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Accelerated Monte Carlo estimation
of exceedance probabilities

under monotonicity constraints

Nicolas Bousquet(1)

ABSTRACT. — The problem of estimating the probability p = P (g(X) �
0) is considered when X represents a multivariate stochastic input of a
monotonic function g. First, a heuristic method to bound p, originally
proposed by de Rocquigny (2009), is formally described, involving a spe-
cialized design of numerical experiments. Then a statistical estimation of
p is considered based on a sequential stochastic exploration of the input
space. A maximum likelihood estimator of p build from successive depen-
dent Bernoulli data is defined and its theoretical convergence properties
are studied. Under intuitive or mild conditions, the estimation is faster
and more robust than the traditional Monte Carlo approach, therefore
adapted to time-consuming computer codes g. The main result of the pa-
per is related to the variance of the estimator. It appears as a new baseline
measure of efficiency under monotonicity constraints, which could play a
similar role to the usual Monte Carlo estimator variance in unconstrained
frameworks. Furthermore the bias of the estimator is shown to be corrigi-
ble via bootstrap heuristics. The behavior of the method is illustrated by
numerical tests conducted on a class of toy examples and a more realistic
hydraulic case-study.

RÉSUMÉ. — On considère l’estimation de la probabilité p = P (g(X) � 0)
où X est un vecteur aléatoire et g une fonction monotone. Premièrement,
on rappelle et formalise une méthode, proposée par de Rocquigny (2009),
permettant d’encadrer p par des bornes déterministes en fonction d’un
plan d’expérience séquentiel. Le second et principal apport de l’article
est la définition et l’étude d’un estimateur statistique de p tirant parti
des bornes. Construit à partir de tirages uniformes successifs, cet estima-
teur présente sous de faibles conditions théoriques une variance asympto-
tique plus faible et une meilleure robustesse que l’estimateur classique de
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Monte Carlo, ce qui rend la méthode adaptée à l’emploi de codes informa-
tiques g lourds en temps de calcul. Des expérimentations numériques sont
menées sur des exemples-jouets et un cas d’étude hydraulique plus réaliste.
Une heuristique de boostrap, reposant sur un réplicat de l’hypersurface
{x, g(x) = 0} par des réseaux de neurones, est proposée et testée avec
succès pour ter le biais non-asymptotique de l’estimateur.

1. Introduction

In many technical areas, the exceedance of some unidimensional variable
Z over a certain critical value z∗ may define an event of probability p which
has to be carefully estimated. Assumed to be stricly positive, p can be
defined by

p = P (g(X) � 0) =

∫

U
11{g(x)�0}f(x) dx

with X a random vector of uncertain input parameters with probability
density function (pdf) f , taking its values in a d−dimensional space U, and
g(X) = z∗−Z a deterministic mapping from U to IR. This framework is often
encountered in structural reliability studies [29], when g is a computer code
reproducing a physical phenomenon. A Monte Carlo (MC) method is the
usual way to estimate p by p̂n = n−1

∑n
k=1 11{g(xk)�0} where n is large and

the xk are independently sampled from f . Avoiding regularity hypotheses
on g, this unbiased estimator presents good convergence properties and
an estimation error independent on d. Unfortunately, this strategy often
appears inappropriate in practice when p reaches low values, since g can
be time-consuming and the computational budget may be limited: a good
estimation of a probability p ∼ 10−q typically requires at least 10q+2 calls
to g [25]. Furthermore, p̂n has the theoretical defect not to be robust, in the
sense given in [20]: its relative error, namely its coefficient of variation, does
not tend to a finite limit when p→ 0+, given any finite number n of trials.

Many non-intrusive strategies have been proposed to accelerate the MC
approach. Traditional methods from the engineer community in structural
reliability (FORM/SORM) treat the estimation of p as an optimization
problem. The computational work is usually fast but the estimators suffer
from weakly or non-controllable errors. Statistical approaches are judged in
terms of reduction rate with respect to the MC estimator variance Var[p̂n] =
p(1− p)/n. Methods like quasi-MC, sequential MC or importance sampling
[24] are based on selecting a design of experiments (DOE), namely a set of
points in U on which g is tested, such that U be explored in areas close to
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the limit state surface S = {x ∈ U ; g(x) = 0}. Most advanced methods
often get rid of the time-consuming difficulties by emulating the behavior
of g, for instance using kriging techniques [4] which presuppose smoothness
conditions on g.

Minimizing the strength of regularity hypotheses placed on g underlies
the development of specialized acceleration methods. For instance, computer
codes can suffer from edge effects which restrict smoothness conditions [32].
On the other hand, the reality of the phenomenon can imply various form
constraints on Z. Especially, the assumption that g is monotonic with res-
pect to x is a standard problem in regression analysis [14]. In the area
of numerical experiments, monotonicity properties of computer codes have
been considered theoretically and practically, e.g. proving the MC acceler-
ation of Latin Hypercube Sampling for the estimation of expectancies [28],
carrying out screening methods for sensitivity analyses [27], constraining re-
sponse surfaces [23, 22], predicting the behavior of network queuing systems
[35], computing flood probabilities [13] or estimating the safety of a nuclear
reactor pressure vessel [32].

Specific engineering works in structural reliability highlighted the pos-
sibility of bounding and estimating p significantly faster than using a MC
approach. Under the name of monotonic reliability methods (MRM), de Roc-
quigny [13] proposed a class of algorithms contouring the limit state surface
and enclosing p between deterministic bounds which dynamically narrow.
A similar idea was explored in [34]. However, although a parallelization of
such algorithms was already implemented [26], these methods were only em-
pirically studied and some of the proposed estimators of p remained crude.

Therefore the present article aims at providing a first theoretical ap-
proach of the accelerated MC estimation of p when g is assumed to be mono-
tonic and possibly discontinuous, although some smoothness constraints are
assumed on the failure surface S. More precisely, this article is structured
as follows.

Section 2 is dedicated to a general description and a mathematical for-
malization of MRM. The main contribution is presented in Section 3: a
statistical estimator of p is proposed, based on uniformly sampled DOEs in
nested spaces. Defined as the maximum likelihood estimator of dependent
Bernoulli data, its asymptotic properties are theoretically studied. The es-
timator is shown to be robust, and its variance gains a significant reduction
with respect to the usual MC case. It may also be viewed as a baseline (or
target) variance for monotonic structural reliability frameworks. The non-
asymptotic bias of the estimator is examined in Section 4, through numerical
experiments involving a class of toy examples. Based on a neural network

– 559 –



N. Bousquet

emulation of S, bootstrap heuristics are proposed and successfully tested
to remove this bias. Finally, a more realistic hydraulic case-study illustrates
the benefits of the complete method.

Along the paper some connections are done with other areas of compu-
tational mathematics, especially about implementation issues, and a discus-
sion section ends this article by focusing on the research avenues that must
be explored in the area of stochastic sequential DOEs to improve the results
presented here.

2. Material

2.1. Working assumptions, definitions and basic properties

Let g : X �→ g(X) be a deterministic function defined as a real-valued
scalar mapping of X = (X1, . . . , Xd) on its definition domain U ⊂ IRd.
Deterministic means that g(x) produces always the same output if it is
given the same input x. Global monotonicity is defined as follows: ∀i, ∃si ∈
{−1,+1}, ∀ε > 0, ∀x = (x1, . . . , xd) ∈ U, such that

g (x1, . . . , xi−1, xi + siε, xi+1, . . . , xd) � g (x1, . . . , xi−1, xi, xi+1, . . . , xd)

where si represents the sign of monotonic dependence: si = 1 (resp. si =
−1) when g is decreasing (resp. increasing) along with the i−th component
xi. The following assumption is made without loss of generality since any
decreasing i−th component can be changed from xi to −xi:

Assumption 1. — The function g is globally increasing over U.

To be general, U = [0, 1]d and X is a random vector defined on the
probability space (U,B(U), P ). Next assumption is made following this same
concern of generality.

Assumption 2. — All inputs x1, . . . , xd are independently uniform on
U = [0, 1]d.

