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Stochastic Inverse Problem with Noisy Simulator
– Application to aeronautical model –

Nabil Rachdi(1), Jean-Claude Fort(2), Thierry Klein(3)

ABSTRACT. — Inverse problem is a current practice in engineering where
the goal is to identify parameters from observed data through numeri-
cal models. These numerical models, also called Simulators, are built to
represent the phenomenon making possible the inference. However, such
representation can include some part of variability or commonly called
uncertainty (see [4]), arising from some variables of the model. The phe-
nomenon we study is the fuel mass needed to link two given countries
with a commercial aircraft, where we only consider the Cruise phase.
From a data base of fuel mass consumptions during the cruise phase, we
aim at identifying the Specific Fuel Consumption (SFC) in a robust way,
given the uncertainty of the cruise speed V and the lift-to-drag ratio F .
In this paper, we present an estimation procedure based on Maximum-
Likelihood estimation, taking into account this uncertainty.

RÉSUMÉ. — Le problème inverse est une pratique assez courante en
ingénierie, où le but est de déterminer les causes d’un certain phénomène à
partir d’observations de ce dernier. Le phénomène mis en jeu est représenté
par un modèle numérique, dont certaines composantes peuvent comporter
une part de variabilité (voir [4]). Ici nous étudions la masse de fuel nécessai-
re pour effectuer une liaison fixée avec un avion commercial, en ne con-
sidérant que la phase de Croisière. Le but est, à partir de données de
masses de fuel consommées en croisière, d’identifier de manière robuste
la consommation spécifique SFC de la motorisation en tenant compte de
l’incertitude sur la vitesse de croisière V et sur la finesse F de l’avion.
Nous proposons une procédure d’estimation basée sur une méthode de
maximum de vraisemblance, prenant en compte cette incertitude.
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1. Introduction

One of engineering activities is to model real phenomena. Once a model is
built (physical principles, state equations, etc.), some parameters have to be
identified and some variables of the model may present some intrinsic vari-
ability. Hence, the identification of parameters should implicitly take into
account the uncertainty of variables of the model. In this paper, we present
a likelihood-based method to estimate aeronautic parameters in a Fuel mass
model. We use an analytical model that can be viewed as a black-box sim-
ulator. From a data base M∗,1fuel, ...,M

∗,n
fuel giving the mass of fuel consumed

for n lines between two given cities with a specific commercial aircraft, we
aim at identifying the Specific Fuel Consumption (SFC) which corresponds
to a characteristic value of engines. The model we use depends in particular
on the cruise speed (V ) and on the lift-to-drag ratio (F ). These variables
present intrinsic variability: the cruise speed may depend on atmospheric
conditions and the lift-to-drag ratio is also subject to variability potentially
caused by turbulent phenomena. As a matter of fact, the identification of
the parameter SFC should take into account the variability of the cruise
speed and the lift-to-drag ratio.

In this paper, we propose an algorithm taken from the work of N. Rachdi
et al. [7]. It allows a characterization of SFC from the observed data
M∗,1fuel, ...,M

∗,n
fuel and model simulations when the number of observations

n is small.

This article is organized as follows. In Section 2 we describe the setting
of the problem. In Section 3 we build the algorithm for the inverse problem
with a Maximum-Likelihood based method. In Section 4 we apply the al-
gorithm given in Section 3. In Section 5 we illustrate the effect of modeling
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conditions, particularly the random modeling on SFC and the number of
observed data. In Section 6 we establish the Theorem 6.2 providing an up-
per bound of the estimation error of the proposed algorithm. Section 7 is
devoted to proving the Theorem 6.2.

We are grateful to Henri Yesilcimen for its contribution to the data
generation and for fruitful discussions.

2. General setting

2.1. Observations

In our study, the data M∗,1fuel, ...,M
∗,n
fuel were generated from an aero-

nautic software which simulates gas turbine configurations used for power
generation. In particular, it can simulate the consumed mass of fuel at some
configuration of engines, altitude, speed, atmospheric conditions, etc. (See
Figure 1). This software is very complex and very much time consuming. In
fact only 200 outputs from this software are available by choosing various
atmospheric conditions. This sample constitutes our data reference.

Figure 1. — Aeronautic software.

In a first time, we pick up a small sample of size n = 32 from this
reference sample. The data are given in Table 1.

Table 1. — Simulated mass of fuel consumptions from aeronautic software.

Reference Fuel Masses [kg]

7918 7671 7719 7839 7912 7963 7693 7815
7872 7679 8013 7935 7794 8045 7671 7985
7755 7658 7684 7658 7690 7700 7876 7769
8058 7710 7746 7698 7666 7749 7764 7667
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Next, we will suppose that the observations M∗,1fuel, ...,M
∗,n
fuel are drawn

from an unknown probability distribution Q with associated Lebesgue den-
sity f with support

I := [Minf = 7600,Msup = 8100] .

The difference Msup −Minf = 500 kg have to be thought as an overcon-
sumption of about 7%.

2.2. A simplified aeronautical model

We recall that we are interested in identifying the specific fuel consump-
tion SFC. It is a significant factor determining the fuel efficiency of a par-
ticular engine. To handle this problem we introduce a classical simplified
Fuel mass model given by the Bréguet formula:

Mfuel = (Mempty +Mpload)
(
e
SFC·g·Ra

V ·F 10−3 − 1
)
. (2.1)

The fixed variables are

• Mempty : Empty weight = basic weight of the aircraft (excluding fuel
and passengers),

• Mpload : Payload = maximal carrying capacity of the aircraft,

• g : Gravitational constant,

• Ra : Range = distance traveled by the aircraft.

