Tien Duc Luu

On some properties of three-dimensional minimal sets in \mathbb{R}^4

<http://afst.cedram.org/item?id=AFST_2013_6_22_3_465_0>
On some properties of three-dimensional minimal sets in \mathbb{R}^4

Tien Duc LUU(1)

ABSTRACT. — We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in \mathbb{R}^4 around a Y-point and the existence of a point of particular type of a Mumford-Shah minimal set in \mathbb{R}^4, which is very close to a T. This will give a local description of minimal sets of dimension 3 in \mathbb{R}^4 around a singular point and a property of Mumford-Shah minimal sets in \mathbb{R}^4.

RÉSUMÉ. — On prouve dans cet article la régularité Höldérienne pour les ensembles minimaux au sens d’Almgren de dimension 3 dans \mathbb{R}^4 autour d’un point de type Y et dans le cas d’un ensemble Mumford-Shah minimal dans \mathbb{R}^4 qui est très proche d’un T, l’existence d’un point avec une densité particulière. Cela donne une description locale des ensembles minimaux de dimension 3 dans \mathbb{R}^4 autour d’un point singulier et une propriété des ensembles Mumford-Shah minimaux dans \mathbb{R}^4.

1. Introduction

In this paper we will prove two theorems. The first theorem is about local Hölder regularity of three-dimensional minimal sets in \mathbb{R}^4 and the second theorem is about the existence of a point of a particular type of a Mumford-Shah minimal set, which is close enough to a cone of type T.

Let us give the list of notions that we will use in this paper.

(*) Reçu le 22/03/2012, accepté le 20/12/2012

(1) Bâtiment 430, Département de Mathématique, Université Paris Sud XI, 91405 Orsay
luutienduc@gmail.com
Article proposé par Gilles Carron.
H^d the d-dimensional Hausdorff measure.

$$\theta_A(x,r) = \frac{H^d(A \cap B(x,r))}{r^d},$$

where $A \subset \mathbb{R}^n$ is a set of dimension d and $x \in A$.

$$\theta_A(x) = \lim_{r \to 0} \theta_A(x,r),$$
called the density of A at x, if the limit exists.

Local Hausdorff distance $d_{x,r}(E,F)$. Let $E,F \subset \mathbb{R}^n$ be closed sets which meet the ball $B(x,r)$. We define

$$d_{x,r}(E,F) = \frac{1}{r} \left[\sup \{ \text{dist}(z,F) ; x \in E \cap B(x,r) \} + \sup \{ \text{dist}(z,E) ; z \in F \cap B(x,r) \} \right].$$

Let $E,F \subset \mathbb{R}^n$ be closed sets and $H \subset \mathbb{R}^n$ be a compact set. We define

$$d_H(E,F) = \sup \{ \text{dist}(x,F) ; x \in E \cap H \} + \sup \{ \text{dist}(x,E) ; x \in F \cap H \}.$$

Convergence of a sequence of sets. Let $U \subset \mathbb{R}^n$ be an open set, $\{E_k\} \subset U$, $k \geq 1$, be a sequence of closed sets in U and $E \subset U$. We say that $\{E_k\}$ converges to E in U and we write $\lim_{k \to \infty} E_k = E$, if for each compact $H \subset U$, we have

$$\lim_{k \to \infty} d_H(E_k,E) = 0.$$

Blow-up limit. Let $E \subset \mathbb{R}^n$ be a closed set and $x \in E$. A blow-up limit F of E at x is defined as

$$F = \lim_{k \to \infty} \frac{E - x}{r_k},$$

where $\{r_k\}$ is any positive sequence such that $\lim_{k \to \infty} r_k = 0$ and the limit is taken in \mathbb{R}^n.

Now we give the definition of Almgren minimal sets of dimension d in \mathbb{R}^n.

Definition 1.1. — Let E be a closed set in \mathbb{R}^n and $d \leq n - 1$ be an integer. An Almgren competitor (Al-competitor) of E is a closed set $F \subset \mathbb{R}^n$ that can be written as $F = \varphi(E)$, where $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is a Lipschitz mapping such that $W_\varphi = \{ x \in \mathbb{R}^n ; \varphi(x) \neq x \}$ is bounded.

An Al-minimal set of dimension d in \mathbb{R}^n is a closed set $E \subset \mathbb{R}^n$ such that $H^d(E \cap B(0,R)) < +\infty$ for every $R > 0$ and

$$H^d(E \setminus F) \leq H^d(F \setminus E)$$

for every Al-competitor F of E.

- 466 -
Next, we give the definition of Mumford-Shah (MS) minimal sets in \(\mathbb{R}^n \).

Definition 1.2. — Let \(E \) be a closed set in \(\mathbb{R}^n \). A Mumford-Shah competitor (also called MS-competitor) of \(E \) is a closed set \(F \subset \mathbb{R}^n \) such that we can find \(R > 0 \) such that

\[
F \setminus B(0, R) = E \setminus B(0, R)
\]

(1.2.1)

and \(F \) separates \(y, z \in \mathbb{R}^n \setminus B(0, R) \) when \(y, z \) are separated by \(E \).

A Mumford-Shah minimal (MS-minimal) set in \(\mathbb{R}^n \) is a closed set \(E \subset \mathbb{R}^n \) such that

\[
H^{n-1}(E \setminus F) \leq H^{n-1}(F \setminus E)
\]

(1.2.2)

for any MS-competitor \(F \) of \(E \).

Here, \(E \) separates \(y, z \) means that \(y \) and \(z \) lie in different connected components of \(\mathbb{R}^n \setminus E \).

It is easy to show that any MS-minimal set in \(\mathbb{R}^n \) is also an Al-minimal set of dimension \(n - 1 \) in \(\mathbb{R}^n \). Next, if \(E \) is an MS-minimal set in \(\mathbb{R}^n \), then \(E \times \mathbb{R} \) is also an MS-minimal set in \(\mathbb{R}^n \times \mathbb{R} \), by exercice 16, p 537 of [5].

We give now the definition of minimal cones of type \(P \), \(Y \) and \(T \), of dimension 2 and 3 in \(\mathbb{R}^n \).

Definition 1.3. — A two-dimensional minimal cone of type \(Y \) is just a two-dimensional affine plane in \(\mathbb{R}^n \). A three-dimensional minimal cone of type \(P \) is a three-dimensional affine plane in \(\mathbb{R}^n \).

Let \(S \) be the union of three half-lines in \(\mathbb{R}^2 \subset \mathbb{R}^n \) that start from the origin 0 and make angles \(120^\circ \) with each other at 0. A two-dimensional minimal cone of type \(Y \) is set of the form \(Y' = j(S \times L) \), where \(L \) is a line passing through 0 and orthogonal to \(\mathbb{R}^2 \) and \(j \) is an isometry of \(\mathbb{R}^n \). A three-dimensional minimal cone of type \(Y \) is a set of the form \(Y = j(S \times P) \), where \(P \) is a plane of dimension 2 passing through 0 and orthogonal to \(\mathbb{R}^2 \) and \(j \) is an isometry of \(\mathbb{R}^n \). We call \(j(L) \) the spine of \(Y' \) and \(j(P) \) the spine of \(Y \).

Take a regular tetrahedron \(R \subset \mathbb{R}^3 \subset \mathbb{R}^n \), centered at the origin 0, let \(K \) be the cone centered at 0 over the union of the 6 edges of \(R \). A two-dimensional minimal cone of type \(T \) is of the form \(j(K) \), a three-dimensional minimal cone of type \(T \) is a set of the form \(T = j(K \times L) \), where \(L \) is the line passing through 0 and orthogonal to \(\mathbb{R}^3 \) and \(j \) is an isometry of \(\mathbb{R}^n \). We call \(j(L) \) the spine of \(T \).
We denote by d_P, d_Y, d_T the densities at the origin of the 3-dimensional minimal cones of type \mathbb{P}, \mathbb{Y} and \mathbb{T}, respectively. It is clear that $d_P < d_Y < d_T$.

We can now define a Hölder ball for a set $E \subset \mathbb{R}^n$.

Definition 1.4. — Let E be a closed set in \mathbb{R}^n. Suppose that $0 \in E$. We say that $B(0, r)$ is a Hölder ball of E, of type \mathbb{P}, \mathbb{Y} or \mathbb{T} with exponent $1 + \alpha$, if there exists a homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ and a cone Y of dimension 2 or 3, centered at the origin, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, respectively, such that

$$|f(x) - x| \leq \alpha r \text{ for } x \in B(0, r) \quad (1.4.1)$$

$$\left(1 - \alpha\right) \left|\frac{x - y}{r}\right|^{(1 + \alpha)} \leq \left|\frac{f(x) - f(y)}{r}\right| \leq \left(1 + \alpha\right) \left|\frac{x - y}{r}\right|^{(1 - \alpha)} \text{ for } x, y \in B(0, r) \quad (1.4.2)$$

$$E \cap B(0, (1 - \alpha)r) \subset f(Y \cap B(0, r)) \subset E \cap B(0, (1 + \alpha)r). \quad (1.4.3)$$

For the sake of simplicity, we will say that E is Bi-Hölder equivalent to Y in $B(0, r)$, with exponent $1 + \alpha$.

If in addition, our function f is of class $C^{1,\alpha}$, then we say that E is $C^{1,\alpha}$ equivalent to Y in the ball $B(0, r)$. Here, f is said to be of class $C^{1,\alpha}$ if f is differentiable and its differential is a Hölder continuous function, with exponent α.

J. Taylor in [11] has obtained the following theorem about local C^1-regularity of two-dimensional minimal sets in \mathbb{R}^3.

Theorem 1.5. [11]. — Let E be a two-dimensional minimal set in \mathbb{R}^3 and $x \in E$. Then there exists a radius $r > 0$ such that in the ball $B(x, r)$, E is $C^{1,\alpha}$ equivalent to a minimal cone $Y(x, r)$ of dimension 2, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. Here α is a universal positive constant.

As we know, any two-dimensional minimal cone in \mathbb{R}^3 is automatically of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. This is a great advantage when we study two-dimensional minimal sets of dimension 2 in \mathbb{R}^3, because each blow-up limit at some point of a two-dimensional minimal set is a minimal cone of the same dimension. So we can approximate our minimal set by cones which we know the structure of.

The problem of two-dimensional minimal sets in \mathbb{R}^n with $n > 3$ is more difficult. Here we don’t know the list of two-dimensional minimal cones. But G. David gives in section 14 of [3] a description of two-dimensional minimal
On some properties of three-dimensional minimal sets in \mathbb{R}^4 cones in \mathbb{R}^n. Thanks to this, he can prove the local Hölder regularity of two-dimensional minimal sets in \mathbb{R}^n.

Theorem 1.6. [3].— *Let E be a two-dimensional minimal set in \mathbb{R}^n and $x \in E$. Then for each $\alpha > 0$, there exists a radius $r > 0$ such that in the ball $B(x, r)$, E is Hölder equivalent to a two-dimensional minimal cone $Y(x, r)$, with exponent α.*

The C^1 regularity of two-dimensional minimal sets in \mathbb{R}^n needs more efforts. We have to prove that the local distance between E and a two-dimensional minimal cone in $B(x, r)$ is of order r^a, where a is a positive universal constant when r tends to 0. G. David in [4] shows the C^1 regularity of E locally around x, but he needs to add an additional condition, called ”full length” to some blow-up limit of E in x.