In real cases, x1, . . . , xd can be defined as transformed inputs, as usual in
structural safety problems [29]. In such cases one can write x = T (y) where
y = (y1, . . . , yd) is a vector of physical inputs and T is their multivariate
distributional transform. Therefore g = g̃◦T−1 where g̃ is a mononotic func-
tion and T has to preserve this monotonicity. When the yi are independent,
T is reduced to the vector of marginal cdfs (F1, . . . , Fd) and is obviously
increasing, so the assumption is not restrictive. Else, technical requirements
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on T are needed, which depend on the way this joint distribution is defined
[36]. See for instance [6] for such requirements on Gaussian copulas. Another
general result is given in the Appendix (Supplementary Material).

Assumption 3. — Both subspaces U− = {x ∈ U, g(x) � 0} and U+ =
{x ∈ U, g(x) > 0} are not empty (so that p exists in ]0, 1[).

Definition 2.1. — A set of points of U is said to be safety-dominated
(resp. failure-dominated) if g is guaranteed to be positive (resp. negative) in
any point of this set.

Denote by � the partial order between elements of U defined by x � y ⇔
xk � yk ∀k = 1, . . . , d. Then assume that some point value g(x̃) is known,
and consider the sets U+

x̃ = {x ∈ U | x � x̃} and U−x̃ = {x ∈ U | x � x̃}.
The increasing monotonicity implies that if g(x̃) > 0 (resp. g(x̃) < 0), then
U+

x̃ is safety-dominated (resp. U−x̃ is failure-dominated). This proves next
lemma.

Lemma 2.2. — Both inequalities are true with probability 1:

p � 1− P (X ∈ U+
x̃ ) if g(x̃) > 0,

p � P (X ∈ U−x̃ ) else.

More generally, assume that n input vectors (xj)j=1,...,n can be sorted
into safe and failure sub-samples following the corresponding values of
{g(xj)}j=1,...,n. They are respectively defined by

Ξ+
n = {x ∈ (xj)j=1,...,n | g(xj) > 0}

and

Ξ−n = {x ∈ (xj)j=1,...,n | g(xj) � 0} .

Then one may define the sets

U+
n =

{
x ∈ U | ∃xj ∈ Ξ+

n , x � xj
}
,

U−n =
{
x ∈ U | ∃xj ∈ Ξ−n , x � xj

}

(see Figure 1 for an illustration). Finally, denoting p−n = P (X ∈ U−n ) and
p+n = 1 − P (X ∈ U+

n ) to alleviate the notations, for all n � 0, in all the
sequel one has

p−n � p � p+n . (2.1)

– 561 –



N. Bousquet

Hereafter, U+
n and U−n will be referred to as dominated subspaces, where

the sign of g(x) is known. Note that the complementary non-dominated
subspace Un = U/ (U+

n ∪ U−n ) is the only partition of U where further calls
of g are required to improve the bounds. Finally, a topological assumption
on S is needed to achieve the formal description of the situations studied in
[13] and [26].

Assumption 4. — The limit state surface S = {x ∈ U ; g(x) = 0} is
regular enough and separates U in two disjoint domains U− and U+ (simply
connected).

The second part of this assumption implies that, in terms of classifi-
cation, the two classes of points U−n and U+

n are perfectly separable when
n → ∞. This property will be used later in the paper to carry out boot-
strap heuristics. By regular enough, S is assumed not to be the surface of
multidimensional stairs, so that it cannot be exhaustively described by a
n−DOE with n < ∞. This mild assumption is ensured, for instance, if g
is continuously differentiable on a non-empty measurable subset of S. More
formally, it is assumed that ∀n <∞,

sup
xn∈S̄

∫

Un−1∩U−
11{x�xn} dx < p− p−n−1, (2.2)

sup
xn∈S̄

∫

Un−1∩U+

11{1−x�1−xn} dx < p+n−1 − p. (2.3)

This will imply that p−n < p < p+n and the finiteness of the strictly positive
quantity ω̃n+1(p) = [(p+n − p)(p− p−n )]−1 encountered further in the paper.

Remark 2.3. — In multi-objective optimization, a dominated space can
be interpreted as a subset of a performance space delimited by a Pareto
frontier [18]. In this framework, g is thought as a monotonic rule of decision
depending of d variables, for which the set of n best possible configurations
(the frontier) is searched.

Remark 2.4. — The proportions (p−n , 1 − p+n ) are the volumes of two
unions of hyperrectangles sharing the same orthogonal basis. Computing
such volumes is known in computational geometry as Klee’s measure prob-
lem, for which recursive sweepline algorithms can provide exact solutions
[39]. Details about their implementation are given in Appendix (Supplemen-
tary Material). When d exceeds 4 or 5, these exact methods appear however
too costly, and MC methods should be prefered in practice to compute these
quantities.
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2.2. MRM implementation: a one-step ahead strategy

Starting from U+
0 = {1d}, U−0 = {0d} and U0 = U = [0, 1]d, the iterative

scheme shared by all MRM variants at step n � 1 is based on:

1. selecting a DOE {x(1)
n , . . . ,x

(mn)
n } ∈ Un−1;

2. computing the signatures ξ
(j)
xn = 11{

g
(
x

(j)
n

)
<0

};

3. updating the subspaces

U−n = U−n−1 ∪
{
x ∈ U | ∃ x(j)

n , ξ(j)xn
= 1, x � x(j)

n

}
,

U+
n = U+

n−1 ∪
{
x ∈ U | ∃ x(j)

n , ξ(j)xn
= 0, x � x(j)

n

}
,

Un = U/(U−n ∪ U+
n )

4. updating the bounds {p−n , p+n } = {Vol(U−n ), 1−Vol(U+
n )}.

Since U−n ⊂ U−n+1 ∀n � 0, then P (X ∈ U−n ) � P (X ∈ U−n+1) and the
sequence (p−n ) is nondecreasing. Symmetrically, the sequence (p+n ) is nonin-
creasing. Since bounded in [0, p] and [p, 1], both sequences are converging.

At each step, the DOE must be chosen accounting for the increasing

monotonicity of g. Denoting x
(1)
n and x

(2)
n two elements of the DOE and

assuming to know ξ
(1)
xn , it is unnecessary to compute ξ

(2)
xn in two cases:

if ξ
(1)
xn = 1 and x

(1)
n � x

(2)
n ⇒ x

(2)
n ∈ U−

x
(1)
n

and ξ
(2)
xn = 1,

if ξ
(1)
xn = 0 and x

(1)
n � x

(2)
n ⇒ x

(2)
n ∈ U+

x
(1)
n

and ξ
(2)
xn = 0.

Thus the order of trials should be carefully monitored, in relation with
the partial order between the elements of the DOE. Reducing the DOE
to a single element, i.e. mn = 1 for all steps, minimizes the number of
unnecessary trials. This one-step ahead strategy is favored in the present
paper.

2.3. Stochastic MRM

Initialization. — First iterations should be monitored to reduce signifi-
cantly the width of [p−n , p

+
n ], such that further iterations mainly focus on

refinements. A deterministic strategy seems the most appropriate to start
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from [0, 1] until providing non-trivial bounds. A dichotomic diagonal MRM,
illustrated on Figure 2 in a two-dimensional case, was used in the examples
considered further. It explores the non-dominated space in an intuitive way
and stops at step k0 � 1 such that

k0 � 1 +
log(1/p)

d log 2
.

Consequently, an expected crude prior value of p can help to estimate the
minimal number k0 of trials. To alleviate the paper, the notation (U+

0 ,U
−
0 ,

p+0 , p
−
0 ) now describes the situation after N − 1 introductive deterministic

steps with N � k0 + 1, such that 0 < p−0 and p+0 < 1.

Switching to stochastic DOEs. — Pursuing a deterministic strategy can
be too costly to be efficient, the upper bound p+n offering possibly a very
conservative assessment of p [13]. Intuitively, such a strategy should be
optimized by selecting the next element of the DOE as the maximizer of
a criterion which predicts a measure of dominated volume. Apart from the
difficulty of predicting, choosing the criterion remains arbitrary. Switching
to a stochastic strategy, which allows for a sequential statistical estimation of
p in addition of providing bounds, seems a promising alternative approach.
In this framework,

xn ∼ fn−1

at each step n � 1, with fn−1 a pdf defined on Un−1. Then the probability
space (U,B(U), P ) becomes endowed with the filtration F = (Fn) where Fn
is the σ−algebra generated by a n−sequence. The sequences (p−0 , . . . , p

−
n )

and (p+0 , . . . , p
+
n ) become monotonic, bounded stochastic processes with de-

pendent increments.

