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Levi-flat filling of real two-spheres
in symplectic manifolds (II)

Hervé Gaussier(1), Alexandre Sukhov(2)

ABSTRACT. — We consider a compact almost complex manifold (M,J, ω)
with smooth Levi convex boundary ∂M and a tame symplectic form ω.
Suppose that S2 is a real two-sphere, containing complex elliptic and
hyperbolic points and generically embedded into ∂M . We prove a result
on filling S2 by holomorphic discs.

RÉSUMÉ. — On considère une variété presque complexe (M,J, ω) avec
la frontière Levi convexe ∂M et une tame forme symplectique ω. Soit S2

une 2-sphere réelle avec des points elliptiques et hyperboliques, plongée
génériquement dans ∂M . On démontre un résultat sur le remplissage de
S2 par des disques holomorphes.

1. Introduction

This expository paper is the second part of [10]. We keep the same
notations and terminology. Our main result is the following.

Theorem 1.1. — Let (M,J, ω) be a compact almost complex manifold of
complex dimension 2 with a tame symplectic form ω and smooth boundary
∂M . Let also S2 be a real 2-sphere embedded into ∂M . Assume that the
following assumptions hold:
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(i) M contains no non-constant J-holomorphic spheres.

(ii) the boundary ∂M of M is a smooth Levi convex hypersurface con-
taining no non-constant J-holomorphic discs.

(iii) S2 has only elliptic and good hyperbolic complex points. Furthermore,
∂M is strictly Levi convex in a neighborhood of every hyperbolic point.

Then after an arbitrarily small C2-perturbation near hyperbolic points there
exists a smooth Levi-flat hypersurface Γ ⊂ M with boundary S2. This hy-
persurface is foliated by J-holomorphic discs with boundaries attached to
S2.

In [10] we studied the filling of a two-sphere containing only isolated
elliptic complex points. The present work is devoted to the more general
case where hyperbolic points occur. We impose on M and ∂M precisely the
same assumptions as in [10].

Conditions (i)-(ii) are essential to extend a local filling of S2 by bound-
aries of pseudoholomorphic discs, starting at an elliptic point, up to hy-
perbolic points without appearance of sphere or disc bubbles. Assumption
(i) may be weakened (see the discussion in [10]), however (ii) is in general
necessary (see the last section). Condition (iii) is a technical assumption
but it is sufficient for consistent applications. A precise definition of a good
hyperbolic point is given in the next section. We mention that by definition
the almost complex structure J is supposed to be integrable near a good
hyperbolic point and each hyperbolic point can be made a good one by an
arbitrary small C2 deformation of the sphere S2 near this point. In the last
section we include a detailed discussion and comparison of this result with
known results obtained by several authors.

We thank the referee for several helpful remarks and suggestions im-
proving the paper. This work was partially done when the second author
was visiting the Indiana University during the Fall 2011. He thanks this
institution for excellent conditions for work.

2. Good hyperbolic points: Bedford-Klingenberg’s analysis

Denote by S2
∗ the set of totally real points in S2. Let f be a Bishop disc

for S2. We call f hyperbolic if there exists a finite set of points ζj ∈ ∂D,
j = 1, ..., k, such that every point f(ζj) is a hyperbolic point of S2 and
f(ζ) ∈ S2

∗ for every ζ ∈ ∂D\{ζ1, . . . , ζk}. We recall some properties of
hyperbolic discs in a neighborhood of a hyperbolic point. These results
were obtained by E. Bedford-W. Klingenberg [2] in the case where (M,J)
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coincides with a strictly pseudoconvex domain in (C2, Jst). Everywhere in
this section we suppose that the almost complex structure J is integrable
near every hyperbolic point of S2. This assumption will be crucially used.

2.1. Good hyperbolic points

Let S2 be a two-sphere generically embedded into an almost complex
manifold (M,J) of complex dimension 2. In what follows it is convenient to
view M as a smoothly bounded subdomain in an almost complex manifold
M̃ .

Suppose that p is a hyperbolic point of S2. Since the almost complex
structure J is integrable in a neighborhood of p, there exist complex co-
ordinates (z, w) ∈ C2 defined in a neighborhood of p such that in these
coordinates the origin corresponds to p, J = Jst in a neighborhood of the
origin and S2 is locally defined by the expression :

w = zz + γRe z2 + o(|z|2) (2.1)

where γ > 1. Then we can represent the boundary ∂M near the origin in
the form ∂M = {ρ = 0} with

ρ(z, w) = −Rew+α1Imw+|z|2+α2|w|2+γRe z2+Re [(α3+iα4)zw]+o(|z|2);

here αj are real constants. We will call such a ρ a local defining function of
∂M near a good hyperbolic point.

After an arbitrarily small C2-deformation near the origin S2 can be
transformed to the model quadric :

w = ψ(z) = zz + γRe z2 (2.2)

which coincides with the initial sphere outside a neighborhood of p. This
follows by multiplying the o(|z2|)-term in the right-hand side by a suitable
cut-off function vanishing near the origin, see [2]. More precisely, denote the
o(|z|2)-term in (2.1) by φ(z). Then we replace φ(z) by χ(|z|/ε)φ(z), where
χ is a smooth function with χ(t) = 0 for t < 1 and χ(t) = 1 for t > 2. It is
easy to see that the quantity (1− χ(|z|/ε))φ(z) tends to 0 in the C2-norm
as ε→ 0.

The boundary ∂M also must be slightly deformed near the origin in
order to contain the perturbed S2 given by (2.2). Since the hypersurface
∂M is strictly Levi convex, it remains strictly Levi convex after a small
C2-deformation. Thus, in the present paper we deal with hyperbolic points
which can be written in the form (2.2). Throughout the rest of the paper
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we keep the notation ρ and ψ for the local defining functions of ∂M and S2

respectively, near a good hyperbolic point, introduced above.

Now we describe an additional restriction on the values of the parameter
γ imposed through the present paper; it considerably simplifies the study of
hyperbolic discs. Consider the proper holomorphic map H : C2 → C2 given
by

H(z, w) = (z, zw +
γ

2
(z2 + w2)).

Then H determines a two-fold branched covering of C2. The pull-back
H−1(S2) in a neighborhood of the origin consists of two totally real sub-
spaces E1 = {w = z} and E2 = {w = −z − (2/γ)z}. Denote by τj the
antiholomorphic involution with respect to Ej . It is easy to see that

τ1 = τ ◦
(

0 1
1 0

)

and

τ2 = τ ◦
(

−2/γ −1
(2/γ)2 − 1 2/γ

)

where τ denotes the usual conjugation in C2. Since the matrices in the
expressions of τ1 and τ2 commute with τ , we may with some abuse of ter-
minology view τj as elements of the group GL(2,R).

Lemma 2.1. — There exists a dense subset Λ in ]0,+∞[ such that for
every γ ∈ Λ, the involutions τ1 and τ2 generate a finite group isomorphic to
the dihedral group D2n for some integer n (in general, depending on γ).

Proof. — Every matrix

C =

(
c1 c2
c2 c1

)

commutes with τ1. Setting a = 2/γ, we have

τ̃2 = C−1τ2C

=
1

c21 − c22

(
−ac21 − a2c1c2 − ac22 −c21 − 2ac1c2 − (a2 − 1)c22

(a2 − 1)c21 + 2c1c2a+ c22 ac21 + a2c1c2 + ac22

)

Since the trace of τ̃2 is zero, it suffices to make it symmetric in order to
assure that this matrix is orthogonal (perhaps, after a multiplication by a
suitable diagonal matrix). The condition for τ̃2 to be symmetric is

ax2 + 4x+ a = 0
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with x = c1/c2. This equation admits a real solution since 0 < a < 2.The

vector

(
ν
1

)
generating the axis of reflection for τ̃2 satisfies

τ̃2

(
ν
1

)
=

(
ν
1

)

From this we deduce

ν =
−c21 − 2ac1 + 1− a2

(1 + a)c21 + a2c1 + a− 1
.

This implies that ν is a non-constant algebraic function of the variable
γ = 2/a.

The group generated by τ1 and τ̃2 is generated by orthogonal reflections

about the vectors

(
1
1

)
and

(
ν
1

)
. If the angle between these vectors is

a rational multiple of π of the form nπ/m with relatively prime numbers n
and m, then τ̃2 and τ1 generate the dihedral group D2m. Since this occurs
for a dense set 1 < γ <∞, we obtain the conclusion. �

Definition 2.2. — Suppose that S2 is contained in a strictly Levi con-
vex hypersurface near a hyperbolic point p ∈ S2. This point is called good
if

(i) J is integrable in a neighborhood of p,

(ii) there exist local holomorphic coordinates near p such that S2 has the
form (2.2),

(iii) γ satisfies the conclusion of Lemma 2.1 i.e. γ ∈ Λ.

2.2. Analytic extension past a good hyperbolic point

Now we describe the behaviour of hyperbolic discs near a good hyperbolic
point.

Lemma 2.3. — Suppose that S2 is given by (2.2) near the origin which is
a good hyperbolic point. Let U be a neighborhood of the origin in C2 and Y be
a closed complex purely 1-dimensional variety in U\S2 (i.e. every irreducible
component of Y has complex dimension 1, see [4] for more details). Then
(possibly after shrinking U) Y is contained in a closed complex purely 1-
dimensional subset X in U .

Thus, a complex 1-dimensional analytic set Y extends analytically past
the origin. This key result was proved in [2] under an additional assumption
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that Y is a graph of a holomorphic function continuous up to the bound-
ary on a domain in C whose boundary contains the origin. However the
argument still works without this assumption.