Theorem 1.7. [4].— *Let E be a two-dimensional minimal set in the open set $U \subset \mathbb{R}^n$ and $x \in E$. We suppose that some blow-up limit of E at x is a full length minimal cone. Then there is a unique blow-up limit X of E at x, and $x + X$ is tangent to E at x. In addition, there is a radius $r_0 > 0$ such that E is $C^{1,\alpha}$ equivalent to $x + X$ in the ball $B(x, r_0)$, where $\alpha > 0$ is a universal constant.*

Let us say more about the “full length” condition for a two dimensional minimal cone F centered at the origin in \mathbb{R}^n. As in [3, Sect 14], the set $K = F \cap \partial B(0, 1)$ is a finite union of great circles and arcs of great circles $C_j, j \in J$. The C_j can only meet when they are arcs of great circles and only by sets of 3 and at a common endpoint. Now for each C_j whose length is more than $\frac{9\pi}{10}$, we cut C_j into 3 sub-arcs $C_{j,k}$ with the same length so that we have a decomposition of K into disjoint arcs of circles $C_{j,k}, (j, k) \in \tilde{J}$ with the same length and for each $C_{j,k}$, we have $\text{length}(C_{j,k}) \leq \frac{9\pi}{10}$. The full length condition says that if we have another net of geodesics $K_1 = \bigcup_{(i,j) \in \tilde{J}} C^1_{j,k}$, for which the Hausdorff distance $d(C_{j,k}, C^1_{j,k}) \leq \eta$, where η is a small constant which depends only on n, and if $H^1(K_1) > H^1(K)$, then we can find a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f(x) = x$ out of the ball $B(0, 1)$ and $f(B(0, 1)) \subset B(0, 1)$ such that $H^2(f(F_1) \cap B(0, 1)) \leq H^2(F_1 \cap B(0, 1)) - C[H^1(K_1) - H^1(K)]$. Here $C > 0$ is a constant and F_1 is the cone over K_1. See [4, Sect 2] for more details.

It happens that all two-dimensional minimal cones in \mathbb{R}^3 satisfy the full length condition. So the theorem of G. David is a generalization of the theorem of J. Taylor.
For minimal sets of dimension ≥ 3, little is known. Almgren in [1] showed that if F is a three-dimensional minimal cone in \mathbb{R}^4, centered at the origin and over a smooth surface in S^3, the unit sphere of dimension 3, then E must be a 3-plane. Then J. Simon in [10] showed that this is true for hyper minimal cones in \mathbb{R}^n with $n < 7$. That is, if F is a minimal cone of dimension $n - 1$ in \mathbb{R}^n, centered at the origin and over a smooth surface in S^{n-1}, then F must be an $n - 1$ plane. There is no theorem yet about the regularity of minimal sets of dimension ≥ 3 with singularities.

Our first theorem is to prove a local Hölder regularity of three-dimensional minimal sets in \mathbb{R}^4. But we don’t know the list of three-dimensional minimal cones in \mathbb{R}^4 and we don’t have a nice description of three-dimensional minimal cones as we have for two-dimensional minimal cones. So we shall restrict to some particular type of points, at which we can obtain some information about the blow-up limits.

Now let E be a three-dimensional minimal set in \mathbb{R}^4 and $x \in E$. We want to show that E is Bi-Hölder equivalent to a three-dimensional minimal cone of type \mathbb{P} or \mathbb{Y} in the ball $B(x, r)$, for some radius $r > 0$. If $\theta_E(x) = d_P$, then W. Allard in [2] showed that there exists a radius $r > 0$ such that in the ball $B(x, r)$, E is C^1 equivalent to a 3-dimensional plane. We consider then the next possible density of E at x, so we suppose that $\theta_E(x) = d_Y$. Since every blow-up limit of E at x is a 3-dimensional minimal cone of type \mathbb{Y}, then for each $\epsilon > 0$, there exists a radius $r > 0$ and a 3-dimensional minimal cone $Y(x, r)$ of type \mathbb{Y} such that

$$d_{x,r}(E, Y(x, r)) \leq \epsilon. \tag{*}$$

By using (*) and the minimality of E, we shall be able to approximate E by 3-dimensional minimal cones of type \mathbb{P} or \mathbb{Y} at every point in $E \cap B(x, r/2)$ and at every scale $t \leq r/2$. We shall then use Theorem 1.1 in [6] to conclude that E is Bi-Hölder equivalent to a 3-dimensional minimal cone of type \mathbb{Y} in the ball $B(x, r/2)$. Our first theorem is the following.

Theorem 1. — Let E be a 3-dimensional minimal set in \mathbb{R}^4 and $x \in E$ such that $\theta_E(x) = d_Y$. Then for each $\alpha > 0$, we can find a radius $r > 0$, which depends also on x, such that $B(x, r)$ is a Hölder ball (see Def 1.4) of type \mathbb{Y} of E, with exponent $1 + \alpha$.

Our second theorem concerns Mumford-Shah minimal sets in \mathbb{R}^4. In [3], G. David showed that there are only 3 types of Mumford-Shah minimal sets in \mathbb{R}^3, which are the cones of type \mathbb{P}, \mathbb{Y} and \mathbb{T}. The most difficult part is to show that if F is a Mumford-Shah minimal set in \mathbb{R}^3, which is close enough in $B(0, 2)$ to a \mathbb{T} centered at 0, then there must be a \mathbb{T}-point of F in $B(0, 1)$. To prove this proposition, G. David used very nice techniques which involve
On some properties of three-dimensional minimal sets in \mathbb{R}^4

the list of connected components. We want to obtain a similar result for a Mumford-Shah minimal set in \mathbb{R}^4 which is close enough to a T of dimension 3. But we cannot obtain a result which is as good as in [3, 18.1]. The reason is that we don’t know if there exists a minimal cone C of dimension 3 in \mathbb{R}^4, centered at 0, which satisfies $d_\gamma < \theta_C(0) < d_T$. Our second theorem is the following.

Theorem 2. There exists an absolute constant $\epsilon > 0$ such that the following holds. Let E be an MS-minimal set in \mathbb{R}^4, $r > 0$ be a radius, and T be a 3-dimensional minimal cone of type T centered at the origin such that

$$d_{0,r}(E, T) \leq \epsilon.$$

Then in the ball $B(0, r)$, there is a point of E which is neither of type P nor Υ.

See Definition 2.5 for the definition of points of type P and Υ. We divide the paper into two parts. In the first part, we prove Theorem 1. In the second part, we prove Theorem 2.

I would like to thank Professor Guy David for many helpful discussions on this paper.

2. Hölder regularity near a point of type Υ

for a 3-dimensional minimal set in \mathbb{R}^4

In this section we prove Theorem 1. We start with the following lemma.

Lemma 2.1. Let F be a 3-dimensional minimal cone in \mathbb{R}^4, centered at the origin, and let $x \in F \cap \partial B(0,1)$. Then each blow-up limit G of F at x is a 3-dimensional minimal cone G of type P, Υ or T and centered at 0. The type of G depends only on x and $\theta_E(x) = \theta_G(0)$.

We define the type of x to be the type of G.

Proof. We denote by $0x$ the line passing by 0 and x. Suppose that G is a blow-up limit of F at x. Then $G = \lim_{k \to \infty} \frac{F-x}{r_k}$ with $\lim_{k \to \infty} r_k = 0$. Let $y \in G$, we want to show that $y + 0x \subset G$. Setting $F_k = \frac{F-x}{r_k}$, as $\{F_k\}$ converges to G, we can find a sequence $y_k \in F_k$ such that $\{y_k\}_{k=1}^\infty$ converges to y. Setting $z_k = r_k y_k + x$, then $z_k \in F$ by definition of F_k, and z_k converges to x because r_k converges to 0. We fix $\lambda \in \mathbb{R}$ and we set $v_k = (1 + \lambda r_k)z_k$. Then $v_k \in F$ as F is a cone centered at 0. We have next that $w_k = r_k^{-1}(v_k - x) \in F_k$. On the other hand,
\[
w_k = r^{-1}((1 + \lambda r_k)z_k - x)
\]
\[
= r^{-1}((1 + \lambda r)(rk y_k + x) - x)
\]
\[
= r^{-1}(rk y_k + \lambda r^2 k y_k + \lambda rk x)
\]
\[
= y_k + \ldots (0)\left((r + 1)^3/r^3\right) \geq \theta_F(x)
\]
for each \(r > 0\). We let \(r \to +\infty\) and we obtain then \(\theta_F(0) \geq \theta_F(x)\), which is (2.2.2).

We see from this lemma that for each \(x \in F \setminus \{0\}\), where \(F\) is a 3-dimensional minimal cone in \(\mathbb{R}^4\) centered at the origin,
\[
\theta_F(x)\]
can take only one of the three values \(d_P, d_Y, d_T\). \hfill (1)

But we do not know the list of possible values of \(\theta_F(0)\). However, the following lemma says that for this cone \(F\), it is not possible that \(d_P < \theta_F(0) < d_Y\).

Lemma 2.2. — There does not exist a 3-dimensional minimal cone \(F\) in \(\mathbb{R}^4\), centered at the origin such that \(d_P < \theta_F(0) < d_Y\).

Proof. — Suppose that there is a cone \(F\) as in the hypothesis and
\[
d_P < \theta_F(0) < d_Y. \hfill (2.2.1)
\]

We first show that
\[
\text{for each } x \in F \cap \partial B(0, 1), \text{ we have } \theta_F(0) \geq \theta_F(x). \hfill (2.2.2)
\]

Indeed, since \(F\) is a minimal cone, for each \(z \in F\), the function \(\theta_F(z, t)\) is nondecreasing. So for \(r > 0\), we have \(\theta_F(x, r) \geq \theta_F(x)\), which means that \(H^3(F \cap B(x, r))/r^3 \geq \theta_F(x)\). Since \(B(x, r) \subset B(0, r + 1)\), we obtain \(H^3(F \cap B(x, r)) \leq H^3(F \cap B(0, r + 1))\) and thus \(H^3(F \cap B(0, r + 1))/r^3 \geq \theta_F(x)\). We deduce that \((H^3(F \cap B(0, r + 1))/(r + 1)^3)((r + 1)^3/r^3) \geq \theta_F(x)\).

Since \(F\) is a cone centered at 0, \(H^3(F \cap B(0, r + 1))/(r + 1)^3 = \theta_F(0)\) for each \(r > 0\). We deduce then \(\theta_F(0)((r + 1)^3/r^3) \geq \theta_F(x)\) for each \(r > 0\). We let \(r \to +\infty\) and we obtain then \(\theta_F(0) \geq \theta_F(x)\), which is (2.2.2).
Now (2.2.1) and (2.2.2) give us that $\theta_F(x) < d_Y$ for each $x \in F \cap \partial B(0, 1)$. By (1), we have $\theta_F(x) = d_P$ for $x \in F \cap \partial B(0, 1)$. So by [2, 8.1], there exists a neighborhood U_x of x in \mathbb{R}^4 such that $F \cap U_x$ is a 3-dimensional smooth manifold. We deduce that $F \cap \partial B(0, 1)$ is a 2-dimensional smooth sub-manifold of $\partial B(0, 1)$. By [1, Lemma 1], F is a 3-plane passing through 0. But this implies that $\theta_F(0) = d_P$, we obtain then a contradiction, Lemma 2.2 follows.