Uniformly sampled DOEs. — The remainder of this article is devoted to
a baseline statistical estimation of p in a monotonic framework, in a similar
spirit to the MC approach in unconstrained frameworks. Therefore, in the
following, the sampling is chosen uniform at each step: xn ∼ UUn−1

.
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limit state surface S

Figure 1. — Two-dimensional dominated and non-dominated subspaces after n = 14
iterations. Points {02,xa,xb,xc,xd,xe,xf ,xg} have nonzero signatures and are
vertices of U−n . Points {xh,xi,xj,xk,xl,xm,xn,12} have zero signatures and are

vertices of U+
n .

12x2

02 x1

x1 (ξx1 = 0)
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Figure 2. — Diagonal deterministic (DD-MRM) strategy, assuming a low p, stopping
after 4 steps.
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3. A maximum likelihood estimator of p

Assume that x1, . . . ,xn are successively uniformly sampled in the nested
non-dominated spaces U0, . . . ,Un−1. Next lemma follows.

Lemma 3.1. — p−n , p
+
n
a.s.−→ p.

Therefore any estimator of p located between the bounds is strongly consis-
tent. Especially, any crude average of the bounds gains a statistical validity.
A more sophisticated approach can be carried out by noticing that, at step
k, the occurence of a nonzero signature ξxk

follows a Bernoulli distribution
B(γk) conditionally to Fk−1, with

γk = P (g(x) � 0|x ∈ Uk−1) ,

=
P (g(x) � 0)− P

(
g(x) � 0|x ∈ U−k−1

)
P

(
x ∈ U−k−1

)

P (x ∈ Uk−1)

from Bayes’ formula, hence

γk =
p− p−k−1

p+k−1 − p−k−1

. (3.1)

After n steps, all information about p is brought by the dependent-data like-
lihood Ln(p) = Ln(p|x1, . . . ,xn) defined by the product of these conditional
Bernoulli pdf:

Ln(p) =

n∏

k=1

(
p− p−k−1

p+k−1 − p−k−1

)ξxk
(

p+k−1 − p
p+k−1 − p−k−1

)1−ξxk

. (3.2)

The associated maximum likelihood estimator (MLE) p̂n is considered in
next proposition.

Proposition 3.2. — Denote !n(p) = logLn(p). There exists a unique
and consistent solution p̂n in ]p−n−1, p

+
n−1[ of the likelihood equation !′n(p) =∑n

k=1 ω̃k (p) (pk − p) = 0, such that

p̂n =

n∑
k=1

ω̃k (p̂n) pk

n∑
k=1

ω̃k (p̂n)
, (3.3)

with ω̃k (p) =
((
p− p−k−1

) (
p+k−1 − p

))−1
and pk = p−k−1 +

(
p+k−1 − p−k−1

)
ξxk
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Assumption 4 ensures the existence of p̂n since, by (2.2) and (2.3), p
cannot be reached by at least one of the two bounds (p−n−1, p

−
n+1) for any

finite n. Similarly, the quantities defined in next propositions remain finite
if the limit state surface S has mild smoothness properties. They are related
to the behavior of the inverse of the Fisher information associated to (3.2),
which converges to 0 faster than the variance of the usual MC n−estimator

VMCn (p) =
p(1− p)

n
.

Lemma 3.3. — Assume that S is such that (2.2) and (2.3) hold (As-
sumption 4). Then, ∀n � 0,

E
[
1/(p− p−n )2

]
< ∞, (3.4)

E
[
1/(p+n − p)2

]
< ∞, (3.5)

and consequently E[ω̃n+1(p)] <∞.

Proposition 3.4. — Denote Jn(p) the Fisher information associated to
(3.2). Then

J−1
n (p) =

(
n∑

k=1

E [ω̃k(p)]

)−1

� VMCn (p)
n

n∑
k=1

(1− ck−1)−1

< VMCn (p) (3.6)

where c0 = 0 and ∀ k > 1,

ck = E

[
p−k
p

+
1− p+k
1− p − p−k (1− p+k )

p(1− p)

]
.

Proposition 3.5. — Denote γ0 = [(p+0 − p−0 )/p−0 ]2. Then

J−1
n (p) � VMCn (p)

(
pγ0

1− p

)
. (3.7)

In this data-dependent context, the central limit Theorem 3.6 remains
classical in the sense that the Cramer-Rao bound given by the inverse of
the Fisher information is still asymptotically reached by the MLE. This
convergence is technically based on the martingality of the score process
n �→ {!′n(p)}n. Therefore inequalities (3.6) and (3.7) imply asymptotic
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variance reduction with respect to Monte Carlo and robustness. From (3.7),
the asymptotic coefficient of variation (CV) of the MLE is such that

CV [p̂n] �
p

E
[
p−n−1

]
√
γ0

n
∞∼

√
γ0

n
.

Theorem 3.6. — Let (λn) be any deterministic sequence in ]0, 1[ such
that λn → 1. Under the supplementary assumptions:

(i)
1

nδ

n∑

k=1

(ω̃k(p)− E [ω̃k(p)])
IP−→ 0 for any δ � 1.

(ii)
p+n − p
p− p−n

IP−→ 1.

(iii)
p̄n − p
p+n − p

IP−→ 0 and
p̄n − p
p− p−n

IP−→ 0 with p̄n = (1− λn)p̂n + λnp

then

J1/2
n (p) (p̂n − p) L−→N (0, 1). (3.8)

The law of large numbers (i) reflects the requirement that the sum of
weights ω̃k(p) cannot diverge faster than O(Jn(p)) from its mean behav-
ior when n → ∞. Although difficult to check in practice, this behavior
seems rather intuitive because the sampling trajectories mainly vary at the
first steps of the algorithm, when the non-dominated space is still large.
Therefore (i) can be perceived as an indirect requirement on the shape of
the surface S. Assumption (ii) appears somewhat natural, saying that the
bounds converge to p symmetrically. Assumption (iii) expresses the idea
that any estimator located between p̂n and p converges to p faster than the
bounds. Again, it seems intuitive since p̂n is defined as an incremental aver-
age (cf. (3.3)), and therefore adopts a smoother behavior than the bounds,
as a function of n.

Next proposition allows for an empirical estimation of the asymptotic
variance and confidence intervals. The additional requirement (v) appears
mild and in the same spirit than the smoothness assumptions on S, saying
that p cannot be exactly reached by an average of the bounds for any finite
number n of trials.
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Proposition 3.7. — Denote Ĵn(p) =
∑n
k=1 ω̃k(p). Under the assump-

tions of Theorem 3.6, and assuming in addition:

(iv) Assumption (i) remains true ∀δ � 1/2,

(v) � n <∞ such that p = (2n)−1
∑n
k=1 ω̃k(p)(p

−
k−1 + p−k−1)

/∑n
k=1 ω̃k(p),

then

Ĵ
5/2
n (p)

|Ĵ ′n(p)|

(
Ĵ −1
n (p̂n)− J−1

n (p)
) L−→ N (0, 1). (3.9)

The reality of these theoretical descriptions is examined in the two next
sections, through numerical experiments conducted on toy examples and a
more realistic hydraulic model.

4. Numerical experiments I: toy examples

The statistical behavior of the MLE is illustrated here using the following
generic toy example. For a given dimension d, denote

Zd = hd(Y) = Y1/(Y1 +

d∑

i=2

Yi)

where the physical input Yi follows the gamma distribution G(i+ 1, 1) with
pdf FYi , independently of other inputs. Obviously, ∀ d � 2, hd is increas-
ing in (−X1, X2 . . . , Xd) where Xi = FYi(Yi) ∼ U[0,1], and Zd follows the
beta distribution Be(2, 2−1(d+ 1)(d+ 2)− 3). Therefore, denoting qd,p the
p−order quantile of Yd, the deterministic function defined by

gd(X) = hd ◦ T−1(X)− qd,p,

with T−1(x) = (F−1
Y1

(x1), . . . , F
−1
Yd

(xd)), is related to the known exceedance
probability p.