The uncertain variables mentioned in the introduction are

• V : Cruise speed = aircraft speed between ascent and descent phase,

• F : Lift-to-drag ratio = aerodynamic coefficient.

Table 2 gives the fixed variables values and the nominal values considered
for random variables.

2.3. Noise modeling

As said in the introduction, we have to take into account the uncertainty
of the cruise speed V and the lift-to-drag ratio F . Given the nominal value of
each variable (see Table 2), an expert judgment can derive the uncertainty
bounds (see Table 3).
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Table 2. — Values of Fuel mass model inputs.

input value or nominal value unit

Mempty 42600 kg
Mpload 19900 kg
g 9.8 m/s2

Ra 3000 km
Vnom 231 m/s
Fnom 19 –

Table 3. — Minimal and maximal values of uncertain variables.

variable nominal value min max

V 231 226 234
F 19 18.7 19.05

The uncertainty on the cruise speed V represents a relative difference of
arrival time of 8 minutes.

Moreover, specialists in turbine engineering propose to model the uncer-
tainties as presented in Table 4.

Table 4. — Uncertainty modeling.

variable distribution parameter

V Uniform (Vmin, Vmax)
F Beta (7, 2, Fmin, Fmax)

The probability density function of a beta distribution on [a, b] with
shape parameters (α, β) is

g(α,β,a,b)(x) =
(x− a)(α−1)(b− x)β−1

(b− a)β−1B(α, β)
1 [a,b](x) ,

where B(·, ·) is the beta function.

Figure 2 shows the probability density functions of V and F .

In order to emphasize the ”noisy” feature of the variables V and F , we
will use the writing

• V = Vnom + εV ,

• F = Fnom + εF ,
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where εV is a centered uniform random variable on the interval [εminV , εmaxV ]
with

εminV = Vmin − Vnom and εmaxV = Vmax − Vnom .
Variable εF , supposed to be independent of εV , is a beta random variable
on the interval [εminF , εmaxF ] with shape parameters (7, 2) where

εminF = Fmin − Fnom and εmaxF = Fmax − Fnom .

18.80 18.85 18.90 18.95 19.00 19.05 19.10 19.15

0
2

4
6

8

x

PD
F

Unce rtainty on F

225 230 235
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Figure 2. — (a) Uncertainty on F . (b) Uncertainty on V .

2.4. Robust identification of SFC

In our developments, we will not consider the parameter SFC to be
deterministic but it will be supposed random. We indeed do not only need
to compute SFC. We also want to take into account its own variability in
order to have a robust characterization of this parameter.

Assumption 2.1. — Let us assume that the random variable SFC is
compactly supported.

This assumption will allow to apply the theoretical framework (pre-
sented in annex) which needs the noise to be compactly supported. Such
assumption does not impact the numerical results.

As a first approach, let us assume that

SFC = µSFC + σSFC εSFC , εSFC ∼ NT (0, 1) . (2.2)

with unknown parameters µSFC and σSFC .
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We give the following ranges of variation

µSFC ∈ [15, 20] and σSFC ∈ [s, 1] ,

for a small s > 0 .

The distribution NT (0, 1) of εSFC is a symmetric truncated standard
Gaussian on the interval [−3, 3].

Now, our problem amounts to estimating the location parameter µSFC
and the standard deviation σSFC .

Remark 2.2. — All the numerical results we will present have been gen-
erated without truncation, which will not have a significant effect. Indeed,
the truncations are set to high quantiles (more than 99% for upper quantiles
and less than 1% for lower quantiles).

2.5. Statistical modeling

Let us denote by (E ,Pε) the probability space associated to the noise
vector

εε = (εSFC , εV , εF )T ,

and denote the vector of parameters by

θθ = (µSFC , σSFC)T .

Then, we consider the analytical and simplified model of Mfuel the mass of
consumed fuel, as the function

Mfuel = h(εε, θθ) ,

where h : (E ,Pεε)×Θ→ Ih is given by

h(εε, θθ) = (Mempty +Mpload)

(
exp

(
(µSFC + σSFC εSFC) · g ·Ra
(Vnom + εV ) · (Fnom + εF )

· 10−3

)
− 1

)
(2.3)

with
Θ = [15, 20]× [s, 1]

and Ih is the interval

Ih = h(E ,Θ) = [Mhinf ,M
h
sup] . (2.4)

We denote by |Ih| its length.
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Remark 2.3. — We observe through simulations that

I ⊂ Ih ,

where I = [Minf ,Msup] is the observation interval given above.

The purpose is now to estimate parameter θθ ∈ Θ from the set of data
M∗,1fuel, ...,M

∗,n
fuel. In the next section, we propose an estimation procedure

taken from [7].

3. Parameter estimation

In our previous framework it is possible to apply the procedures devel-
oped in [7]. In particular, we choose to work with the log−contrast which
can be understood as a Maximum Likelihood based estimation.

The sample M∗,1fuel, ...,M
∗,n
fuel is drawn from an unknown distribution Q.

We will use the parametric family of distributions {Qθθ , θθ ∈ Θ} where Qθθ is
the pushforward measure of Pεε by the (measurable) application u �→ h(u, θθ) .
That means that we consider the models h(ε, θ) to be a reasonable first ap-
proximation in order to obtain statistical information about Q.
Denoting ρθθ the Lebesgue density associated to the measure Qθθ, the maxi-
mum likelihood procedure is given by

θ̂θ = Argmin
θθ∈Θ

− 1

n

n∑

i=1

log(ρθθ(M
∗,i
fuel)) . (3.1)

However, the above procedure is unfeasible because the density ρθθ is not
analytically tractable. As suggested in [7], we replace ρθθ by an estimator
denoted ρmθθ . There are many ways to estimate a density. We choose the
simplest one, which is commonly used in industrial modeling.