Lemma 2.3. — Let F be a 3-dimensional minimal cone in \mathbb{R}^4, centered at the origin 0. If $\theta_F(0) = d_Y$, then F is a 3-dimensional cone of type \mathbb{Y}.

Proof. — As in the argument for (2.2.2), we have that for each $x \in F \cap \partial B(0, 1)$, $\theta_F(x) \leq \theta_F(0) = d_Y$. So $\theta_F(x)$ can only take one of the two values d_P or d_Y. If all $x \in F \cap \partial B(0, 1)$ are of type \mathbb{P}, then by the same argument as above, F will be a 3-plane, and then $\theta_F(0) = d_P$, a contradiction. So there must be a point $y \in F \cap \partial B(0, 1)$, such that $\theta_F(y) = d_Y$. By the same argument like above, $\theta_F(0)(r + 1)^3/r^3 \geq \theta_F(y, r)$ for each $r > 0$. Letting $r \to \infty$ and noting that $\theta_F(y, r)$ is non-decreasing in r, we have $d_Y \geq \lim_{r \to \infty} \theta_F(y, r)$. But $\theta_F(y, r) \geq \theta_F(y) = d_Y$ for each $r > 0$, so we must have $\theta_F(y, r) = d_Y$ for $r > 0$. By [3, 6.2], F must be a cone centered at y. But we have also that F is a cone centered at 0. So F is of the form $F = F' \times 0y$, where F' is a cone in a 3-plane H passing through 0 and orthogonal to $0y$. Since F is a minimal cone, by [3, 8.3], F' is also a 2-dimensional minimal cone in H and centered at 0. So F' must be a cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. Since $\theta_F(0) = d_Y$, we must have that F' is a 2-dimensional minimal cone of type \mathbb{Y} and we deduce that F is a 3-dimensional minimal cone of type \mathbb{Y}. □

We can now consider 3-dimensional minimal sets in \mathbb{R}^4. We start with the following lemma.

Lemma 2.4. — Let E be a 3-dimensional minimal set in \mathbb{R}^4. Then

(i) There does not exist a point $z \in E$ such that $d_P < \theta_E(z) < d_Y$.

(ii) If $x \in E$ such that $\theta_E(x) = d_P$, then each blow-up limit of E at x is a 3-dimensional plane.

(iii) If $\theta_E(x) = d_Y$, then each blow-up limit of E at x is a 3-dimensional minimal cone of type \mathbb{Y}.

Proof. — The proof uses Lemmas 2.2 and 2.3. Take any point $z \in E$, let F be a blow-up limit of E at z. Then by [3, 7.31], F is a cone and $\theta_F(0) = \theta_E(x)$. By Lemma 2.2, it is not possible that $d_P < \theta_F(0) < d_Y$, which means that it is also not possible that $d_P < \theta_E(x) < d_P$, (i) follows.
If \(x \in E \) such that \(\theta_E(x) = d_P \), then any blow-up limit \(F \) of \(E \) at \(x \) satisfies \(\theta_F(0) = \theta_E(x) = d_P \). By the same arguments as in Lemma 2.2, for each \(y \in F \cap \partial B(0,1) \), \(\theta_F(y) \leq \theta_F(0) = d_P \). We deduce that \(\theta_F(y) = d_P \) for each \(y \in F \cap \partial B(0,1) \), and then \(F \) will be a 3-dimensional minimal cone over a smooth sub-manifold of \(\partial B(0,1) \). By \([1, \text{Lemma 1}]\), \(F \) must be a 3-dimensional plane, (ii) follows.

If \(x \in E \) such that \(\theta_E(x) = d_Y \), then any blow-up limit \(F \) of \(E \) at \(x \) satisfies \(\theta_F(0) = \theta_E(x) = d_Y \). By Lemma 2.3, \(F \) must be a 3-dimensional minimal cone of type \(Y \), (iii) follows. \(\square \)

Lemma 2.4 allows us to define the points of type \(P \) and \(Y \) of a 3-dimensional minimal set in \(\mathbb{R}^4 \).

Definition 2.5. — Let \(E \) be a 3-dimensional minimal set in \(\mathbb{R}^4 \) and \(x \in E \). We call \(x \) a point of type \(P \) if \(\theta_E(x) = d_P \). We call \(x \) a point of type \(Y \) if \(\theta_E(x) = d_Y \).

The following proposition says that if a 3-dimensional minimal set \(E \) is close enough to a 3-dimensional plane \(P \) in the ball \(B(x,2r) \), then \(E \) is Bi-Hölder equivalent to \(P \) in \(B(x,r) \).

Proposition 2.6. — For each \(\alpha > 0 \), we can find \(\epsilon > 0 \) such that the following holds.

Let \(E \) be a 3-dimensional minimal set in \(\mathbb{R}^4 \) and \(x \in E \). Let \(P \) be a 3-dimensional plane such that

\[
d_{x,2^3r}(E,P) \leq \epsilon. \tag{2.6.1}
\]

Then \(E \) is Bi-Hölder equivalent to \(P \) in the ball \(B(x,r) \), with Hölder exponent \(1 + \alpha \).

Proof. — Take any point \(y \in B(x,r) \). Since \(B(y,2^4r) \subset B(x,2^5r) \), we have

\[
d_{y,2^4r}(E,P) \leq 2d_{x,2^5r}(E,P) \leq 2\epsilon. \tag{2.6.2}
\]

By \([3, 16.43]\), for each \(\epsilon_1 > 0 \), we can find \(\epsilon > 0 \) such that if (2.6.2) holds, then

\[
H^3(E \cap B(y,2^3r)) \leq H^3(P \cap B(y,(1+\epsilon_1)2^4r)) + \epsilon_1r^3 \\
\leq d_P(2^3r)^3 + C\epsilon_1r^3. \tag{2.6.3}
\]

Now (2.6.3) implies that \(\theta_E(y,2^3r) \leq d_P + C\epsilon_1 \). If \(\epsilon_1 \) is small enough, then \(\theta_E(y) \leq \theta_E(y,2^3r) < d_Y \). We deduce that \(\theta_E(y) = d_P \) and \(y \) is a \(P \) point.
Since $\theta_E(y,t)$ is a non-decreasing function in t, we have
\[0 \leq \theta_E(y,t) - \theta_E(y) \leq C\epsilon_1 \text{ for } 0 < t \leq 2^3 r. \] (2.6.4)
By [3, 7.24], for each $\epsilon_2 > 0$, we can find $\epsilon_1 > 0$ such that if (2.6.4) holds, then there exists a 3-dimensional minimal cone F, centered at y, such that
\[d_{y,t/2}(E,F) \leq \epsilon_2 \text{ for } 0 < t \leq 2^3 r, \] (2.6.5)
and
\[|\theta_E(y,2^2 r) - \theta_F(y,2^2 r)| \leq \epsilon_2. \] (2.6.6)
Since $d_P \leq \theta_E(y,2^2 r) \leq d_P + C\epsilon_1$, we deduce from (2.6.6) that $\theta_F(y,2^2 r) \leq d_P + C\epsilon_1 + \epsilon_2$. So if ϵ_1 and ϵ_2 are small enough, then $\theta_F(y,2^2 r) < d_{y}$. Which implies $\theta_F(y) < d_{y}$. Since F is a minimal cone centered at y, we deduce that F must be a 3-dimensional plane, by the same arguments as in second part of Lemma 2.4.

Now we can conclude that for each $y \in E \cap B(x,r)$ and each $t \leq r$, there exists a 3-dimensional plane $P(y,t)$, which is F in (2.6.5), such that
\[d_{y,t}(E,P(y,t)) \leq \epsilon_2. \] By [6, 2.2], for each $\alpha > 0$, we can find $\epsilon_2 > 0$, and then $\epsilon > 0$, such that E is Bi-Hölder equivalent to a P in the ball $B(x,r)$.

PROPOSITION 2.7. — For each $\eta > 0$, we can find $\epsilon > 0$ with the following properties. Let E be a minimal set of dimension 3 in \mathbb{R}^4 and Y be a 3-dimensional minimal cone of type Y, centered at the origin. Suppose that $d_{0,1}(E,Y) \leq \epsilon$. Then in the ball $B(0,\eta)$, there must be a point $y \in E$, which is not of type P.

Proof. — Suppose that the lemma fails. Then each $z \in B(0,\eta)$ is of type P. We note F_1, F_2, F_3 the three half-plane of dimension 3 which form Y and L the spine of Y, which is a plane of dimension 2. Then $F_i, 1 \leq i \leq 3$ have common boundary L. Take $w_i \in F_i \cap \partial B(0,\eta/4), 1 \leq i \leq 3$, such that the distance $\text{dist}(w_i,L) = \eta/4$. We see that the w_i lie in a 2-dimensional plane orthogonal to L. Since $d_{0,1}(E,Y) \leq \epsilon$, we have that for each $1 \leq i \leq 3$, there exists $z_i \in E$ such that $d(z_i,w_i) \leq \epsilon$. Now $d(z_i,0) \leq d(w_i,0) + \epsilon = \eta/4 + \epsilon < 3\eta/8$ and $\text{dist}(z_i,L) \geq \text{dist}(w_i,L) - \epsilon = \eta/4 - \epsilon > 3\eta/16$. So if ϵ is small enough, we have that for each $1 \leq i \leq 3$, the ball $B(z_i,\eta/8)$ does not meet L. As a consequence, Y coincide with F_i in the ball $B(z_i,\eta/8)$ for $1 \leq i \leq 3$. We have next
\[d_{z_i,\eta/8}(E,F_i) = d_{z_i,\eta/8}(E,Y) \]
\[\leq \frac{8}{\eta} d_{0,1}(E,Y) \]
\[\leq \frac{8\epsilon}{\eta}. \] (2.7.1)
Take a very small constant $\alpha > 0$, say, 10^{-15}. Then by Proposition 2.6, we can find $\epsilon > 0$ such that if (2.7.1) holds, then

$$E \text{ is Bi-Hölder equivalent to } F_i \text{ in the ball } B(z_i, \eta/2^8) \text{ for each } 1 \leq i \leq 3 \text{ with Hölder exponent } 1 + \alpha.$$

(2.7.2)

Next, since we suppose that each $z \in B(0, \eta)$ is of type \mathbb{P}, we have that there exists a radius $r_z > 0$, such that

$$E \text{ is Bi-Hölder equivalent to a 3-dimensional plane in the ball } B(z, r_z), \text{ with exponent } 1 + \alpha.$$

(2.7.3)

In the ball $B(0, \eta)$, we have

$$d_{0,\eta}(E, Y) \leq \frac{1}{\eta}d_{0,1}(E, Y) \leq \frac{\epsilon}{\eta}.$$

(2.7.4)

We can adapt the arguments in [3], section 17 to obtain that there does not exist a set E, which satisfies the conditions (2.7.2), (2.7.3) and (2.7.4). The idea is as follows, we construct a sequence of simple and closed curves $\gamma_0, \gamma_1, \ldots, \gamma_k$ such that $\gamma_k \cap E = \emptyset$ and γ_0 intersects E transversally at exactly 3 points in the ball $B(z_i, \eta/2^8)$. For each $0 \leq i \leq k-1$, γ_i intersects E transversally at a finite number of points and $|\gamma_i \cap E| - |\gamma_{i+1} \cap E|$ is even, here $|\gamma_i \cap E|$ denotes the number of intersections of γ_i with E. This is impossible since $|\gamma_0 \cap E| = 3$ and $|\gamma_k \cap E| = 0$. We obtain then a contradiction. Proposition 2.7 follows. □

Lemma 2.8. — For each $\delta > 0$, we can find $\epsilon > 0$ such that the following holds.