4.1. First results

In dimension 2, using p = 5%, the behavior of MRM bounds can be easily
compared to the MC 95%-confidence area (Figure 3). This small dimension
induces a significant improvement in precision with respect to Monte Carlo,
which however disappears in higher dimensions and highlights the need for
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real statistical estimators. Studies of the root mean square error (RMSE)
and the standard deviation of the MLE, which are plotted in Figure 5 as
functions of the increasing number of calls to gd for dimensions 3 and 4, have
shown a high variance reduction of the iterative estimator p̂n with respect
to Monte Carlo but have highlighted a positive bias (Figure 4). Indeed the
highest weights favor local estimators pk = p+k when approaching S (ie.,
when ξxk

= 1 in (3.4)). On the examples considered in this last figure (as
in other experiments not presented here), a marked gap in relative bias was
noticed between dimensions 3 and 4. Under dimension 4, the bias remains
reasonable from a moderate number of iterations (typically 400). Else it
dramatically stays at high values. Other experiments have shown on this
example the effective convergence of the empirical variance of the MLE
towards the Cramer-Rao bound as well as the good behavior of its empirical
estimate (Figure 6).
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Figure 3. — MRM deterministic bounds and MLE, with Monte Carlo and MLE
95%-confidence areas, in dimension d = 2, for p = 5%. Empirical estimations are made

over 300 parallel MRM trajectories.
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computed over 100 MRM replications, in dimension d = 2.
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Figure 7. — Two-dimensional situation after n = 14 iterations. A replication Ŝn
(dashed curve) of S can be produced based on a monotonic neural network prediction

of ξx in Un. The volume under Ŝn corresponds to a new probability p̃n in the
magnitude of p, which can be estimated by Monte Carlo at an arbitrary precision.
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4.2. Bias correction via bootstrap heuristics

Bias removal appears as a practical requirement, automatizing the esti-
mation of p. Indeed, given a finite value of n, estimating p requires to decide
from which iteration kn � 1 the computation of the MLE p̂n can be worth
it, redefining p̂n =

∑n
i=kn

ψi,n(p̂n)pi with ψi,n(p) = ω̃i(p)/
∑n
j=kn

ω̃j(p). An
intuitive rule is to select

k∗n = arg min
kn

RMSE (p̂n) . (4.1)

If the MLE were debiased, RMSE (p̂n) � J−1
n (p) which is minimized by

k∗n = 1.

Given a fixed number n of trials, two general approaches may be used for
controlling and correcting the bias Bn = E[p̂n]−p affecting p̂n. A corrective
approach consists in obtaining a closed-form expression for the bias from
Taylor expansions [8, 17] or penalizing the score or the likelihood functions
[3]. This approach is not carried out here since the data-dependent context
would require a specific algebraic work and technical developments about
the empirical estimation of the main quantities involved. The alternative
use of bootstrap resampling techniques [15] can assess the bias empirically.
For the simplicity of their principle, these heuristics are preferred here.

In the present context, bootstrap experiments must be based on a repli-
cation Ŝn of the limit state surface S (see Figure 7 for an illustration).
Under Assumption 4, S can be interpreted as the decision frontier of a
supervised classification binary problem, without horseriding of classes (ie.,
perfectly separable). Therefore Ŝn depends on the choice of a classifier Ĉn,M
calibrated from an arbitrary number M of points sampled in dominated
subspaces. The rationale of the bootstrap heuristics is as follows. Given
Ĉn,M , the signature ξx of any x ∈ Un can be predicted by the occurence

of P (g(x � 0)|Ĉn,M ) � 1/2. Then denote p̃n,M the volume under Ŝn. It
can easily be estimated by p̃n,M,Q at an arbitrary precision by Monte Carlo
sampling (depending on a number Q of particles). Moreover a large number
S of MLE of p̃n,M can be fastly computed using the predicted signatures.

The bootstrap heuristics make sense if the classifier is chosen such that
p̃n,M → p when (n,M) → ∞, so that the features of the experiment are

asymptotically reproduced. Moreover, Ĉn,M must produce a monotonic sur-

face Ŝn. For these reasons, the four-layer monotonic Multi-Layer neural net-
works (MLNN) proposed in [11] have been chosen for the experiments. Based
on a combination of minimum and maximum functions (so-called MIN-MAX
networks) over the two hidden layers, these networks have universal approx-
imation capabilities of monotonic continuous functions. Besides, this choice
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matches the advices by Hurtado [21] who strongly recommended MLNN
and Support Vector Machines (SVM) to estimate S in a structural reliabil-
ity context. Both tools are flexible, can estimate a frontier on the basis of a
few samples and overcome the curse of dimensionality.

Classification-based bootstrap algorithm

1. Sample x+ = (x+
1 , . . . ,x

+
M)iid∼UU+

n
and x+ = (x−1 , . . . ,x

−
M)iid∼UU−n .

2. From (x+,x−), build a monotonic classifier Ĉn,M of (U−,U+).

3. Replace g by the uncostly monotonic (increasing) function

g̃(x) =

{
−1 if P (g(x � 0)|Ĉn,M ) � 1/2,
+1 else.

4. Sample x1, . . . ,xQiid∼UU and compute p̃n,M,Q = Q−1
∑Q
k=1 11{g̃(xk)�0}.

5. For i = 1, . . . , S, get a MLE estimator p̃
(i)
n,M,Q then estimate Bn

by

B̂n,M,Q,S = S−1
S∑

i=1

p̃
(i)
n,M,Q − p̃n,M,Q.

Numerical tests in function of n and d were conducted, and the results
are presented in Table 4.2. The bias correction is found to be effective even
from a moderate number of iterations (some hundreds) until dimension 5,
and a budget of at least n = 1, 000 is enough to correct a bias in dimension
8. With less than 10% of overestimation on average on this example, these
bootstrap heuristics also appear relevant when the exact value of p is less
interesting than its magnitude, which is often the case in design optimization
where it is aimed to diminish p of a given factor by constraining the inputs
[38].
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Table 1. — Relative error in % between estimated bias and real bias, for two true
probabilities p = 5% and p = 0.5%. Results are averaged on 100 experiments, each

boostrap estimation being based on S = 1, 000 MLE replicates. For each n, the neural
network is build from M = 106 sampled vectors, with a classification error rate less

than 0.25% on these training data.

Dimension d

p = 0.05 p = 0.005

n 2 3 4 5 8 2 3 4 5

50 1.19 4.17 6.93 16.87 27.85 8.21 13.80 18.22 39.57

100 0.28 2.31 4.79 12.94 22.98 6.15 11.55 15.67 31.40

250 0.21 1.87 3.34 8.74 19.12 3.28 8.72 11.01 24.68

500 0.12 1.25 2.87 6.20 16.76 1.14 5.84 8.12 16.06

1000 -0.02 0.47 2.14 2.97 12.85 0.12 2.72 5.28 9.23

2000 -0.008 -0.28 1.61 2.08 7.66 -0.34 1.55 3.09 6.51

5. Numerical experiments II:
a simplified hydraulic case-study

Several authors in structural reliability [13, 26, 32] considered a simpli-
fied but realistic hydraulic model linking the downstream water level H (m)
of a river section, of width b = 300 (m) and length l = 5000 (m), with the
upstream discharge Q (m3/s) and the friction coefficient Ks (m1/3/s) of
the river bed. Denoting Zm and Zv the upstream and downstream altitude
of the river bed above seal level,

H =


 Q

bKs

√
Zm−Zv

l




3/5

.

Assuming a dike level h0 = 55.5 (m), the flood probability is p = P (g′ ◦
F−1(X) � 0) where Y = {FQ(Q),Ks} (2-dim. version) or Y = {Q,Ks, Zm, Zv}
(4-dim. version), F is the cdf of Y and

g′(Y) = h0 − Zv −H(Y),

which is increasing in (−Q,Ks, Zm,−Zv). Input distributions or point val-
ues are chosen as in [26]. Q follows a Gumbel distribution with location
1013 and scale 558, truncated in [10, 104]. Ks is normal N (27.8, 32) trun-
cated in 0. In the 4-dim. version, Zm and Zv are triangular on [53.5, 56.5] and
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[48.5, 51.5] with respective modes 55 and 50 (their respective point values
in the 2-dim. version).