Proof. — The pull-back V0 = H−1(Y ) is a closed complex 1-dimensional
subset in H−1(U\S2) = H−1(U)\(E1 ∪ E2). Of course, an analytic subset
defined outside a single real analytic totally real manifold can be extended
through this manifold by the reflection principle [4]. Our case is more subtle
since the standard reflection principle cannot be applied at the origin where
the totally real planes interesect. So we first use the involutions σj and the
reflection principle at points of E1 ∪E2 off the origin in order to obtain an
analytic subset in a punctured neighborhood of the origin.

By Lemma 2.1 the group G generated by the reflections about E1 and
E2 is finite. Set Ũ = H−1(U). Then Ũ is a neighborhood of the origin and
V := ∪σ∈Gσ(V0) is a complex 1-dimensional subset in Ũ\(∪σ∈Gσ(E1∪E2)).
Since every σ ∈ G is an antiholomorphic reflection with respect to E1 or
E2, the reflection principle for complex analytic varieties (see for instance
[4]) implies that the closure V of V is an analytic subset in Ũ\{0}. Then by
the Remmert-Stein removal singularities theorem (see for instance [4]) the
closure V is a complex analytic variety in Ũ . Since H is proper, the image
H(V ) is a complex 1-dimensional variety in U containing Y . �

Let f : D → M be a non-constant map. Then f(D) is contained in M ,
i.e. for every point ζ ∈ D its image f(ζ) is not on the boundary ∂M . This
is a consequence of the J-convexity of ∂M and of the assumption that the
boundary ∂M contains no J-holomorphic discs, see [10]. Let E be a non-
empty subset of ∂D. The cluster set C(f,E) of f on E is defined as the set of
all points p such that there exists a sequence (ζn) in D converging to a point
ζ ∈ E with f(ζn)→ p. A map f : D→M is proper if and only if the cluster
set C(f, ∂D) is contained in ∂M (one can say that in this sense the boundary
values of f belong to ∂M). Because of the above remark for a proper J-
holomorphic map f : D → M one has C(f, ∂D) = f(D)\f(D). Recall the
well-known fact that the cluster set C(f, ∂D) is connected. Indeed, if not,
there are two disjoint open sets U and V such that C(f, ∂D) ⊂ U ∪ V and
C(f, ∂D) meets each of the sets U and V . Then for r < 1 close enough to
1 the connected set f({r < |ζ| < 1}) is contained in U ∪ V and intersects
each set U and V which is impossible.

Let now f : D → M be a proper J-holomorphic map such that the
cluster set C(f, ∂D) is contained in S2. We will see in Section 4 that this
condition always hold for a disc which is the limit of a sequence of Bishop’s
discs attached to the totally real part S2

∗ of the sphere S2.
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Let p ∈ S2 be a point of S2 and p ∈ C(f, ∂D). Consider an open neigh-
borhood Up of p. Choosing Up small enough, we can take it in the form
Up = {φ < 0} where φ is a strictly J-plurisubharmonic function on Up. It
suffices to fix a local coordinate system (z1, z2) centered at p such that in
these coordinates J(0) = Jst and set φ(z) = |z1|2+ |z2|2−ε with ε > 0 small
enough. Denote by B(p, ε) = {φ < 0} the ball of radius ε centered at p. This
construction may be performed for all points q of S2. It provides a family
of neighborhoods (Uq), q ∈ Uq, and a family of strictly J-plurisubharmonic
functions on Uq, (φq), depending smoothly on q, such that φp = φ. We use
the notation B(q, ε) = {φq < ε}.

Lemma 2.4 For ε > 0 small enough each connected component of the
intersection f(D) ∩ B(p, ε) is a disc (more precisely, the image of a J-
holomorphic disc).

Proof. — Fix ε > 0 small enough such that every ball B(q, ε) is com-
pactly contained in the neighborhood Uq of q chosen above, for all q ∈ S2.
Let G be an open connected component of the pull-back f−1(B(p, ε)). Sup-
pose by contradiction that G is not simply connected. If the closure G is
simply connected, the subharmonic function ρ ◦ f achieves its maximum
(equal to ε) at an interior point of G which gives a contradiction. Consider
the case where G is not simply connected i.e. G has at least one hole H with
non-empty interior. Then C = f(H) is a compact J-holomorphic curve with
boundary ∂C ⊂ B(p, ε). Since C(f, ∂D) is contained in S2, we can choose ε
small enough such that the curve C is compactly contained in the neighbor-
hood U = ∪q∈S2Uq of S2. On the other hand, the curve C is not contained
in B(p, ε). Then, considering the family of balls B(q, τ) and their transla-
tions along the real normals to ∂M , we can find by continuity suitable q
and τ > 0 such that the J-holomorphic curve C touches the boundary of
the ball B(q, τ) from inside at some point a. But the boundary ∂B(q, τ) is
strictly J-convex and admits a strictly plurisubharmonic defining function
near a as described above. Then the restriction of this function on C is
a subharmonic function admitting a local maximum at an interior point.
This contradicts the maximum principle. Thus, every open component of
f−1(B(p, ε)) is simply connected. Reparametrizing it by D via the Riemann
mapping theorem, we conclude. �

We point out that the above lemma claims that every single connected
component of the intersection f(D) ∩ B(p, ε) is a disc. A priori, such an
intersection can have several connected components.

Let p ∈ S2 be a good hyperbolic point. Consider a proper J-holomorphic
map f : D→M such that the point p belongs to the cluster set C(f, ∂D) ⊂
S2. Let U be a coordinate neighborhood of p provided by Definition 2.2; in
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particular, we identify p with the origin. Then Y = f(D) ∩ U is a closed
complex 1-dimensional subset in U\S2. By Lemma 2.4 this set consists of
a finite number of holomorphic discs in M ∩ U ; we choose one of them and
again denote it by Y . By Lemma 2.3 the variety Y extends as a complex 1-
dimensional set Ỹ past S2. By the uniqueness theorem for complex analytic
sets [4] there exists a unique irreducible component of Ỹ containing Y ; we
still denote this component by Ỹ . In particular, Y and Ỹ do not contain the
w-axis (if not, Ỹ would coincide with the w-axis by the uniqueness theorem).

Let now π : (z, w) → z be the canonical projection. Since Ỹ does not
contain the w-axis, the restriction π|Ỹ is proper when U is small enough.

More precisely, the intersection π−1(0) ∩ Ỹ is discrete near the origin and
taking a neighborhood U = U ′ ×U ′′ small enough, U ′ and U ′′ being neigh-
borhoods of the origin in C, we obtain that π : Ỹ ∩ U → U ′ is proper (see
[4]).

Then Y is the graph {w = g(z)} of a function g holomorphic in a domain
D in C, and the boundary of D contains the origin. Since the variety Y
extends analytically past S2, the function g is continuous up to the boundary
ofD and extends past the origin as a multivalued complex analytic function.
Furthermore, g has a Puiseux expansion at the origin. Since g(z) = ψ(z) on
∂D, we have g(z) = O(z2) for z ∈ ∂D and all terms of this expansion are
O(z2). Then there exists a positive integer m such that in a neighborhood
of the origin g is given in D by the Puiseux expansion

g(z) =
∑

k�2m

gkz
k/m. (2.3)

The representation (2.3) gives much useful information about the be-
haviour of a hyperbolic disc near a good hyperbolic point. For instance, we
obtain that the boundary of f(D) is a continuous curve (with a finite num-
ber of real analytic components intersecting at the origin) near the origin.
Now under the assumption that the area of f is bounded (which always
holds in our situation) one can easily show that the map f itself is nec-
essarily continuous on the closed disc D. The proof is based on a classical
argument form the one-variable theory of conformal maps. This justifies the
terminology “a hyperbolic disc” since by definition such a disc is a Bishop
disc and so is continuous up to the boundary. We postpone the proof of
this fact to Section 4, but in the rest of this section one may assume that a
hyperbolic disc is continuous on D.
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2.3. Approaching a good hyperbolic point by a disc

Following [2] we study a local behaviour of hyperbolic discs near a good
hyperbolic point. Since these results will be crucially used, for reader’s con-
venience we include the proofs.

We begin with a more precise information about the Puiseux expansion
(2.3):

Lemma 2.5. — In the expansion (2.3) the sum is taken over the set of
integers k satisfying k > 2m.

Proof. — Suppose by contradiction that g2m in (2.3) does not vanish.
Then

g(z) = az2 +O(z2+1/m), (2.4)

with a �= 0. Recall that g is holomorphic on a domain D in C whose bound-
ary contains the origin. Denote by D+ the upper half-disc D+ = {ζ ∈ C :
|ζ| < 1, Im ζ > 0}. It is convenient to assume that the hyperbolic disc f

under consideration is defined and holomorphic on D+, continuous on D+

and f([−1, 1]) ⊂ S2 i.e. f(D+) is glued to the sphere S2 along the real seg-
ment [−1, 1] = {ζ : −1 � Re ζ � 1, Im ζ = 0}; furthermore, f(0) = 0. One
can always achieve these conditions, reparametrizing f by a suitable con-
formal isomorphism. The image f(D+) coincides with the graph of g over
the domain D. As above, denote by π : C2 → C, π(z, w) = z, the canonical
projection. If ε > 0 is small enough, the intersection ∂D ∩ εD consists of
two real curves γ+ = (π ◦ f)([−1, 0]) and γ− = (π ◦ f)([0, 1]). Since S2 is
given by (2.2) near the origin, γ+ ∪ γ− is contained in {z : Img(z) = 0}.
Hence γ± are real analytic 1-dimensional sets. By (2.4) each γ± is tangential
at the origin to one of the real lines satisfying the equation {Imaz2 = 0}.
Therefore, the domain D at the origin is asymptotic to an angle of size κ
(i.e. the curves γ± are tangent at the origin to the rays bounding this angle)
which is a non-zero integer multiple of π/2. Consider separately the possible
cases.