Let F be a 3-dimensional minimal cone in \mathbb{R}^4, centered at the origin. Suppose that $d_Y < \theta_F(0) < d_Y + \epsilon$. Then there exists a 3-dimensional minimal cone Y_F, of type \mathbb{Y}, centered at 0 such that $d_{0,1}(F, Y_F) \leq \delta$.

Proof. — Suppose that the lemma fails. Then there exists $\delta > 0$, such that we can find 3-dimensional minimal cones F_1, \ldots, F_k, \ldots centered at 0, satisfying $d_Y \leq \theta_F \leq d_Y + 1/2^i$, and for any 3-dimensional minimal cone Y of type \mathbb{Y}, centered at 0, we have $d_{0,1}(Y, F_i) > \delta$.

Now we can find a sub-sequence $\{F_{j_k}\}_{k=1}^\infty$ of $\{F_i\}_{i=1}^\infty$ such that this sub-sequence converges to a closed set $G \subset \mathbb{R}^4$. By [3, 3.3], G is also a minimal set. Since each F_{i_k} is a cone centered at 0, G is also a cone centered at 0. So G is a 3-dimensional minimal cone centered at 0. By [3, 3.3], we have

$$H^3(G \cap B(0, 1)) \leq \liminf_{k \to \infty} H^3(F_{j_k} \cap B(0, 1)),$$

(2.8.1)

– 476 –
On some properties of three-dimensional minimal sets in \mathbb{R}^4

which implies that

$$\theta_G(0) \leq \liminf_{k \to \infty} (d_Y + 1/2^{j_k}) = d_Y.$$ (2.8.2)

By [3, 3.12], we have

$$H^3(G \cap \overline{B}(0, 1)) \geq \limsup_{k \to \infty} H^3(F_{j_k} \cap \overline{B}(0, 1)),$$ (2.8.3)

which implies that

$$\theta_G(0) \geq \limsup_{k \to \infty} (d_Y + 1/2^{j_k}) = d_Y.$$ (2.8.4)

From (2.8.2) and (2.8.4), we have that $\theta_G(0) = d_Y$. Then by Lemma 2.3, G must be a 3-dimensional minimal cone of type \mathbb{Y}, centered at 0. Since $\lim_{k \to \infty} F_{j_k} = G$, there is $k > 0$ such that $d_{0,1}(F_{j_k}, G) \leq \delta/2$, which is a contradiction. The lemma follows. \square

The following lemma is similar to Lemma 2.8, but we consider minimal sets in general.

Lemma 2.9. — For each $\delta > 0$, we can find $\epsilon > 0$ such that the following holds.

Suppose that E is a 3-dimensional minimal set in \mathbb{R}^4 and $0 \in E$. Suppose that

$$d_Y \leq \theta_E(0) \leq d_Y + \epsilon,$$ (2.9.1)

and

$$\theta_E(0, 4) - \theta_E(0) \leq \epsilon.$$ (2.9.2)

Then there exists a 3-dimensional minimal cone Y_E, of type \mathbb{Y}, centered at 0 such that

$$d_{0,1}(E, Y_E) \leq \delta.$$ (2.9.3)

Proof. — By [3, 7.24], for each $\epsilon_1 > 0$, we can find $\epsilon > 0$ such that if (2.9.2) holds, then there is a 3-dimensional minimal cone F centered at the origin, such that

$$d_{0,2}(F, E) \leq \epsilon_1.$$ (2.9.3)

and

$$|\theta_F(0, 2) - \theta_E(0, 2)| \leq \epsilon_1.$$ (2.9.4)

Since E is minimal, $\theta_E(0, 4) \geq \theta_E(0, 2) \geq \theta_E(0)$. So from (2.9.1) and (2.9.2), we have that $d_Y \leq \theta_E(0, 2) \leq d_Y + 2\epsilon$. With (2.9.4), we have

$$d_Y - \epsilon_1 \leq \theta_F(0, 2) \leq d_Y + 2\epsilon + \epsilon_1.$$ (2.9.5)
Now if we choose ϵ_1 small enough, then $\theta_F(0) = \theta_F(0, 2) \geq d_Y - \epsilon_1 > d_P$, so by Lemma 2.2, we have $\theta_F(0) \geq d_Y$. Thus
\[d_Y \leq \theta_F(0) \leq d_Y + 2\epsilon + \epsilon_1. \quad (2.9.6) \]

By Lemma 2.8, for each $\epsilon_3 > 0$, we can find $\epsilon_1 > 0$, and then $\epsilon > 0$, such that if (2.9.6) holds, then there is a 3-dimensional minimal cone Y_F of type \mathbb{Y}, centered at 0 such that
\[d_{0,2}(F,Y_F) \leq \epsilon_3. \quad (2.9.7) \]

From (2.9.3) and (2.9.7) we have
\[d_{0,1}(E,Y_F) \leq 2(d_{0,2}(E,F) + d_{0,2}(F,Y_F)) \leq 2(\epsilon_1 + \epsilon_3). \quad (2.9.8) \]

Now for each $\delta > 0$, we choose $\epsilon > 0$ such that $2(\epsilon_1 + \epsilon_3) < \delta$, we set then $Y_E = Y_F$ and the lemma follows. \(\square\)

We are ready to prove Theorem 1.

Theorem 2.10. — For each $\alpha > 0$, we can find $\epsilon > 0$ such that the following holds.

Let E be a 3-dimensional minimal set in \mathbb{R}^4, which contains the origin 0. Suppose that there exists a radius $r > 0$ such that
\[d_Y \leq \theta_E(0) \leq d_Y + \epsilon, \quad (2.10.1) \]

and
\[\theta_E(0,2^{11}r) - \theta_E(0) \leq \epsilon. \quad (2.10.2) \]

Then E is Bi-Hölder equivalent to a 3-dimensional minimal cone Y of type \mathbb{Y} and centered at 0 in the ball $B(0,r)$, with Hölder exponent $1 + \alpha$.

Proof. — By Lemma 2.9, for each $\epsilon_1 > 0$, we can find $\epsilon > 0$ such that if (2.10.1) and (2.10.2) hold, then there exists a 3-dimensional minimal cone Y, of type \mathbb{Y}, centered at 0 such that
\[d_{0,2^{11}r}(E,Y) \leq \epsilon_1. \quad (2.10.3) \]

We consider a point $y \in E \cap B(0,r)$. We set
\[E_Y = \{ z \in E \cap \overline{B}(0,4r) \} \] is not a \mathbb{P}-point. \((2.10.4) \)

We note that E_Y is closed. Indeed, if z is an accumulation point of E_Y, then if z is a \mathbb{P}-point, then there exists a neighborhood V_z of z in E such
that V_z has only points of type P, as in the proof of Proposition 2.6, which is not possible. So z cannot be a P-point and as a consequence, $z \in E_Y$.

Case 1, $y \in E_Y$.

Since y is not a P-point, $\theta_E(x) \neq d_P$, then by Lemma 2.4, we have

$$\theta_E(y) \geq d_Y; \quad (2.10.5)$$

Next, $B(y, 2^8r) \subset B(0, 2^9r)$, by (2.10.3), we have

$$d_{y,2^8r}(E,Y) \leq 2d_{0,2^9r}(E,Y) \leq 2\epsilon_1. \quad (2.10.6)$$

By [3, 16.43], for each $\epsilon_2 > 0$, we can find $\epsilon_1 > 0$ such that if (2.10.6) holds, then

$$H^3(E \cap B(y, 2^7r)) \leq H^3(Y \cap B(y, (1 + \epsilon_2)2^7r)) + \epsilon_2r^3, \quad (2.10.7)$$

which, together with (2.10.5), imply

$$d_Y \leq \theta_E(y, 2^7r) \leq d_Y + C\epsilon_2. \quad (2.10.8)$$

But E is a minimal set, so the function $\theta_E(y, \cdot)$ is non-decreasing. So we have

$$d_Y \leq \theta_E(y, t) \leq d_Y + C\epsilon_2 \text{ for } 0 < t \leq 2^7r. \quad (2.10.9)$$

By Lemma 2.8, for each $\epsilon_3 > 0$, we can find $\epsilon_2, \epsilon_1 > 0$, and then $\epsilon > 0$, such that if (2.10.5) and (2.10.8) hold, then there exists a 3-dimensional minimal cone $Y(y, t)$ of type Y, centered at y, such that

$$d_{y,t}(E,Y(y,t)) \leq \epsilon_3 \text{ for } 0 < t \leq 2^5r. \quad (2.10.10)$$

We note as above, for $y \in B(0, r)$ and $t \leq 2^5r$, $Y(y, t)$ the cone of type Y that satisfies (2.10.10).

Case 2, y is a P point.

Let $d = \text{dist}(y, E_Y) > 0$. Take a point $u \in E_Y$ such that $d(y, u) = d$. Since $z \in B(0, r)$ and $0 \in E_Y$, we have $d \leq d(0, y) \leq r$. We take the cone $Y(u, 2d)$ as in (2.10.10), then

$$d_{u,2d}(E,Y(u,2d)) \leq \epsilon_3. \quad (2.10.11)$$

Call L the spine of $Y(u, 2d)$, then L is a 2-dimensional plane passing through u. We want to show that

$$\text{dist}(y, L) \geq d/2. \quad (2.10.12)$$
Indeed, if (2.10.12) fails, then there exists $u' \in L$ such that $d(y, u') = \text{dist}(y, L) < d/2$. So $d(u', u) \leq d(u', y) + d(y, u) \leq 3d/2$. As a consequence, $B(u', d/2) \subset B(u, 2d)$. We have next

$$d_{u', d/2}(E, Y(u, 2d)) \leq 4d_{u, 2d}(E, Y(u, 2d)) \leq 4\epsilon_3. \quad (2.10.13)$$

By Proposition 2.7, we can choose $\epsilon_3 > 0$ such that if (2.10.13) holds, then there is a point $u_1 \in E \cap B(u', d/1000)$, which is not of type \mathbb{P}. Next, $d(y, u_1) \leq d(y, u') + d(u', u_1) \leq d/2 + d/1000 < 3d/4$ and since $y \in B(0, r)$, $u' \in B(0, r + 3d/4) \subset B(0, 4r)$. As u' is not a \mathbb{P}-point, we have that $u' \in E_Y$. So we can find a point $u' \in E_Y$ for which $d(y, u') < d$, a contradiction. We have then (2.10.12).

