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Real Monge-Ampère equations and Kähler-Ricci
solitons on toric log Fano varieties

Robert J. Berman, Bo Berndtsson(1)

ABSTRACT. — We show, using a direct variational approach, that the
second boundary value problem for the Monge-Ampère equation in Rn
with exponential non-linearity and target a convex body P is solvable iff 0
is the barycenter of P. Combined with some toric geometry this confirms,
in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric
log Fano varieties (X,∆) saying that (X,∆) admits a (singular) Kähler-
Einstein metric iff it is K-stable in the algebro-geometric sense. We thus
obtain a new proof and extend to the log Fano setting the seminal result
of Wang-Zhou concerning the case when X is smooth and ∆ is trivial.
Li’s toric formula for the greatest lower bound on the Ricci curvature
is also generalized. More generally, we obtain Kähler-Ricci solitons on
any log Fano variety and show that they appear as the large time limit
of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a
conjecture of Donaldson concerning solutions to Abreu’s boundary value
problem on the convex body P in the case of a given canonical measure
on the boundary of P.

RÉSUMÉ. — Nous montrons, grâce à une approche variationnelle di-
recte, que le deuxième problème avec valeurs au bord pour l’équation
de Monge-Ampère dans Rn avec non-linéarité exponentielle, et ensem-
ble cible un corps convexe P , admet une solution si et seulement si 0
est le barycentre de P . En combinant ce résultat avec de la géométrie
torique, on obtient en particulier confirmation de la conjecture de Yau-
Tian-Donaldson (généralisée) pour les variétés toriques log-Fano (X,∆) ;
à savoir que (X,∆) admet une une métrique de Kähler-Einstein (sin-
gulière) si et seulement si elle est K-stable au sens algébro-géométrique.
Nous obtenons donc une nouvelle démonstration, qui s’étend au cas log-
Fano, du résultat fondateur de Wang-Zhou qui concerne le cas où X est
lisse et ∆ est trivial. Nous généralisons également la formule torique de Li
pour la borne inférieure de la courbure de Ricci. Plus généralement, nous
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obtenons des solitons de Kähler-Ricci sur toute variété (singulière) log-
Fano, et montrons qu’ils apparaissent comme la limite en temps grand du
flot de Kähler-Ricci. De plus, en utilisant la dualité, nous confirmons aussi
une conjecture de Donaldson sur les solutions du problème de valeurs au
bord d’Abreu sur le corps convexe P dans le cas d’une mesure canonique
donnée sur la frontière de P .
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1. Introduction

1.1. Monge-Ampère equations in Rn

Let us start by recalling the setting for the second boundary value prob-
lem for the real Monge-Ampère operator in the entire space Rn [4]. A convex
function φ on Rn is said to be a (classical) solution for the latter problem
if it is smooth and satisfies the following two conditions:

(i) det(
∂2φ

∂xi∂xj
) = F (φ, dφ),

where F is a given positive smooth function on Rn+1 and

(ii) dφ(Rn) = Ω

where Ω is a (necessarily convex) given domain in Rn. We will be concerned
with the case when the domain Ω is bounded, i.e. its closure P := Ω̄ is a
convex body and

F (t, p) = e−γtg(p)−1
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for γ ∈ R, where g is a positive smooth function on Rn. After a trivial
scaling we may as well assume that γ = ±1. As is well-known, the positive
case is, by far, most challenging one and the equation does then usually
not admit any solutions. Our main result gives the general structure of the
solutions:

Theorem 1.1. — Let P be a convex body containing 0 in its interior.
Then there is a smooth convex function φ such that

g(dφ) det(
∂2φ

∂xi∂xj
) = e−φ

and such that its gradient induces a diffeomorphism

dφ : Rn → int (P )

iff 0 is the barycenter for the measure g(p)dp on P.

Moreover, φ is then uniquely determined up to the action of the additive
group Rn by translations and

• φ(x)− supp∈P 〈x, p〉 is globally bounded on Rn

• the Legendre transform φ∗ of φ is Hölder continuous up to the bound-
ary of P for any Hölder exponent in [0, 1[.

The proof uses a variational approach to construct a solution φ as a
maximizer of the functional

G(φ) := log

∫

Rn
e−φdx−

∫

P

φ∗gdp

on the space of all convex functions whose gradient image is P. The main
point of the argument is to establish a direct coercivity estimate for the
latter functional of independent interest, which can be seen as a refined
Moser-Trudinger type inequality (see Theorem 2.16). In fact, the argument
shows that any asymptotically minimizing sequence of the functional above
converges – up to normalization – to a solution φ as in the previous theorem.
This extra flexibility will be used when establishing the convergence of the
Kähler-Ricci flow below.