Let εε1, ..., εεm be m random variables i.i.d from Pεε, we consider the kernel
estimate of our density

ρmθθ (·) =
1

m

m∑

j=1

Kbm
θθ

(· − h(εεj , θθ)) , (3.2)

where Kbm
θθ

is the Gaussian kernel

Kbm
θθ

(x) =
1√

2π bmθθ
e
− x2

2 (bm
θθ

)2 ,
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and bmθθ is computed from the sample h(εεj , θθ), j = 1, ...,m for θθ ∈ Θ, by
Silverman’s rule-of-thumb :

bmθθ =

(
4

3

)1/5

m−1/5 σ̂θθ . (3.3)

The quantity σ̂θθ is the empirical standard deviation of the sample h(εεj , θθ),
j = 1, ...,m

σ̂θθ =
1

m

m∑

j=1


h(εεj , θθ)−

1

m

m∑

j=1

h(εεj , θθ)




2

.

Other popular estimates are truncated projections on a suitable basis of
functions (sine, cosine, wavelets, etc.). Here we do not discuss the optimiza-
tion of the density estimation, but all what follows could be applied in the
same way. The numerical results may be slightly different, but qualitatively
the same.

Replacing ρθθ by ρmθθ in (3.1) and simplifying by the multiplying constant
1/n yields the estimation procedure

θ̂θ = Argmin
θθ∈Θ

−
n∑

i=1

log


 1

m

m∑

j=1

Kbm
θθ

(
h(εεj , θθ)−M∗,ifuel

)

 . (3.4)

Hence, our problem is an inverse problem. More precisely, it is an inverse
problem in presence of uncertainties, also called probabilistic inverse prob-
lem or stochastic inverse problem. This topic is often treated in the field of
uncertainty management: the goal may for instance be to identify the intrin-
sic uncertainty of a system, see the PhD works [1] and [5]. Another reference
is the paper of E. de Rocquigny and S. Cambier [3], where the purpose is to
identify a parameter of interest which controls the vibration amplification
of stream turbines. Our framework is different. The main difference lies in
the absence of assumptions, in the present paper, on the distribution of the
error between observation data and reference data. Thus, it differentiates
the estimation procedures we propose from the ones developed in [3].

In the following section, we provide a numerical analysis using the algo-
rithm given by (3.4). Theoretical aspects will be addressed in Section 6.
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4. Numerical study : first approach

4.1. Estimation

Setting

J(θθ) = −
n∑

i=1

log


 1

m

m∑

j=1

Kbm
θθ

(
h(εεj , θθ)−M∗,ifuel

)

 with θθ = (µSFC , σSFC)T ,

our problem is a minimization problem where we want to compute

θ̂θ = Argmin
θθ∈Θ

J(θθ) .

We recall that n = 32. The data (M∗,ifuel)i=1,...,n are provided by Table 1.
We choose m = 10000 (the number of calls to the model given by (2.3)),
and for j = 1, ...,m, εεj ∼ Pεε where

Pεε(du, dv, dw) =

1√
2π L

e−u
2/2 g(7,2,εmin

F
,εmax
F

)(v)
1

εmaxV − εminV
1 [εmin

V
,εmax
V

](w) du dv dw ,

with L = Φ(3) − Φ(−3) (Φ is the cumulative distribution function of a
standard Gaussian random variable).

This optimization procedure can be solved by Quasi-Newton methods.
We present the results in Table 5. In Figure 3 we show the resulting prob-
ability density function of SFC given by NT (µ̂SFC , σ̂SFC) .

Table 5. — SFC characterization parameters.

estimator value of J(θ̂θ) estimated SFC estimated SFC
location dispersion

θ̂θ J(θ̂θ) = 199.465 µ̂µSFC = 17.397 σ̂σSFC = 0.201

Figure 4 provides profile views of the criterion function θθ = (µSFC , σSFC)
�→ J(θθ), first at σSFC = σ̂SFC (Figure 4(a), we show log(J(θθ))) and then
at µSFC = µ̂SFC (Figure 4(b)).

We notice that the minimum θ̂θ = (µ̂SFC , σ̂SFC) is correctly located.
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Figure 3. — Estimated Specific Fuel Consumption distribution.

Figure 4. — (a) Profile view of log(J) at σSFC = σ̂SFC .
(b) Profile view of J at µSFC = µ̂SFC .

4.2. Comparison with reference sample

In order to analyse the results obtained in the previous subsection, we
need some reference sample of SFC values at the same simulation condi-
tions. We take for reference the sample of SFC values of size 200 described
in the introduction, provided by the aeronautic software. The characteristics
of this sample are given in Table 6.
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Table 6. — Reference sample characteristics.

Mean Stand. dev.

Reference sample 17.49 0.57

The data in Table 6 have to be compared with those in Table 5 where
the mean and standard deviation are µ̂SFC = 17.397 and σ̂SFC = 0.201,
respectively. Table 7 provides the associated relative errors. Figure 5 shows
the histogram of the reference sample and the estimated distribution of
SFC obtained in Figure 3.

Table 7. — Relative errors of the mean and deviation between reference SFC sample
and the estimated model (3).