For several computational budgets, and averaged over 100 repeated ex-
periments, two alternative methods are compared to the MRM bias-corrected
MLE: the MC method and an engineering FORM-IS method build on two
steps: (a) with a limited number of trials (no more than 40), the First-Order
Reliability Method (FORM) is run to provide an estimate of the conception
point β = arg min ‖u‖ on {g′ ◦ T−1 ◦ Φ(u) � 0}, with Φ the standard nor-
mal pdf and u a random variable evolving in the d−dimensional standard
Gaussian space U ; (b) an Importance Sampling (IS) method that uses the
budget left to sample in U using a standard normal distribution centered
on β. See [1] for details about the implementation of the method.

For a given n, the three methods are compared through the following
indicators: E[p̂n], CV[p̂n] and the relative average precision γn = E[(p+n −
p−n )]/p. Using the DOEs produced by the MC and the FORM-IS methods,
these bounds can obviously be computed accounting for the monotonicity of
g. For each version a MC computation involving 40,000 particules provides
a precise estimate of p, which is used for estimating p in γn. Finally, S =
1, 000 bootstrap replicates were used for the correction of each MRM-MLE
estimate. The results are summarized on Table 2.

Table 2. — Estimation results for the two-dimensional and four-dimensional
versions of the problem.

n method dimension = 2 dimension = 4
E[p̂n] CV[p̂n] γn E[p̂n] CV[p̂n] γn

100 MC 0.002775 190% 2,900% 0.010075 99%

FORM-IS 0.002241 68% 478% 0.018147 74%

MRM 0.002781 14% 48% 0.015498 82% 1,400%

200 MC 0.002775 134% 630% 0.010075 70% 2,300%

FORM-IS 0.002667 44% 244% 0.010242 42% 2,230%

MRM 0.002776 6% 24% 0.012451 35% 800%

1,000 MC 0.002775 60% 515% 0.010075 31% 1,200%

FORM-IS 0.002736 27% 168% 0.009959 27% 1,000%

MRM 0.002775 0.12% 5.6% 0.010911 20% 300%

40,000 MC 0.002775 9.5% 475% 0.010075 5% 247%

– 576 –



Accelerated Monte Carlo under monotonicity

In terms of magnitude, the three methods perform similarly. The benefit
of using MRM instead of MC or FORM-IS in these low dimensions clearly
appears in most cases, and more obviously in dimension 2: MC needs at least
200 times more iterations than MRM to reach a similar precision CV[p̂n],
and if FORM-IS is significantly better than MC, the precision of its esti-
mates remains far beyond of those produced by MRM. In dimension 4, the
difference between these two methods somewhat vanishes and they lead to
close performances when the number of iterations remains low. For both di-
mensional cases, it was noticed that a single FORM run can provide a crude
estimate of p with good magnitude after 10 iterations only. But the dimen-
sional increasing allows the part of the importance sampling falling into the
non-dominated area to be greater than in a two-dimensional setting.

6. Discussion

Many structural reliability problems deal with the fast estimation of a
probability p of an undesirable event. This event can often be defined by the
occurence of an exceedance in output of some time-consuming function g
with stochastic multidimensional inputs. In the present article, g is assumed
to be monotonic and possibly non-continuous in a non-empty set.

Pursuing pioneering works by de Rocquigny [13] and Limbourg et al. [26]
who explored heuristically the benefits of this framework, this article first
offers a formal description of the so-called Monotonic Reliability Method
(MRM) that focuses on the existence of deterministic bounds around p. A
sequential strategy of numerical experiments in the input space allows for
a progressive narrowing of this interval. The second and main aspect of the
paper is the definition and the study of a statistical estimator of p when the
strategy becomes stochastic and leans on uniform nested sampling. Easy to
compute, it is defined as the maximizer of a likelihood (MLE) of dependent
data sampled from Bernoulli distributions, whose parameters are explicit
functions of the dynamic bounds.

A keypoint of the paper is the theoretical description of its asymptotic
properties, which are found similar to those arising from the classical es-
timation theory, provided some intuitive assumptions are respected. They
are found mild in practice on some examples. Both theoretical and applied
results show a significant improvement of the fastness and the robustness
of this estimator with respect to the usual Monte Carlo estimator. In the
third part of the paper, boostrap heuristics are proposed and carried out
successfully to remove the non-asymptotic bias affecting the MLE, via con-
strained neural networks. Only a basic continuity assumption on the limit
state (or failure) surface is needed to benefit from their universal approxi-
mation capabilities.
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Thus, the tools proposed in this article and its supplementary material in
Appendix can be directly used in structural reliability applications, without
preliminary learning step (as usual, for instance, in stratification methods).
However, the generality of the frame allows for a wider range of theoretical
and applied studies. These research avenues are briefly discussed in the
following items.

Bias correction. — Following [21], support vector machines (SVM) should
probably be considered instead of neural networks, since their geometric
interpretation of margin maximizers appears more relevant to the prob-
lem than neural networks. In addition to the monotonicity constraint, they
should be build at step n under the linear constraint that the volume under
the predicted surface be equal to the current (biased) estimator p̂n. This
would certainly improve the properties of the bootstrap heuristics. More im-
portantly, this method should be now tested on a large variety of examples,
and the intuitive feeling of its ability to correct the bias must be confirmed
by more applied and theoretical studies.

In parallel, future studies should focus on adopting a corrective approach
to the bias affecting the MLE, then on selecting a slippery window of in-
dexes, according to (4.1) or a similar rule, such that the MLE converges
faster to p. The comparison of the experimental benefits of both approaches
would help the method to become more ready-to-use.

Simplifying the assumptions. — Most of the technical assumptions that
are needed to get the theoretical results present some intuitive features, and
are underlyingly linked to the nature of the limit state surface. However,
they remain difficult to check in practice, although asymptotic normality
was always noticed in numerical experiments. Therefore, future work should
be dedicated to simplifying those assumptions and classifying the limit state
surfaces in function of their ability to allow a fast and robust estimation
of p.

Sensitivity studies. — Crucial tasks in structural reliability are sensitiv-
ity studies of probabilistic indicators to the uncertainty input model [31].
Therefore, assuming X = F (Y) where the Y represent physical inputs with
cdf F , given a budget n, the variations of (p−n , p

+
n , p̂n) due to modifying

F in Fε should be the subject of future works. As a supplementary bene-
fit of the method, the new values (p−k,ε, p

+
k,ε, p̂n,ε), for k ∈ {0, . . . , n}, can

be recomputed without any supplementary call to g, thanks to an impor-
tance sampling mechanism. Indeed, as the subspaces (U−k ,U

+
k ) remain domi-

nated whatever the choice made on input distributions in the physical space,
then

– 578 –



Accelerated Monte Carlo under monotonicity

p−k,ε =

∫

F−1(U−
k

)

dFε(y)

and p+kε = 1−
∫

F−1(U+
k

)

dFε(y),

which can computed by a simple Monte Carlo method. In such future stud-
ies, we suggest that the progressive bounds could be defined as robust if they
remain true whatever the fluctuations of Fε in a well-funded variational class
around F .

Exploring other forms of stochastic DOEs. — A keypoint of future works
will be to elaborate unbiased estimators from sequential stochastic designs of
experiments with non-asymptotic properties. Indeed, the asymptotic vari-
ance of the MLE reaches the Cramer-Rao bound J−1

n (p). Therefore any
unbiased estimator based on sequential uniform sampling, especially those
defined by p̃n =

∑n
k=1 ωkpk where the ωk are now deterministic weights,

independent on p and summing to 1, will never reach a lower variance than
J−1
n (p), even though the ωk are optimized to this aim. Improving the Monte

Carlo acceleration nJ−1
n (p)/(p(1− p)) will only be possible using less naive

strategies than uniform samplings. The problem of defining such samplings
so that an unbiased estimator of p has better statistical properties will be
the subject of a future article.