Since $B(y, d/2) \subset B(u, 2d)$, we have

$$d_{y, d/2}(E, Y(u, 2d)) \leq 4d_{u, 2d}(E, Y(u, 2d)) \leq 4\epsilon_3. \quad (2.10.14)$$

By [3, 16.43], for each $\epsilon_4 > 0$, we can find $\epsilon_3 > 0$ such that if (2.10.14) holds, then

$$H^3(E \cap B(y, d/4)) \leq H^3(Y(u, 2d) \cap B(y, (1 + \epsilon_4)d/4) + \epsilon_4 d^3. \quad (2.10.15)$$

Now as $\text{dist}(y, L) \geq d/2$, we see that $Y(u, 2d)$ coincide with a 3-dimensional plane in the ball $B(y, (1 + \epsilon_4)d/4)$. So $H^3(Y(u, 2d) \cap B(y, (1 + \epsilon_4)d/4) \leq d_P((1 + \epsilon_4)d/4)^3$, together with (2.10.15), we obtain

$$\theta_E(y, d/4) \leq d_P + C\epsilon_4. \quad (2.10.16)$$

By the proof of Proposition 2.6, we have that for each $\epsilon_5 > 0$, we can find $\epsilon_4 > 0$ such that for each $t \leq d/8$, there exists a plane $P(y, t)$ of dimension 3 passing by y, such that

$$d_{y, t}(E, P(y, t)) \leq \epsilon_5. \quad (2.10.17)$$

For the case $d/8 \leq t \leq r$, we take the cone $Y(u, t + d)$ as in 2.10.10 which is possible since $t + d < 8r$. Since $B(y, t) \subset B(u, t + d)$, we have

$$d_{y, t}(E, Y(u, t + d)) \leq \frac{t + d}{t}d_{u, t + d}(E, Y(u, t + d)) \leq 10\epsilon_3. \quad (2.10.18)$$

From (2.10.10), (2.10.17) and (2.10.18) we conclude that, for each $y \in E \cap B(0, r)$ and $t \leq r$, there exists a 3-dimensional minimal cone $Z(y, t)$ of type \mathbb{P} or \mathbb{Y}, such that $d_{y, t}(E, Z(y, t)) \leq \epsilon_6$, where $\epsilon_6 = \max\{\epsilon_5, 10\epsilon_3\}$. By [6,2.2], we conclude that for each $\alpha > 0$, we can find $\epsilon > 0$ such that if (2.10.1) and (2.10.2) hold, then E is Bi-Hölder equivalent to a 3-dimensional minimal
On some properties of three-dimensional minimal sets in \(\mathbb{R}^4 \)

cone of type \(Y \), centered at 0 in the ball \(B(x, r) \), with Hölder exponent \(1 + \alpha \).

Now we see that Theorem 1 is a consequence of Theorem 2.10, since \(\theta_E(x) = d_Y \) which lies between \(d_Y \) and \(d_Y + \epsilon \) for any \(\epsilon > 0 \). Next, for each \(\epsilon > 0 \), since \(\lim_{r \to 0} \theta_E(x, r) = \theta_E(x) \), so we can find \(r > 0 \) such that \(\theta_E(x, 2^{11}r) \leq \theta_E(x) + \epsilon = d_Y + \epsilon \). We conclude that \(E \) is Bi-Hölder equivalent to a cone of type \(Y \) in the ball \(B(x, r) \).

Corollary 2.11. — For each \(\alpha > 0 \), we can find \(\epsilon > 0 \) such that the following holds. Let \(E \) be a 3-dimensional minimal set in \(\mathbb{R}^4 \), \(x \in E \), \(r \) be a radius \(> 0 \) and \(Y \) be a 3-dimensional minimal cone of type \(Y \), centered at \(x \) such that

\[
d_{x,2^{14}r}(E,Y) \leq \epsilon. \tag{2.11.1}
\]

Then \(E \) is Bi-Hölder equivalent to \(Y \) in the ball \(B(x, r) \), with Hölder exponent \(1 + \alpha \).

Proof. — By Proposition 2.7, we can find \(\epsilon \) small enough such that there exists a point \(y \in B(x, r/1000) \) which is not of type \(\mathbb{P} \). So \(\theta_E(y) \geq d_Y \). Since \(B(y, 2^{12}r) \subset B(x, 2^{13}r) \), we have

\[
d_{y,2^{13}r}(E,Y) \leq 2d_{x,2^{14}r}(E,Y) \leq 2\epsilon. \tag{2.11.2}
\]

By [3, 16.43], for each \(\epsilon_1 > 0 \), we can find \(\epsilon > 0 \) such that if (2.11.2) holds, then

\[
H^3(E \cap B(y, 2^{12}r)) \leq H^3(Y \cap B(y, (1 + \epsilon_1)2^{12}r)) + \epsilon_1 r^3, \tag{2.11.3}
\]

which implies that

\[
\theta_E(y, 2^{12}r) \leq d_Y + C\epsilon_1. \tag{2.11.4}
\]

Now (2.11.4) together with the fact that \(\theta_E(y) \geq d_Y \) are the conditions in the hypothesis of Theorem 2.10 with the couple \((x, 2r)\). Following the proof of the theorem, for each \(\epsilon_2 > 0 \), we can find \(\epsilon_1 > 0 \) such that for each \(z \in B(y, 2r) \) and for each \(t \leq 2r \), there is a 3-dimensional minimal cone \(Z(z, t) \) of type \(\mathbb{P} \) or \(Y \) such that \(d_{z,t}(Z(z, t), E) \leq \epsilon_2 \). Since \(B(x, r) \subset B(y, 2r) \), the above holds for any \(z \in B(x, r) \) and \(t \leq r \). Now since \(d_{x,r}(E,Y) \leq 2^{14} \epsilon \leq \epsilon_2 \), we can apply [DDT,2.2] to conclude that for each \(\alpha > 0 \), we can find \(\epsilon > 0 \) such that if (2.11.1) holds, then \(E \) is Hölder equivalent to \(Y \) in \(B(x, r) \), with Hölder exponent \(1 + \alpha \). □

By construction of the Bi-Hölder function in [6], we see that if \(E \) is Bi-Hölder equivalent to a \(Y \) of type \(Y \) in \(B(x, r) \) by a function \(f \), then \(f \) is a bijection of the spine of \(Y \) in \(B(x, r/2) \) to the points of type non-\(\mathbb{P} \) of \(E \) in a neighborhood of \(x \). We have the remark.
Remark 2.12. — Let E be a 3-dimensional minimal set in \mathbb{R}^4, $x \in E$ and $r > 0$. Suppose that E is Bi-Hölder equivalent to a 3-dimensional minimal cone Y of type \mathbb{Y} and centered at x in the ball $B(x, r)$. Note E_Y the set of the points of type non-\mathbb{Y} of E in $B(x, r)$ and L the spine of Y. Then
\[E_Y \cap B(x, r/8) \subset f(L \cap B(x, r/4)) \subset E_Y \cap B(x, r/2). \tag{2.12.1} \]

3. Existence of a point of type non-\mathbb{P} and non-\mathbb{Y} for a Mumford-Shah minimal set in \mathbb{R}^4 which is near a T

Let us restate Theorem 2.

Theorem 2. — There exists an absolute constant $\epsilon > 0$ such that the following holds. Let E be an MS-minimal set in \mathbb{R}^4, $r > 0$ be a radius and T be a 3-dimensional minimal cone of type \mathbb{T} centered at the origin such that
\[d_{0,r}(E, T) \leq \epsilon. \tag{2.1} \]
Then in the ball $B(0, r)$, there is a point which is neither of type \mathbb{P} nor \mathbb{Y} of E.

We will prove Theorem 2 by contradiction. By homothety, we may assume that $r = 2^{10}$. Suppose that (2.1) fails, that is
\[\text{there are only points of type \mathbb{P} and \mathbb{Y} in $E \cap B(0, 2^{10})$.} \tag{2.2} \]

We fix a coordinate (x_1, x_2, x_3, x_4) of \mathbb{R}^4. Without loss of generality, we suppose that T is of the form $T = T' \times l$, where T' is a 2-dimensional minimal cone of type \mathbb{T} which belong to a 3-dimensional plane P of equation $P = \{x_1, x_2, x_3, x_4\} : x_4 = 0$ and l the line of equation $x_1 = x_2 = x_3 = 0$. We call l the spine of T, which is also the set of \mathbb{T}-points of T. Let l_1, l_2, l_3, l_4 be the four axes of T'; then $L_i = l_i \times l, i = 1, \ldots, 4$ are the 2-faces of T. We see that $\bigcup_{i=1}^4 L_i \setminus l$ is the set of \mathbb{Y}-points of T. Finally, let $F_j, 1 \leq j \leq 6$ the faces of T' in P. Then $F_j \times l, 1 \leq j \leq 6$ are the 3-faces of T and $\bigcup_{j=1}^6 F_j$ minus the set of \mathbb{Y}-points and the set of \mathbb{T}-points of T is the set of \mathbb{P}-points of T. The proof of Theorem 2 requires several lemmas. We begin with a lemma about the connected components of $B(0, 2) \setminus E$.

Lemma 3.1. — Let $a_i, 1 \leq i \leq 4$ be the four points in $\partial B(0, 2^9) \cap P$ whose distances to T' are maximal. Set $V_i, 1 \leq i \leq 4$ the connected component of $B(0, 2^{10}) \setminus E$ which contains a_i. Then we have $V_i \neq V_j$ for $1 \leq i \neq j \leq 4$.

Proof. — Suppose that the lemma fails. Then there are $i \neq j$ such that $V_i = V_j$. Without loss of generality, we may assume that $V_1 = V_2 = V$. Now
the point \(a = (a_1 + a_2)/2 \) belongs to a 3-face \(P_{12} \) of \(T \) and \(T \) coincide with \(P_{12} \) in \(B(a, 2^8) \).

Since \(d_{0,2^5}(E, T) \leq \epsilon \), we have

\[
d_{a,2^8}(E, T) = d_{a,2^8}(E, P_{12}) \leq 4\epsilon. \tag{3.1.1}
\]

By Proposition 2.6, for a constant \(r \) very small, say, \(10^{-25} \), we can find \(\epsilon > 0 \) such that \(E \) is Bi-Hölder equivalent to \(P_{12} \) in the ball \(B(a, 2^3) \), with Hölder exponent \(1 + r \). We note \(f \) this Hölder function; then \(f \) is a homeomorphism and

\[
E \cap B(a, 4) \subset f(P_{12} \cap B(a, 8)) \subset E \cap B(a, 16), \tag{3.1.2}
\]

and

\[
|f(x) - x| \leq r \text{ for } x \in B(a, 16). \tag{3.1.3}
\]

We want to show that

\[
\text{if } z \in \partial B(a, 4) \setminus E, \text{ then } z \in V. \tag{3.1.4}
\]

Indeed, set \(z' = f^{-1}(z) \), then \(z' \in B(a, 8) \) and as \(z \notin E \), we have \(z' \notin P_{12} \). Now the 3-plane \(P_{12} \) separate \(\mathbb{R}^4 \) into two half-spaces \(H_1 \) and \(H_2 \) which contain \(a_1 \) and \(a_2 \), respectively. Let \(z_1 \in H_1 \) and \(z_2 \in H_2 \) be two points in \(\partial B(a, 4) \) whose distances to \(P_{12} \) are maximal. We see that \(a \) is the mid-point of the segment \([z_1, z_2]\) and this segment is orthogonal to \(P_{12} \). Since \(z_1 \) and \(z_2 \) lie in two different half-spaces of \(\mathbb{R}^4 \) separated by \(P_{12} \), one of the two segment \([z', z_1]\) and \([z', z_2]\) doesn’t meet \(P_{12} \). We suppose that is the case of \([z', z_1]\); then the curve \(\gamma = f([z', z_1]) \) doesn’t meet \(E \).