Reference sample Estimated SFC (3) Relative error

Mean 17.49 17.397 0.5 %
Stand. dev. 0.57 0.201 60.6 %

It appears that the location of the variable of interest SFC is well
reached whereas the standard deviation estimation provides an error of 60%.
The ”error” has roughly two origins:

Statistical error: this error is mainly due to the limited number (n = 32)
of data from the observed masses of fuel M∗,ifuel. It is also due to the
error induced by the kernel approximation of ρθ.Yet the choice of
m = 10000 calls to the analytical model garantees that the error on
ρθ is small .

Model error: this error is relative to the use of Fuel mass model (2.1) with
uncertain variables V and F (Figure 2), and includes the Gaussian
hypothesis for SFC (2.2). Thus, the model error can be separated
into 2 parts: physical model error and uncertainty modeling error.

We observe on Figure 5 that the SFC parameter does not behave like
a Gaussian variable. This can be qualified as model error.

However, if one just wants to estimate the mean value of SFC, the
Gaussian hypothesis does not have a significative impact (0.5% of error). On
the other hand, if one wants more information about SFC, other modeling
tools are needed to allow a robust characterization approach.

In the next subsection, we will discuss the uncertainty modeling, more
precisely, the Gaussian hypothesis for SFC given by (2.2).
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Figure 5. — Reference and estimated SFC distributions.

5. On the probabilistic modeling of SFC

5.1. Considering Wiener-Hermite representation in the previous
analysis

The characterization of a random variable by the mean and the stan-
dard deviation only could be too approximative in order to study the whole
behavior of the variable. In this study, we have made an a priori (a model)
on the variable of interest SFC. In (2.2) we supposed that

SFC ∼ NT (µSFC , σ
2
SFC) ,

which we now rewrite

SFC = µSFC + σSFC ξT , ξT ∼ NT (0, 1) . (5.1)

We will see that this (truncated) Gaussian hypothesis on SFC is a particular
case of a more general representation.
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The so called Wiener Chaos Expansion, developed in the 30’s by Wiener
[11], gives a representation of any second-order random variable Z:

Z =

∞∑

l=0

zlΥl((ξk)k�1) , (with convergence in L2(P) ) (5.2)

where (ξk)k�1 is a (infinite) sequence of independent standard normal ran-
dom variables and the Υl’s are the multivariate Hermite polynomials. This
expansion is also called Wiener-Hermite expansion.

In practice, we have to consider a finite sequence (ξ1, ..., ξM ) where M
is called the order of the expansion, and the sum in (5.2) is truncated at p
which is the degree of the expansion.

Hence, considering all M -dimensional Hermite polynomials of degree
lower than p, the representation (5.2) is approximated by

Z � Zp,M =

P−1∑

l=0

zlΥl(ξξ) , ξξ = (ξ1, ..., ξM ) , (5.3)

where

P =
(M + p)!

M ! p!
.

The integer P corresponds to the number of coefficients to be estimated.
For our purpose, by Assumption 2.1, we will consider the following approx-
imation

Z � Zp,M =

P−1∑

l=0

zlΥl(ξξT ) , ξξT = (ξ1T , ..., ξ
M
T ) , (5.4)

where ξξT is a vector of truncated standard Gaussian variables.

Moreover, one can notice that by orthogonality arguments in (5.3), we
have without truncation

E(Zp,M ) = z0 = E(Z) (5.5)

and

Var(Zp,M ) =

P−1∑

l=1

z2l . (5.6)

Let us notice that by the decomposition

Zp,M = Z +
(
Zp,M − Z

)
,
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each choice of p and M will induce a model error

moderr := Zp,M − Z .
We illustrate this aspect concerning SFC in the next subsection.

5.2. Application to the Specific Fuel Consumption

In our purpose, if we suppose that E(SFC2) < ∞ (it is implicitly sup-
posed in the Gaussian hypothesis), we can set the following modeling

SFCp,M =

P−1∑

l=0

zlΥl(ξξT ) , ξξT = (ξ1T , ..., ξ
M
T ) , M, p � 1

which we rewrite by (5.5)

SFCp,M = µSFC +

P−1∑

l=1

zlΥl(ξξT ) , ξξT = (ξ1T , ..., ξ
M
T ) , M, p � 1 . (5.7)

It appears now that the Gaussian representation (5.1) is the particular case
of (5.7) with p = 1 and M = 1. Moreover, in view of the Wiener represen-
tation (5.2), the Gaussian one (5.1) may lead to a rough approximation (if
SFC is not Gaussian) and thus contributes to a non negligible model error.
It is clearly observed in Figure 5 where the reference data does not seem to
be drawn from a Gaussian distribution.

As a matter of fact, one can hope to reduce the model error (described in
the previous subsection), at least the error corresponding to SFC modeling,
by considering a less restrictive representation (5.7) with some appropriate
order M � 1 and degree p � 1 .

Let us consider the Wiener-Hermite expansion of order M = 2 and
degree p = 2

SFC2,2 = µSFC +

5∑

l=1

θlΥl(ξξT ) , ξξT = (ξ1T , ξ
2
T )

or

SFC2,2 =µSFC+θ1ξ
1
T +θ2ξ

2
T +θ3ξ

1
T ξ

2
T +θ4((ξ

1
T )2−1)+θ5((ξ

2
T )2−1), (5.8)

that leads to estimate P = (2+2)!
2!2! = 6 coefficients. Table 8 shows the re-

sult obtained by the algorithm developed in the previous section where
we change the function h(εε, θθ) in (2.3) replacing σSFCεSFC by θ1ξ

1
T +

θ2ξ
2
T + θ3ξ

1
T ξ

2
T + θ4((ξ

1
T )2 − 1) + θ5((ξ

2
T )2 − 1) , with εε = (ξ1T , ξ

2
T , εV , εF )

and θθ = (µSFC , θ1, ..., θ5) .
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Table 8. — SFC characterization parameters.