1.2. Toric Kähler-Einstein geometry

We will mainly focus on the case when

g(p) = e〈a,p〉

for a given vector a ∈ Rn. The main differential-geometrical motivation
comes from the study of Kähler-Einstein metrics or more generally Kähler-
Ricci solitons on toric varieties.
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1.2.1. Kähler-Einstein metrics

Recall that a Kähler form ω on a compact complex manifold X is a
closed positive two-form, which equivalently means that, locally,

ω = i∂∂̄φ (1.1)

for a local function φ, called the Kähler potential. The Kähler metric ω is
said to be Kähler-Einstein if the Riemannian metric defined by its real part
has constant Ricci curvature, which in form notation is written as

Ric ω = γω

for some γ = 0,−1 or +1. Since the Ricci form Ric ω represents the first
Chern class of X :

c1(X) := c1(−KX),

where −KX := Λn(TX), is the anti-canonical line bundle on X, it fol-
lows that, in the case γ = ±1, the Kähler potential φ in 1.1 represents
a positively curved metric on the line bundle −γKX . Hence, if X admits
a Kähler-Einstein metric then c1(X) is non-positive if γ � 0 and posi-
tive if γ > 0. Conversely, as shown in the fundamental works of Yau and
Aubin (when γ < 0) any complex manifold X with c1(X) non-positive ad-
mits a Kähler-Einstein metric. However, in the case when c1(X) is positive,
i.e. X is a Fano manifold, there are well-known obstructions to the exis-
tence of Kähler-Einstein metrics and the fundamental Yau-Tian-Donaldson
conjecture expresses all the obstructions in terms of a suitable notion of
algebro-geometric stability (see section 4.3):

Conjecture (Yau-Tian-Donaldson). — A Fano manifold X admits a
Kähler-Einstein metric iff it is K−polystable.

More generally, from the point of view of current birational algebraic ge-
ometry, or more precisely the Minimal Model Program (MMP), is is natural
to allow X to be a singular Fano variety or more generally to consider the
category of log Fano varieties (X,∆), where X is a normal algebraic vari-
ety and ∆ is a Q−divisor on X such that the log anti-canonical line bundle
−(KX + ∆) is an ample Q−line bundle. Here will also assume, as usual,
that the coefficients of ∆ are < 1, but we do allow negative coefficients (see
section 3.1). The notion of K-stability still makes sense for X singular (see
[46, 43] for recent developments) and its log version was recently considered
in [32, 41, 47]. As for the notion of a Kähler-Einstein metric ω associated to
a log Fano variety (X,∆) it was recently studied in [12]: by definition ω is
a Kähler current in c1(−(KX + ∆)) with continuous potentials, satisfying
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the following equation of currents on X :

Ric ω − [∆] = ω (1.2)

By the regularity result in [12] such a (singular) metric ω restricts to a
bona fide Kähler-Einstein metric on the Zariski open set X0 defined as the
complement of ∆ in the regular locus of X (X0 is sometimes called the log
regular locus of X). See also section 1.4 below for relations to the theory
of Kähler-Einstein metrics on Fano manifolds with edge-cone singularities,
where there has been great progress recently.

The present paper concerns the case of toric log Fano varieties (X,∆).
In particular, X is a toric variety, i.e. a compact projective algebraic variety
with an action of the complex torus

Tc := C∗n � T × Rn,

(where T is the real torus) such that (X,Tc) is an equivariant compactifica-
tion of Tc with its standard action on itself and the divisor ∆ is supported
“at infinity”, i.e. in X − Tc. As explained in section 3) there is a correspon-
dence

(X,∆) ←→ P

between n−dimensional toric log Fano varieties (X,∆) and rational convex
polytopes P in Rn containing 0 in their interior. Briefly, if P is written
as the intersection of affine half-spaces 〈lF , ·〉 � −aF , where the index F
runs over all facets of P and lF denotes the inward primitive lattice vector,
normal to the facet F, then

∆ =
∑

F

(1− aF )DF ,

where DF is the toric invariant prime divisor defined by the facet F. Ap-
plying Theorem 1.1 to such a polytope P, with g = 1, we then deduce the
following

Theorem 1.2. — Let X be a toric Fano variety. Then the following is
equivalent:

• (X,∆) admits a toric log Kähler-Einstein metric

• 0 is the barycenter of the canonical polytope P(X,∆) associated to X

• The log Futaki invariants of (X,∆) vanish

• (X,∆) is log K−polystable with respect to toric degenerations
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This confirms the (generalized) Yau-Tian-Donaldson conjecture in the
category of toric log Fano varieties. Of course, it is natural to ask if log
K-polystability wrt toric degenerations implies log K-polystability wrt any
test configuration? In fact, as shown very recently in [8], in a general non-
toric setting, the existence of a log Kähler-Einstein metric does imply log
K-polystability and hence the full Yau-Tian-Donaldson conjecture holds for
any toric log Fano variety.

