|4xk − 2|+ ak
1 + ak

with ak > 0. (5.1)

This popular function from the literature [18] is obviously not additive.
However, depending on the coefficients ak, g can be very close to an additive
function. As a rule, the g-function is all the more additive as the ak are large.
One main advantage for our study is that the Sobol sensitivity indices can
be obtained analytically, so that we can quantify the ratio of additivity of
the test function. For i = 1, . . . , d the index Si associated with the variable
xi is

Si =

1
3(1+ai)2[∏d

k=1 1 + 1
3(1+ak)2

]
− 1

. (5.2)

Here, we impose that the value of the parameters ak is the same for all
directions (i.e. ∀k, ak = a1). As the additivity of the g-function is tunable,
we choose a1 such that the percentage of additivity of g is 75%:

d∑

i=1

Si = 0.75⇔ d
u

(1 + u)d − 1
= 0.75 with u =

1

3(1 + a1)2
. (5.3)

Eventually, the value of a1 can be obtained by finding the zeros of a poly-
nomial in u. Note that different values for d lead to different values of a1.

For d ∈ {5, 10, 20, 30} and a Latin hypercube design based on 10 × d
points, we compare an Usual Kriging Model (UKM) with both AKM, and
a Generalized Additive Model (GAM) obtained with the backfitting algo-
rithm [12]. As the latter is based on smoothing cubic splines, we choose for
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the Kriging models a Matérn 5/2 kernel with observation noise to ensure
that the different models have a similar regularity. All Kriging models in-
clude a constant term as trend, so are they Ordinary Kriging models. The
results for UKM and GAM are obtained with the DiceKriging [17] and the
GAM [11] R packages available on the CRAN website [22]. For AKM and
UKM the kernel parameters (σ2, θ) and the observational noise’s variance
τ2 are obtained using maximum likelihood estimation [16, 19]. To asses the
accuracy of the obtained metamodels, the Q2 coefficient is computed on a
test sample of nt = 1000 points uniformly distributed over [0, 1]d:

Q2(y, ŷ) = 1−
∑nt
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

(5.4)

where y is the vector of actual response values at the test points, ŷ is the
vector of predicted values and ȳ is the mean of y.
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Figure 7. — Boxplots of the Q2 coefficients for three emulators: Usual Kriging Model
(UKM), Additive Kriging Model (AKM) and GAM. For a given boxplot, the variability

is due to the choice of the DoE which is repeated 50 times.

– 494 –



Additive Covariance kernels for high-dimensional GP modeling

As the parameter estimation accuracy and the overall quality of the
emulators are likely to fluctuate with the DoE, we repeated 50 times the
Q2 computation for various DoEs. The results are presented in Figure 7.
Conversely to what we observed in section 3, the predictivity of the Kriging
model based on a separable kernel does not fall to zero when the dimension
increases. Indeed, as we impose the additive part of g to explain 75% of
its variance, the value of the coefficient a1 is increasing with d and the g-
function becomes smoother. As a result, the range parameter θ increases
with d (we have θ ≈ 0.5 for d = 5 and θ ≈ 2 for d = 30), explaining the
observed effect.

Since one can plot the submodels, the additivity of the best predictors
allows to illustrate this increasing smoothness of g. For example, Figure 8
shows that the univariate submodels m̃1 becomes flatter with increasing d.
On these graphics, the submodels are close to the analytical main effects
even if the observation points do not show any obvious trend.
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Figure 8. — Representation of the univariate submodels m̃1(x1) (solid lines) for three
additive Kriging models. As a comparison, the analytical main effects are given by the

dashed lines. The bullets denote the centered observation points.

6. Concluding remarks

The proposed methodology seems to be a good challenger for additive
modeling. On the first example, additive models appears to be well suited
for high-dimensional modeling with a DoE budget of 10×d whereas Kriging
models based on standard kernels fail to recover the function to approxi-
mate. One important result is that additive Kriging models succeed to ex-
tract the additive trend of the function to approximate even if this function
is not purely additive.

In section 4, we discussed briefly the choice between an additive or a
separable kernel. This issue is of great importance for the practical use of
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Kriging models. It appeared on the example that increasing the dimension
or the percentage of additivity favors additive models whereas increasing
the number of points in the DoE or the values of the range parameter is in
the advantage of models based on tensor product kernels.

