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Argumentwise invariant kernels
for the approximation of invariant functions

David Ginsbourger(1), Xavier Bay(2), Olivier Roustant(2),
Laurent Carraro(3)

ABSTRACT. — We consider the problem of designing adapted kernels
for approximating functions invariant under a known finite group action.
We introduce the class of argumentwise invariant kernels, and show that
they characterize centered square-integrable random fields with invariant
paths, as well as Reproducing Kernel Hilbert Spaces of invariant func-
tions. Two subclasses of argumentwise kernels are considered, involving a
fundamental domain or a double sum over orbits. We then derive invari-
ance properties for Kriging and conditional simulation based on argumen-
twise invariant kernels. The applicability and advantages of argumentwise
invariant kernels are demonstrated on several examples, including a sym-
metric function from the reliability literature.

RÉSUMÉ. — Nous considérons le problème d’approximation par méthodes
à noyaux de fonctions invariantes sous l’action d’un groupe fini. Nous in-
troduisons les noyaux doublement invariants, et montrons qu’ils carac-
térisent les champs aléatoires centrés de carré intégrable à trajectoires
invariantes, ainsi que les espaces de Hilbert à noyau reproduisant de fonc-
tions invariantes. Deux classes particulières de noyaux doublement inva-
riants sont considérées, basées respectivement sur un domaine fondamen-
tal ou sur une double somme sur les orbites. Nous établissons ensuite des
propriétés d’invariance pour les modèles de Krigeage et les simulations
consitionnelles associés. L’applicabilité et les avantages de tels noyaux
sont illustrés sur plusieurs exemples, incluant une fonction symétrique
issue d’un problème de fiabilité des structures.
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1. Introduction

Positive definite1 (p.d.) kernels play a central role in several contempo-
rary functional approximation methods, ranging from regularization tech-
niques within the theory of Reproducing Kernel Hilbert Spaces (RKHS) to
Gaussian Process Regression (GPR) in machine learning. One of the reason
for that is presumably the following particularly elegant predictor, common
solution to approximation problems in both frameworks. Indeed, if scalar re-
sponses y := (y1, . . . , yn) ∈ Rn are observed for n instances x1, . . . ,xn ∈ D
of a d-dimensional input variable (D is here assumed to be a compact subset
of Rd), the function

m : x ∈ D −→ m(x) = k(x)TK−1y, (1.1)

is at the same time the best approximation of any function f in the RKHS of
kernel k subject to f(xi) = yi (1 � i � n), and the GPR (“Simple Kriging”)
predictor of any squared-integrable centered random field (Yx∈D)x∈D of
covariance kernel k subject to Yxi = yi (1 � i � n). k : D×D −→ R stands
here for an arbitrary p.d. kernel, with k(x) := (k(x,x1), . . . , k(x,xn)) and
K := (k(xi,xj))1�i,j�n (assumed invertible here and in the sequel).

In practical situations (e.g., when the yi’s steem from the output of an
expensive-to-evaluate deterministic numerical simulator, say y : D → R),
the choice of k is generally far from being trivial. Unless there is a strong
prior in favour of a specific kernel or parametric family of kernels, the usual
modus operandi to choose k in GPR (when d is too high and/or n too low
for a geostatistical variogram estimation) is to rely on well-known families
of kernels, and to perform classical Maximum Likelihood, Cross-Validation,
or Bayesian inference of the underlying parameters based on data. For ex-
ample, most GPR or Kriging softwares offer different options for the under-
lying kernel, often restricted to stationary but anisotropic correlations like
the generalized exponential or Matérn kernels, allowing the user to choose
between different levels of regularity. This is in fact based on solid math-
ematical results concerning the link between the regularity of covariance
kernels and the mean square properties of squared integrable random fields
(or even a.s. properties in the case of Gaussian random fields, see [12]).

A weak point of such an approach, however, is that not all phenomena
can reasonably be approximated by stationary random fields, even with a
well-chosen level of regularity and a successful estimation of the kernel pa-
rameters. In order to circumvent that limitation, several non-stationary ap-
proaches have been proposed in the recent literature, including convolution

(1) We use here the term p.d. for what some authors also call ”non-negative definite”.
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kernels (see [32] or [27]), kernels incorporating non-linear transformations
of the input space ([20, 4, 47]), or treed gaussian processes ([19]), to cite an
excerpt of some of the most popular approaches.

Our intent here is to address a specific question related to the choice of
k: Assuming a known geometric or algebraic invariance of the phenomenon
under study, is it possible to incorporate it directly in a kernel-based approx-
imation method like GPR or RKHS regularization? More precisely, given a
function y invariant under a measurable action Φ of some finite group G on
D, is it possible to construct a metamodel of y respecting that invariance?

Here we investigate classes of kernels leading to metamodels m inheriting
known invariances from y. In the particular case of a GPR interpretation,
the proposed kernels enable a deeper embedding of the prescribed invariance
in the metamodel since the obtained random fields have invariant paths
(up to a modification). Note that the proposed approach is complementary
to the non-stationary kernels evocated above, rather than in competition
with them. Our main goals are indeed to understand to what extent kernel
methods are compatible with invariance assumptions, what kind of kernels
are suitable to model invariant functions, and how to construct such kernels
based on existing (stationary or already non-stationary) kernels.