In the case when X is smooth and ∆ is the trivial divisor the previous
theorem was first shown in the seminal work [60] by Zhou-Wang, except for
the last point, proven in [61]. One of our motivations for considering Kähler-
Einstein metrics on singular toric varieties X comes from our recent work on
the Ehrhart volume conjecture for polytopes [10]. Another motivation comes
from the fact that, while there exist only a finite number of smooth Fano
varieties of dimension n, there exists an infinite number of singular ones.
On the other hand it is well-known that the number becomes finite if the
Gorenstein index of X is fixed. The most well-studied class of toric Fano
varities are those of Gorenstein index one, which correspond to reflexive
lattice polytopes P (i.e. the dual P ∗ is also a lattice polytope). This is
a huge class of lattice polytopes which plays an important role in string
theory, as they give rise to many examples of mirror symmetric Calabi-
Yau manifolds [6]. Already in dimension three there are 4319 isomorphism
classes of such polytopes [39], while there are only 105 families of smooth
Fano threefolds, all in all.

For a general log Fano variety (X,∆) we also obtain a generalization of
recent results of Szkelyhidi [54] and Li [40] concerning greatest lower bounds
on the Ricci curvature of metrics in c1(−(KX +∆)) (see Theorems 3.8, 3.7).

1.2.2. Kähler-Ricci solitons

In the case when X is smooth it was furthermore shown in [60] that any
toric Fano manifold admits a (shrinking) Kähler-Ricci soliton, i.e. a Kähler
metric ω and an associated holomorphic vector field V on X such that

Ric ω = ω + LV ω, (1.3)

where LV denotes the Lie derivative of ω wrt (the real part of) V. In the case
when (X,∆) is a log Fano variety we will say that ω is a log Kähler-Ricci
soliton associated to (X,∆, V ) if ω is a Kähler current in c1(−(KX + ∆))
with continuous potentials satisfying the equation 1.3, with Ric ω replaced
by the log Ricci curvature Ric ω−[∆] and such that ω is smooth on X0. One
motivation for studying Kähler-Ricci solitons on a singular toric variety
(even when ∆ is trivial) is a conjecture of Tian [57] saying that on any

– 654 –



Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Fano manifold the Kähler-Ricci flow converges, modulo automorphisms, to
a Kähler-Ricci soliton on a Zariski open set of codimension at least two
(the complex structure is allowed to jump in the limit; see also [52] for the
corresponding conjecture for general Fano varieties).

Theorem 1.3. — Any toric log Fano variety (X,∆) admits a (singu-
lar) toric log Kähler-Ricci soliton (ω, V ), where the metric ω is unique up
to toric automorphisms and the vector field V is uniquely determined by
the vanishing of the modified log Futaki invariants associated to (X,∆, V ).
Concretely, V is the invariant holomorphic vector field with components ai,
where the vector a is the unique critical point of the Laplace transform of
the measure 1P(X,∆)

dp.

We briefly remark that, given a log Fano variety (X,∆), it seems natural
to expect that one can obtain a complete Kähler-Ricci soliton on the quasi-
projective variety X −∆ (i.e. the complement in X of the support of ∆) by
taking suitable limits of log Kähler-Ricci solitons (see section 3.9). This is in
line with the discussion in [32] concerning limits of Kähler-Einstein metrics
with edge-cone singularities.

It is interesting to compare the uniqueness property for toric Kähler-
Einstein metrics contained in the previous theorem with the general results
in [14, 12] saying that any two log Kähler-Einstein metrics associated to a
given log Fano variety (X,∆) coincide up to the action of the automorphism
group of (X,∆), when ∆ has positive coefficients. However, when negative
coefficients are present it is well-known that this uniqueness property fails
in general and hence the uniqueness property in the toric category – in the
case when the divisor ∆ has negative coefficients – appears to be rather
surprising (compare the discussion in example 3.5).