θ0 θ1 θ2 θ3 θ4 θ5

SFC2,2 17.470 0.047 0.054 0.182 0.103 0.063

Table 9. — Relative errors of the mean and standard deviation with SFC2,2.

Reference sample from SFC2,2 Relative error

Mean 17.49 17.470 0.11 %
Stand. dev. 0.57 0.230 59.65 %

Let us compare the relative errors of the first two statistical moments
by considering SFC1,1 (i.e the Gaussian hypothesis Table 7) and SFC2,2

(Table 9).

The Wiener-Hermite modeling seems to improve the mean estimation of
SFC whereas the standard deviation is poorly estimated in the two cases
with an error of about 60%. There is no significative difference between the
two methods regarding the first two moments. However, the behavior of
density functions corresponding to SFC1,1 (see Figure 6) and SFC2,2 is
clearly not the same. We present in Figure 6 the result obtained when SFC
is modeled by a Wiener expansion of order M = 2 and degree p = 2.

The distribution of SFC given by the Wiener expansion in Figure 6
seems to have a behavior close to the reference sample one, despite the fact
that there is a non negligible bias. As mentioned in the previous subsection,
this is due to the statistical and model errors. Indeed, let us recall that we
have at disposal n = 32 reference fuel masses from which we characterize the
SFC parameter. It would be interesting to see what happens when adding
reference fuel masses, i.e by reducing the statistical error.

5.3. Wiener-Hermite analysis with augmented reference fuel mass
sample

We present here numerical results obtained by adding 50 new samples
from the data basis built with the complex software with the same ini-
tial conditions. Figure 7 shows the characterization of SFC obtained by a
Wiener expansion of order M = 2 and degree p = 2 from the augmented
reference fuel mass sample of size n = 82.

Hence, by adding reference data we improve significatively the charac-
terization of SFC on the first two statistical moments as well as on the
whole probability density function of SFC.
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Figure 6. — Estimations of SFC probability density with a Wiener Expansion
p = M = 2 .

The Table 10 gives the coefficients corresponding to this simulation.

Table 10. — SFC characterization parameters from augmented fuel mass sample.

θ0 θ1 θ2 θ3 θ4 θ5

SFC2,2 17.50 0.281 0.008 0.012 0.191 0.219

Table 11. — Relative errors of the mean and standard deviation with SFC2,2 from
augmented fuel mass sample.

Reference sample from SFC2,2 Relative error

Mean 17.49 17.50 0.06 %
Stand. dev. 0.57 0.404 29.12 %
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In the next section we introduce some knowledge on the SFC modeling
through an expert judgment inducing a new statistical modeling that will
prove to be better.

Figure 7. — Characterization of SFC with an augmented sample of fuel mass.

5.4. Analysis with a “good” a priori knowledge

In the previous analyses, we only consider truncated Wiener-Hermite
expansions. This is more of a mathematical hypothesis than a knowledge
brought to the modeling. Suppose now that an expert judgment says that
the distribution of the SFC is of exponential form. Mathematically, it is
equivalent to supposing that the probability density of SFC belongs to the
family

{
p(u; θθ) = θ2 e

−θ2(u−θ1) 1 [θ1,+∞[ , θθ = (θ1, θ2) ∈ R+ × R∗+
}
.
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One can check that this suggestion induces the modeling

SFCexp = θ1 −
1

θ2
log(ξ) , ξ ∼ U([0, 1]) , (5.9)

where U([0, 1]) is the uniform distribution on the interval [0, 1] .
In order to satisfy Assumption 2.1, we consider the truncated version

SFCexp = θ1 −
1

θ2
log(ξT ) , ξT ∼ U([c, 1]) , (5.10)

for some small c > 0.

Remark 5.1. — Representation (5.10) seems quite different from the one
provided by the Wiener-Hermite expansions (see (5.1) and (5.8)). Yet, as the
random variable SFCexp has finite variance, the modeling (5.10) could be
seen as a practical alternative to a Wiener expansion (5.2). Such a Wiener
expansion would be given by choosing a high order Mexp and a high degree
pexp in (5.4).

In what follows, we present the results of the numerical analysis corre-
sponding to n = 32 and n = 82.

Table 12. — Estimation of θθ = (θ1, θ2) when n = 32.

θ1 θ2

SFCexp 17.23 3.45

Table 13. — Relative errors of the mean and standard deviation between reference SFC
sample and SFCexp when n = 32.

Reference sample from SFCexp (n = 32) Relative error

Mean 17.49 17.52 0.17 %
Stand. dev. 0.57 0.29 49.12 %

Table 14. — Estimation of θθ = (θ1, θ2) when n = 82.

θ1 θ2

SFCexp 16.95 2
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Table 15. — Relative errors of the mean and standard deviation between reference SFC
sample and SFCexp when n = 82.

Reference sample from SFCexp (n = 82) Relative error

Mean 17.49 17.45 0.23 %
Stand. dev. 0.57 0.501 12.1 %

Figure 8. — Characterization of SFC with an exponential hypothesis.