Case 1: κ � π. Recall that in a neighborhood U of the origin the disc
f(D+) is contained in the domain M ∩ U = {ρ < 0} where a strictly
plurisubharmonic function ρ is a local defining function forM introduced in
Subsection 2.1. The composition φ(z) = ρ(z, g(z)) is a negative subharmonic
function on D and its gradient vanishes at the origin. By assumption on
κ,one can find an open disc G contained in D such that ∂G ∩ ∂D = {0}.
Applying to φ the Hopf lemma on G, we obtain that ∂φ(0)/∂z �= 0 which
is a contradiction.
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Case 2: κ = π/2. Since Img(z) = 0 for z ∈ γ+ ∪ γ−, we conclude that

g(z) = ±|az2|+O(|z|2+1/m), z ∈ γ+ ∪ γ−
and furthermore, g has opposite signs on γ+ and γ−. Every curve γ± is
tangent at the origin to a line forming an angle µ± with the axis x, so that
µ− = µ+ + π/2. The function ψ (defined in (2.2) in the polar coordinates
z = reiθ) has the form ψ(z) = r2χ(θ) with χ(θ) = 1 + γ cos(2θ). Consider
a sequence zk = rke

iθk in γ+ converging to 0. Then for every k one has
ψ(eiθk) = r−2

k g(rke
iθk). Passing to the limit as k → ∞, we obtain that

ψ(eiµ+) is equal to α or −α. Repeating the same argument for γ−, we obtain
ψ(eiµ+) = −ψ(eµ++π/2). But this means that µ+ satisfies the equation

1 + γ cos(2µ+) = −1− γ cos(2(µ+ + π/2)).

But this equation does not admit any solution. Thus, none of the above
cases can occur. This implies a = 0. �

Let D+ and D− denote the connected components of {z ∈ C : zz +
γRe z2 < 0}. They are domains defined by the inequalities of type {|Re z| <
C|Imz|}. The sign of D± is chosen so that the domain D+ intersects the
axis {Im z > 0}.

Definition 2.6. — A hyperbolic disc f has a good (or admissible) ap-
proach at (0, 0) if

(i) There exists a domain D ⊂ C which is asymptotic at 0 to one of the
domains D± (that is the boundary ∂D near 0 ∈ ∂D is formed by two
curves tangent at the origin to the boundary lines of D±).

(ii) There exists a function g holomorphic on D such that in a neighbor-
hood of the origin the image f(D) is the graph of g over D.

(iii) g ∈ C2(D) and g(0) = g′(0) = g′′(0) = 0.

The first important consequence of Lemma 2.5 is the following assertion:

Lemma 2.7. — A hyperbolic disc has a good approach at a good hyper-
bolic point.

Proof. — As above, the function ψ in the left-hand side of (2.2) has the
form ψ(z) = r2χ(θ) with χ(θ) = 1 + γ cos(2θ). One readily sees that there
is an angle 0 < µ < π/4 such that {χ = 0} = {θ = π/2 ± µ}. Let us write
the two first terms of the expansion (2.3):

g(z) = azk/m + bzk
′/m + o(zk

′/m), 2m < k < k′. (2.5)
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Consider a point z = reiθ(r) ∈ ∂D. It follows from (2.5) and from the
identity g(z) = r2χ(θ(r)), z ∈ ∂D, that χ(θ(r)) = O(rk/m−2). Since the
right-hand side converges to 0 as r → 0, we conclude that θ(r) converges to
π/2 − µ or to π/2 + µ as r → 0 when z belongs to γ+ or γ− respectively.
Thus, ∂D is tangent to the lines {θ = π/2± µ} at the origin. �

Another important consequence is the uniqueness principle for hyper-
bolic discs.

Lemma 2.8. — Suppose that the origin is a good hyperbolic point. Let f1
and f2 be hyperbolic discs in a neighborhood U of the origin which are the
graphs of functions gj over domains Dj. Suppose that one of the following
conditions holds :

(i) D1 = D2,

(ii) D1 ⊂ D2 and Re g1(z) � Re g2(z), z ∈ U ∩D1.

Then f1 = f2.

Proof. — (i) This is immediate. Indeed, since fj(∂D) ⊂ S2, we have
gj(z) = ψ(z) for z ∈ ∂D near the origin i.e. g1(z) = g2(z) on an arc of
∂D of positive length. Then g1 ≡ g2 by the classical boundary uniqueness
theorem for holomorphic functions.

(ii) First we study more precisely the asymptotic behaviour of D at the
origin. We use the equality {θ = π/2 ± µ} = {Imazk/m = 0} established
above. Let a = r0e

iθ0 . Then the set {Imazk/m = 0} consists of the rays
Rl := {θ = (m/k)lπ − (m/k)θ0}, l being an integer. For some l the rays Rl

and Rl+1 coincide with θ = π/2 ± µ which implies that πm/k = 2µ and
θ0 = πl + 2π − 2(k/m)π. Set µ = −χ′(π/2 − µ) = χ(π/2 + µ). We have
θ(r) = π/2± µ+ o(rk/m−2) when z → 0 along γ±. Expanding the identity
θ(r) = χ−1(r−2g(z)) at the origin we obtain

θ(r) = π/2± µ− |a|
ν
rk/m−2 +O(r(k+1)/m−2). (2.6)

It is worth noticing here that the constants µ, k/m, ν are determined
by γ and are independent of g.

Now we proceed the second step of the proof. Consider the Puiseux
expansion gj(z) = ajz

k/m + ... for j = 1, 2. The boundary of every domain
Dj is given by (2.6) near the origin. Since D1 is contained in D2 we obtain
that |a1| = |a2|. For the same reason the rays Rl and Rl+1, corresponding
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to j = 1, 2, are defined by the same l. Hence a1 = a2. Next, consider the
difference

g2(z)− g1(z) =
∑

n>k

cnz
n/m

Let cq be the first non-vanishing coefficient. Then

0 < Re g2(z)−Re g1(z) = Re (cqz
q/m) + o(zq/m).

on D1 near the origin. But Re (cqz
q/m) can be positive only on a sector of

angle πm/q while ∂D1 is asymptotic to a sector of larger angle πk/m : a
contradiction. �

3. Indices

In the first part of our work [10] we saw that an extension of a 1-
parameter family of Bishop discs is determined by some topological char-
acteristic of these discs called in [10] the winding number. In the present
work we need to study the behaviour of this invariant when a family of
discs extends past a hyperbolic point. For our applications it is convenient
to discuss this notion more conceptually and in full generality. This is the
goal of the present section.

We recall some known facts concerning the Maslov index and the topo-
logical properties of real surfaces in (almost) complex manifolds.

3.1. Totally real case : the Maslov index

There are several possibilities to introduce V.Arnold’s conception of the
Maslov index [1]; we follow [16, 12]. Denote by S1 the unit circle. Let

R(n) = GL(n,C)/GL(n,R)

be the manifold of totally real n-dimensional subspaces of Cn. Consider the
map κ : R(n)→ S1 defined by

κ(B ·GL(n,R)) =
det(B2)

det(B∗B)
, B ∈ GL(n,C)

where the index star denotes the matrix transposition and the complex
conjugation. Let γ : S1 → R(n) be a continuous map i.e. a loop in R(n).
The Maslov index of γ is defined by

µ(γ) = deg(κ ◦ γ)
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where deg denotes the topological degree of a map. V.Arnold [1] proved
that two loops in R(n) are homotopic if and only if they have the same
Maslov index. According to classical results a complex vector bundle L over
the unit circle S1 is trivial because π0(GL(n,C)) = 0. If F is a totally real
subbundle (with fibers of real dimension n) of the trivial bundle L = S1×Cn,
we consider the loop γ : S1 → R(n) defined by

γ(ζ) = Fζ , ζ ∈ S1. (3.1)

Here Fζ denotes the fiber of F at the point γ(ζ). Hence it is a totally real sub-
space of Cn and can be viewed as an element of R(n). Since π0(GL(n,R)) =
Z2, there are two rank n real vector bundles over the circle. Two totally real
subbundles are isomorphic as real bundles if their Maslov classes have the
same parity.

Let L→ D be a complex rank n vector bundle over the unit disc D and
F ⊂ L|∂D be a totally real subbundle over ∂D. The Maslov index µ(L,F )
of the pair (L,F ) is an integer which can be defined axiomatically by the
properties of isomorphism, direct sum, normalisation and decomposition.
Let us describe them.

Isomorphism. If Φ : L1 → L2 is a vector bundle isomorphism then

µ(L1, F1) = µ(L2,Φ(F1)).

Direct sum.

µ(L1 ⊕ L2, F1 ⊕ F2) = µ(L1, F1) + µ(L2, F2).

Normalisation. If L = D×C is the trivial line bundle and Fζ = eikθ/2R,
ζ = eiθ ∈ ∂D, then

µ(L,F ) = k.

We do not describe the decomposition property (see [16]) since we do
not need it here.

In general one can show that if L = D× Cn is the trivial bundle, then

µ(L,F ) = µ(γ)

where the loop γ in R(n) is defined by (3.1). One can use this property as the
definition of the Maslov class and then show (see [16]) that it is independent
of a choice of trivialisation. The following trivialisation presented in [16] is
particularly useful.
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Lemma 3.1. — For every complex line bundle L over D and every to-
tally real subbundle F ⊂ L|∂D there exists a trivialisation such that in the
corresponding coordinates one has Fζ = eikθ/2, ζ = eiθ ∈ ∂D.