We will also show, building on [12], that on any Fano variety X the
Kähler-Ricci flow converges weakly, modulo automorphisms, to a Kähler-
Ricci soliton on X (Theorem 5.1). This gives a (weak) confirmation of the
toric case of the conjecture in [52] (which asks for the stronger notion of
Gromov-Hausdorff convergence). We recall that in the case of a smooth Fano
variety, not necessary toric, the (strong) convergence towards a Kähler-Ricci
soliton – when one exists – was shown by Tian-Zhou [59], using Perelman’s
estimates.

We next turn to a dual version of Theorem 1.1 formulated directly on
the convex body P. It concerns the “Kähler-Einstein case” when g = 1 and
is motivated by the works of Abreu [1] and Donaldson [31]. First recall that
a Kähler metric ω on a complex complex manifold X satisfies the Kähler-
Einstein equation precisely when ω is in c1(X) and its scalar curvature Sω
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is constant and equal to one with appropriate normalizations. Moreover, as
shown by Bando-Mabuchi ω is then a minimizer of the Mabuchi K-energy
functional.

1.3. Abreu’s equation on a convex body

As shown by Abreu [1] in the toric setting the scalar curvature of the
Kähler metric on Tc induced by the Hessian of a smooth and strictly convex
function φ on Rn may be written in term of the Legendre transform u of φ
as S(u), where S is the following fourth order fully non-linear operator:

S(u) := −
n∑

i=1

∂2uij

∂xi∂xj
, (1.4)

where (uij) denotes the inverse of the Hessian matrix (uij) = ( ∂2u
∂xi∂xj

). As

a consequence any smooth solution φ as in Theorem 1.1 (for g = 1) yields
a solution to an equation in the interior of P involving S(u) :

S(u) = 1

But there may be many very different solutions to the latter equation since
the boundary behavior of u at ∂P has to be taken into account. To make this
precise we note that there is canonical measure σP defined on the boundary
of P. It may be defined in terms of the normal variations of the domain
P (see formula 4.3). Following Donaldson [29] any measure σ, absolutely
continuous wrt the induced Euclidean measure λ∂P on the boundary, defines
a functional Fσ on the space C∞ of all strictly convex functions u on P which
are smooth in the interior and continuous up to the boundary:

Fσ(u) := −
∫

P

log det(uij)dp + Lσ(u),

where Lσ is the linear functional

Lσ(u) := (

∫

∂P

uσ − a

∫

P

udp), a :=

∫

∂P

σ/

∫

P

dp (1.5)

As explained in section 4.2 the functional FσP may, in the case when P =
P(X,∆) for a log Fano variety (X,∆) be identified with the log version of
the Mabuchi K-energy functional.

Theorem 1.4. — Let P be a convex body containing 0 in its interior.
Then the functional FσP admits a minimizer u in C∞ iff 0 is the barycenter
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of P. Moreover, the minimizer is then unique modulo the addition of affine
functions and satisfies Abreu’s equation

S(u) = 1

in the interior of P.

Donaldson conjectured (see Conjecture 7.2.2 in [29]) that, given any
measure σ as above there is a corresponding minimizer under the following
condition:

Lσ(u) > 0

for any non-affine convex function. In our “canonical case” where the mea-
sure in question is σP the latter condition is satisfied precisely when 0 is the
barycenter of P (see Lemma 4.9) and the previous corollary thus confirms
Donaldson’s conjecture in this case. The case when P is a two-dimensional
polytope and σ coincides with a multiple of λ∂P on each facet was settled by
Donaldson in a series of papers leading up to [31]. As emphasized in [29] the
main motivation for Donaldson’s conjecture comes from the toric version
of the general Yau-Tian-Donaldson conjecture concerning constant scalar
curvature metrics in c1(L) for a given polarized manifold (X,L), which, as
explained by Donaldson, corresponds to a certain measure on the boundary
of the lattice polytope P(X,L) determined by the integral structure. As it
turns out this latter measure coincides with our measure σP precisely when
(X,L) is equal to (X,−KX) for a toric Fano variety (see section 4.2). The
point – from our point of view – is that any toric line bundle L → X can
always be written as L = −(KX + ∆), where (X,∆) is a toric log Fano
variety and hence Theorem 1.3 furnishes, under the corresponding barycen-
ter condition, a Kähler current in c1(L) with constant Ricci curvature on
X −∆ and where the singularities along ∆ are encoded by the measure σP
(compare Cor 3.9).