We clearly see that the informative knowledge contributes to improving
significatively the characterization of the Specific Fuel Consumption. With
n = 82 fuel mass data, the results are satisfying as shown in Figure 8 and
Table 15.
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5.5. Conclusion

Section 5 was dedicated to illustrating the effect of the modeling condi-
tions for SFC characterization. In particular, we showed the impact of a
”model error” through the modeling of the random variable SFC. We also
illustrated how the statistical error, through the number of fuel mass data,
appears in the performance of the estimation.

In all cases, we computed a parameter θ̂θ. If we supposed that there is
no model error, that is Q ∈ {Qθ, θ ∈ Θ} (where Q is the ”true” distribution
of M∗fuel), the error is only due to the limited number of data. So it makes

sense to investigate the difference ‖θ̂θ− θθ∗‖, where θθ∗ is defined as Q = Qθ∗ .
If this is not the case it gives an insight on the statistical error part.

It is the topic of the following section.

6. Theoretical result

In this paper, the study of the procedure performance (3.4) will be non-
asymptotic, i.e for a fixed number of observations M∗,ifuel (n) and a fixed
number of variables εεj (m). The asymptotic study is let to a forthcoming
work.

The quality of such estimation procedure can be investigated by giving
an upper bound of the distance between the reachable parameter θ̂θ and
the best parameter θθ∗ (unknown). The latter can be seen as the parameter
obtained if one has an infinite number of observations M∗,ifuel and variables
εεj . More precisely,

θθ∗ = Argmin
θθ∈Θ

EQ log
(
ρθθ(M

∗
fuel)

)
, (6.1)

where EQ log
(
ρθθ(M

∗
fuel)

)
can be seen as the ”limit” of the quantity

1

n

n∑

i=1

log


 1

m

m∑

j=1

Kbm
θθ

(
h(εεj , θθ)−M∗,ifuel

)

 (6.2)

in (3.4) when n and m go to infinity.

The Maximum Likelihood equation (6.1) turns out to be the minimiza-
tion of the Kullback-Leibler divergence between Q and the family {Qθ, θ ∈
Θ}, while equation (6.2) is a smoothed empirical counterpart.
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We consider the model h(εε, θθ) given in (2.3), but what follows can be
generalized to any other one.

Then, denoting by ‖ · ‖ the Euclidian norm in R2, it makes sense to
bound the quantity

‖θ̂θ − θθ∗‖2 .
Let us denote by

R(θθ) := EQ log
(
ρθθ(M

∗
fuel)

)
,

and by f the Lebesgue density associated to the measure Q .

Assumption 6.1. — Let us consider the following assumptions.

– A1 The map θθ �→ R(θθ) is twice differentiable with

∇R(θθ∗) = 0

and has a symmetric positive definite Hessian matrix ∇2R . Let us
denote by λmin > 0 the smallest eigenvalue of the set of matrices
{∇2R(θθ), θθ ∈ Θ} .

– A2 It exists η > 0 such that for all θθ ∈ Θ, the density probability of
h(εε, θθ) we noted ρθθ, satisfies

ρθθ > η .

– A3 For all θθ ∈ Θ, the second derivative of ρθθ, we note ρ
′′
θθ , exists

and
C := sup

θθ∈Θ
‖ρ′′θθ ‖2 < +∞ .

– A4 We suppose that

0 < δ < inf
θθ∈Θ
σ̂θθ and sup

θθ∈Θ
σ̂θθ < σ < +∞ ,

where σ̂θθ is defined in (3.3).

We prove the following consistency theorem:

Theorem 6.2. — Let us consider the estimator θ̂θ in (3.4) and the As-
sumptions (6.1).

Then, for all 0 < τ < 1/2, with probability at least 1− 2 τ

‖θ̂θ − θθ∗‖2 � c1
√

log(a1τ−1)

n
+
c2

√
log(a2τ−1) + c3m

1/10

√
m

,

for some constants c1, c2, c3, a1 and a2 .
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The risk bound of this theorem seems surprising since we obtain a rate
of n1/4, whereas one expects a rate close to

√
n for the treated parametric

problem. This theorem is a consistency result. Consequently, it does not
give information about the rate of convergence. The obtained bound can be
explained by the fact that, by Assumption A1, we have

R(θ̂θ)−R(θθ∗) ≈ ‖θ̂θ − θθ∗‖2 .

Indeed, if R(θ̂θ) −R(θθ∗) ≈ 1/
√
n (bound given in [7]) then obviously ‖θ̂θ −

θθ∗‖ ≈ n−1/4 .

However, the
√
n-rate can be reached by considering the approach of

Corollary 5.53 (p. 77) in [9] where an additional assumption is made on
the risk function θθ �→ R(θθ). More precisely, this assumption relies on the
function θθ �→ log(ρθθ) which is supposed to satisfy a Lipschitz condition.
This work is let to a forthcoming paper which will deal with a central
limit theorem for the parameter θ̂θ (the rate of convergence will therefore be
reachable).

7. Proof of Theorem 6.2

We give a general proof of Theorem 6.2.

By Assumption A1, we have the Taylor-Lagrange formula

R(θ̂θ) = R(θθ∗) +
1

2
(θ̂θ − θθ∗)T ∇2R(ξ) (θ̂θ − θθ∗) , (7.1)

for some ξ ∈ Θ .

Then, we will use the following lemma

Lemma 7.1 (Rayleigh’s quotient). — Let H be a real symmetric matrix
p× p and denote by λ1 < ... < λp the ordered eigenvalues of H.

It holds that for all x ∈ Rp − {0}

λ1 �
xT H x

xT x
� λp .