Let now f be a Bishop disc with boundary attached to a totally real
manifold E in an almost complex manifold M . The pull-back f∗(TM) is
a complex vector bundle over D and f∗(TE) is its totally real subbundle
over ∂D. Then the Maslov class µ(f∗TM, f∗TE) is defined and is called the
Maslov index of the disc f . We denote it by µE(f).

It was shown in [10] that every elliptic point of the sphere S2 generates
a 1-parameter family of Bishop discs (f t) whose boundaries foliate a punc-
tured neighborhood of this point in S2. We introduced in [10] a topological
invariant of f t called the winding number. It is equal to 0 for every disc f t.
Comparing that definition of the winding number for a Bishop disc f t from
[10] with Lemma 3.1 one readily sees that the Maslov index of f t also is
equal to 0. Thus, the Maslov index of every disc f t generated by an elliptic
point is equal to 0. We sum up this in the following assertion.

Lemma 3.2. — Let (f t) be a 1-parameter family of Bishop discs gener-
ated by an elliptic point as in [10]. Then the winding number of each disc
coincides with its Maslov index. In particular

µS2(f t) = 0.

3.2. Index of a complex point

Here we follow [8, 17]. Let S be a real surface embedded into an almost
complex manifold M of complex dimension 2. Recall that we assume ev-
erywhere that the complex points of S are isolated and are either elliptic
or hyperbolic. Assume for simplicity that the almost complex structure J
is integrable near the complex points of S2; this assumption can be easily
dropped. Let p be a complex point in S. There exist local complex coordi-
nates (z, w) centered at p such that S is locally the graph {(z, w) : w = g(z)}
of a smooth complex valued function g defined in a neighborhood of the ori-
gin in C and such that g(z) = O(|z|2). The points where ∂g/∂z �= 0 are
totally real. Since the origin is an isolated complex point, ∂g/∂z does not
vanish elsewhere in a neighborhood of the origin. The index of p, denoted by
I(p, S) is defined as the winding number of the function ∂g/∂z around the
origin. In the general almost complex situation consider first the case of an
elliptic point. Choose local coordinates as in [10]; in particular, J(0) = Jst.
Then the origin is also an isolated complex point for the standard struc-
ture and we can apply the above construction using the standard operator
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∂g/∂z. Since we consider here the case where an almost complex structure is
integrable near each hyperbolic point, the above construction can be applied
directly there. We point out that I(p, S) does not depend on a choice of g
defining S2 locally. For a totally real point p ∈ S we set I(p, S) = 0. One
readily sees from this definition that the index of an elliptic point is equal
to +1 and the index of a hyperbolic point is equal to −1. This definition
does not rely on an orientation of S.

If S is orientable (which is the case considered in the present paper) the
orientation must be taken into account.

Definition 3.3. — A complex point p of S2 is called positive (resp. neg-
ative) if the orientation of the tangent space TpS

2 coincides with (resp. is
opposite to) the orientation induced by (M,J).

We define I+(S) (resp. I−(S)) as the sum of the indices over positive
(resp. negative) complex points in S. It is known that I+(S) = I−(S) for
every closed oriented immersed surface in C2, see [8].

The index of S is defined by I(S) :=
∑

p∈S I(p, S); in particular I(S) =
I+(S) + I−(S). We note that for a sphere S generically embedded into a
(almost) complex manifold we have

I(S) = χ(S) = 2

where χ(S) is the Euler number.

We denote by e+(S) (resp. e−(S)) the number of positive (resp. negative)
elliptic points of S and by h+(S) (resp. h−(S)) the number of positive
(resp. negative) hyperbolic points. Then from this definition we get I±(S) =
e±(S) − h±(S). Moreover, if S is an oriented real surface embedded to a
complex surface M we have :

Lemma 3.4. —

I±(S) = (1/2)(I(S)± c(S)). (3.2)

Here c(S) denotes the value of the first Chern class c1(M) on S. For
example, c(S) always vanishes when M = C2; in what follows we assume
that this condition always holds in the present paper. In particular we have :
I±(S2) = 1 for a two-sphere S2 embedded into an almost complex manifold.

In [8] a slightly different version of the notion of the index of a loop is
used. Let us recall it since this is useful in index computations. The simplest
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way is to define it in a special system of coordinates. Let U be an open set
in the complex plane, g : U → C be a smooth complex valued function on
U , and E ⊂ C2 be the graph of g:

E = {(z, g(z)) ∈ C2 : z ∈ U}. (3.3)

Let now γ = (γ1, γ2) : S1 → E be a loop contained in the set of totally
real points of E. Then the index IE(γ) is equal to the winding number of
the function θ ∈ S1 → ∂g/∂z(γ1(θ)) ∈ C\{0}. In some situations it is not
convenient to use a coordinate representation (3.3). If E is embedded to
C2, the simplest way to compute the index IE(γ) is the following (see [8]).
Choose continuous vector fields Xj : S1 → C2, j = 1, 2 such that for every
θ ∈ S1 the vectorsXj(θ) form a basis of Tγ(θ)E. Such vector fields exist when
E is orientable along γ which is always our case; the method can be extended
to the non-orientable case, see [8]. Then the index IE(γ) is equal to the
winding number (around the origin) of the determinant det(X1(θ), X2(θ)).
This determinant does not vanish on the unit circle since E is totally real.
Hence IE(γ) is correctly defined and is independent on a choice of Xj , in
particular, is independent on an orientation of E (but depends, of course,
on an orientation of γ). Indeed, if X ′j , j = 1, 2 is another couple of vector
fields with similar properties, then X ′j = AXj for some continuous map

A : S1 → GL(2,R). Hence the winding number of det(X ′1, X
′
2) is equal to the

sum of winding numbers of detA and det(X1, X2). But detA is a real-valued
non-vanishing function on S1, so its winding number is equal to 0. One can
give an intrinsic definition of IE(γ) for an oriented real surface embedded
or immersed into a (almost) complex manifold. This general definition is
similar to the notion of the Maslov index so we drop it, see details in [8].

We recall here that the Maslov index of the boundary f |∂D of a Bishop
disc generated by an elliptic point is equal to 0. On the other hand, a direct
computation shows that IS2(f |∂D) = 1. It is easy to see from the above
definitions that for a Bishop disc f the equality µS2(f) = 0 holds if and
only if IS2(f |∂D) = 1. Indeed, choose canonical coordinates along f(D) as
in [10]; they provide a trivialisation of bundles from Lemma 3.1. Comparing
the Maslov index and the winding number of the determinant as described
above (with an obvious choice of vector fields Xj), we conclude.

The following useful statement is contained in [8].

Proposition 3.5. — Let E be an oriented real surface with totally real
boundary ∂E . Then

I+(E)− I−(E) = IE(∂E).
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The above mentioned results are often proved for real surfaces in com-
plex manifolds. It is easy to see that the proofs remain true without any
changes in the almost complex case since they use only standard differential
geometry and the topological properties of complex vector bundles.

4. Approaching good hyperbolic points by families of discs

Let f t, t ∈]0, 1[, be a one-parameter family of embedded J-holomorphic
discs of Maslov index 0 attached to the totally real part S2

∗ of the sphere S2.
They have a uniformly bounded area and their boundaries f t(∂D) foliate
an open subset E of S2

∗ , see [10]. Let (fk)k be a sequence of such discs
corresponding to the values (tk) of the parameter i.e. fk = f tk . Since the
areas are bounded, Gromov’s compactness theorem can be applied. The
case where these discs are separated from the set of complex points of S2

is considered in [10]. In that case there are no bubbles and after a suitable
reparametrization by Mobius transformations the sequence (fk) converges
in every Cm(D) norm to a non-constant Bishop disc attached to S2

∗ . Let
us consider now the case where the limit of a sequence of discs touches
a good hyperbolic point p. The usual version of Gromov’s compactness
theorem deals with totally real manifolds. Here we adapt it to our situation.
Previously we often identified a map fk : D→M and its image fk(D) using
the same terminology ”disc” for both of them. In this section we proceed
more carefully and distinguish the convergence of (fk(D))k as a sequence
of sets (i.e. non-parametrized holomorphic curves) and the convergence of
(fk)k as a sequence of maps (i.e. parametrized holomorphic curves).

4.1. Convergence of (fk) as sets

Let U be a neighborhood of a good hyperbolic point p. Then Yk = fk(D)∩
U is a closed complex purely 1-dimensional analytic subset in U\S2 for every
integer k � 1. Since the areas of the sets Yk are uniformly bounded, Bishop’s
convergence theorem [4] implies (after extracting a subsequence) that the
sequence (Yk) converges on every compact subset of U\S2 to a complex
purely 1-dimensional analytic subset Y in U\S2. Here the convergence is in
the sense of the Hausdorff distance. Applying Lemma 2.3 to Y we conclude
that Y extends to a neighborhood of p as a complex 1-dimensional analytic
set. Thus, the convergence of (fk(D)) as sets near a hyperbolic point is
quite simple. Unfortunately, this argument is not precise enough. In order
to obtain a more detailed information about the limit analytic set Y , we
need to study the convergence of the sequence of maps (fk).
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4.2. Interior convergence of (fk) as maps

We proceed in several steps. First, recall some basic notions related to
the Gromov compactness theorem that we apply to our sequence (fk)k (see
[10] and references there for precise definitions and statements). After a
suitable reparametrization we may assume that (fk) converges to a non-
constant map f∞ attached to S2. The convergence is in Gromov’s sense
which we briefly discuss.