1.4. Further comparison with previous results and methods

In terms of toric geometry the key ingredient in our approach is a di-
rect convexity argument showing that the Ding type functional G(X,∆,V )

associated to a toric log Fano variety (X,∆) with a toric vector field V is
relatively proper (in the sense of [62, 63]) and even relatively coercive on the
space of T−invariant metrics, if the appropriate assumption on the barycen-
ter (Futaki invariant) holds (see Theorems 2.16, 4.5)). Given this relative
properness we can adapt the variational approach in [16, 7, 12] to our setting
to deduce the existence of a maximizer satisfying the corresponding Kähler-
Ricci solution equation. The coercivity of G(X,∆,V ) implies in particular that
the corresponding Mabuchi K-energy type functional M(X,∆,V ) is also rel-
atively coercive. It should be pointed out that in the general setting of a
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smooth Fano manifold X, not necessarily toric, but with ∆ = 0, the proper-
ness of the corresponding functionals – a priori assuming the existence of
a Kähler-Einstein metric – was shown by Tian [57], who also conjectured
its coercivity, eventually proved in [48]. For the corresponding results in the
presence of a Kähler-Ricci soliton, see [24].

Another variational approach approach, in the more general setting of
constant scalar curvature Kähler metrics in c1(L), for (X,L) smooth and
toric, has been developed in [62, 61, 63] building on [29]. In particular,
it is shown in [63], that if the corresponding Mabuchi functional M(X,L) is
relatively proper, then it admits a weak minimizer. However, the question of
its regularity and whether it satisfies the constant scalar curvature equation
was left open. One virtue of the present approach is thus that, when L =
−K:X , the minimizer can indeed be shown to satisfy the Kähler-Einstein
equation, even in the general setting of log Kähler-Einstein metrics and
Kähler-Ricci solitons. On the other hand, our methods are closely tied to
the Monge-Ampère operator and it does not seem clear, at this point, how
to extend them to the general setting of constant scalar curvature metrics.

Log Fano varieties (X,∆) with X smooth and ∆ = (1−t)D for a smooth
divisor D and t ∈ [0, 1[ have recently been studied in depth in [32, 37] from
the point of view of edge-cone singularities. In particular, assuming that
the corresponding Mabuchi functional M(X,∆) is proper it was shown in
[37] how to use a continuity method to obtain Kähler-Einstein metrics on
X − D which have cone singularities with an angle 2πt transversely to D
(and in particular the metrics satisfy the equation 1.2 on X). More precisely,
the metrics admit a polyhomogenous expansion along D in the sense of
the “edge calculus”. It seems likely that, using these latter results, it can
be shown that when (X, (1 − t)D) is moreover toric the Kähler-Einstein
metrics constructed here also have cone singularities etc. However, there is
a technical problem coming from the fact that in the toric setting M(X,∆)

is only relatively proper due to the presence of holomorphic vector fields.
It should also be pointed that, under the assumption that t ∈]0, 1/2[ (and
similarly in the log smooth case where X is smooth and D has simple normal
crossings) it is shown in [23] that any log Kähler-Einstein metrics has cone
singularities. Of course, it would also be very interesting to understand the
relations to edge-cone type singularities in the case when the variety X itself
is singular. The present approach only gives regularity of the metrics on the
log regular locus of (X,D) and it would of course be very interesting to be
able to describe the type of singularities appearing on the singular locus of
X and along ∆. However, at this point it does not even seem clear what the
appropriate local models should be, even if ∆ = 0.
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It should also be pointed out that in the case when X is a Fano variety
with quotient singularities, i.e. X is an orbifold (which corresponds to the
polytope P being simple) the existence of a Kähler-Ricci soliton was ob-
tained recently in [51], building on [60]. The orbifold situation was further
studied in [38].

When the first draft of the present paper had been completed two new
preprints of Song-Wang [53] and Li-Sun [42] appeared which are relevant
for the discussion on edge-cone Kähler-Einstein metrics above. In particu-
lar, in [53] certain toric edge-cone Kähler-Einstein metrics are obtained on
any given smooth toric Fano variety X, by a method of continuity. We
have included a discussion on the more precisely relations to [53, 42] in
section 3.11.

1.5. Organization

In section 2 we start by setting up a variational approach to solving
Monge-Ampère equations in Rn with target a convex body. The core of
the section is a direct proof of a coercive Moser-Trudinger type inequality,
which is the basis of the proof of Theorem 1.1 stated in the introduction. In
the following section 3 we give a fairly detailed exposition of toric varieties
emphasizing analytical aspects of toric log Fano varieties, which in particular
allows us to rephrase the results in the previous section in terms of toric
Kähler-Einstein geometry. Then in section 4 we explore the relations to
the Mabuchi K-energy functional, Futaki invariant and K-stability. Finally,
in section 5 we show that the (weak) Kähler-Ricci flow on any toric Fano
variety converges weakly to a (singular) Kähler-Ricci soliton.