The paper is organized as follows. In Section 2, we recall some funda-
mental algebraic definitions (2.1) and random fields technical notions useful
in the sequel (2.2), followed by an overview with discussion on existing work
concerning invariant kernels and random fields. The main results are given
in Section 3: A characterization of positive definite kernels leading to invari-
ant random fields is given (3.1), and several properties of the corresponding
metamodels are discussed (3.2). (3.3) is dedicated to the RKHS interpre-
tation of such kernels. Application results are then presented in Section
4, first with illustrations on toy examples (4.1), with a test case from the
reliability literature (4.2), and then by approximating simulated invariant
Gaussian Fields (4.3). Finally, a few concluding remarks and a discussion
on perspectives and forthcoming research questions are given in Section 5.

2. Definitions and classical results

2.1. Group actions and invariant functions

Let (G, ∗) be a group and D a set. We denote by e the neutral element
of G. Let us recall some standard definitions from algebra [26].
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Definition 2.1. — A (left) action of the group G on D is a map

Φ : G×D −→ D
(g,x) �−→ g.x := Φ(g,x)

such that

• x ∈ D �−→ Φ(e,x) is the identitity of D, i.e. ∀x ∈ D, e.x = x,

• ∀x ∈ D, ∀g, g′ ∈ G, (g ∗ g′).x = g.(g′.x).

Definition 2.2. — The orbit of a point x ∈ D under the action Φ is
the set

O(x) := {g.x, g ∈ G}, (2.1)

constituted of images of x by the action of G.

Definition 2.3. — x ∈ D is a fixed point of the action when ∀g ∈
G, g.x = x.

Definition 2.4. — The fixator of a set S ⊂ D in G is defined by

FixΦ(S) := {g ∈ G | ∀x ∈ S, g.x = x}. (2.2)

Definition 2.5. — The stabilizer of a set S ⊂ D in G is defined by

StabΦ(S) := {g ∈ G | ∀x ∈ S, g.x ∈ S} (2.3)

Definition 2.6. — A measurable set A ⊂ D is said to be a fundamental
domain of Φ if it is a system of representatives of Φ’s orbits.

Remark 2.7. — A fundamental domain is usually required to have further
topological properties, for instance to be the symmetric difference between
an open set and a set of measure zero.

Definition 2.8. — Le F be an arbitrary set. A map y : D −→ F is said
invariant by Φ, or invariant under the action of the group G, when

∀x ∈ D, ∀g ∈ G, y(g.x) = y(x) (2.4)

Equivalently, y is said invariant whenever it is constant on the orbits of Φ.

2.2. Random fields

We borrow here a few definitions from the book [35], with a few minor
changes in the notations.
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Definition 2.9. — Two random fields Y and Y ′, respectively defined
on probability spaces (Ω,F ,P) and (Ω′,F ′,P′) and sharing a common mea-
surable state space (E, E), are said equivalent if for any finite sequence of
points x(1), . . . ,x(n) ∈ D and events A1, . . . , An ∈ E,

P (Yx(1) ∈ A1, . . . , Yx(n) ∈ An) = P′
(
Y ′x(1) ∈ A1, . . . , Y

′
x(n) ∈ An

)
(2.5)

One also says in that case that each one of these random fields is a version
of the other, or that both are versions of the same random field. In other
words, two random fields are versions of each other whenever they have the
same finite-dimensional distributions.

Definition 2.10. — Two random fields Y and Y ′ defined on the same
probability space (Ω,F ,P) are said to be modifications of each other when
for all x ∈ D,

P(Yx = Y ′x) = 1 (2.6)

They are said indistinguishable when

P (∀x ∈ D,Yx = Y ′x) = 1 (2.7)

As precised in ([35], p. 18), if Y and Y ′ are modifications of each other,
they clearly are equivalent. A slightly less straightforward result is that if
two random fields modifications of each other are almost surely continuous,
then they are indistinguishable. Finally, let us add a definition which will
play a central rôle in the sequel of the paper:

Definition 2.11. — Y is said to have all its paths Φ-invariant whenever

∀ω ∈ Ω, ∀x ∈ D, ∀g ∈ G, Yx(ω) = Yg.x(ω) (2.8)

2.3. Classical results about invariant kernels and random fields

2.3.1. Stationarity, isotropy: Invariance-related notions in geo-
statistics

A very classical notion in spatial statistics, and more generally in the
literature of random processes (including time series in the first place), is
the one of second order or weak stationarity. A centered squared-integrable
random field Y is said weakly stationary whenever cov(Yx, Yx′) is a function
of x−x′ (here x,x′ ∈ D) or, in other words, when for any x ∈ D and h such
that x+h ∈ D, cov(Yx+h, Yx) depends only on h and not on x. Equivalently,
the covariance kernel of Y is such that for any translation Th(x) := x + h
and pair of points x,x′ ∈ D with Th(x), Th(x′) ∈ D,

k(Th(x), Th(x′)) = k(x,x′) (2.9)
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Additionally, a centered weakly stationary random field Y defined over some
subset D of a Euclidean space is said to be isotropic whenever cov(Yx, Yx′)
depends only on the norm-induced distance between x and x′, i.e. k(x,x′)
is a function of ||x−x′||. Again, this may be written as an invariance of the
kernel under the simultaneous transformation of both arguments:

k(R(x), R(x′)) = k(x,x′) (2.10)

where R belongs this time to the more general class of isometries. Both latter
invariances can in fact be seen as particular cases (with natural actions of
groups of translations or isometries, respectively) of the following definition
given by Parthasarathy and Schmidt in [33]:

Definition 2.12. — k is said invariant under the action of G on D
when

∀g ∈ G,∀x,x′ ∈ D, k(g.x, g.x′) = k(x,x′) (2.11)

3. Main results

3.1. A characterization of kernels leading to invariant fields

Before stating the main result of the paper, we need to introduce a
new notion, generalizing the notion of invariant kernel presented in the last
section.