Next, it is clear that \(\text{dist}(u, T) \geq 2 \) for \(u \in [a_1, f(z_1)] \) as \(|f(z_1) - z_1| \leq r \). Since \(d_{0,2^5}(E, T) \leq \epsilon \), the segment \([a_1, f(z_1)]\) doesn’t meet \(E \). Now the curve \(\gamma' \) which goes first from \(a_1 \) to \(f(z_1) \) by the segment \([a_1, f(z_1)]\) and then from \(f(z_1) \) to \(f(z') = z \) by the curve \(\gamma \) is a curve in \(B(0, 2^9) \) which joint \(a_1 \) to \(z \) and doesn’t meet \(E \). We deduce that \(z \in V_1 = V \), which is (3.1.4).

Now we want to obtain a contradiction. We will construct an MS-competitor \(F \) for \(E \) whose Hausdorff measure in \(B(0, 2^{10}) \) is smaller than that of \(E \) in the same ball. We set

\[
F = E \setminus B(a, 4). \tag{3.1.5}
\]

It is clear that \(F \setminus \overline{B}(0, 2^{10}) = E \setminus \overline{B}(0, 2^{10}) \). We want to show that \(F \) is an MS-competitor for \(E \). For this, we suppose that \(x_1, x_2 \in \mathbb{R}^4 \setminus (\overline{B}(0, 2^{10}) \cup E) \) such that \(x_1, x_2 \) are separated by \(E \). We want to show that they are also separated by \(F \).
We proceed by contradiction. Suppose that
there is a curve $\Gamma \subset \mathbb{R}^4$ connecting x_1 and x_2 which doesn’t meet F.

(3.1.6)

Now if $\Gamma \cap \overline{B}(a, 4) = \emptyset$, then Γ doesn’t meet E. Next, as $F = E \setminus B(a, 4)$, we have that x_1, x_2 are not separated by E, a contradiction. So we must have that Γ meets $\overline{B}(a, 4)$. Let x_1' be the first point at which Γ meets $\overline{B}(a, 4)$ and x_2' be the last point at which Γ meets $\overline{B}(a, 4)$. Then it is clear that $x_1', x_2' \in \partial B(a, 4)$. We note Γ_1 the sub-curve of Γ from x_1 to x_1' and Γ_2 the sub-curve of Γ from x_2' to x_2. Since Γ_1 and Γ_2 belong to the same connected component of F and Γ_1, Γ_2 don’t meet $B(a, 4)$ and $F = E \setminus B(a, 4)$, we deduce that Γ_1 and Γ_2 belong to the same connected component of $\mathbb{R}^4 \setminus E$.

In addition, since $x_1', x_2' \in \partial B(a, 4) \setminus E$, so by (3.1.4), they both belong to V and then we can connect x_1' and x_2' by a curve Γ_3 which doesn’t meet E.

Now the curve Γ_4 which is the union of Γ_1, Γ_2 and Γ_3 is a curve that connects x_1 and x_2 and doesn’t meet E. This is a contradiction, as we suppose that x_1 and x_2 are separated by E.

Now since $\text{dist}(a, E) \leq 2^{10}\epsilon$, there is a point $a' \in E$ such that $d(a, a') \leq 2^{10}\epsilon$ and by consequence $B(a', 2) \subset B(a, 4)$. Next

\[
H^3(F \cap B(0, 2^{10})) = H^3(E \cap B(0, 2^{10}) \setminus B(a, 4)) \\
\leq H^3(E \cap B(0, 2^{10}) \setminus B(a', 2)) \\
= H^3(E \cap B(0, 2^{10})) - H^3(E \cap B(a', 2)) \\
\leq H^3(E \cap B(0, 2^{10})) - C2^3 < H^3(E \cap B(0, 2^{10})).
\]

(3.1.7)

Where the last line is obtained from the fact that E is Alhfors-regular (see [7]). Now (3.1.7) contradicts the hypothesis that E is MS-minimal, we thus obtain the lemma. □

If x is a point of type \mathbb{P} or \mathbb{Y} of E, then by Proposition 2.6 and Theorem 1, for $\tau = 10^{-25}$, for example, we can find a radius $r > 0$ and a Bi-Hölder mapping $\psi_x : B(x, 2r) \to \mathbb{R}^4$, and a 3-dimensional minimal cone Y of type \mathbb{P} or \mathbb{Y}, respectively, centered at x, such that

$|\psi_x(z) - z| \leq \tau r$ for $z \in B(x, 2r)$

(2)

$E \cap B(x, r) \subset \psi_x(Y \cap B(x, 3r/2)) \subset E \cap B(x, 2r)$.

(3)
By (2.2), there are only points of type P or Y of $E \cap \overline{B}(0, 2^{10})$. We set then

$$E_Y \text{ the set of } Y\text{-points of } E \cap \overline{B}(0, 2^{10}).$$

(4)

It is clear that E_Y is closed by the proof of Theorem 2.10. If $x \in E_Y \cap B(0, 2^{10})$, then there exists $r_x > 0$ such that $B(x, r_x) \subset B(0, 2^{10})$ and a minimal cone Y_x of type Y, centered at x, and a Hölder mapping $\psi_x : B(x, 2r_x) \to \mathbb{R}^4$ such that (2) and (3) hold for ψ_x and Y_x. Let L_x be the spine of Y_x, then L_x is a 2-plane passing through x. By Remark 2.12, there is a neighborhood U_x of x such that

$$E_Y \cap U_x = \psi_x(B(x, r_x) \cap L_x).$$

(5)

Now we take four points $d_i, 1 \leq i \leq 4$ such that 0 is the mid-point of the segments $[a_i, d_i], 1 \leq i \leq 4$, here a_i is as in Lemma 3.1. It is clear that $d_i \in T' \subset T$. In addition, $d_i \in L_i, 1 \leq i \leq 4$, where L_i are described just after the second statement of Theorem 2. Next, for $1 \leq i \leq 4$, we have $d_{d_i, 4}(E, T) \leq 2^8 d_{0, 2^{10}}(E, T) \leq 2^8 \epsilon$. But in the ball $B(d_i, 4), T$ coincide with a cone Y_i of type Y whose spine is L_i. So $d_{d_i, 4}(E, Y_i) \leq 2^8 \epsilon$. By Corollary 2.11, for $\tau = 10^{-25}$, we can find $\epsilon > 0$ such that E is Bi-Hölder equivalent to Y_i in the ball $B(d_i, 2)$, with Hölder exponent $1 + \tau$. Call ψ_i this Hölder mapping, then by Remark 2.12

$$E_Y \cap B(d_i, 1) \subset \psi_i(L_i \cap B(d_i, 3/2)) \subset E_Y \cap B(d_i, 2)$$

(6)

and

$$|\psi_i(z) - z| \leq \tau \text{ for } z \in B(d_i, 2).$$

(7)

Setting

$$b_i = \psi_i(d_i), 1 \leq i \leq 4.$$

(8)

By (7), we have $d(d_i, b_i) \leq \tau$. We want to prove the following lemma.

Lemma 3.2. — The point $b_1 \in E_Y$ can be connected to another point $b_i \in E_Y, i \neq 1$ by a curve $\gamma \subset E_Y \cap B(0, 3 \cdot 2^8)$.

Proof. — Recall that ψ_i, b_i, d_i are the same as (6),(7),(8) above. In addition, for each $x \in E_Y \cap B(0, 2^{10})$, there are a radius r_x and a Bi-Hölder mapping ψ_x, a minimal cone Y_x of type Y, centered at x such that (2),(3), and (5) hold.

We proceed by contradiction. We denote by E_Y^1 the connected component of $E_Y \cap B(0, 2^{10})$ which contains b_1. Since in each ball $B(b_i, 2), E_Y$ is Hölder equivalent to a 2-plane, by (6), we deduce that each $z \in E_Y \cap B(b_i, 1)$
can be connected to \(b_i \) by a curve in \(E_Y \). So if the lemma fails, that is \(E_Y^{1} \) doesn’t contain any \(b_i, i \neq 1 \), we must have
\[
E_Y^{1} \cap B(b_i, 1) = \emptyset \text{ for } i \neq 1. \tag{3.2.1}
\]

Recall next that \(T = T' \times l \), where \(T' \) is a 2-dimensional minimal cone of type \(\mathbb{T} \) in the 3-plane \(P \) of equation \(x_4 = 0 \) and \(l \) is the line of equation \(x_1 = x_2 = x_3 = 0 \).

Now we construct a family of functions \(f_t, 0 \leq t \leq 1 \) from \(\mathbb{R}^4 \) to \(\mathbb{R}^2 \) by the formula
\[
f_t(x) = (x_4, |x - td_2|^2 - ((1-t)2^9)^2), \tag{3.2.2}
\]
where \(x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \) and \(0 \leq t \leq 1 \). If \(x \in E_Y^{1} \), then
\[
|f_1(x)| \geq |x - d_2| \geq 1/2, \tag{3.2.3}
\]
by (3.2.1) and the fact that \(|d_2 - b_2| \leq \tau \). We will construct a finite number of functions to go from \(f_0 \) to \(f_1 \). First, let \(K = E_Y^{1} \cap \overline{B}(0, 3 \cdot 2^8) \). Then for each \(z \in K \), there is a radius \(r_z \) such that \(E_Y^{1} \) is Bi-Hölder equivalent to a 2-plane \(P_z \), with Hölder exponent \(1 + \tau \). Since \(K \) is compact, we can cover \(K \) by a finite number of balls \(B(z_i, r_{z_i}), 1 \leq i \leq N \). Finally, we choose \(\eta > 0 \) which is smaller than \(\frac{1}{10} \min \{r_{z_i}\}, 1 \leq i \leq N \).