At least part of the length of the paper is explained by our effort to make
the paper readable for the reader with a background in convex analysis, as
well as for the complex geometers.

2. Monge-Ampère equations in Rn and Convex bodies

In this section we will adopt a direct variational approach to solve the
Monge-Ampère equation in Theorem 1.1, stated in the introduction. This
means that the solutions will be obtained as the maximizers of a certain
functional G on a space E1

P (Rn) of convex functions on Rn of “finite energy”.
At least formally the solutions are critical points of G and according to the
usual scheme of the calculus of variations the existence proof is thus divided
into two distinct parts:

• A coercivity (properness) estimate for G, which yields the existence
of a maximizer φ (when the barycenter condition on P holds)
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• An argument showing that any maximizer indeed satisfies the equa-
tion in question

The key new ingredient in our approach is the accomplishment of the
first point using a direct convexity argument. As for the second point we
will develop a real analog of the Kähler geometry setting considered in
[11, 16, 12] by introducing appropriate finite energy spaces of convex func-
tions and establishing a crucial differentiability result for the “energy of
convexification” (Prop 2.13).

Of course, our comparison with the Kähler geometry setting may appear
as an anachronism: the variational approach to real Monge-Ampère equa-
tions, originating in Alexandrov’s seminal work on the Minkowski problem
on the n−sphere (see the book [4] and references therein) certainly precedes
its complex analog. On the other hand, as far as we know the precise con-
vex analytical setting in Rn (as opposed to the n−sphere) that we we need
does not appear to have been developed in the literature1. Moreover, the
analogy between the real and complex settings gives a useful testing ground
for conjectures in the Kähler geometry setting.

It is also interesting to see that our variational approach is closely related
to the variational principles (based on Kantorovich duality) appearing in the
theory of optimal transport (see section 2.11).

2.1. Setup

Let P be a convex body in an affine space of real dimension n, i.e. P
is a compact convex subset with non-empty interior. Identifying the affine
space with the vector space Rn, with linear coordinates p(= (p1, ..., pn),
we may as well assume that the origin 0 is contained in the interior of
P. We will identify the dual vector space with Rn, with linear coordinates
x(= (x1, ..., xn),

A convex functions φ(x) on Rn is, by definition, convex along affine lines,
i.e. φ(tx + (1 − t)y) � tφ(x) + (1 − t)φ(y) and takes values in ]∞,∞] and
we will exclude the case when φ is identically ∞. Note that such functions
are called proper convex functions in [50], while we will, to conform to more
standard general terminology, say that a function φ(x) is proper if |φ| → ∞,
as |x| → ∞.

(1) Added in proof: a closely related direct variational approach to solving real Monge-
Ampère equations has been implented by Gangbo in the context of optimal transport
theory and was previously outlined by Caffarelli, who attributes it to Varadhan. See
Gangbo, W: An elementary proof of the polar factorization of vector-valued functions.
Arch. Rational Mech. Anal. 128 (1994), no. 4, 381-399 and Caffarelli, L. A: Boundary
regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992), no. 9,
1141-1151.

– 660 –



Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

The subdifferential dφ|x of φ at x is the closed set of Rn consisting of all
points p such that f(y) � f(x) + 〈p, y − x〉 for y ∈ Rn. In particular, dφ|x
is a equal to a point (the usual differential of φ at x) if φ is differentiable at
x. The Monge-Ampère measure MA}(φ) of a finite convex function φ is the
(Borel) measure, which with our normalization convention is defined by

(MA(φ)(E) := n!

∫

dφ(E)

dp (2.1)

for any Borel set E (see [49, 36]); this is sometimes also called the Monge-
Ampère measure in the sense of Alexandrov. More generally, given any func-
tion g in L1Rn) we can define the “g−Monge-Ampère measure” MAg(φ)
by replacing the measure dp in the definition 2.1 by gdp, so that MAg(φ) =
g(dφ)MA(φ) if φ is smooth, In fact, essentially all the results (a part from
those concerned with regularity properties) below for the operator MA gen-
eralize word for word to this more general setting, but for clarity of exposi-
tion we will mainly stick to the case when g = 1.

Remark 2.1. — The reason that MA(φ) (and more generally MAg) in-
deed defines a bona fide measure is that the multivalued map from Rn → Rn

defined by x �→ dφ|x (often called the “normal mapping” in the literature) is
invertible almost everywhere on its image (wrt Lebesgue measure dp). This
is a consequence of the almost everywhere differentiability of the Legendre
transform (compare Lemma 1.1.12 in [36] or Lemma 2.7 below).