We say that a spherical bubble arises at an interior point q of the unit
disc D if one can find a sequence of biholomorphic maps (φk) which ”blow
up” a neighborhood of q such that the sequence (fk◦φk) converges to a non-
constant J-holomorphic map g : C → M . Since the areas are bounded, g
extends to the whole Riemann sphere as a J-holomorphic map and is called
a spherical bubble. Similarly we may define disc-bubbles that can occur only
at boundary points of D. Since the areas of fk are uniformly bounded with
respect to k, bubbles can occur only in a finite number of points Σ ⊂ D. The
sequence (fk) converges to the limit disc f∞ uniformly on every compact
subset of D\Σ and at every point of the set Σ a bubble necessarily arises.
After a suitable reparametrization by Mobius transformations the sequence
converges to a prescribed bubble. The images fk(D) converge in the Haus-
dorff distance to the union of f∞(D) and of the images of the bubbles.
Furthermore, this union is a nodal curve, in particular, is connected. Recall
that the standard node is the complex analytic set {(z1, z2) ∈ C2 : z1z2 = 0}.
A point on a complex curve is called a nodal point if it has a neighborhood
biholomorphic to the standard node. A boundary nodal point may be de-
fined using the double of a given complex curve with boundary (namely
its compactification as a Riemann surface, see, for instance, [18]). A nodal
curve is a compact complex curve with boundary and with a finite number
of interior and boundary nodes (see [13, 18] for more details). Notice that
in the case under consideration the following simplification occurs. Accord-
ing to Section 2, every hyperbolic disc extends as a complex analytic set
through a good hyperbolic point. Hence, if a disc-bubble arises at a good
hyperbolic point p, this point p will be an interior nodal point for a complex
analytic set in a neighborhood of p which extends ”the principal disc” and
a bubble.

In what follows we need a more detailed description of the behaviour
of the sequence (fk) near a point where a disc bubble arises. We follow
[18, 19, 21]. Let q be a point in Σ ∈ ∂D. Then one can find a sequence
of discs Dk := qk + rkD of radius rk → 0, centered at qk ∈ ∂D → q,
and conformal injective maps ψk : Dk ∩ D → H := {ζ ∈ C : Im ζ > 0}
such that ψk(Dk ∩ ∂D) ⊂ ∂H, ψk(Dk ∩ D) → H and fk ◦ ψ−1

k converges
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smoothly on compacts to a disc-bubble g (more precisely, g becomes a disc
bubble after a composition with a conformal isomorphism from D to H).
Moreover, fk(∂Dk ∩ D) converges to a cusp (nodal) point f∞(q) where f∞
and g intersect each other.

The connectedness of the limit nodal curve is often useful to study its
global topological properties (the Maslov indices of discs contained in such a
curve, their homology classes, etc.). Furthermore, for large k the homology
class [fk|∂D] is equal to the sum of [f∞|∂D] and of the homological classes
of bubbles boundaries on S2 (see, for instance, [18, 21]).

Recall that the first step in the proof of Gromov’s compactness theorem
[16, 19] considers holomorphic discs with free boundary (i.e. without totally
real boundary conditions) and claims that after a suitable reparametriza-
tion the sequence (fk) converges to a non-constant disc f∞ outside a finite
set Σ as explained above. By assumption, M contains no non-constant J-
holomorphic spheres. Since spherical bubbles are non-constant, there are no
spherical bubbles. Hence the only possibility is that the set Σ where bubbles
arise is contained in ∂D and the bubbles must be disc-bubbles. In particular,
the sequence (fk) converges to f∞ uniformly on compact subsets of D. But
then, since the areas of the discs are uniformly bounded, the sequence (fk)
satisfies the assumptions of the theorem in [15] which implies that the cluster
set C(f∞, ∂D) = f∞(D)\f∞(D) is contained in S2. The same holds for the
boundary disc-bubbles since after suitable reparametrization the sequence
(fk) converges uniformly on compact subsets of D to such a bubble.

Our next goal is to study the behaviour of boundary disc bubbles. We will
see that they do not arise at totally real boundary points of a hyperbolic disc
and will give a precise description of bubbling near a good hyperbolic point.
We begin with a useful technical statement mentioned above in Section 2.

4.3. Boundary continuity of discs forming the limit nodal curve

Let f : D → M be a non-constant J-holomorphic disc from the limit
nodal curve (i.e. after a suitable reparametrization by a sequence of Mobius
transformations the sequence (fk) converges to f). As we noticed above,
the cluster set C(f, ∂D) = f(D)\f(D) of f on ∂D is contained in S2. If
S2 would be a totally real manifold, Gromov’s compactness theorem would
imply that f is smooth on D. However, the presence of hyperbolic points
requires additional considerations. The following assertion is due to [11].

Proposition 4.1. — The map f extends continuously on D.
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Proof. — Since the area of f is bounded, for every point p ∈ S2 and
ε > 0 small enough the intersection f(D) ∩ B(p, ε) admits a finite number
of connected disc-components in view of Lemma 2.4. We notice here that
if p is a good hyperbolic point, then it follows from the description of the
boundary behaviour of f near such a point established in Section 2 that the
area of every disc in f(D) ∩B(p, ε) is separated from zero.

Let p ∈ S2
∗ be a totally real point of S2. Lemma 2.4 may be applied to

every map fk on B(p, ε). Since the areas of fk are bounded from above, the
number of discs in fk(D)∩B(p, ε) is bounded from above, independently of k.
We use here the well-known fact (see for instance [16]) that the areas of these
discs are separated from zero. Applying to these discs Gromov’s compactness
theorem, we obtain that their boundaries converge in B(p, ε) ∩ ∂M to a
continuous curve which is a connected finite union of smooth curves (as we
will prove below, the bubbles do not arise here so in fact the limit will be a
single smooth curve). Thus, the boundary of f(D) near a totally real point
p is a continuous curve. If p is a hyperbolic point, the boundary behavior of
f is described in Section 2; as it is proved there (see the basic representation
(2.3)), the boundary of f(D) near such a point also is a continuous curve.

Now we may proceed the proof of the continuity of f . This is a slight
modification of the classical Geometric Function Theory argument.

Suppose by contradiction that f does not extend continuously to a point
ζ0 ∈ ∂D. Then there exist two sequences (ζn), (ζ̃n) converging to ζ0 such
that pn = f(ζn) and p̃n = f(ζ̃n) converge respectively to p∞ �= p̃∞. Since
the almost complex structure J is tamed by the symplectic form ω, they
define canonically a Riemannian metric g (see, for instance, [16]):

g(u, v) = (1/2)(ω(u, Jv) + ω(v, Ju))

We will measure the distances and norms with respect to this metric (in
fact, any Riemannian metric satisfying g(X,X) � ω(X, JX) is adapted).
Let d = dist(p∞, p̃∞). We may assume that d(pn, p∞) � d/3, d(p̃n, p̃∞) �
d/3 for all n. Denote by B(p, ε) the ball of radius ε centered at p.

In view of the above description of the boundary behaviour of f(D) near
C(f, ∂D), there exist maps (paths) λ and λ̃, continuous on [0, 1], such that
λ([0, 1)) ⊂ f(D)∩B(p∞, d/3), λ̃([0, 1)) ⊂ f(D)∩B(p̃∞, d/3), and λ(1) = p∞,
λ̃(1) = p̃∞. Furthermore, there exist increasing sequences tn, t̃n → 1 such
that λ(tn) = pn, λ̃(tn) = p̃n (passing to a subsequence if necessarily).

Set Λ(t) = f−1(λ(t)), Λ̃(t) = f−1(λ̃(t)). Let t1(r) denote the smallest
t ∈ [0, 1] such that Λ(t) ∈ ∂B(ζ0, r). The function r → t1(r) is decreasing,
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so is continuous except at most on a countable set of points of discontinuity.
Put Λ(t1(r)) = ζ(r) = ζ0 + reiτ(r). Then the functions r → ζ(r) and r →
τ(r) also are continuous except on a countable set. We may define similarly
the functions ζ̃ and τ̃ .

Fix r0 > 0 small enough. Using the polar coordinates ζ = reiθ on the
disc ζ0 + r0D and integrating along the arc [τ(r), τ̃(r)] of ζ0 + r0∂D, we
obtain :

d/3 � d(f(pn), f(p̃n)) �
∫

[τ(r),τ̃(r)]

∣∣∣∣
∣∣∣∣Df

(
1

r

∂

∂θ

)∣∣∣∣
∣∣∣∣ rdθ.

By the Cauchy-Schwarz inequality we get :

(d/3)2 � r2|τ(r)− τ̃(r)|
∫

[τ(r),τ̃(r)]

∣∣∣∣
∣∣∣∣Df

(
1

r

∂

∂θ

)∣∣∣∣
∣∣∣∣
2

dθ

� 2πr2
∫

[τ(r),τ̃(r)]

∣∣∣∣
∣∣∣∣Df

(
1

r

∂

∂θ

)∣∣∣∣
∣∣∣∣
2

dθ.

Let dm(ζ) denote the standard Lebesgue measure on C with respect to
the variable ζ. Dividing by r and integrating with respect to r from ε to r0
we obtain :

(d/3)2 ln(r0/ε) � 2π

∫

[ε,r0]

rdr

∫

[τ(r),τ̃(r)]

∣∣∣∣
∣∣∣∣Df

(
1

r

∂

∂θ

)∣∣∣∣
∣∣∣∣
2

dθ

� 2π

∫

D∩(ζ0+r0D)

∣∣∣∣
∣∣∣∣Df

(
1

r

∂

∂θ

)∣∣∣∣
∣∣∣∣
2

dm(ζ)

� 2π

∫

D
ω

(
Df

(
1

r

∂

∂θ

)
, Df

(
i
1

r

∂

∂θ

))
dm(ζ)

= 2πarea(f).