Towards partial monotonicity. — Finally, the practical limits of mono-
tonicity assumptions should be refined. Intuitively, monotonicity as a build-
ing hypothesis seems antagonist to high-dimensional structural safety prob-
lems, and could mainly characterize the behavior of g as a function of its
most prominent input variables (as it could be measured through global sen-
sitivity analysis). Indeed, the real examples treated in [13, 26] and [34] do
not go beyond dimension 4. Partial monotonicity, as defined in [11], seems
a more appealing and realistic property, for which the methods developed
in a pure monotonicity context should be adapted in the future.
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7. Appendix A: proofs

Proof of Lemma 3.1. — An infinite uniform sampling on U provides on
the open sets (U−,U+) two topologies constituted by the collections of open
subsets U−0 , . . . ,U−n , . . ., and U+

0 , . . . ,U+
n , . . .. Hence the sequence (U−n ,U+

n )
define two covers (exhaustions) of (U−,U+). Then

U−∞ =

∞⋃

k=0

U−k = U−, U+
∞ =

∞⋃

k=0

U+
k = U+

and limn→∞ p−n = limn→∞ P (X ∈ U−n ) = P (X ∈ U−∞) = p by inclusion.
Similarly, lim p+n = p. Furthermore, given p−0 and p+0 , p−n and 1 − p+n are
Fn−1−adapted submartingales bounded in Lp ∀p � 1. Then, from Doob’s
theorem [30], the bounds converge almost surely to p. �

Proof of Proposition 3.2. — One may write !′′n(p) =
∑n
k=1 ω̃k (p)Sk (p)

with

Sk (p) = −1 + (pk − p) ω̃k (p)
(
2p− p−k−1 − p+k−1

)
, (7.1)

= −ω̃k(p)(p− pk)2.

Hence !′′n(p) < 0 in (p−n−1, p
+
n−1). Besides, limp→p−

n−1
!′n(p) = ∞ and

limp→p+
n−1

!′n(p) = −∞. Hence, by twice continuity and differentiability of

!n(p), the mean value theorem implies the existence and unicity of a MLE
p̂n in ]p−n−1, p

+
n−1[. �

Proof of Lemma 3.3. — We shall proceed by induction. Since p−0 < p <
p+0 , (3.5) and (3.4) hold for n = 0. Denote ηn = 1/(p− p−n )2. For n � 1, it
is assumed that E[ηn] <∞. Then

E [ηn+1] = E
[
ηnE

[
1− ξxn+1 |Fn

]]
+ E

[
E

[
ξxn+1/

(
p− p−n −Vol−xn+1

)2

|Fn
]]

with Vol−xn+1
=

∫
Un∩U− 11{x�xn+1} dx the additive volume of formerly non-

dominated failure points in Un that are now dominated by the failure point
xn+1. By hypothesis, the first term is always finite. Furthermore, with

Vol−xn+1
� sup

xn∈Un∩U−

∫

Un∩U−
11{x�xn} dx = sup

xn∈S̄

∫

Un∩U−
11{x�xn} dx,

(2.2) implies that Vol−xn+1
< p− p−n . Since p−n = p−n−1 + Vol−xn

, etc., one has∑n+1
k=1 Vol−xk

< p− p−0 . Then
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E

[
E

[
ξxn+1/

(
p− p−n −Vol−xn+1

)2

|Fn
]]

= E


ξxn+1/

(
p− p−0 −

n+1∑

k=1

Vol−xk

)2



< ∞.

The same rationale applies to 1/(p+n − p)2, by symmetry, since p+n+1 =

p+n −Vol+xn+1
with Vol−xn+1

=
∫
Un∩U+ 11{1−x�1−xn+1} dx. �

Proof of Proposition 3.4. — One has
E[!′n(p)] =

∑n
k=1 E [ω̃k(p)E [pk − p|Fk−1]] = 0 since ω̃n+1 depends only on

Fn, hence the Fisher information Jn(p) = Var[!′2n (p)] = E[!′2n (p)] is equal
to −E[!′′n(p)] by twice differentiability and continuity of !n(·), similarly to a
classic iid. case. Assumption 4 implies that ∀n <∞, p−n−1 < p < p+n−1, ie. p
cannot be reached in any finite number of iterations, so that these quantities
are well defined. With −Sn(p) = ω̃n(p)(p− pn)2 ∀ n � 0 from (7.1),

Jn(p) =

n∑

k=1

E
[
ω̃2
k(p)Var [pk|Fk−1]

]
=

n∑

k=1

E [ω̃k(p)]

since

Var [pn|Fn−1] =
(
p+n−1 − p−n−1

)2
E [ξxn |Fn−1]−

(
p− p−n−1

)2
,

=
(
p+n−1 − p−n−1

) (
p− p−n−1

)
−

(
p− p−n−1

)2
,

= ω̃−1
n (p). (7.2)

Inequality (3.6) is a simple consequence of Jensen’s inequality:
since E−1

[
ω̃−1
k (p)

]
� E [ω̃k(p)],

then J−1
n (p) �

(
n∑

k=1

E−1
[
ω̃−1
k (p)

]
)−1

=
p(1− p)

n∑
k=1

(1− ck−1)−1

. �

Proof of Proposition 3.5. — Using the notation Sk(p) defined in (7.1),

Jn(p) = −E

[
p(1− p)
nVMCn (p)

n∑

k=1

ω̃k (p)Sk (p)

]
= n−1 J̃n(p)

VMCn (p)

with

J̃n(p) = E

[
n∑

k=1

p(1− p)
(
p+k−1 − p

)2ξxk
−2 (

p− p−k−1

)−2ξxk

]
,
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which can be rewritten as

J̃n(p) =

n∑

k=1

{
E

[
ξxk

(
p(1− p)

(
p− p−k−1

)2

)]
+ E

[
(1− ξxk

)

(
p(1− p)

(
p+k−1 − p

)2

)]}
.

Since p−1
((
p+k−1 − p

)
+

(
p− p−k−1

))
� ρk−1, then

p+k−1 − p � p(ρk−1 − 1) + p−k−1 � p(ρk−1 − 1) + p = pρk−1,

p− p−k−1 � p(ρk−1 + 1)− p+k−1 � p(ρk−1 + 1)− p = pρk−1.

Hence

p(1− p)
(
p+k−1 − p

)2 �
1− p
pρ2
k−1

and
p(1− p)

(
p− p−k−1

)2 �
1− p
pρ2
k−1

.

Consequently,

J̃n(p) � 1− p
p

n∑

k=1

E

[
1

ρ2
k−1

(ξxk
+ 1− ξxk

)

]
,

� 1− p
p

nE

[
1

ρ2
0

]

since (ρn) is a strictly decreasing positive process. Since (p−n , p
+
n ) are pre-

dictible processes, p−0 and p+0 are deterministic quantities, then

E

[
1

ρ2
0

]
=

(
p−0

p+0 − p−0

)2

= 1/γ0,

and J̃n(p) � n
(

1−p
γ0p

)
which proves (3.7). �

Proof of Theorem 3.6. — Given the strong consistency of p̂n, its asymp-
totic normality can be established using arguments studied in [9, 10]. Show-
ing that !′n(p) is a Fn−1−adapted martingale is a classic result:

E
[
!′n+1(p)− !′n(p)|Fn

]
= ω̃n+1(p)E [pn+1 − p|Fn] = 0.

Furthermore Jn(p) < nE[ω̃n(p)] <∞ under Assumption 4 (cf. Lemma 3.3)
Hence !′n(p) is square integrable. Denoting ∆n(p) = !′n(p) − !′n−1(p), then
∆2
n(p) = ω̃2

n(p)(pn − p)2 and

E
[
∆2
n(p)|Fn−1

]
= ω̃2

n(p)Var [pn|Fn−1] = ω̃n(p).
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Then < !′(p) >
n
=

∑n
k=1 ω̃k(p) denotes the increasing (or bracket) process

of !′n(p). The proof can be achieved in three steps.