Next, let \(\{x_i\}, 1 \leq i \leq l \) be a maximal collection of points in \(K \) such that \(|x_i - x_j| \geq \eta \) for \(i \neq j \). Set \(\varphi_j \) a bump function with support in \(B(x_j, 2\eta) \) and such that \(\tilde{\varphi}_j(x) = 1 \) for \(x \in \overline{B}(x_j, \eta) \) and \(0 \leq \tilde{\varphi}_j(x) \leq 1 \) everywhere. We note that \(\sum_j \tilde{\varphi}_j(x) \geq 1 \) for \(x \in E_Y^{1} \cap \overline{B}(0, 3 \cdot 2^8) \) since \(x \) must lie in one of the ball \(B(x_j, \eta) \) by the maximality of the family \(\{x_i\} \). Set \(\varphi_0 \) a \(C^\infty \) function in \(\mathbb{R}^4 \) such that \(\tilde{\varphi}_0(x) = 0 \) for \(|x| \leq 3 \cdot 2^8 - \eta \) and \(\tilde{\varphi}_0(x) = 1 \) for \(|x| \geq 3 \cdot 2^8 \) and \(0 \leq \tilde{\varphi}_0(x) \leq 1 \) everywhere. We have then \(\sum_{j=0}^l \tilde{\varphi}_j(x) \geq 1 \) on \(E_Y^{1} \) and we set
\[
\varphi_j(x) = \varphi_j(x)\left\{ \sum_{j=0}^l \tilde{\varphi}_j(x) \right\}^{-1} \text{ for } x \in E_Y^{1} \text{ and } 0 \leq j \leq l. \tag{3.2.4}
\]

The functions \(\varphi_j, 0 \leq j \leq l \) have the following properties.
\[
\varphi_j \text{ has support in } B(x_j, 2\eta) \text{ for } j \geq 1, \tag{3.2.5}
\]
\[
\sum_{j=0}^l \varphi_j(x) = 1 \text{ for } x \in E_Y^{1},
\]
\[
\sum_{j=1}^l \varphi_j(x) = 1 \text{ for } x \in E_Y^{1} \cap B(0, 3 \cdot 2^8 - \eta), \tag{3.2.6}
\]
On some properties of three-dimensional minimal sets in \(\mathbb{R}^4 \)

since \(\varphi_0(x) = 0 \) on \(B(0, 3 \cdot 2^8 - \eta) \). Our first approximation is a sequence of functions given by

\[
g_k = f_0 + \sum_{0 < j < k} \varphi_j(f_1 - f_0),
\]

with \(0 \leq k \leq l \). Then \(g_0 = f_0 \) and

\[
g_l(x) = f_1(x) \text{ for } x \in E \cap B(0, 3 \cdot 2^8 - \eta).
\]

We note that for \(k \geq 1 \)

\[
g_k(x) - g_{k-1}(x) = \varphi_k(x)(f_1(x) - f_0(x)) \text{ is supported in } B(x_k, 2\eta).
\]

We compute the number of solutions in \(E_Y^1 \) of the equations \(g_k(x) = 0 \). We will modify \(f_0 \) and the \(g_k \) such that they have only a finite number of zeroes. We modify first \(f_0 \).

Sub-lemma 3.2.1. — There exists a continuous function \(h_0 \) on \(E_Y^1 \) such that

\[
|h_0(x) - f_0(x)| \leq 10^{-6} \text{ for } x \in E_Y^1,
\]

\(h_0 \) has exactly one zero \(b_1 \) in \(E_Y^1 \), and \(b_1 \) is a simple, non-degenerate zero of \(h_0 \).

Here, we say that \(\xi \in E_Y^1 \) is a non-degenerate, simple zero of a continuous function \(h \) on \(E_Y^1 \) if \(h(\xi) = 0 \) and there is a ball \(B(\xi, \rho) \) and a Bi-Hölder function \(\gamma \) with Hölder exponent \(1 + \tau \) which maps \(E_Y^1 \cap B(\xi, \rho) \) to an open set \(V \) of a 2-plane, such that \(h \circ \gamma^{-1} \) is of class \(C^1 \) on \(V \) and the differential \(D(h \circ \gamma^{-1}) \) at the point \(\gamma(\xi) \) is of rank 2.

Proof. — We modify \(f_0 \) in a neighborhood of \(d_1 \). We have already our Bi-Hölder homeomorphism \(\psi \) which satisfies (6), (7) and (8). Next, since \(E_Y^1 \) is the connected component of \(E_Y \) which contains \(b_1 \), we have

\[
E_Y \cap B(d_1, 1) = E_Y^1 \cap B(d_1, 1),
\]

thus

\[
E_Y^1 \cap B(d_1, 1/3) \subset \psi_1(B(L_1 \cap B(d_1, 1/2))) \subset E_Y^1 \cap B(d_1, 1),
\]

(3.2.10)

\(\psi_1 \) is the 2-face of \(T \) that contains \(d_1 \), which is Bi-Hölder equivalent to \(E_Y^1 \) in the ball \(B(d_1, 1) \).

Set \(h_0 = f_0 \) outside the ball \(B(d_1, 1/2) \). In \(B(d_1, 1/4) \), we set \(h_0 = f_0 \circ \psi^{-1} \). In the region between the two balls \(R = \overline{B(d_1, 1/2)} \setminus B(d_1, 1/4) \), we set

\[
h_0(x) = \alpha(x)f_0(x) + (1 - \alpha(x))f_0 \circ \psi^{-1}(x),
\]

(3.2.11)
where \(\alpha(x) = 4|x - d_1| - 1 \). We have then \(|h_0(x) - f_0(x)| \leq |f_0(x) - f_0 \circ \psi_1^{-1}(x)| \leq C \tau \) for \(x \in B(d_1, 1/2) \) since \(|\psi_1(x) - x| \leq \tau \) and the differential of \(f_0 \) is bounded in this ball. We have then (3.2.9).

Since \(f_0(x) = (x_4, |x|^2 - 4^9) \), so \(|f_0(x)| \geq 1/500 \) for \(x \in E_1 \setminus B(d_1, 10^{-2}) \).

By consequence, all the zeroes of \(h_0 \) must lie in the ball \(B(d_1, 1/4) \).

We verify next that \(h_0 \) has exactly one zero in \(B(d_1, 1/4) \), which is simple and non-degenerate. Set \(\gamma_1(x) = \psi_1^{-1}(x) \) for \(x \in E_1 \cap B(d_1, 1/4) \). Then \(\gamma_1 \) is a homeomorphism from \(E_1 \cap B(d_1, 1/4) \) onto its image, which is an open set in \(L_1 \).

Since \(h_0 = f_0 \circ \psi_1^{-1} = f_0 \circ \gamma_1 \) on \(E_1 \cap B(d_1, 1/4) \), we have that \(h_0(\xi) = 0 \) for \(\xi \in E_1 \cap B(d_1, 1/4) \) if and only if \(\gamma_1(\xi) \) is a zero of \(f_0(\xi) = (x_4, |x|^2 - 4^9) \) in \(L_1 \cap B(d_1, 1/2) \), which can only be \(d_1 \). The verification that \(Df_0 \) is of maximal rank at \(d_1 \) is clear. The sub-lemma follows.

We need another sub-lemma which allows us to go from \(h_{k-1} \) to \(h_k \).

Sub-Lemma 3.2.2. — *We can find continuous functions \(\theta_k, 1 \leq k \leq l \), such that* \(\theta_k \) is supported in \(B(x_k, 3\eta) \), \((3.2.12) \) and \(||\theta_k||_{\infty} \leq 2^{-k}10^{-6} \), \((3.2.13) \) and if we set \(h_k = h_{k-1} + \varphi_k(f_1 - f_0) + \theta_k \), \((3.2.14) \) for \(1 \leq k \leq l \), then \((3.2.15) \)

each \(h_k \) has a finite number of zeroes in \(E_1 \), which are all simple and non-degenerate.

Proof. — We will construct \(h_k \) by induction. For \(k = 0 \), the function \(h_0 \) satisfy clearly (3.2.15). Let \(k \geq 1 \), and we suppose that we have already constructed \(h_{k-1} \) such that (3.2.15) holds.

We note that \(h_{k-1} + \varphi_k(f_1 - f_0) \) coincide with \(h_{k-1} \) outside the ball \(B(x_k, 2\eta) \), by (3.2.5). We take a thin annulus

\[
A = \overline{B}(x_k, \rho_2) \setminus B(x_k, \rho_1), 2\eta < \rho_1 < \rho_2 < 3\eta, \tag{3.2.16}
\]

which doesn’t meet the finite set of zeroes of \(h_{k-1} \). Recall that there is a Bi-Hölder function \(\psi_k : B(x_k, 20\eta) \to \mathbb{R}^4 \) and a 2-plane \(P_k \) passing through
On some properties of three-dimensional minimal sets in \mathbb{R}^4

x_k such that $|\psi_k(x) - x| \leq 10\eta \tau$ for $x \in B(x_k, 20\eta)$ and

$$E^1_Y \cap B(x_k, 19\eta) \subset \psi_k(P_k \cap B(x_k, 20\eta)) \subset E^1_Y.$$ \hspace{1cm} (3.2.17)

We choose θ_k such that θ_k is supported in $B(x_k, \rho_2)$ and $||\theta_k||_{\infty} < \min\{2^k 10^{-6}, \inf_{x \in A} |h_{k-1}(x)|\}$, of course $\inf_{x \in A} |h_{k-1}(x)| > 0$ since A doesn’t meet the set of zeroes of h_{k-1}. Then $h_k = h_{k-1}$ outside the ball $B(x_k, \rho_2)$.

We will control h_k in the ball $B(x_k, \rho_1)$. Set $\gamma(x) = \psi^{-1}_k(x)$ for $x \in E^1_Y \cap B(x_k, \rho_1)$. By (3.2.17) and since ψ_k is Bi-Hölder on $B(x_k, 20\eta)$, γ is a Bi-Hölder homeomorphism from $E^1_Y \cap B(x_k, \rho_1)$ onto an open set V of the 2-plane P_k.

By the density of C^1 function in the space of bounded continuous functions on V with the sup norm, we can choose θ_k with the above properties and such that

$$h_k \circ \theta_k \text{ is of class } C^1 \text{ on } V.$$

We can also add a very small constant $w \in \mathbb{R}^2$ to θ_k on $E^1_Y \cap B(x_k, \rho_1)$, and then interpolate continuously on A. We verify that for almost every choice of w,

$$h_k \text{ has a finite number of zeroes in } E^1_Y \cap B(x_k, \rho_1).$$ \hspace{1cm} (3.2.19)

For this, we set $Z_y = \{z \in V; h_k \circ \psi_k(z) = y\}$. By (3.2.18), we can apply the co-area formula ([9, 3.2.22]) for $h_k \circ \psi_k$ on V, and we obtain

$$\int_V J(z) dH^2(z) = \int_{y \in \mathbb{R}^2} H^0(Z_y) dH^2(y),$$ \hspace{1cm} (3.2.20)

here, $J(z)$ denote the Jacobian of $h_k \circ \psi_k$ at z, which is clearly bounded. We deduce that Z_y is finite for almost-every $y \in \mathbb{R}^2$. If we choose w such that Z_w is finite and then add $-w$ to θ_k in $E^1_Y \cap B(x_k, \rho_1)$, then the new Z_0 will be finite, and we have (3.2.19).

We consider now the rank of the differential. By Sard’s theorem, the set of critical values of $h_k \circ \psi_k$ has measure 0 in \mathbb{R}^2. So if we choose $w \in \mathbb{R}^2$ which is not a critical value, and add $-w$ to θ_k in $E^1_Y \cap B(x_k, \rho_1)$, then the differential of the new function $h_k \circ \psi_k$ at each zero of $h_k \circ \psi_k$ is of rank 2.

So we take w very small with the above properties, and add $-w$ to θ_k in $B(x_k, \rho_1)$; next, we interpolate in the region A, we obtain a function h_k having a finite number of zeroes in $E^1_Y \cap B(x_k, \rho_1)$ which are all simple and non-degenerate. The sub-lemma follows.