Here in the last inequality we used the classical identity connecting the
symplectic area of a J-holomorphic curve and the g-norm of its tangent
vectors, see [16], pp. 20-21. Since ε → 0, we obtain a contradiction which
proves the Proposition. �

4.4. Disc-bubbles do not arise at totally real points

The next step is the following

Lemma 4.2. — If p ∈ f(∂D) is a totally real point of S2, there are no
disc bubbles arising at p.
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Proof. — We could proceed similarly to [10], but in the presence of hy-
perbolic points it requires some global analysis of the characteristic foliation.
So we use another argument due to [21], easy to localize. Suppose that a
disc-bubble g arises at a totally real point p = f∞(ζ1), ζ1 ∈ ∂D. Let ζ2 ∈ ∂D
be a point with g(ζ2) = p. By Proposition 2.6 of [10] the maps f∞|∂D and
g|∂D are embeddings near ζ1 and ζ2 respectively. Then we may fix open arcs
γj ⊂ ∂D containing ζj , j = 1, 2, such that g(γ2) lies on one side of f∞(γ1);
in particular, f∞(γ1) and g(γ2) are tangent at p (if not, the curves fk(∂D)
would have self-intersections for large k, but they are embedded). Further-
more, because of the above mentioned relation for homological classes, the
circles f∞(∂D) and g(∂D) have opposite orientations. Let τ be a continuous

unit tangent vector on the unit circle ∂D. Set Yk = ∂fk
∂τ

∣∣∣
∣∣∣∂fk∂τ

∣∣∣
∣∣∣
−1

. Then, see

[21], it follows from the above description of a disc-bubble that there exists
sequences (ξk) and (ξ̃k) on γ1, converging to ζ1 and such that fk(ξk) → p,
f(ξ̃k)→ p and

lim
k→∞

Yk(ξk) = v, lim
k→∞

Yk(ξ̃k) = −v

where v is a unit tangent vector to f∞(∂D) at p. Let now χ be the charac-
teristic foliation on S2 , see [10]. Choose a continuous unit tangent vector
field X on S2

∗ which is everywhere orthogonal to χ (with respect to the
inner product • induced by some Riemannian metric). By Proposition 2.6
of [10] f∞ is transverse to χ at p; hence v •X(p) �= 0. Then for large k the
products ∂fk

∂τ (ξk) •X(fk(ξk)) and ∂fk
∂τ (ξ̃k) •X(fk(ξ̃k)) have opposite signs.

By the intermediate value theorem, there exists a point ηk ∈ γ1 such that
∂fk
∂τ (ηk) • X(fk(ηk)) = 0. This means that fk is tangent to χ at the point
f(ηk), which contradicts Proposition 2.6 of [10]. �

In particular, it follows by Gromov’s compactness theorem that the se-
quence (fk) converges to f up to the boundary in each Ck-norm near every
totally real point p ∈ S2

∗ . Furthermore, since ∂M is J-convex, it follows by
[10] that f is transverse to ∂M at p.

Now we study the behaviour of (fk) near a hyperbolic point.

4.5. Dynamics of (f t) near a good hyperbolic point.

Let f t, t ∈ R, be a 1-parameter family of embedded Bishop discs at-
tached to the totally real part S2

∗ of the sphere S2 and converging to a
non-constant hyperbolic disc f∞. We call such a family maximal. Let p be a
good hyperbolic point in the boundary of f∞. We suppose that local coor-
dinates near p are given by Definition 2.2. Therefore it follows from Section
2 that every disc f t is the graph of a function gt holomorphic in a domain
Dt in C, in a neighborhood of the origin. The boundaries of the discs f t
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are disjoint so we may assume that the family Dt of domains in C is either
increasing or decreasing.

Definition 4.3. — The family f t approaches f∞ from inside at p (resp.
from outside) if the family Dt is increasing (resp. decreasing).

In order to determine which case actually occurs near a given hyperbolic
point, it is convenient to use the orientability of S2. As above, consider a
1-parameter family (f t), t ∈ R, of Bishop discs attached to the totally real
part S2

∗ . We observe that such a family (f t) provides S2 with an orientation.
This orientation is defined by pushing forward the form dt∧dθ via the map

(t, θ) → f t(eiθ).

Definition 4.4. — The family f t is called positive if this orientation
coincides with an orientation already fixed on S2. Otherwise a maximal
family is called negative.

We have the following

Lemma 4.5. — A positive elliptic point generates a positive family of
Bishop discs.

Proof. — Consider first the model case where S2 is defined near an el-
liptic point by the equation (2.2) with 0 < γ < 1. The Bishop discs near the
origin are described in [10] and are obtained by the intersection with the
hyperplanes {Rew = t}. One readily sees that in this case the statement
of lemma 4.5 holds. Since the general case is a small perturbation of this
model situation (see [10]) the assertion remains true. �

Lemma 4.6. — Suppose that the family of discs (f t(D))k approaches a
good hyperbolic point p from inside. Then (after a suitable reparametrization
by Mobius transformations) the family (f t) converges (passing to a subse-
quence) in C(D) to a hyperbolic disc.

Proof. — We use local coordinates (z, w) near p as in Section 2, identi-
fying p with the origin. Then as t→∞ every disc f t(D) near 0 is the graph
{w = gt(z)} of a function gt holomorphic over a domain Dt with smooth
boundary. Let tk → ∞ be an increasing sequence of values of parameter,
fk = f tk . The family (Dt) is monotone and converges to a domain D with
∂D smooth off the origin D; this domain D satisfies Definition 2.6 of Section
2. Since the family (Dt) is increasing, the limit domain D can fill only one
admissible region i.e. is asymptotic either to the domain D+ or D− from
Definition 2.6.
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Next, the family (gtk) converges to a function g holomorphic on D near
the origin. According to Section 2, g is of class C2(D) and also satisfies
Definition 2.6. As we saw previously, the intersection of the limit nodal
curve with a neighborhood of the origin is a finite number of holomorphic
discs in M which are graphs over D. But in our case the limit of discs
(fk(D)) is the graph of g over D near the origin so only one single disc,
the graph of g, appears in the limit. Hence the origin is not a nodal point
and no disc bubble arises at the origin. If tn → ∞ is another sequence
of parameters and fn = f tn , we repeat the same argument. Since (Dt)
is a monotone family, the domains (Dtn) converge to the same domain D
which is the limit of (Dtk). Suppose that the limit of (fn(D)) is the graph
of g̃ over D in a neighborhood U of the origin. Then g̃(z) = g(z) = ψ(z)
for z ∈ U ∩ ∂D, where ψ comes from Equation (2.2). By the boundary
uniqueness theorem for holomorphic functions, g̃ = g on D. This means
that the family (f t) converges to a single disc which is the graph of g and
the absence of bubbles implies the convergence in C(D). As it was mentioned
previously, near totally real points the convergence will be in every Ck norm
up to the boundary. �

In the case of outside approach bubbles necessarily arise, but their struc-
ture is quite simple in view of a local description of hyperbolic discs from
Section 2.

Lemma 4.7. — Suppose that the family of discs (f t(D))k approaches a
good hyperbolic point p from outside. Then near p it converges in the Haus-
dorff distance to the union of two hyperbolic discs approaching p from oppo-
site sides in admissible regions described in Section 2. Thus, the family of
maps (f t) converges to one of these discs after a suitable reparametrization
by Mobius transformations and the second disc may be viewed as a bubble.

Proof. — We use the characteristic foliation χ induced by ∂M on S2,
see [10]. Since p is a good hyperbolic point, we may assume that S2 has the
form (2.2) near p and p = 0 in these coordinates. Consider the projection
π : (z, w) → z. Then the images π(χ) foliate a neighborhood of the origin
in C. They are trajectories of a first order dynamical system

{
Re ż = (2γ + 1)Re z + α1(2γ − 1)Imz +O(z2)
Im ż = α1(2γ + 1)Re z − (2γ − 1)Imz +O(z2)

with α1, γ given by the expansion of the local defining function ρ in Sub-
section 2.1. Then the origin is a saddle point for this dynamical system.
There are four trajectories through the origin tangent to two lines through
the origin; these lines are determined by the eigenvalues of the linear part of
the above system. They divide a neighborhood of the origin in four regions,
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say, Ωj , j = 1, 2, 3, 4, which are filled by other leaves of χ precisely as in
the classical phase portrait of a dynamical system near a saddle point. Now
suppose by contradiction that (f t) is a family approaching p from outside
and converging to a single disc. Then the limit disc is the graph over an
admissible approach region D, say asymptotic to the domain D+ from Def-
inition 2.6. The discs f t(D) are the graphs over domains Dt with smooth
boundaries near the origin; these domains decrease to D. But then for t
large enough their boundaries ∂Dt intersect at least three regions Ωj and
one can find one region, say Ω1, where the intersections ∂Dt ∩ Ω1 form a
sequence of curves closed in Ω1, converging to the origin. But then, since
the origin is a saddle point, for a given t one can find a leaf of the above
dynamical system which is tangent to ∂Dt at some point a ∈ Ω1. Therefore,
there exists a leaf of the characteristic foliation χ tangent to f t(D) at some
point. However, it is shown in [10] that this is impossible. �

Next, we have the following useful

Lemma 4.8. — If a positive (resp. negative) family (f t) approaches a
positive hyperbolic point p, then it must approach from inside (resp. outside).