1) With Jn(p) = E[< !′(p) >n ] and limn→∞ Jn(p) = ∞ from (3.7),
establishing asymptotic normality first requires to prove the following law
of large numbers (LLN)

Mn(p) = J−1
n (p) < !′(p) >n −1

IP−→ 0. (7.3)

Denote Wn(p) =
∑n
k=1(ω̃k(p)− E[ω̃k(p)]) Then, ∀ε > 0,

P (|Mn(p)| > ε) = P
(
J−1
n (p)|Wn(p)| > ε

)
,

� P

(
VMCn (p)

pγ0

1− p |Wn(p)| > ε

)
from (3.7),

� P

(
1

n
|Wn(p)| > ε′

)
with ε′ = ε/(p2γ0),

which tends to 0 under (i) and proves (7.3).

2) For all k ∈ {1, . . . , n}, denote Γk,n = J
−1/2
n (p)|∆k(p)|. The second

requirement of asymptotic normality is proving the following Lindeberg con-
dition: ∀ε > 0,

1

Jn(p)

n∑

k=1

E
[
∆2
k(p)11{Γk,n>ε}|Fk−1

] IP−→
n→∞

0. (7.4)

A Lyapunov condition is often used instead of (7.4), but requires 2+δ-order
moment assumptions on ω̃k(p). An alternative approach is the following.
From Markov’s inequality and since the ω̃k(p) are increasing functions of k,

P (Γk,n > ε|Fk−1) � ω̃k(p)

ε2Jn(p)
� ω̃n(p)

ε2Jn(p)
.

It follows from (7.3) that

ω̃n(p)

Jn(p)
+

1

Jn(p)

n−1∑

k=1

ω̃n(p) =
ω̃n(p)

Jn(p)
+

(
Jn−1(p)

Jn(p)

) (
< !′(p) >n−1

Jn−1(p)

)
,

IP−→
n→∞

1.

However, by Lemma 3.3, E[ω̃n(p)] <∞ which means that Jn(p)
∞∼ Jn−1(p).

Necessarily, ω̃n(p)/Jn(p)
IP−→

n→∞
0 and

Lk,n = E
[
11{Γk,n>ε}|Fk−1

] IP−→
n→∞

0. (7.5)
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Note besides that

E
[
∆2
k(p)11{Γk,n>ε}|Fk−1

]

� E
[
∆2
k(p)|Fk−1

]
E

[
11{Γk,n>ε}|Fk−1

]
+

∣∣Cov
[
∆2
k(p), 11{Γk,n>ε}|Fk−1

]∣∣ ,

� ω̃k(p)Lk,n + ω̃2
k(p)

√
Var [(pk − p)2|Fk−1]

√
Var

[
11{Γk,n>ε}|Fk−1

]

from Cauchy-Schwarz inequality. Since Var[X2] � E[X] when X ∈ {0, 1},
then

√
Var[11{Γk,n>ε}|Fk−1] �

√
Lk,n. Furthermore, denote

Kk,n(p) = ω̃k(p)
√

Var [(pk − p)2|Fk−1].

From Lemma 7.1 below and under (ii), then Kk,n(p)
IP−→ 0. Therefore, one

may write

E
[
∆2
k(p)11{Γk,n>ε}|Fk−1

]
� ω̃k(p)βk,n

with βk,n = Lk,n +Kk,n(p)
√
Lk,n

IP−→ 0 from (7.5). Then

1

Jn(p)

n∑

k=1

E
[
∆2
k(p)11{Γk,n>ε}|Fk−1

]
� < !′(p) >n

Jn(p)

n∑
k=1

ω̃k(p)βk,n

n∑
k=1

ω̃k(p)
(7.6)

and given (7.3), Toeplitz lemma proves (7.4). Finally, (7.3) and (7.4) prove
the two martingale central limit theorems [2]:

J−1/2
n (p)!′n(p)

L−→
n→∞

N (0, 1), (7.7)
√
Jn(p)

< !′(p) >n

!′n(p)
L−→

n→∞
N (0, 1). (7.8)

Lemma 7.1. — If ∃ γ∞ such that 0 < γ∞ <∞ and
p+n−p
p−p−n

IP−→ γ∞, then,

∀k � 1,

Var
[
ω̃k(p)(pk − p)2|Fk−1

] IP−→ γ∞ + 1/γ∞ − 2.

Proof. — One may write

ω̃k(p)(pk − p)2 = (1− ξxk
)
p− p−k−1

p+k−1 − p
+ ξxk

p+k−1 − p
p− p−k−1

,

= ξxk

[
ω̃k(p)

{(
p+k−1 − p

)2 −
(
p− p−k−1

)2
}]

+
p− p−k−1

p+k−1 − p
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With ξxk
∼ B(γk) and from (3.1), then

Var
[
ω̃k(p)(pk − p)2|Fk−1

]

=
ω̃k(p)

(p+k−1 − p−k−1)
2

[
(p+k−1 + p−k−1 − 2p)(p+k−1 − p−k−1)

]2
,

= ω̃k(p)(p
+
k−1 + p−k−1 − 2p)2,

=
p+k−1 − p
p− p−k−1

+
p− p−k−1

p+k−1 − p
− 2

IP−→ γ∞ + 1/γ∞ − 2.

3) A last condition is required to transfer the asymptotic normality from
!′n(p) to (p̂n − p). Since p−n−1 < p̂n < p+n−1, for any n there always exists an
open neighborhood Vp̂n of p containing p̂n. From twice differentiability of
!n(·) and continuity of !′n(·) in Vp̂n , the mean value theorem implies there
exists some intermediate point p̄n ∈ Vp̂n between p and p̂n such that

!′n (p̂n) = 0 = !′n(p) + (p̂n − p) !′′n(p̄n)
and moreover p̄n

a.s.−→ p. Thus, with !′′n(p̃n) �= 0,

(p̂n − p) = !′n(p) (−!′′n(p̄n))
−1

(7.9)

and it is necessary to prove the LLN

!′′n(p̄n)
< !′(p) >n

IP−→ 1 (7.10)

to obtain the final result (Theorem 3 in [10]), combining (7.10) with (7.3)
and (7.7). Based on (iii) this last LLN is straightforward. Indeed, ∀k � n,

∣∣∣∣
p+k − p̄n
p+k − p

− 1

∣∣∣∣ =
|p̄n − p|
p+k − p

� |p̄n − p|
p+n − p

IP−→ 0.

Similarly (p̄n − p−k )/(p− p−k )− 1
IP−→

k→n→∞
0. With pk+1 ∈ {p−k , p+k } then, for

k ∈ {0, . . . , n− 1},

γk+1,n = (p̄n − pk+1)
2
ω̃k+1(p̄n)

IP−→
k→n→∞

1.

Furthermore, some calculus proves that κk,n = ω̃k+1(p̄n)/ω̃k+1(p)
IP−→

k→n→∞
1.

Then, with −!′′n(p) =
∑n
k=1 ∆2

k(p),

!′′n(p̄n)
< !′(p) >n

=

n∑
k=1

ω̃k(p)κk,nγk,n

n∑
k=1

ω̃k(p)

IP−→
k→n→∞

1 from Toeplitz lemma.

�
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Proof of Proposition 3.7. — Using the notations of the previous proof,
note that Ĵn(p) =< !′(p) >n. By twice continuity and derivability of Ĵ −1

n (.)
in ]p−n , p

+
n [, a Taylor expansion gives

Ĵ −1
n (p̂n) = Ĵ −1

n (p)− Ĵ ′n(p)

Ĵ 2
n (p)

(p̂n − p) (1 + o(1)) .

After some calculus,

Ĵ
5/2
n (p)

|Ĵ ′n(p)|

(
Ĵ −1
n (p̂n)− J−1

n (p)
)

= RnUn +RnZn

withRn =

√
Jn(p)/Ĵn(p)

IP−→ 1 from (7.3), Un = sgn(Ĵ ′n(p))
√
Jn(p) (p̂n − p) (1+

o(1))
L−→N (0, 1) from Theorem 3.6, and

Zn =
Ĵ

3/2
n (p)

|Ĵ ′n(p)|

(
Ĵn(p)

Jn(p)
− 1

)
.