Let now P be a given convex body in Rn containing 0 in its interior and
of volume

V (P ) := Vol(P )

and denote by P(Rn) be the space of all convex functions φ(x) on Rn such
that

φ(x) � φP (x) + C,

where φP is the support function of P, i.e.

φP (x) := sup
p∈P

〈x, p〉

We let P+(Rn) be the subspace of P(Rn) of elements of “maximal growth”:

−C + φP (x) � φ(x) � φP (x) + C

for some constant C (depending on φ). In particular, any φ in P+(Rn)
is proper. Standard examples of strictly convex and smooth elements in n
P+(Rn) are obtained by setting

φP,k :=
1

k
log

∫

P

ek〈x,p〉
dp

V
(2.2)

for a given positive integer k (note that φP = φP,∞).
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We equip the space P(Rn) with the topology defined by point-wise con-
vergence. Thanks to the uniform Lipschitz bound on the elements in P(Rn)
(coming from the boundedness of P ) this coincides with the topology defined
by local uniform convergence.

Lemma 2.2 (regularization). — For any φ in P(Rn) there is a sequence
of strictly convex smooth functions φj in P+(Rn) decreasing to φ.

Proof. — Given t ∈ Rn and φ in P(Rn) we have that φ(· + t) is also
in P(Rn) and hence we may first define ψj by convolutions in the usual
way so that ψj is smooth and decreases to φ. Finally, we may then set
φj := maxε(ψj , φP − j) where maxε denotes a regularized max, which has
the required properties a part from the strict convexity. But this may be
achieved by taking suitable convex combinations of φj and φ0, where φ0 is
any fixed smooth and strictly convex function in P+(Rn) such that φ � φ0,
for example φ0 = φP,1 + C for a sufficiently large constant C. �

2.2. Relation to the complex setting: the Log map

Let Log be the map from C∗n to Rn defined by Log(z) := x := (log(|z1|2,
..., log(|zn|2), so that the real torus T acts transitively on its fibers. We
will refer to x as the (real) logarithmic coordinates on C∗n. Given a psh
T−invariant bounded function φ(z) on C∗n we will, abusing notation slightly,
write φ(x) for the corresponding convex function on Rn, i.e. φ(x) := φ(z)

for any z ∈ (Log)
−1{x}. The normalizing constant n! in the definition of

MA(φ) has been chosen so that

(Log)∗MAC(φ) = MA(φ)

where MAC(φ) is the Monge-Ampère measure on C∗n of the locally bounded
psh function φ(z), as defined in pluripotential theory (compare [49] and
section 3.3). Note however, that MAg for g �= 1 does not have any immediate
pluripotential analog.

2.3. The Legendre transform from Rn to the convex body P

Recall that the Legendre(-Fenchel) transform (also called the conjugate
function in [50]) of a convex function φ(x) is defined by

φ∗(p) := sup
x∈Rn

〈p, x〉 − φ(x)

which is a convex function on Rn with values in ]−∞,∞]. Since the Legendre
transform is an involution, i.e. φ

∗∗
= φ, we have

φ∗P (x) = 0 onP, φ∗P (x) = ∞ onRn − P
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and

φ(x) � ψ(x) ⇔ φ∗(p) � ψ∗(p) (2.3)

It follows immediately that the following proposition holds:

Proposition 2.3. — If φ is in P(Rn) then φ∗ = ∞ on the complement
of P. Moreover, the Legendre transform induces a bijection between P+(Rn)
and the space H(P ) of bounded convex functions on P. More precisely,

sup
Rn

(φ− φP ) = − inf
P

φ∗, inf
Rn

(φ− φP ) = − supφ∗

and

‖φ− φP ‖L∞(Rn) = ‖φ∗‖L∞(P )

2.3.1. Functions with full Monge-Ampère mass

We will say that an element φ in P(Rn) has full Monge-Ampère mass if
the total mass of MA(φ) on Rn coincides with n! times the volume V (P ) of
P. Following the terminology in [16] in the Kähler geometry setting we will
denote this subclass of P(Rn) by EP (Rn) (compare Remark 2.12 below).

Proposition 2.4. — If φj converges to φ in EP (Rn), then
∫
vMA(φj) →∫

vMA(φ) for any bounded continuous function v on Rn.