Definition 3.1. — A kernel k is said argumentwise invariant under Φ
when

∀g, g′ ∈ G,∀x,x′ ∈ D, k(g.x, g′.x′) = k(x,x′) (3.1)

One can notice that Eq. (2.11) corresponds to the particular case of
eq.(3.1) where g = g′. As discussed next, this second kind of kernels cor-
responds to much stronger invariance properties of the associated random
fields.

Remark 3.2. — For real-valued symmetric kernels such as considered here,
it is equivalent to be argumentwise invariant, left invariant, or right invari-
ant. Indeed, assuming that k is left invariant, we get for g, g′ ∈ G and
x,x′ ∈ D:

k(g.x, g′.x′) = k(x, g′.x′) = k(g′.x′,x) = k(x′,x) = k(x,x′) (3.2)
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Property 3.3 (Kernels characterizing invariant fields). — Let G be a
finite group acting on D via the action Φ, and Y be a centered squared-
integrable random field over D. Y has its paths Φ-invariant (up to a mod-
ification) if and only if its covariance kernel k is argumentwise invariant
under Φ.

Proof. — Let us first assume that Y has its paths Φ-invariant, up to a
modification. Then, there exists a process Ỹ with Φ-invariant paths and such
that ∀x ∈ D, P(Yx = Ỹx) = 1. This implies that Y and Ỹ are equivalent,
and in particular kY = k

Ỹ
since the 2-dimensional distributions are the

same. Now, by Φ-invariance of Ỹ ’s paths, we have ∀x ∈ D ∀g ∈ G ∀ω ∈
Ω, Ỹx(ω) = Ỹg.x(ω), so that in particular, ∀x ∈ D ∀g, g′ ∈ G:

k
Ỹ

(g.x, g′.x′) = cov[Ỹg.x, Ỹg′.x′ ] = cov[Ỹx, Ỹg′.x′ ] = cov[Ỹx, Ỹx′ ] = k
Ỹ

(x,x′)

Reciprocally, let us now assume that kY is argumentwise invariant under Φ.
Let us denote by A ⊂ D a fundamental domain for Φ, and by πA : D −→ A
the projector mapping any x ∈ D to its representer πA(x) ∈ A, i.e. to the

point of A being in the same orbit. We then define the random field Ỹ by

∀x ∈ D Ỹx := YπA(x)

By construction, Ỹ has all its paths invariant under Φ. Now, for any x ∈ D,
there exists g ∈ G such that πA(x) = g.x. Subsequently,

var[Yx − Ỹx] = var[Yx − Yg.x]

= k(x,x) + k(g.x, g.x)− 2k(x, g.x) = 0,

so that P(Yx = Ỹx) = 1, and Y is indeed a modification of a random field
with Φ-invariant paths. �

Remark 3.4. — Ỹx := 1
#G

∑
g∈G Yg.x would have led to the same conclu-

sion.

Remark 3.5. — A fundamental domain A is such that every orbit has
a unique representer in A, and

⋃
g∈G g.A = D. However, the g.A’s (g ∈

G) are not necessarily disjoints. For example, if G = Z/2Z, D = R, and
Φ : (g, x) ∈ (Z/2Z) × R −→ R is the action defined by Φ(1, x) = −x,
A = [0,+∞) is a fundamental domain containing 0, but 0 ∈ 1.A = (−∞, 0]
too. Consequently, when decomposing an invariant process over the orbits of
A, one must account for the points appearing in several g.A’s by dividing by
the number of appearances, characterized by the cardinal of their stabilizers:

∀x ∈ D, Yx =
∑

g∈G
Yx

1g.A(x)

#StabΦ({x}) =
∑

g∈G
Zg.x (3.3)
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where Zx := Yx
1A(x)

#StabΦ({x}) . Denoting Z’s kernel by kZ , we get in particular

∀x,x′ ∈ D kY (x,x′) = cov


∑

g∈G
Zg.x,

∑

g′∈G
Zg′.x′


 =

∑

(g,g′)∈G2

kZ(g.x, g′.x′),

whereof the argumentwise invariance of kY clearly appears.

Example 3.6. — Let Z be a centered Gaussian process indexed by R,
with covariance kernel kZ : x, x′ ∈ R −→ kZ(x, x′) = e−|x−x

′| ∈ R (often
called the Ornstein-Uhlenbeck process, Cf. [35] sec. 1.3), and Φ : (g, x) ∈
(Z/2Z)×R −→ R the action of G = Z/2Z on R previously considered. The
process Y obtained by symmetrization of Y ’s restriction to A := [0,+∞[,
defined by Yx = Z|x|, has all its paths invariant under Φ. Its covariance

kernel is given by ∀x, x′ ∈ R, kY (x, x′) = e−||x|−|x′||. Let us notice that
Y , symmetrized of the stationary process Z, is obviously not second order
stationary.