Once again, for the proof it suffices to consider the case where S2 is
defined near a positive hyperbolic point by (2.2) with γ > 1. In view of
Lemma 2.7 the dynamics of the family f t near the origin is the same as the
behaviour of the sections by the real hyperplanes {Rew = t}. We conclude
the proof by checking the orientations of boundaries of discs corresponding
to these sections. �

Thus for every maximal family (f t) two cases may occur. In the first
case (inside approach) the family (f t(D)) converges to the image of a single
hyperbolic disc f1(D) having a good approach. Then necessarily we deal
with the inside approach and the boundaries of f t fill an approach region
near a good hyperbolic point p. In the second case (outside approach) the
sequence (f t(D)) of discs converges to the union of images of two hyperbolic
discs f1(D) and f2(D).

5. Deformation of hyperbolic discs

Recall again [10] that a Bishop disc with boundary glued to S2
∗ belongs

to a 1-parameter family of Bishop discs with boundaries foliating an open
piece of S2

∗ . We establish here an analog for hyperbolic discs.

5.1. Gluing two hyperbolic discs into a single disc

The main technical result here is the following
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Proposition 5.1. — Let f1 and f2 be two distinct hyperbolic discs at a
good hyperbolic point p. Then given ε > 0 there exists an almost complex
structure Jε and a sphere S2

ε with the following properties:

(a) the structure Jε is integrable near p and coincides with J outside a
neighborhood of p; the sphere S2

ε also coincides with S2 outside a
neighborhood of p;

(b) Jε → J in the C1-norm and S2
ε → S2 in the C2-norm as ε→ 0;

(c) there exists a Jε-holomorphic disc fε, ε-close to f1(D)∪ f2(D) in the
Hausdorff distance, coinciding with f1(D)∪f2(D) outside a neighbor-
hood of p and such that its boundary is glued to the totally real (with
respect to Jε) part of S2

ε . The family (fε) tends to f1(D)∪f2(D) from
outside as ε→ 0.

Proof. — Step 1: smooth gluing of discs. We assume that S2 is given
by (2.2) near the origin which is a good hyperbolic point. Fix ε > 0 small
enough. According to Section 2, the discs fj have a good approach at p
and in particular, they approach p from opposite regions. According to
Lemma 2.7, the discs fj are the graphs of holomorphic (with respect to
Jst) functions w = gj(z) over domains Dj in C asymptotic to the origin
(the domains Dj are asymptotic to the domains D± by Definition 2.6).
Furthermore, the expansions of g1 and g2 coincide at the origin up to the
second order. In particular there exists a real number α, 0 < α < 1, and
a C2,α-smooth real surface Π in a neighborhood of the origin such that
fj(D) are contained in Π. Then Π = {w = o(|z|2)}. There exists a C2,α-
coordinate diffeomorphism Φε in a neighborhood U of the origin with the
following properties:

(i) Φε coincides with the identity map up to the second order at the
origin, the restriction Φε|fj(D) is holomorphic with respect to Jst and
Φε(fj(D)) = Dj , j = 1, 2 ;

(ii) in the new coordinates one has Π = {w = 0} and S2 has the form
(2.1);

(iii) ‖ Φε − id ‖C2< ε, where id denotes the identity map.

Step 2: local deformation of the structure. Thus in the new coordinates
one may identify the disc fj(D) with the domain Dj in the axis {(z, 0)}
and there exists a small perturbation of S2 satisfying (i), (ii) and such that
it has the form (2.2); for simplicity of notations we still denote it by S2.
The structure J̃ε := (Φε)∗(J) coincides with Jst at the origin up to the
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first order. Furthermore, J̃ε|Dj = Jst. Let Ãε := AJ̃ε
be the matrix of the

deformation tensor of J̃ε, see [10] (the complex matrix of the structure J̃ε in
the terminology of [20]). Recall that there exists a one-to-one correspondence
between an almost complex structure and its deformation tensor, see [20].
In our case AJ̃ε

vanishes at the origin together with all first order partial
derivatives and vanishes on the domains Dj .

Step 3: local deformation of the sphere. Let V be a neighborhood of the
origin in C and ψ : V → R+ be a smooth function, ψ(0) > 0, with support
compactly contained in V . Let 0 < δ = δ(ε) < ε be small enough. Consider
the surface S2

ε defined by

w = zz + γRe z2 − δψ(z). (5.1)

Then S2
ε coincides with S2 outside a small neighborhood of the origin. The

real surface Π = {w = 0} is Jst -complex. Its intersection with S2
ε is a

real curve in the Jst-totally real part of S2
ε and coincides with the bound-

aries of Dj outside a neighborhood of the origin.This curve bounds a Jst-

holomorphic disc f̃ε on Π coinciding with D1 ∪D2 outside a neighborhood
of the origin. The family f̃ε tends to D1 ∪ D2 from outside as ε → 0. Fix
a smooth function χ(t) with χ(t) = 0 for t < 1 and χ(t) = 1 for t > 2.
Consider the matrix Âε(z, w) = χ((|z|+ |w|)/δ1)Ãε(Z). Here 0 < δ1 < ε is
small enough. Then Âε tends to Ãε in the C1 norm as δ1 → 0 (recall that
Ãε vanishes at the origin up to the first order). Furthermore, Âε vanishes
near the origin, coincides with Ãε outside a neighborhood of the origin and
in the sectors Dj where Ãε vanishes. Fixing δ << δ1 we obtain that the

disc f̃ε is holomorphic with respect to the almost complex structure Ĵε de-
fined by the matrix Âε. Hence the disc fε = (Φε)

−1(f̃ε) and the structure
Jε := (Φε)

−1(Ĵε) satisfy the assertion of the lemma. �

Remark. — In the above proof we slightly perturbed the sphere S2 and
the almost complex structure J near a good hyperbolic point. Since the
boundary ∂M is strictly Levi convex near every hyperbolic point, it remains
strictly Levi convex after this C1-perturbation of J .

We assume that the point p is a positive hyperbolic point and that the
two hyperbolic discs f1 and f2 are limits of two maximal positive families
(f t1) and (f t2) of Bishop discs with Maslov indices equal to 0. Applying
Lemma 5.1 we obtain a disc fε approaching the union f1(D) ∪ f2(D) from
outside as ε tends to 0.

Lemma 5.2. — The Maslov index of the disc fε is equal to 0.
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Proof. — Fix t large enough and consider the real oriented surface E
which is an open piece of S2 bounded by the curves f t1(∂D), f t2(∂D) and
fε(∂D). We choose on these curves the orientation induced by the orien-
tation of E and denote the obtained loops by γ1, γ2 and γ3 respectively.
Thus, the orientations of γj , j = 1, 2 are opposite to the orientations in-
duced by the discs f tj , j = 1, 2 and the orientation of γ3 coincides with the
orientation induced by fε. The boundary of E is totally real with respect
to the almost complex structure Jε from Lemma 5.1 and E contains one
positive hyperbolic point p. So I+(E) = −1 and I−(E) = 0. The Maslov
indices of f tj , j = 1, 2 are equal to 0. Hence IE(f tj |∂D) = 1, j = 1, 2 and
the sum of the indices IE(γj) is equal to −2. Then by Proposition 3.5 we
obtain IE(γ3) = +1 and the Maslov index of fε is equal to 0. �

In Proposition 5.1 and Lemma 5.2 we moved two hyperbolic discs f1
and f2 to a single disc which is ”above” the hyperbolic point creating a
family of discs approaching the hyperbolic point from outside; this family
bifurcates in the initial hyperbolic discs fj , j = 1, 2. This construction
is useful when fj are obtained as limits of two families of Bishop discs
approaching a hyperbolic point from inside. Of course, one can reverse this
dynamics of families of Bishop discs and adapt it for the case of outside
approach. Since we do not need it here, we drop the details.

5.2. Hyperbolic chains

We considered above the case where hyperbolic discs touch exactly one
hyperbolic point. It is easy to see that this construction admits a generalisa-
tion to the case where discs touch several hyperbolic points. More precisely,
let fj , j = 1, ..., k, be hyperbolic discs and let D = ∪kj=1fj(D) be their
union. We will use the notation Gj = fj(D); we stress out that the discs Gj

forming a chain are closed.

Suppose that D is connected. We know that every disc touches a good
hyperbolic point with a good asymptotic approach and by the uniqueness
principle, if two discs touch the same hyperbolic point, they approach it
from opposite regions. Such family of discs (a nodal curve) is called in [2] a
hyperbolic chain. A chain D is called saturated if for every hyperbolic point
in D both approach regions are filled by discs from that chain.

Lemma 5.3. — If a chain D containing k discs is not saturated, then it
contains at least k hyperbolic points.

Proof. — We proceed by induction in k. Consider the case where k = 2.
If D contains only one hyperbolic point, by Section 2 the discs Gj , j = 1, 2,
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fill opposite admissible regions for that point and the chain is saturated.
Suppose now that the assertion of the Lemma holds for every chain con-
taining at most k − 1 discs.

Consider a chain D containing k discs and denote by m the number
of its hyperbolic points. Since the chain is not saturated, there exists a
hyperbolic point for which just one admissible region is filled, say, by the
disc Gk. Removing Gk, we obtain a new chain D′ containing k−1 discs and
m−1 hyperbolic points. This new chain can not be saturated since the disc
Gk is different from the discs forming D′ and approaches at least one point
of the chain D′. Applying the induction assumption, we conclude. �

Furthermore, in general a chain D can be non-simply connected. For
example, one may think about a ”triangle” formed by three hyperbolic
discs intersecting in three ”vertices” that are the hyperbolic points. Then
a closed path formed by the diameters of these discs with the ends at the
hyperbolic points, is not homotopic to a point in D.

Lemma 5.4. — A non-simply connected chain consisting of k discs con-
tains at least k hyperbolic points.