Now let $N(k)$ be the number of zeroes of h_k in E^1_Y. Then $N(0) = 1$ since the only zero of h_0 in E^1_Y is b_1. Let us check that for the last index l,
\[N(l) = 0. \text{ First we have} \]
\[h_l - h_0 = \sum_{1 \leq k \leq l} (h_k - h_{k-1}) = \sum_{1 \leq k \leq l} \varphi_k(f_1 - f_0) + \sum_{1 \leq k \leq l} \theta_k. \]

If \(x \in E_Y^1 \cap B(0, 3 \cdot 2^8 - \eta) \), then \(\sum_{1 \leq k \leq l} \varphi_k(x) = 1 \), thus
\[h_l(x) = h_0(x) + f_1(x) - f_0(x) + \sum_{1 \leq k \leq l} \theta_k(x) \]
so that
\[|h_l(x)| \geq |f_1(x)| - |h_0(x) - f_0(x)| - \sum_{1 \leq k \leq l} |\theta_k(x)| \]
\[\geq 1/4 - 10^{-6} - \sum_{1 \leq k \leq l} 2^{-k} 10^{-6} > 0 \]
by (3.2.3), (3.2.6) and (3.2.13).

If \(x \in E_Y^1 \cap B(0, 2^{10}) \setminus B(0, 3 \cdot 2^8 - \eta) \), then \(\sum_{1 \leq k \leq l} \varphi_k(x) = 1 - \varphi_0(x) \),
so
\[h_l(x) = h_0(x) + (1 - \varphi_0(x))(f_1(x) - f_0(x)) + \sum_{1 \leq k \leq l} \theta_k(x) \]
which implies
\[|h_l(x) - f_0(x) - (1 - \varphi_0(x))(f_1(x) - f_0(x))| \]
\[\leq |h_0(x) - f_0(x)| + \sum_{1 \leq k \leq l} |\theta_k(x)| \leq 2.10^{-6}. \]

But the second coordinate of \(f_0(x) + (1 - \varphi_0(x))(f_1(x) - f_0(x)) \) is
\[|x|^2 - 4^9 + (1 - \varphi_0(x))(|x - d_2|^2 - |x|^2 + 4^9) \]
\[= \varphi_0(x)|x|^2 - 4^9 + (1 - \varphi_0(x))|x - d_2|^2 \geq 1/4, \]
by (3.2.2) and because \(|x| \geq 3 \cdot 2^8 - \eta\). Thus \(h_l(x) \neq 0 \) in this case also. We deduce that \(h_l \) has no zero in \(E_Y^1 \), and \(N(l) = 0 \).

Sub-Lemma 3.2.3. — \(N(k) - N(k - 1) \) is even for \(1 \leq k \leq l \).

Proof. — We observe that \(h_{k-1} \) don’t vanish on \(A \), where \(A \) is the annulus defined in (3.2.16), and we took \(\|\theta_k\|_{\infty} \) very small so that \(h_k \) does not vanish on \(A \) as well. Next, by definition of \(\varphi_k, \varphi_k = 0 \) on \(A \). Setting
\[m_t(x) = h_{k-1}(x) + t[h_k(x) - h_{k-1}(x)] = h_{k-1}(x) + \theta_k(x), \quad (3.2.21) \]
for \(x \in E_Y^1 \cap \overline{B}(x_k, \rho_2) \) and \(0 \leq t \leq 1 \). Then \(m_0 = h_{k-1} \) and \(m_1 = h_k \) on \(E_Y^1 \cap \overline{B}(x_k, \rho_2) \). Since \(m_t(x) = h_{k-1}(x) + t \theta(x) \) for \(x \in E_Y^1 \cap A \) and \(0 \leq t \leq 1 \), so \(m_t(x) \neq 0 \) if we take \(\theta \) small enough. Let \(\beta_k > 0 \) such that \(|m_t(x)| \geq \beta_k \) for \(x \in E_Y^1 \cap A \). Set \(S_\infty = \mathbb{R}^2 \cup \{\infty\} \), so that \(S_\infty \) can be stereographically identified with a sphere of dimension 2, we define \(\pi : \mathbb{R}^2 \to S_\infty \) by

\[
\pi(x) = \infty \text{ if } |x| \geq \beta_k \text{ and } \pi(x) = \frac{x}{\beta_k - |x|} \text{ otherwise.} \tag{3.2.22}
\]

Next, we set

\[
p_t(x) = \pi(m_t(x)) \text{ for } x \in E_Y^1 \cap \overline{B}(x_k, \rho_2) \text{ and } 0 \leq t \leq 1. \tag{3.2.23}
\]

Then \(p_t(x) \) is a continuous function of \(x \) and \(t \), which takes values in \(S_\infty \).

By the definition of \(\beta_k \),

\[
p_t(x) = \infty \text{ for } x \in E_Y^1 \cap A \text{ and } 0 \leq t \leq 1. \tag{3.2.24}
\]

We want to replace the domain \(E_Y^1 \cap \overline{B}(x_k, \rho_2) \) by an open set in a 2-plane \(P_k \). We keep our Bi-Hölder function \(\psi_k \) as above, which maps an open set \(V \) of a 2-plane \(P_k \) onto \(E_Y^1 \cap B(x_k, \rho_2) \) and its inverse \(\gamma \) which is also Bi-Hölder and maps \(E_Y^1 \cap B(x_k, \rho_2) \) onto \(V \). For \(0 \leq t \leq 1 \), we set

\[
q_t(x) = p_t(\psi_k(x)) \text{ for } x \in V \text{ and } q_t(x) = \infty \text{ for } x \in P_k \setminus V. \tag{3.2.25}
\]

We check that \(q_t \) is continuous in \(P_k \times [0, 1] \). It is continuous in \(V \times [0, 1] \), since \(p_t \) is continuous in \([E_Y^1 \cap B(x_k, \rho_2)] \times [0, 1] \). It is also continuous in \([P_k \setminus V] \times [0, 1] \), because it is \(\infty \) here. Now if \(x \in \partial V \), then \(\psi_k(x) \in E_Y^1 \cap \partial B(x_k, \rho_2) \), so there is a neighborhood of \(\psi_k(x) \) in \(\overline{B}(x_k, \rho_2) \) which is contained in \(A \), and we have \(p_t(\psi_k) = \infty \) on this neighborhood, so \(q_t = \infty \) near \(x \).

We set \(q_t(\infty) = \infty \), so \(q_t \) is well defined on \(S' = P_k \cup \{\infty\} \) and it is clear that each \(q_t \) is continuous for \(0 \leq t \leq 1 \).

Now since \(q_0 \) and \(q_1 \) are two continuous functions from the 2-sphere \(S' \) to the 2-sphere \(S_\infty \), we can compute their degrees. First, as \(q_0 \) and \(q_1 \) are homotopic, they have the same degrees. We compute the degree of \(q_0 \), for example. Let

\[
q_0^{-1}(\{0\}) = \{y_1, y_2, ..., y_m\}, \tag{3.2.26}
\]

the set of zeroes of \(q_0 \). This is a finite set since \(q_t \) has only finite number of zeroes for \(t \leq 1 \). Since each zero of \(q_0 \) is simple and non-degenerate, for each \(1 \leq k \leq m \), there exists a neighborhood \(W_k \) of \(y_k \) such that

\[
q_0 \text{ is a homeomorphism from } W_k \text{ to } q_0(W_k), \tag{3.2.27}
\]
and
\[W_k \cap W_l = \varnothing \text{ if } k \neq l. \] \hspace{1cm} (3.2.28)
So the degree of \(q_0 \) is computed as follows. We begin by 0, next, for \(1 \leq k \leq m \), if \(q_0 \) preserve the orientation of \(W_k \), we add 1, if \(q_0 \) doesn’t preserve the orientation of \(W_k \), we add -1. Then it is clear that
\[d(q_0) \text{ is of the same parity as } m. \] \hspace{1cm} (3.2.29)
Here \(d(q) \) denote the degree of the function \(q \). By the same arguments, we have
\[d(q_1) \text{ is of the same parity as the number of zeroes of } q_1. \] \hspace{1cm} (3.2.30)
But \(d(q_0) = d(q_1) \) as above, we obtain
\[\text{the number of zeroes of } q_0 \text{ is of the same parity as the number of zeroes of } q_1. \] \hspace{1cm} (3.2.31)

We want to prove next that the number of zeroes of \(h_{k-1} \) is of the same parity as the number of zeroes of \(h_k \). Since \(h_{k-1} = h_k \) outside the ball \(B(x_k, \rho_2) \) and they both don’t vanish on \(E_Y^1 \cap A \), we need only to consider their number of zeroes in \(E_Y^1 \cap B(x_k, \rho_1) \). We verify that
\[\text{the number of zeroes of } h_{k-1+s} \text{ in } E_Y^1 \cap B(x_k, \rho_1) \text{ is equal to the number of zeroes of } q_s \text{ in } S' \text{ for } s = 0, 1. \] \hspace{1cm} (3.2.32)

We verify for \(s = 0 \). If \(q_0(x) = 0 \), then \(x \in V \) (otherwise \(q_0(x) = \infty \)), so \(q_0(x) = p_0(\psi_k(x)) \) and then \(p_0(\psi_k(x)) = 0 \). Since \(m_0(\psi_k(x)) = 0 \), we have \(h_{k-1}(\psi_k(x)) = 0 \). Because \(x \in V \), we have \(\psi_k(x) \in B(x_k, \rho_1) \). So if \(q_0(x) = 0 \), then \(\psi_k(x) \in B(x_k, \rho_1) \) and is a zero of \(h_{k-1} \).

Conversely, if \(y \in B(x_k, \rho_1) \) is such that \(h_{k-1}(y) = 0 \), then \(p_0(y) = 0 \) and then there exists \(y' \in V \) such that \(\psi_k(y') = y \) because \(\psi_k \) is a homeomorphism from \(V \) to \(B(x_k, \rho_1) \). Now \(q_0(y') = p_0(\psi_k(y')) = 0 \) and thus \(y' \) is a zero of \(q_0 \).

So we have (3.2.32) for \(s = 0 \). The case \(s = 1 \) is the same, and we have then (3.2.32). By (3.2.31), we obtain that the number of zeroes of \(h_{k-1} \) is of the same parity as the number of zeroes of \(h_k \), which means that \(N(k) - N(k-1) \) is even. The sub-lemma follows.

Now by sub-lemma 3.2.3, we know that \(N(0) - N(1) \) is even, but it is 1, so we obtain a contradiction, and we finish the proof of Lemma 3.2. \(\square \)
3.3. Proof of Theorem 2

Let $U(y), y \in E_Y \cap B(0, 3 \cdot 2^{8})$ be the set of connected components V of $B(0, 2^{10}) \setminus E$ such that $y \in V$. Since for each $y \in E_Y$, there is a neighborhood W of y on which E is Bi-Hölder equivalent to a Y, we see that $U(y)$ is locally constant. By Lemma 3.2, we can connect b_1 to another point $b_i, i \neq 1$, by a curve in E_Y, and we can suppose that $i = 2$. Because $b_1, b_2 \in E_Y$ and $U(y)$ is locally constant on E_Y, we have $U(b_1) = U(b_2)$. By Lemma 3.1, and the fact that E is Bi-Hölder equivalent to a Y near each point of type Y, we have

$$\{V_2, V_3, V_4\} = U(b_1)$$

and

$$\{V_1, V_3, V_4\} = U(b_2),$$

where $V_i, 1 \leq i \leq 4$ is as in Lemma 3.1. So we see that $U(b_1) \neq U(b_2)$, which is a contradiction. We finish the proof of Theorem 2. \qed

Bibliography