Example 3.7. — Let Z be a centered Gaussian field indexed by R2, with
covariance kZ : x,x′ ∈ R2 −→ e−||x−x′||2 ∈ R, and Φ : (g,x) ∈ (Z/2Z) ×
R2 −→ R2 the action defined by φ(1,x) = s(x) := (x2, x1), the symmetrized
point of x = (x1, x2) with respect to the first bisector. The process Y
obtained by symmetrization of Z’s restriction to A = {x ∈ R2 : x1 � x2} is
defined by

Yx =

{
Zx if x ∈ A

Zs(x) if x ∈ Ac
Let us note that Y may also be defined as follows, in the spirit of Remark
3.5:

Yx =
1

1 + 1{x∈R2:s(x)=x}(x)
Zx1A(x) +

1

1 + 1{x∈R2:s(x)=x}(x)
Zx1A(s(x))

The next example illustrates that a random field with almost never Φ-
invariant paths may possess a modification which paths are all Φ-invariant:

Example 3.8. — Let Ω =]0, 1[, A = B(]0, 1[), P be Lebesgue’s measure
on Ω, D = R, G = {e, s0} (s0 be the symmetry with respect to 0),

F : x ∈ R −→
∫ x
−∞

e−
u2

2√
2π

du ∈]0, 1[, ε : ω ∈ Ω −→ ε(ω) = F−1(ω) ∈
R, and Y : (x, ω) ∈ E × Ω −→ Yx(ω) = |x|ε(ω)1x	=ε(ω). The process

defined by Ỹx(ω) = |x|ε(ω) has clearly all its paths invariant by s0, and

Ỹ is a modification of Y since ∀x ∈ D, P (Yx = Ỹx) = P (ε �= x) = 1.

However,
{
ω ∈ Ω / (∀x ∈ D, Yx(ω) = Ỹx(ω))

}
=

{
1
2

}
is negligible, and the

two processes are hence not indistinguishable.
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Example 3.9. — Let us come back to the notations of example 3.7. One
can construct a process having its paths Φ-invariant based on Z by defining
∀x ∈ D, ZΦ

x = 1
2 (Zx+Zs(x)) = 1

2 (Z(x1,x2) +Z(x2,x1)). The covariance kernel
of this new process is given by

kZΦ(x,x′) =
1

4
[kZ(x−x′)+kZ(s(x)−x′)+kZ(x−s(x′))+kZ(s(x)−s(x′))]

One may note that here, by isotropy, ||(x1−x′1, x2−x′2)|| = ||(x2−x′2, x1−
x′1)|| and ||(x2 − x′1, x1 − x′2)|| = ||(x1 − x′2, x2 − x′1)||, so that

kZΦ(x,x′) =
1

2

(
e−||(x1−x′1,x2−x′2)||2 + e−||(x2−x′1,x1−x′2)||2

)

In more general cases (e.g., when Z has a geometrical anisotropy), however,
it may be necessary to calculate a sum of four different terms.

3.2. Kriging with an argumentwise invariant kernel

Let us now come back to our original prediction problem, and assume
that we dispose of n noiseless observations Yxi = yi (1 � i � n) of a
square-integrable centered random field (Yx)x∈D assumed invariant under
the action Φ of a finite group G on D. As recalled in the introduction (Eq.
1.1), the function

m : x ∈ D −→ m(x) = k(x)TK−1y,

is the Simple Kriging predictor (or ”Kriging mean”) of Y knowing the re-
ponses at design points x1, . . . ,xn. In addition, the Simple Kriging variance
(or ”Mean Squared Error”) s2 is often used as a quantifyer of m’s accuracy:

s2 : x ∈ D −→ s2(x) = k(x,x)− k(x)TK−1k(x). (3.4)

It is well known that m interpolates the observations and s2 vanishes at
the design of experiments. As we will see now, more can be said in the case
where k is argumentwise invariant.

Property 3.10 (Properties of m and s2 when k is argumentwise in-
variant)

1. m and s2 are invariant

2. ∀i ∈ {1, . . . , n}, ∀g ∈ G, m(g.xi) = yi and s2(g.xi) = 0.
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Proof. — The covariance vector k(.) is invariant by argumentwise invari-
ance of k. Plugging in the equality k(g.x) = k(x) in Eqs. 1.1 and 3.4, (1)
follows. �

In order to generalize to the conditional distribution of Y knowing Yxi =
yi (1 � i � n), we can start by looking at its conditional covariance:

cov(Yx, Yx′ |YX = y) = k(x,x′)− k(x)TK−1k(x′). (3.5)

In the case where Y is assumed Gaussian, the Simple Kriging mean and
variance at x coincide respectively with the conditional expectation and
variance of Yx knowing the observations. In addition, the Gaussian assump-
tion makes it possible to get conditional simulations of Y , relying only on
the conditional mean function and covariance kernel. The following property
will play a crucial role in the applications discussed in the next section.

Property 3.11 (Properties of the conditional distribution of a Gaus-
sian Random Field with argumentwise invariant kernel)

1. The conditional random field has an argumentwise invariant kernel

2. All conditional simulations are Φ-invariant

Proof. — (1) follows from the invariance of k(.) applied to Eq.3.5. For
(2), it is useful to recall that conditional simulations are paths drawn from
the conditional distribution of the considered field. Now, conditionally on
the observations, this field has a mean function (the Kriging mean m) known
to be Φ-invariant according to Prop. 3.10. Since the complement to this
mean function is a centered Gaussian Field with argumentwise invariant
kernel (from (1)), Prop. 3.3 implies that the conditional simulations are Φ-
invariant, as sums of a Φ-invariant function plus Φ-invariant paths. �

Remark 3.12. — In practice, the paths of Y are often simulated at a finite
set of points Xsimu = {e1, ..., em} ⊂ D based on a matrix decomposition
(Cholesky, Mahalanobis) of K = (kY (ei, ej))1�i,j�m. The Φ-invariance of

the vectors simulated that way is thus sure (i.e. ∀ω ∈ Ω).

3.3. What about the RKHS point of view?

As a closure to the present section on the main results of the paper,
let us briefly discuss the interplay between the argumentwise invariance of
a p.d. kernel and the invariance of elements from the naturally associated
RKHS of real-valued functions.
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Property 3.13. — The Reproducing Kernel Hilbert Space (H, 〈., .〉H)
with reproducing kernel k has all its functions Φ-invariant if and only if k
is argumentwise invariant under Φ.