The proposed Kriging models benefits from the properties of additive
models, while taking advantage from GP features. For the first point we
can cite the complexity reduction and the interpretability of additive mod-
els. For the second, the main asset is that GP models include a prediction
variance for the model but also for each submodel. This justifies the fact of
modeling an additive function on Rd instead of building d metamodels over
R since the prediction variance is not additive. In the end, the proposed
methodology is fully compatible with Kriging-based methods and their ver-
satile applications. Potential perspectives include the use of additive and
related Kriging models for optimization, e.g. relying on infill sampling cri-
teria like the Expected Improvement.

Note finally that only isotropic kernels were considered in this article. As
for separable kernels, the use of additive kernels could easily be extended to
anisotropic kernels (i.e. one range parameter θi per direction); futhermore,
additive kernels also allow to define one variance parameter σ2

i per direction.
This feature, which is not available for separable kernels, can enable additive
models to better approximate functions for which the variance depends on
the direction. Of course, the total number of parameters would be 2d + 1,
and the practicability of their estimation deserves to be studied in more
detail.
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[1] Azäıs (J.M.) and Wschebor (M.). — Level sets and extrema of random processes
and fields, Wiley Online Library (2009).

[2] Bach (F.). — Exploring large feature spaces with hierarchical multiple kernel learn-
ing, Arxiv preprint arXiv:0809.1493 (2008).

[3] Buja (A.), Hastie (T.) and Tibshirani (R.). — Linear smoothers and additive
models, The Annals of Statistics, p. 453-510 (1989).

[4] Chilès (J.P.) and Delfiner (P.). — Geostatistics: modeling spatial uncertainty,
volume 344, Wiley-Interscience (1999).

[5] Cressie (N.). — Statistics for spatial data, Terra Nova, 4(5), p. 613-617 (1992).

[6] Fang (K.). — Design and modeling for computer experiments, volume 6. CRC Press
(2006).

[7] Fortet (R.M.). — Les operateurs integraux dont le noyau est une covariance, Tra-
bajos de estad́ıstica y de investigación operativa, 36(3), p. 133-144 (1985).

[8] Gaetan (C.) and Guyon (X.). — Spatial statistics and modeling, Springer Verlag
(2009).

– 496 –



Additive Covariance kernels for high-dimensional GP modeling

[9] Ginsbourger (D.), Dupuy (D.), Badea (A.), Carraro (L.) and Roustant
(O.). — A note on the choice and the estimation of kriging models for the analysis
of deterministic computer experiments, Applied Stochastic Models in Business and
Industry, 25(2), p. 115-131 (2009).

[10] Gunn (S.R.) and Brown (M.). — Supanova: A sparse, transparent modelling ap-
proach, In Neural Networks for Signal Processing IX, 1999, Proceedings of the 1999
IEEE Signal Processing Society Workshop, p. 21-30. IEEE (1999).

[11] Hastie (T.). — gam: Generalized Additive Models, 2011, R package version 1.04.1.

[12] Hastie (T.J.) and Tibshirani (R.J.). — Generalized additive models, Chapman &
Hall/CRC (1990).

[13] Loeppky (J.L.), Sacks (J.) and Welch (W.J.). — Choosing the sample size of a
computer experiment: A practical guide, Technometrics, 51(4), p. 366-376 (2009).

[14] Muehlenstaedt (T.), Roustant (O.), Carraro (L.) and Kuhnt (S.). — Data-
driven Kriging models based on FANOVA-decomposition, to appear in Statistics
and Computing.

[15] Newey (W.K.). — Kernel estimation of partial means and a general variance esti-
mator, Econometric Theory, 10(02), p. 1-21 (1994).

[16] Rasmussen (C.E.) and Williams (C.K.I.). — Gaussian processes for machine learn-
ing (2005).

[17] Roustant (O.), Ginsbourger (D.) and Deville (Y.). — DiceKriging: Kriging
methods for computer experiments, 2011, R package version 1.3.

[18] Saltelli (A.), Chan (K.), Scott (E.M.) et al. — Sensitivity analysis, volume 134,
Wiley New York (2000).

[19] Santner (T.J.), Williams (B.J.) and Notz (W.). — The design and analysis of
computer experiments, Springer Verlag (2003).

[20] Sobol (I.M.). — Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates, Mathematics and Computers in Simulation, 55(1-3),
p. 271-280, (2001).