Now, applying this lemma with H = ∇2R(ξ) and x = (θ̂θ − θθ∗) yields

λmin ‖θ̂θ − θθ∗‖2 � (θ̂θ − θθ∗)T ∇2R(ξ) (θ̂θ − θθ∗) ,
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where λmin > 0 is the smallest eigenvalue of the set of matrices {∇2R(θθ),
θθ ∈ Θ} .

Then, using this last inequality with equality (7.1) gives

‖θ̂θ − θθ∗‖2 � 2

λmin

(
R(θ̂θ)−R(θθ∗)

)
. (7.2)

The problem turns to bound the positive quantity R(θ̂θ)−R(θθ∗), where

θ̂θ is given by (3.4). Such bound can be investigated by applying Theorem
4.1 in [7], which is a general result. We will aim at computing constants Kτ1
and Kτ2 such that, with high probability

R(θ̂θ)−R(θθ∗)� 2‖f‖2
η

(
1√
n

η

2δ2‖f‖2
γKτ1 +

1√
m

1√
2πδ

Kτ2 +
1

m2/5

C(1.06σ)2√
3

)
.

(7.3)

In our framework, the main work is to compute the concentration con-
stants Kτ1 and Kτ2 derived from [7] in the following particular case.

7.1. On concentration constants Kτ1 and Kτ2

Since we apply Theorem 4.1 in [7], one has to guarantee that the con-
stants Kτ1 and Kτ2 are finite.
For this, let us first recall some definitions and notations relative to empir-
ical processes.

Definition 7.2. — Empirical process. LetW be some probability mea-
sure on some space T and let us suppose given a k i.i.d sample ξ1, ..., ξk
drawn from W . Let us denote by Wk the empirical measure

Wk :=
1

k

k∑

i=1

δξi

and G some class of real valued functions g : T → R .

We call W -empirical process indexed by G the following application

Gk : G −→ R

g �−→ Gk :=
√
k

∫

T

g(t) (Wk −W ) (dt) ,
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also written

Gk g :=
1√
k

k∑

i=1

(g(ξk)− EW (g(ξ))) .

We denote the supremum of an empirical process by

‖Gk‖G := sup
g∈G
|Gk g| .

Following the proof lines of Theorem 2.1, Table 2 p.11 in [7] (giving classes
of functions) and considering the inequality (7.3), it is easy to verify that
Kτ1 is defined as

for all n � 1 , P(‖Un‖A � Kτ1 ) � 1− τ (7.4)

where Un is the Q-empirical process (Qn = 1
n

∑n
i=1 δM∗,i

fuel
) indexed by the

class of functions

A = {y ∈ I �−→ (y − λ)2, λ ∈ Ih} (7.5)

where we recall

I = [Minf ,Msup] and Ih = h(E ,Θ) .

Similarly, the constant Kτ2 is defined as follows

for all m � 1 , P(‖Vm‖B � Kτ2 ) � 1− τ (7.6)

where Vm is the P εε-empirical process (P εεm = 1
m

∑m
j=1 δεεj ) indexed by the

class of functions

B = {x ∈ E �−→ e−(h(x,θθ)−λ)2/2 b2 , (θθ, λ, b) ∈ Θ× Ih × [δ, σ]} . (7.7)

By the writings (7.4) and (7.6), the constants Kτ1 and Kτ2 arise from the
“concentration of the measure phenomenon” (see [6], [2]). More precisely,
these constants characterize the tightness of the sequences of random vari-
ables ‖Un‖A (which is (M∗,ifuel)i=1,...,n dependent) and ‖Vm‖B (which is
(εεj)j=1,...,m dependent).

Now, we aim at computing (upper bound of) these constants using con-
centration inequalities where the classes of functions A and B will play
a crucial role. In particular, we will apply the following theorem which is
Theorem 2.14.9 in [10].

Before, let us recall the definition of the bracketing numbers (taken from
[10] p. 83-85).
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Definition 7.3. — Bracketing numbers. Let G be some class of func-
tions on T and denote by W a probability measure on T .

Given two functions l, u, the bracket [l, u] is the set of all functions g
with l � g � u. An ε-bracket is a bracket [l, u] with ||u − l||2,W < ε. The
bracketing number N[ ](ε, G, L2(W )) is the minimum number of ε-brackets
needed to cover the class of functions G.

The entropy with bracketing is the logarithm of the bracketing number.

Remark 7.4. — The bracketing numbers measure the “size”, the com-
plexity of a class of functions.

Theorem 7.5. — Let G be a uniformly bounded class of (measurable)
functions g : T → [0, 1] and denote by W a probability measure on T . If
the class G satisfies, for some constants K and L

N[ ](ε,G, L2(W )) �
(
K

ε

)L
forevery 0 < ε < K . (7.8)

Then, for every t > 0,

P(‖Gk‖G > t) �
(
D t√
L

)L
e−2t2 ,

for a constant D that only depends on K.

The proof of this theorem can be found in [8].

Now, let Kτ be a constant (to determine) which satisfies

P(‖Gk‖G � Kτ ) � 1− τ .

This is equivalent to

P(‖Gk‖G > Kτ ) � τ . (7.9)

By Theorem 7.5, applied with t = Kτ , we have

P(‖Gk‖G > Kτ ) �
(
DKτ√
L

)L
e−2(Kτ )2 . (7.10)

Hence, the constant Kτ can be taken such that

(
DKτ√
L

)L
e−2(Kτ )2 � τ ,
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which is similar to

(Kτ )2 − L
2

log(Kτ ) � log(aL,D τ
−1)

2
, with aL,D =

(
D√
L

)L
. (7.11)

Then, for small enough τ > 0, let us consider the constant

Kτ =

√
log(aL,D τ−1)

2
(7.12)

which satisfies (7.11).