Proof. — If k is argumentwise invariant and H is a RKHS of real-valued
functions with kernel k, it is clear that any function f ∈ H is invariant under
Φ. Indeed, taking arbitrarily x ∈ D and g ∈ G, we get

f(g.x) = 〈f, k(g.x, .)〉H = 〈f, k(x, .)〉H = f(x)

It clearly appears from that representation that the left invariance is suffi-
cient. This is of course related to the fact that we work here with symmetric
kernels in the first place (in the sense that k(x,x′) = k(x′,x)). For the re-
ciprocal, assuming that any f ∈ H is invariant, it is straightforward that all
k(x, .)’s (x ∈ D) are invariant since they belong to H. Hence,

k(g.x, g′.x′) = 〈k(g′.x′, .), k(g.x, .)〉H = 〈k(x′, .), k(x, .)〉H = k(x,x′),

which proves the argumentwise invariance of k. �

Remark 3.14. — In the case where the Mercer theorem applies, the prop-
erty speaks for itself. k then possesses an orthogonal expansion of the form

k(x,x′) =

+∞∑

i=1

λiei(x)ei(x
′) (3.6)

where the eigenfunctions ei(.) form an orthonormal basis of L2(D). Since the
ei(.)’s are in the RKHS, they are invariant themselves, and it then appears
directly that k is argumentwise invariant.

4. Applications

4.1. Invariant Brownian Motion and other elementary examples

4.1.1. Symmetrized BM and OU process

Let us first consider (Bt)t∈[0,+∞[, a one-dimensional Brownian Motion
(BM), and the symmetry with respect to the origin s : x ∈ D −→ −x ∈ D,
where D := R. The corresponding action of the group G = Z/2Z on R is
the same as in Ex. 3.6. In order to symmetrize B, let us first extend it to
a process on the whole line by setting ∀t < 0, Bt = 0. Now, relying on the
fundamental domain A := [0,+∞[, a straightforward way to symmetrize B
is to construct SB(1) as follows:

SB
(1)
t = BπA(t) = B|t| (4.1)
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The resulting process is still centered and Gaussian, with covariance

kSB(1)(t, t′) := cov(SB
(1)
t , SB

(1)
t′ ) = cov(B|t|, B|t′|) = min(|t|, |t′|) (4.2)

Now, as we have seen in Ex. 3.9, another way of getting a process with
symmetric paths based on B is by averaging it over the action’s orbits:

SB
(2)
t :=

1

2
(Bt +Bs(t)) =

1

2
(Bt +B−t) (4.3)

In that case, following the way B was extended, we thus have

SB
(2)
t =

1

2
B|t|, (4.4)

so that kSB(2) = 1
4kSB(1) . Simulated paths of the centered Gaussian process

characterized by Eq. 4.2 are represented on Figure 1.

t

y

t

y

20 simulated paths of the symmetrized BM20 simulated paths of the BM extended to [–1,1]

Figure 1. — Symmetrization of the Brownian Motion relying on the symmetrized kernel
(by projection on a fundamental domain) of Eq. 4.2.

Let us now consider an Orstein-Uhlenbeck (OU) process (Zt)t∈D re-
stricted to D := [0, 1], and s : t ∈ D −→ 1 − t ∈ D the symmetry with
respect to 1

2 . This time, we choose A := [0, 1
2 ] as fundamental domain. A

similar construction as for the first symmetrized BM leads to the process

Y
(1)
t = ZπA(t) = Zmin(t,s(t)) = Zmin(t,1−t) (4.5)

This centered Gaussian process is then characterized by the kernel

kY (1)(t, t′) := cov(Zmin(t,1−t), Zmin(t′,1−t′)) (4.6)

= exp (−|min(t, 1− t)−min(t′, 1− t′)|)
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On the other hand, the second symmetrized OU process is obtained by
averaging over the orbits of the considered group action:

Y
(2)
t =

1

2
(Zt + Zs(t)) =

1

2
(Zt + Z1−t), (4.7)

and possesses the following covariance kernel:

kY (2)(t, t′) =
1

4
cov(Zt + Z1−t, Zt′ + Z1−t′)

=
1

4
exp (−|t− t′|) +

1

4
exp (−|(1− t)− t′|)

+
1

4
exp (−|t− (1− t′)|) +

1

4
exp (−|(1− t)− (1− t′)|)

=
1

2
exp (−|t− t′|) +

1

2
exp (−|1− t− t′|) (4.8)

Simulated paths of the centered Gaussian process defined by both eq. 4.6
and eq. 4.8 are represented on figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

t

y

0.0 0.2 0.4 0.6 0.8 1.0

t

y

20 simulated paths of the symmetrized OU process (1) 20 simulated paths of the symmetrized OU process (2)

Figure 2. — Symmetrization of the OU process relying on both kernels defined by Eqs.
4.6, 4.8. Left: by projection on a fundamental domain (Eq. 4.6). Right: by averaging

over the orbits (Eq. 4.8).

4.1.2. Conditional simulations of an invariant Gaussian Process

We now assume that the invariant process Y (2) was observed at the 3
points t1 = 0.6, t2 = 0.8, t3 = 1, with response values y1 = −0.8, y2 =
0.5, y3 = 0.9. The covariance kernel of eq. 4.8 is used for performing simu-
lations of Y (2) conditionally on the latter observations. Twenty such condi-
tional simulations are represented on Figure 3. As can be seen on Figure 3,
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all paths are simultaneously Φ-invariant and interpolating the condition-
ing data, hence illustrating Property 3.11 on the conditional distribution of
Gaussian Random Fields with argumentwise invariant kernel.