Thanks to Slutsky’s theorem, it is enough to show that Zn
IP−→ 0 to prove

the statement of the proposition. Notice that

Ĵ ′n(p) =

n∑

k=1

ω̃2
k(p)

{
2p−

(
p+k−1 + p−k−1

)}

which is always nonzero assuming (iv). Hölder’s inequality gives

n∑
k=1

ω̃k(p)

∑
ω̃2
k(p)

{
2p−

(
p+k−1 + p−k−1

)} �
∑{

2p−
(
p+k−1 + p−k−1

)}−1

n∑
k=1

ω̃k(p)

hence
Ĵ

3/2
n (p)

|Ĵ ′n(p)|
�

∑{
2p−

(
p+k−1 + p−k−1

)}−1

√
n∑
k=1

ω̃k(p)

Another Hölder’s inequality gives
Ĵ

3/2
n (p)

|Ĵ ′n(p)|
�

√√√√
n∑

k=1

(
p+k−1 − p

) (
p− p−k−1

)

2p−
(
p+k−1 + p−k−1

)

and simple calculus shows that each term of the sum is stricly smaller than
1. Then

|Zn| �
√
n

∣∣∣∣∣
Ĵn(p)

Jn(p)
− 1

∣∣∣∣∣ �
2p2√
n

n∑

k=1

(ω̃k(p)− E [ω̃k(p)])

from (3.7), then Zn
IP−→ 0 if (i) remains true ∀δ � 1/2. �

– 586 –



Accelerated Monte Carlo under monotonicity

8. Appendix B: supplementary Material

This supplementary section first provides details about the implementa-
tion of sweepline algorithms to solve Klee’s measure problem, which allows
for an exact computation (up to numerical rounding errors) of the probabil-
ity bounds (p−n , p

+
n ) ; a pseudo-code is given for direct use. Then a general

result is given about the preservation of monotonicity when the uniform
input x = (x1, . . . , xd) results from an inverse transformation of the multi-
variate distributional transform.

8.1. A sweepline algorithm to compute volumes of hypercubic
unions

Sweepline (or plane sweep) algorithms are commonly used to jointly de-
tect and sort intersections between segments [39]. The d-dimensional volume
is calculated recursively by exploring all n-1-dimensional “slices” of the d-th
dimension. See [37, 12] and [7] for more explanations. When segments are
parallel or perpendicular such as their intersections define a union of hyper-
cubes sharing the same orthogonal basis, the volume calculation is known as
Klee’s measure problem [16, 5]. A pseudo-code follows to be used for direct
implementation.

Let ∆n be the n× d matrix of n vertices (x1, . . . ,xn) defining the union
of hypercubes (for an example, see Figure 1). In the following pseudo-code,
the volume considered is V −n , also defined by the points of ∆n and the origin
(0, . . . , 0) of the U−space.

Algorithm VOL(∆n, n, d).

1. Let ∆′n = σn,d(∆n) be the n × d permutation of ∆n arranged in the increasing
order of the n−vector of d−dimensional components.

2. Remove the d−dimensional components from ∆′n and denote Voln = 0.

3. For i ∈ {1, . . . , n},
(a) Consider the slice ∆(i)

n =
{
x′i, . . . ,x

′
n ∈ ∆′n

}
.

(b) Denote Ṽol
(i)

n the d− 1−dimensional volume of ∆(i)
n .

If dimZ(i)
n = 1,

• ∆(i)
n is a n− i+ 1−vector and Ṽol

(i)

n = max{x ∈ ∆(i)
n };

• force i to the index of this maximal component in ∆′n;

else Ṽol
(i)

n = VOL(∆(i)
n , n− i+ 1, d− 1).

(c) Let Λi = ∆′n[i, d]−∆′n[i− 1, d] the size of ∆(i)
n (assuming ∆′n[0, d] = 0).

(d) Compute Vol(i)n = Λi · Ṽol
(i)

n the d−dimensional volume.

(e) Update the total volume Voln = Voln + Vol(i)n .
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In practice, this algorithm remains little used for dimension d larger than
2 or 3. This is not surprising because its complexity C(n, d) (the number
of runs for a d-dimensional hypervolume between n points) is O(nd). This
appears when considering the first developments of C(n, d):

C(n, d) =

n−1∑

k=0

C(n− k, d− 1) =

n−1∑

k=0

(k + 1)C(n− k, d− 2),

=

n−1∑

k=0

(
k−1∑

p=0

p

)
C(n− k, d− 3),

=

n−1∑

k=0

(k + 1)(k + 2)

2
C(n− k, d− 3),

. . .

Note however than the fastest version of this algorithm, proposed in [33],
runs in time O(nd/2 log n) for d � 3. An alternative approach was presented
in [7] with the same asymptotic performance, although its exposition was
restricted to dimensions 3 and 4. At the present time the computational
difficulties raised by diminishing the cost still remain open problems, al-
though some slight improvements have recently been brought in [5]. Some
ideas of possible improvements could possibly come from a parallel with
multi-objective optimization contexts (cf. Remark 1 in the article). Indeed,
algorithms running in polynomial time O(nk1dk2) to compute hypervolume
metrics of Pareto frontiers have already been proposed in [19].

8.2. Preservation of monotonicity through space transformation

Consider g̃ a monotonic function with physical input random vector
y = (y1, . . . , yd) and denote T its multivariate distributional transform. The
methodology proposed in the article applies using the transformed function
g = g̃ ◦T−1, provided T−1 is an increasing function of independent uniform
inputs x = (x1, . . . , xd). This is ensured when (y1, . . . , yd) are independent,
since T−1 = (F−1

1 , . . . , F−1
d ) where Fi is the ith marginal cdf. In dependent

cases (and possibly when the physical inputs mix continuous and discrete
distributions), the generalized Rosenblatt’s transform [36] may be used if
the inputs can be stochastically conditioned, namely they can be sorted to
get the explicit writing of the joint cdf

F (y1, . . . , yd) = F1(y1)

d∏

i=2

Fi|1,...,i−1(yi|y1, . . . , yi−1).

Under this assumption, next lemma provides an intuitive sufficient condition
for T−1 to be an increasing function of all xi ∼ U [0, 1].
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Lemma 8.1. — Assume that for i = 2, . . . , d, there exists a mapping fi
and a set of (possibly random) parameters θi independent of Y1, . . . , Yi such
that:

(i) Yi = fi(Y1, . . . , Yi−1, θi),

(ii) fi is a globally increasing function of Y1, . . . , Yi−1;

then T−1(x) is an increasing function of x.

Multivariate normal distributions are often selected as approximate ways
to tackle the difficulties of assessing correlations between input physical pa-
rameters, and therefore deserve a particular interest in the field of computer
experiments. If Chen [6] obtained general results about the preservation of
monotonicity when these distributions are given under the form of Gaus-
sian copulas, an immediate corollary of Lemma 8.1 is that any standard
binormal input distribution with positive correlation coefficient µ ensures
that T−1(x) is increasing. Indeed, Y = (Y1, Y2) where Y1 ∼ N (0, 1) and

Y2 = µY1 +
√

1− µ2θ with θ ∼ N (0, 1). A similar result can be found for
the class of elliptical bivariate copulas.

Proof of Lemma 8.1. — Assume (i). ∀t ∈ IR, ∀k ∈ {2, . . . , d}, denote
ptθi (Y1, . . . , Yi−1) = P (fi(Y1, . . . , Yi−1, θi) < t|Y1, . . . , Yi−1). Then, ∀z ∈ IR,
let AtY1,...,Yi−1

(z) denote the event {ptθi (Y1, . . . , Yi−1) � z}. By definition,

F−1
i|1,...,i−1 (z|Y1, . . . , Yi−1) = inf

{
t ∈ IR |P

(
AtY1,...,Yi−1

(z)
)

= 1
}
.

Assuming (ii), ptθi (Y1, . . . , Yi−1) is a decreasing function of Y1, . . . , Yi−1.
Thus, given t, the occurence of event AtY1,...,Yi−1

(y) similarly decreases.
Necessarily t increases, hence the minimum value of all t ∈ IR such that
P(AtY1,...,Yi−1

(z)) = 1 increases. Hence F−1
i|1,...,i−1 is an increasing function

of Y1, . . . , Yi−1, ∀i ∈ {2, . . . , d}. Since Y1 = F−1(X1) is obviously an increas-
ing function of X1, a simple recursive reasoning shows that F−1

i|1,...,i−1 is an

increasing function of X1, . . . , Xi−1. The statement of the lemma follows. �
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