Finally, we see that the constant Kτ can be characterized (only) by the
class of functions G through the constants D and L provided by Theorem
7.5.

In our purpose, the classes of interest are A and B defined in (7.5)
and (7.7), respectively. Next, one can easily check that these classes are
uniformly bounded and it is suitable to work with normalized classes

Ā = αA +
1

βA
A , (7.13)

B̄ = αB +
1

βB
B , (7.14)

such that all the functions take values in [0, 1] .

Now, we have to prove that the classes Ā and B̄ have polynomial brack-
eting numbers following (7.8). This will give the constants LĀ, DĀ and LB̄,
DB̄ needed to identify the key constants Kτ1 and Kτ2 defined in (7.4) and
(7.6), respectively.

7.2. Characterization of LĀ, DĀ, LB̄, DB̄

We consider the Theorem 2.7.11 in [10] (p. 164) which deals with classes
that are Lipschitz in a parameter. It reads:

Theorem 7.6. — Let G = {t ∈ T �→ gs(t) , s ∈ S} be a class of func-
tions satisfying

forall t ∈ T , s, s′ ∈ S , |gs(t)− gs′(t)| � d(s, s′)G(t) ,

for some metric d on S and some function G : t �→ G(t).
Then, for any norm

N[ ](2ε ‖G‖,G, ‖ · ‖) � N(ε, S, d) ,
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where N(ε, S, d) is the minimal number of balls {r , d(r, s) < ε} of radius ε
needed to cover the set S .

In what follows, we detail the case of the class Ā. The case of the class
B̄ is exactly in the same spirit.

Let us recall that Q is the probability measure considered on I (obser-
vation space) and that we have

Ā = {fλ : y ∈ I �−→ αB +
1

βA
(y − λ)2, λ ∈ Ih} ,

where I = [Minf ,Msup] and Ih = [Mhinf ,M
h
sup] (with I ⊂ Ih).

So

|fλ(y)− fλ(y)| =
1

βA
|(y − λ1)

2 − (y − λ2)
2| � |λ1 − λ2|F (y) ,

with F (y) = 2
βA

(y+Mhsup), and by Theorem 7.6 applied with ‖ ·‖ = ‖ ·‖2,Q,
it holds that

N[ ](ε, Ā, L2(Q)) � N
(

ε

2 ‖F‖2,Q
, Ih, | · |

)
.

Moreover, since
‖F‖2,Q � sup

y∈I
F (y) ‖f‖2

where f is the density associated to the measure Q, and using the fact that
I ⊂ Ih, we obtain that

‖F‖2,Q �
4

βA
Mhsup ‖f‖2 .

This last inequality yields

N

(
ε

2 ‖F‖2,Q
, Ih, | · |

)
� N

(
βA ε

8Mhsup ‖f‖2
, Ih, | · |

)
.

Since Ih = [Mhinf ,M
h
sup], the quantity (covering number) in the right mem-

ber is bounded by

8 |Ih|Mhsup ‖f‖2
βA ε

, |Ih| =Mhsup −Mhinf .

We finally get

N[ ](ε, Ā, L2(Q)) �
8 |Ih|Mhsup ‖f‖2

βA ε
,
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that is

N[ ](ε, Ā, L2(Q)) �
(
KĀ
ε

)LĀ
,

with
LĀ = 1

and

KĀ =
8 |Ih|Mhsup ‖f‖2

βA
that determines DĀ by [8] .

A similar work gives the constant LB̄ = 1 and a constant DB̄ .

7.3. End of the proof

By the previous subsection, we get the constants KτĀ and KτB̄ given by
(7.12) with associated constants L and D:

KτĀ =

√
log(a1 τ−1)

2
, a1 = aLĀ,DĀ = DĀ (7.15)

KτB̄ =

√
log(a2 τ−1)

2
, a2 = aLB̄,DB̄ = DB̄ (7.16)

where initially aL,D =
(
D√
L

)L
(by (7.11)).

But, the constants of interest Kτ1 and Kτ2 defined in (7.4) and (7.6) are
relative to non normalized classesA and B. Let us remark that if Ḡ = α+ 1

βG,
then

‖Gk‖Ḡ =
1

β
‖Gk‖G . (7.17)

Now, let us denote by KτḠ the constant that satisfies

P(‖Gk‖Ḡ � KτḠ) � 1− τ ,

and denote by KτG the constant that satisfies

P(‖Gk‖G � KτG) � 1− τ .

By (7.17), it is easy to check that we can take

KτG = β KτḠ .

We deduce that
Kτ1 = βAK

τ
Ā
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and
Kτ2 = βBK

τ
B̄ .

Finally, by (7.2) and (7.3) we have with probability 1− 2τ

‖θ̂θ−θθ∗‖2 � 4‖f‖2
λminη

(
1√
n

η

2δ2‖f‖2
γKτ1 +

1√
m

1√
2πδ

Kτ2 +
1

m2/5

C(1.06σ)2√
3

)

which we rewrite

‖θ̂θ − θθ∗‖2 �
√

2 c1√
n
KτĀ +

√
2 c2√
m
KτB̄ +

c3
m1/5

with corresponding constants c1, c2 and c3 and KτĀ,K
τ
B̄ are given by (7.15)

and (7.16).

That concludes the proof of Theorem 6.2.
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