0.0 0.2 0.4 0.6 0.8 1.0

t

y

20 conditional simulations of a symmetrized OU process

–3
–2

–1
0

1
2

3

Figure 3. — Conditional Simulations of the symmetrized OU process
with the kernel of Eq. 4.8. The black points stand for the conditioning data.

4.2. Kriging with an invariant kernel

Let us now apply Kriging with an argumentwise invariant kernel to a
benchmark example from the structural reliability literature exhibiting ob-
vious symmetries.

Quoting [7] in which this test-case was recently used, ”the example has
been analyzed by [45] and [16] made a comparison with several meta-models
proposed by [40]”. The limit state function of interest reads:
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y : (x1, x2) ∈ [−5, 5]2 −→ min





3 + 0.1(x1 − x2)
2 − (x1 + x2)/

√
2

3 + 0.1(x1 − x2)
2 + (x1 + x2)/

√
2

(x1 − x2) + 6/
√

2

(x2 − x1) + 6/
√

2





Figure 4 shows the contours of y, with an illustration of the three non-trivial
transformations of R2 –denoted by s1, s2, s3– leaving y invariant.

s1

s2
s3

Figure 4. — Borri and Speranzini’s function, with its two axes of symmetry
(black lines). The colored arrows stand for the three non-trivial transformations

leaving this function unchanged.

Actually, y can be shown to be left invariant by an action of the group
(Z/2Z)2 on R2. Indeed, as illustrated on Figure 4, y is invariant under s1,
the axial symmetry with respect to the first bisector. y is also invariant
under s2, the axial symmetry with respect to the second bisector. Finally,
y is obviously invariant under their composition, s3, i.e. the symmetry with
respect to the origin. Together with the identity of R2, denoted by s0, the
latter s1, s2, s3 forms a group of order 4, representing (Z/2Z)2 on R2.
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4.2.1. Comparing three Kriging models based on different kernels

Here we investigate using argumentwise invariant kernels for approxima-
ting this function by Simple Kriging based on 30 observations at a maximin
LHS design X. The underlying design of experiments is generated using the
R package lhs. As a preliminary step towards a comparison between different
kernels, a classical Simple Kriging model with a tensor product OU kernel

kZ(x,x′) = σ2 exp

(
−1

θ
(|x1 − x′1|+ |x2 − x′2|)

)
+ τ21x=x′ (4.9)

is fitted to the data (see Figure 5). Here the parameters are fixed to their
Maximum Likelihood estimates, σ2 = 7.5 and θ = 20. In addition, a nugget
effect with τ2 = 0.01 is added to kZ for numerical purposes.

m with regular OU kernel and LHS design s with regular OU kernel and LHS design

Figure 5. — Simple Kriging mean and standard deviation with the regular tensor
product kernel of Eq. 4.9, based on observations of y at X.

We now consider two different argumentwise invariant kernels. To start
with, using similar notations as for the 1-dimensional OU example, we define
a fundamental domain for Φ (see Figure 6 for an illustration):

A := {x ∈ [−5, 5]2 : x1 � 0,−x1 < x2 � x1} (4.10)

The first argumentwise invariant kernel considered is then constructed
based on the projector πA : x ∈ D −→ πA(x) = O(x) ∩A ∈ A, as follows:

kY (1)(x,x′) := kZ(πA(x), πA(x′)) (4.11)
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A

x1
x2

Figure 6. — Left: The fundamental domain A for the considered action of (Z/2Z)2 on
[−5, 5]2. The lower left boundary is excluded. Right: Projection of the design points of

X (black points) onto A (red stars).

m with symmetrized OU kernel (1) and LHS design s with symmetrized OU kernel (1) and LHS design

Figure 7. — Simple Kriging mean and standard deviation with the symmetrized OU
kernel of Eq. 4.11, based on observations of y at X.

The second argumentwise invariant kernel considered is then constructed
by averaging kZ over the orbits of Φ:

kY (2)(x,x′) :=
1

16

3∑

i=0

3∑

j=0

kZ(si.x, sj .x
′) (4.12)

The results of Kriging with kernels kY (1) and kY (2) based on the observations
at X are illustrated on Figures 7 and 8, respectively.
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m with symmetrized OU kernel (2) and LHS design s with symmetrized OU kernel (2) and LHS design

Figure 8. — Kriging mean and standard deviation with the symmetrized
OU kernel of Eq. 4.12, based on observations of y at X.

Finally, for comparison, a Kriging model with regular OU kernel (the
same as for the first model) but based on the design

Xsym :=

3⋃

i=0

si.X (4.13)

and with the observations at X replicated four times is considered.

m with OU kernel and symmetrized LHS design s with OU kernel and symmetrized LHS design

Figure 9. — Kriging mean and standard deviation with the regular tensor product
kernel of Eq. 4.9, based on observations of y at Xsym. The solid black circles represent

the LHS design X. The red squares, blue diamonds, and green triangles represent
respectively the orbits of X under the transformations s1, s2, and s3.

– 518 –



Invariant kernels for the approximation of invariant functions

4.2.2. Discussion on the compared results

In order to compare the prediction abilities of the considered Kriging
models, we predicted y at a 50 × 50 out-of-sample validation design Xval

using the four models, and compared the average prediction errors and the
residuals. Figure 10 represents the mean predictions against reality (first
line) and the standardized residuals

y(x
(i)
val)−m(x

(i)
val)

s(x
(i)
val)

(1 � i � 2500) (4.14)
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Figure 10. — Comparison of prediction results at Xval when using the 4 Kriging models
considered for Borri and Speranzini’s function.