Proof. — Again we proceed by induction in k. Consider the case k = 2.
If D contains only one hyperbolic point, it is formed by two discs glued
together at this point and it is simply connected. Suppose that the assertion
of the Lemma holds for all chains containing at most k − 1 discs.

Consider a chain D formed by k discs and containing m hyperbolic
points. Ifm < k, then at least one disc, say Gk, contains only one hyperbolic
point p. Remove that disc from the chain obtaining the new chain D′. Since
by the previous Lemma the chain D is saturated, the hyperbolic point p
remains in the chain D′ and belongs to a single disc, say Gk−1. Slightly
deforming the disc Gk−1 and the almost complex structure J near p, we
obtain a new chain (for the deformed structure) that does not contain p;
hence it contains m − 1 hyperbolic points and it is simply connected by
assumption. Hence D′ also is simply connected. But D is obtained by gluing
the disc Gk at a single point p, so it is simply connected. �

In the previous Subsection we proved the existence of a deformation for
saturated simply connected hyperbolic chains containing two discs and one
hyperbolic point. This construction immediately generalises to the case of
saturated simply connected chains containing k discs. We give details in the
next section.
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6. Filling spheres

Now we prove Theorem 1.1. We proceed by induction on the number N
of hyperbolic points in S2.

The case N = 0 is treated in [10].

Consider the model case N = 1 : S2 contains exactly one hyperbolic
point H. This point may be assumed positive changing the orientation of
S2 if necessary. Then S2 has three elliptic points Ej , j = 1, 2, 3, and neces-
sarily two of them are positive because I+(S2) = I−(S2) = 1. Denote by E1

and E2 the positive elliptic points and by E3 the negative one. Let (f tj ) be
the maximal positive families of Bishop discs generated by Ej , j = 1, 2, 3
According to Lemma 4.8, the families (f tj ), j = 1, 2 end up into two hyper-
bolic discs f1 and f2. We point out that the families (f tj ), j = 1, 2 can not
approach the negative elliptic point E3: in that case they would touch the
discs from the family (f t3) and so would coincide with these discs by the
uniqueness principle from [10], which is impossible. By Lemma 2.7, f1(D)
and f2(D) approach H from two opposite regions. Applying Proposition 5.1
we obtain a family of discs (fε) approaching H from outside; they are holo-
morphic with respect to a structure Jε which is a small perturbation of J
near H. Let now f̃ t3 be the family of Jε-holomorphic Bishop discs generated
by E3. By the uniqueness principle from [10] the disc fε is necessarily con-
tained in the family (f̃ t3). Passing to the limit as ε→ 0, we conclude that S2

(after a small generic perturbation) is filled by boundaries of J-holomorphic
discs.

Consider the case N � 2. We have I+(S2) = I−(S2) = 1. Let E1,...,Ed
be the positive elliptic points. Consider the positive families of Bishop discs
(f tj ) generated by Ej .

Case 1. The maximal families (f tj ) touch only positive hyperbolic points.
Every family (f tj ) approaches a positive hyperbolic point from inside and
fills one approach region. Denote by fj , j = 1, ..., d, the limit hyperbolic
disc for every family. We can regroup these discs to a finite family of dis-
joint hyperbolic chains Dl. Since the number of positive hyperbolic points
is less than d, one of the chains, say D1, contains more discs than hyper-
bolic points. Let n and m be respectively the numbers of the discs and the
hyperbolic points in D1. Since m < n, this chain is saturated and simply
connected. Applying to this chain the deformation construction from the
previous section (Proposition 5.1), we swept an open subset of S2 contain-
ing the hyperbolic points from D1 by the boundaries of discs holomorphic
with respect to an ε-perturbed almost complex structure. We extend these
families past the hyperbolic points; since the chain saturated and simply
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connected, we obtain (n−m) positive families of Bishop discs of the Maslov
index 0. Thus we removed the same number of discs and hyperbolic points
and may proceed by induction. Finally we obtain a filling of S2 by bound-
aries of discs holomorphic with respect to an almost complex structure Jε
obtained from J by an ε-perturbation near every hyperbolic point. Passing
to the limit as ε→ 0, we conclude.

Case 2. There are negative hyperbolic points which are limits of the fam-
ilies (f tj ). Once again we regroup the limit hyperbolic discs fj into disjoint
chains Dj . Since a positive family of discs approaches a negative hyperbolic
point from outside, it fills both approach regions by Section 4 and the limit
chains are saturated at every negative hyperbolic point; furthermore, ev-
ery negative hyperbolic point attracts precisely one positive family of discs.
Next we may apply a deformation construction similarly to Proposition 5.1
at every negative hyperbolic point and slightly deform every chain near
such a point; we also suitably deform the almost complex structure so that
the new chains remain holomorphic. The new chains contain only positive
hyperbolic points and by the previous argument, one of these chains is sat-
urated and simply connected. Since such a chain is obtained by a small
deformation of an old one, we conclude that one of the initial chains, say
D1, is saturated and simply connected. Then we extend this chain through
positive hyperbolic points by Proposition 5.1 replacing two positive families
and at least one positive hyperbolic point by a family of discs of Maslov
index 0. If the above chains contain only negative hyperbolic points, we
consider families of Bishop’s discs starting from negative hyperbolic points.
Such a family fills both admissible regions near a positive hyperbolic point.
Hence in every chain obtained from negative families of discs every positive
hyperbolic point attracts precisely one family of discs. Since I(S) = 2, at
least one of these chains contains a negative hyperbolic point and we apply
the above argument extending the chain through that point by Proposition
5.1. Thus, in any case we remove at least one hyperbolic point and two fami-
lies of discs replacing them by a single family. By the induction assumption,
we conclude the proof of Theorem 1.1.

Thus, we obtain a real hypersurface Γ with boundary S2. By construc-
tion, Γ is a real smooth hypersurface foliated by a 1-parameter family of
J-holomorphic discs; it is obvious from the above construction that Γ is
diffeomorphic to the 3-ball.
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7. Concluding remarks

In this section we compare Theorem 1.1 with related results. We do not
discuss numerous applications of this Theorem to symplectic and contact
geometry; see, for instance [5].

0. A true breakthrough in the study of filling of 2-spheres in presence of
hyperbolic points was done by E.Bedford-W.Klingenberg [2]. They consider
the case of spheres with elliptic and good hyperbolic points generically em-
bedded into a strictly pseudoconvex hypersurface in C2. This work remains
an important reference in the subject.

1. In the interesting and important work by R.Hind [11] the following
situation is considered. Let (M,J, ω) denote a symplectic manifold with a
tame almost complex structure containing no holomorphic spheres of nega-
tive self-intersection. Let Ω be a smoothly bounded domain with Levi convex
boundary ∂Ω. Suppose that ∂Ω is not the cartesian product of a holomor-
phic sphere with the circle S1 and let S2 be a real 2-sphere generically
embedded into ∂Ω. Suppose that J is integrable in a neighborhood of every
hyperbolic point of S2. Then, if necessarily after a C2 perturbation in a
neighborhood of the complex points, there exists a filling of S2 by bound-
aries of holomorphic discs. The work contains a detailed description of the
properties of this filling. Admitting that the result holds in the case where
∂Ω is strictly Levi convex, the author uses Y.Eliashberg-W.Thurston’s theo-
rem [6] on approximation of Levi convex boundaries by strictly Levi convex
ones. However, in the almost complex setting the corresponding result on
filling in the strictly Levi convex case was never proved (it was announced
by Y.Eliashberg in [5]).

The present paper fixes that gap. In fact, we prove much more since
Theorem 1.1 is established in the Levi convex case under the assumption
that there are no non-constant holomorphic discs in the boundary. This is
the main case considered in the work [11] since the case where the bound-
ary contains holomorphic discs can be reduced to the previous one by ap-
proximation of the boundary, see [11]. We also point out that many other
technical simplifications of R.Hind’s work are given in [10] using exhaustion
plurisubharmonic functions.

Note that in general, the condition of the Levi convexity cannot be
dropped. It was first observed by Y. Eliashberg [5]; later J.Fornaess-D.Ma
[7] constructed an explicit example.

2. N.Kruzhilin proved in [14] the existence of a filling of a two-sphere
generically embedded into a strictly Levi convex hypersurface in C2 (with
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the standard complex structure) without any assumption that the hyper-
bolic points are good. His description of the boundary behaviour of hyper-
bolic discs is substantially more complicated. It is natural to think that a
combination of his techniques with the methods of the present work will
allow to obtain Theorem 1.1 without assuming that the hyperbolic points
are good. Another (more general) open question is if Theorem 1.1 remains
true when the almost complex structure J is not supposed to be integrable
near hyperbolic points. However, we must point out that for many appli-
cations the condition of the integrability of J near hyperbolic points and
the assumption that these points are good are not restrictive and naturally
hold. Indeed, by a small perturbation of an almost complex structure a given
two-sphere can be lead into a position where the assumptions of Theorem
1.1 hold; the integrability of the structure near complex points also often
can be assumed. Thus, Theorem 1.1 is in general sufficient for filling a sin-
gle sphere. So it is quite possible that the necessary technical difficulties to
answer the above open questions will not correspond to the impact.

3. As mentioned in [10], the condition that (M,J, ω) contains no non-
constant holomorphic spheres may be weakened. We do not develop this
subject here referring to the concluding remarks in [10].

4. Many parts of the proof presented in our article still work in the case
where instead of the real sphere S2 one considers a compact real surface
(with or without boundary) contained in a pseudoconvex hypersurface and
admitting a finite number of complex points. Here suitable assumptions on
the numbers of elliptic and hyperbolic points are necessary. We hope that
it will be useful in further applications.
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