[21] Stone (C.J.). — Additive regression and other nonparametric models, The annals
of Statistics, p. 689-705 (1985).

[22] R Team. — R: A language and environment for statistical computing, R Founda-
tion for Statistical Computing Vienna Austria ISBN, 3(10) (2008).

– 497 –



N. Durrande, D. Ginsbourger, O. Roustant

Appendix A: Proof of proposition 1 for d = 2

Let Z be a centered random process indexed by R2 with covariance kernel
K(x, y) = K1(x1, y1) + K2(x2, y2), and ZT the random process defined by
ZT (x1, x2) = Z(x1, 0) + Z(0, x2) − Z(0, 0). By construction, the paths of
ZT are additive functions. In order to show the additivity of the paths of
Z, we will show that ∀x ∈ R2, P(Z(x) = ZT (x)) = 1. For the sake of
simplicity, the three terms of var[Z(x)−ZT (x)] = var[Z(x)] + var[ZT (x)]−
2cov[Z(x), ZT (x)] are studied separately:

var[Z(x)] = K(x, x)

var[ZT (x)] = var[Z(x1, 0) + Z(0, x2)− Z(0, 0)]

= var[Z(x1, 0)] + var[Z(0, x2)] + 2cov[Z(x1, 0), Z(0, x2)]

+var[Z(0, 0)]− 2cov[Z(x1, 0), Z(0, 0)]− 2cov[Z(0, x2), Z(0, 0)]

= K1(x1, x1) + K2(0, 0) + K1(0, 0) + K2(x2, x2) + K(0, 0)

+2 (K1(x1, 0) + K2(0, x2))− 2 (K1(x1, 0) + K2(0, 0))

−2 (K1(0, 0) + K2(x2, 0))

= K1(x1, x1) + K2(x2, x2) = K(x, x)

cov[Z(x), ZT (x)] = cov[Z(x1, x2), Z(x1, 0) + Z(0, x2)− Z(0, 0)]

= K1(x1, x1) + K2(x2, 0) + K1(x1, 0) + K2(x2, x2)

−K1(x1, 0)−K2(x2, 0)

= K1(x1, x1) + K2(x2, x2) = K(x, x)

Those three equations imply that var[Z(x) − ZT (x)] = 0, ∀x ∈ R2. As
E[Z(x)−ZT (x)] = 0, we have P(Z(x) = ZT (x)) = 1 so ZT is a modification
of Z with additive paths.

Appendix B: Calculation of the prediction variance

Let consider a DoE composed of the 3 points {x(1), x(2), x(3)} represented
on the left panel of Figure 1. We want here to show that although x(4) does
not belongs to the DoE we have v(x(4)) = 0.

v(x(4)) = K(x(4), x(4))− k(x(4))TK−1k(x(4))

= K(x(4), x(4))− (k(x(2)) + k(x(3))− k(x(1)))TK−1k(x(4))

= K1(x
(4)
1 , x

(4)
1 ) + K2(x

(4)
2 , x

(4)
2 )−
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(−1 1 1)




K1(x
(1)
1 , x

(4)
1 ) + K2(x

(1)
2 , x

(4)
2 )

K1(x
(2)
1 , x

(4)
1 ) + K2(x

(2)
2 , x

(4)
2 )

K1(x
(3)
1 , x

(4)
1 ) + K2(x

(3)
2 , x

(4)
2 )




= K1(x
(2)
1 , x

(2)
1 ) + K2(x

(3)
2 , x

(3)
2 )−K1(x

(2)
1 , x

(2)
1 )−K2(x

(3)
2 , x

(3)
2 )

= 0

Appendix C: Calculation of ṽi

We want here to calculate the variance of Zi(xi)−
∫
Zi(si)dsi condition-

ally to the observations Y .

ṽi(xi) = var

[
Zi(xi)−

∫
Zi(si)dsi

∣∣∣∣Z(X) = Y

]

= var [Zi(xi)|Z(X) = Y ]− 2cov

[
Zi(xi),

∫
Zi(si)dsi

∣∣∣∣Z(X) = Y

]

+var

[∫
Zi(si)dsi

∣∣∣∣Z(X) = Y

]

= vi(xi)− 2

(∫
Ki(xi, si)dsi −

∫
ki(xi)

TK−1ki(si)dsi

)

+

∫∫
Ki(si, ti)dsidti −

∫∫
ki(ti)

TK−1ki(si)dsidti.
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