Looking at the values of the Integrated Squared Error (ISE) at Xval,

ISE =

2500∑

j=1

(y(x
(i)
val)−m(x

(i)
val))

2 (4.15)
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for the four candidate Kriging models, we first see that the first model is
undoubtly dominated by the three other ones. This was to be expected since
the first model is the only one which doesn’t take into account the symmetry
of the problem. The second model, based on a combination of the OU kernel
with the projector onto the fundamental domain of Figure 6, shows signif-
icantly better performances. Indeed, the ISE drops from 433.01 to 264.33,
just by playing on the underlying kernel. However, the performances of the
third model, with the kernel averaged over the action’s orbits, are even bet-
ter. Not only does the ISE drop to 142.89, but the order of magnitude of the
standardized residuals is more in accordance with what one usually expects
when Kriging under the Gaussian Process assumption (even if this is not
really theoretically well-founded without further ergodicity assumptions, it
is customary to expect that about 95% of the sample of standardized resid-
uals lie between the 2.5% and 97.5% quantiles of the standard Gaussian
distribution, see for instance [24]).

Perhaps surprisingly, the last model obtained by using a regular covari-
ance kernel with a symmetrized design gave here better performances in
terms of ISE (124.53) than the two previous models with argumentwise
invariant kernels. This has to be tempered by the fact that doing it this
way multiplies the dimension of the covariance matrix by the order of the
group (i.e. 4 here), that is to say that the total number of coefficients jumps
from n2 to n2 × r2 (i.e. from 900 to 14′400 here). Hence, replicating the
design is likely to cause problems in terms of matrix inversion, and even
in terms of data storage (for the reasonable values n = 1000 and r = 8,
n2 × r2 = 64′000′000). Furthermore, the test function studied here is not
very smooth (so that an OU kernel was considered instead of a Gauss or a
Matérn one, more commonly used in smoother cases), which may relatively
hinder the benefits of taking symmetries into account, since the latter come
in more regular cases with additional smoothness properties on the axes of
symmetry.

Concerning the second model, let us also remark that the choice of A is
arbitrary, and not always without consequences on the model obtained. In
the case of an anisotropic covariance, for instance, choosing the current A
or its image by a rotation of center 0 and angle π

2 may lead to substantially
different predictions. This has to be studied in more detail in further works.

To finish with this application, let us point out the fact that among the
considered models, only the ones based on an argumentwise invariant co-
variance kernel enables conditional simulations with invariant paths. 4 such
simulated paths with the kernel of Eq. 4.11 conditional on the observations
at X are represented on Figure 11.
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x1

x2

x1

x2

x1

x2

x1

x2

Figure 11. — Four conditional simulations of Borri and Speranzini’s function with
symmetrized OU kernel (1), based on observations at X.

4.3. Kriging with a wrong kind of invariant kernel

We now simulate realizations of a two-dimensional centered Gaussian
Random Field with argumentwise invariant kernel, and compare the predic-
tive performances obtained by using Kriging models with different configu-
rations:

• Model A: Symmetrized kernel obtained by projection over a funda-
mental domain (analogue of the kernel defined in Eq. 4.11)

• Model B: Symmetrized kernel obtained by double sum over the orbits
(analogue of the kernel defined in Eq. 4.12)
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• Model C: Stationary kernel with symmetrized design (Same design
as defined in Eq. 4.13)
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Figure 12. — Left: Simulation of a Gaussian Field with argumentwise invariant kernel
(Model B), and learning set X (black points). Right, for each of the three columns:

Kriging mean (above) and standardized residuals when predicting at Xval with Kriging
models A, B, and C. The ISE values quantify the departure of the Kriging mean from
the actual function. The Dn values (Kolmogorov’s statistic) quantify the departure

from normality of the standardized residuals.

However, contrarily to the previous example and in order to investigate a
different class of fields for which invariances and the different kinds of sym-
metrization may have a more crucial impact, we chose here for the stationary
kernel kZ underlying the three models above an anisotropic Gaussian kernel:

kZ(x,x′) = σ2 exp

(
−

(
(x1 − x′1)

2

20
+

(x2 − x′2)
2

10

))
+ τ21x=x′ , (4.16)

still with σ2 = 7.5 and τ2 = 0.01. The same design of experiments X (up to
a symmetrization in the case of model C) was used for the three models. By
the way, we took the same 30-points LH Design as for the previous example.
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Before analyzing statistical performance results, let us focus on the par-
ticular example addressed in Figure 12. Here, as in the other results pre-
sented in this section, the underlying model of the simulated Gaussian Field
is Model B. On the right hand side of Figure 12, in the first line, one can
observe that the Kriging mean surfaces obtained with the three different
kernels look rather similar. Looking at the Integrated Square Error values,
however, one discovers a clear distinction in favour of Kriging with the ker-
nel of Model B (ISE = 1.93), compared with the ones of Model C (ISE =
3.16) and Model A (ISE = 3.44). Furthermore, a visual inspection of the
standardized residuals leads to a similar distinction: While the standard-
ized residuals obtained with the kernel of Model B look in accordance with
a Gaussian assumption, with a majority of points between −2 and 2 and
a few values outside this interval, the standardized residuals obtained with
the two other kernels are rather confined to the interval [−1, 1], with a few
outsiders. This is quantitatively confirmed by a Kolmogorov-Smirnov test,
which statistic values (denoted Dn) are respectively given by 0.078 (B),
0.171 (C), and 0.18 (A).

Model A Model B Model C
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log(ISE)

Model A Model B Model C
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5
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1
0
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1

5
0.
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0

0.
25

Dn

α = 0.01α = 0.01

α = 0.05α = 0.05

Figure 13. — Left: log-ISE values (at Xval) when using the three Kriging models A, B,
C for predicting 100 Gaussian Field realizations generated with Model B.

Right: Kolmogorov-Smirnov test statistic values for comparing the standardized
residuals to a standard Gaussian distribution.

Repeating the experiments with 100 simulated Gaussian Field realiza-
tions (corresponding to Model B), we obtain boxplots for the (logarithm of
the) ISE values (Figure 13, left) and for the Dn values (Figure 13, right).
The superiority of Model B in coverage (Dn statistic) clearly appears, the
departure from normality of the standardized residuals being much larger
for Model A and Model C. However, note that, even for Model B, the em-
pirical distribution of standardized residuals slightly differs from a standard
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Gaussian one: the Dn values are often higher than expected at confidence
levels 0.05 or 0.01 (Figure 13, right hand side, horizontal dotted lines). The
superiority of Model B is also confirmed in prediction (ISE criterion). Visi-
ble on the boxplots by checking that the notches are not overlapping (Figure
13, left), it can be checked in a quantitative way by means of a two-sample
Wilcoxon test: For instance, the null hypothesis ”ISE (Model B) = ISE
(Model C)” with the one-sided alternative ”ISE (Model B) � ISE (Model
C)” is strongly rejected with a p-value of 4.344e− 06.

These results confirm the first impressions left by the the particular case
commented above and illustrated in Figure 12: The performances of Kriging
with an argumentwise invariant kernel are sensitive to the adequacy of the
kernel chosen to the kind of invariant process underlying the data, at the
same time in terms of prediction accuracy and of coverage. In particular,
approximating an invariant Gaussian Field with a Kriging model relying on
a symmetrized kernel obtained by projection over a fundamental domain
may give very different results than using a ”double sum over the orbits”
kernel, even if the underlying stationary kernel kZ is the same in both cases.

5. Conclusion and perspectives

We proposed a class of covariance kernels, called argumentwise invariant
kernels, characterizing (up to a modification) squared integrable random
fields with invariant paths under an arbitrary action of a finite group on
the index set, as well as Reproducing Kernel Hilbert Spaces of invariant
functions (still with a finite group acting on the source space).

These kernels can be used for different purposes. We focused here on
modeling invariant functions by Kriging. As discussed along the paper, Krig-
ing models with an argumentwise invariant kernel have interesting proper-
ties, including the invariance of both Kriging mean and variance functions,
but also the invariance of paths emanating from conditional simulations.

Among the two variants for making up invariant kernels based on arbi-
trary kernels proposed in the last section, summing a kernel over the orbits
of the considered group action gave more convincing results than composing
the basis kernel with a projection onto a fundamental domain. However, this
may not hold in the general case, and further works may focus on identifying
and unlocking the potential weak points of both considered approaches.

Acknowledgements. — The authors would like to thank Anestis An-
toniadis for a decisive question on the non necessary symmetric paths of
a version of a process with symmetric paths, and Yann Richet (IRSN) for
having provided them with a physical application rising the question of

– 524 –



Invariant kernels for the approximation of invariant functions

embedding symmetry properties within Kriging. Many thanks as well to
Alain Valette for his precious advise in algebra, and to Cédric Boutillier
who helped improving a former version of the present paper. Last but not
least, this paper wouldn’t exist in its present form without the contribution
of Yves Deville, who helped creating a replicate of the DiceKriging pack-
age allowing to extend the use of the prediction and simulation methods to
arbitrary classes of kernels. Finally, the authors would like the anonymous
referee and associate editor for their constructive suggestions and comments.

Bibliography

[1] Abrahamsen (P.). — A review of Gaussian random fields and correlation functions,
second edition. Technical report, Norwegian Computing Center (1997).

[2] Adler (R.J.) and Taylor (J.E.). — Random Fields and Geometry. Springer,
Boston (2007).

[3] Amari (S.) and Nagaoka (H.). — Transactions of mathematical monographs:
methods of information geometry, volume 191. Oxford University Press (2000).

[4] Anderes (E.B.). — Estimating deformations of isotropic Gaussian random fields.
PhD thesis, Univ. Chicago (2005).

[5] Anderes (E.B.) and Chatterjee (S.). — Consistent estimates of deformed
isotropic Gaussian random fields on the plane. The Annals of Statistics, 37, No.
5A, p. 2324-2350 (2009).

[6] Anderes (E.B.) and Stein (M.L.). — Estimating deformations of isotropic Gaus-
sian random fields on the plane. The Annals of Statistics, Vol. 36, No. 2, p. 719-741
(2008).

[7] Bect (J.), Ginsbourger (D.), Li (L.), Picheny (V.) and Vazquez (E.). —
Sequential design of computer experiments for the estimation of a probability of
failure. Statistics and Computing, Vol. 22, 3, p. 773-793 (2012).

[8] Bekka (B.), de la Harpe (P.) and Valette (A.). — Kazhdan’s property (T).
Cambridge University Press (2008).

[9] Berg (C.), Christensen (J.P.R.) and Ressel (P.). — Harmonic Analysis on Semi-
groups. Springer (1984).

[10] Berlinet (A.) and Thomas Agnan (C.). — Reproducing Kernel Hilbert Spaces in
Probability and Statistics. Kluwer Academic Publishers (2003).

[11] Cartan (H.) and Godement (R.). — Théorie de la dualité et analyse harmonique
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