Proof. — If v has compact support this is well-known to hold for any
sequence φj of convex functions converging locally uniformly to φ [49, 36].
Moreover, if φj converges φ in EP (Rn), then by assumption

∫
MA(φj) =∫

MA(φ). Hence, writing v as v(χ+(1−χ)) for χ a cut-off function supported
on a sufficiently large ball proves the proposition. �

According to the following basic lemma any φ ∈ P+(Rn) has full Monge-
Ampère mass, i.e. it is in the class EP (Rn).

Lemma 2.5. — The following properties of the image of the subgradients
of convex functions hold:

• If φ is a finite convex function φ on Rn then dφ(Rn) ⊂ {φ∗ <∞}. In
particular dφ(Rn) ⊂ P if φ ∈ P(Rn) and φ ∈ EP (Rn) iff dφ(Rn) = P
up to a set of measure zero.

• If φ ∈ P+(Rn) then the interior of P is contained in {φ∗ < ∞} and
hence

φ ∈ P+(Rn)

∫

Rn
MAR(φ) = n!V (P ) (2.4)

– 663 –



Robert J. Berman, Bo Berndtsson

Proof. — The first point follows immediately from the definition of a
subgradient and the second point follows from the fact that 〈p, x〉 − φ(x) is
clearly proper if p is an interior point of P and φ ∈ P+(Rn). Indeed, then
the sup defining φ∗(p) is attained, say at xp, and it follows that p ∈ dφ|xp .
The final statement 2.4 then follows from the well-known fact that the
topological boundary of P is a nullset for Lebesgue measure. �

Before continuing it will be convenient to record the following property:

Lemma 2.6. — Any φ in P(Rn) with full Monge-Ampère mass is proper.
More precisely, there exists a constant C > 0 such that φ(x) � |x|/C − C.

Proof. — First note that if φ is an element in E(Rn) then {φ∗ < ∞}
is the closure of the interior of P (the converse is trivial). Indeed, by the
first point in 2.5 (and since the topological boundary of P is a nullset) the
interior of P has full measure in {φ∗ < ∞} and in particular is dense in
the convex set {φ∗ < ∞}. But then it follows from a simple argument,
using convexity, that all of the interior has to be contained in {φ∗ < ∞}.
Finally, we note that if φ is a convex function (finite) convex function φ on
Rn such that 0 is contained in the interior of {φ∗ < ∞} then φ is proper.
Indeed, by assumption u := φ∗ is finite on a closed small ball Bε of radius
ε centered at 0 and since φ∗ is continuous there if follows that |φ∗| � C on
Bε. Hence, φ(x) = u∗(x) � supp∈Bε 〈p, x〉 − C = ε|x| − C which concludes
the proof. �

We will also have great use for the following variational properties of the
Legendre transform:

Lemma 2.7. — Let φ ∈ P(Rn) and p an element in the convex set {φ∗ <
∞}(⊂ P )

• φ∗ is differentiable at p iff the sup defining φ∗ is attained a unique
point xp and the differential at p is then given by xp = dφ∗|p

• If φ has full Monge-Ampère mass and v is a bounded continuous
function on Rn and φ∗ is differentiable at p then

d(φ + tv)∗

dt t=0
= −v(dφ∗|p)

• Moreover we then have, for any non-negative continuous function v,

∫

Rn
MA(φ)v =

∫

P

v(dφ∗|p)dp
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(where the rhs is well-defined since the derivative of a convex function
exists a.e. wrt dp)

Since the content of the lemma above appears to be mostly well-known in
the case when φ is smooth and strictly convex, we have, for completeness,
provided a proof of the general case in the appendix.

2.4. Compactness, normalization and the action of the group Rn

We let P(Rn)0 be the subspace of all sup-normalized φ:

sup
Rn

(φ− φP ) = 0

Proposition 2.8. — If φ is in P(Rn) then

sup
Rn

(φ− φP ) = 0 ⇐⇒ φ(0) = 0

and hence the space P(Rn)0 is compact.

Proof. — Since, by definition, the gradient image of φ is in P it follows
from the convexity of φ along the affine line t→ tx that φ(x) � φ(0)+φP (x),
i.e. sup(φ − φP ) � φ(0). Since trivially, φ(0) = φ(0) − φP (0) � supRn(φ −
φP ) this proves the equivalence in the proposition. In particular, if φj is a
sequence in P(Rn)0 then φj(0) = 0. Hence, since that gradient image of φ is
in P (and in particular bounded) we deduce that supK |φ(x)| � CK on any
given compact subset of K and that φ is Lipschitz continuous on K with a
uniform Lipschitz constant. Applying the Arzel–Ascoli theorem on K thus
concludes the proof of the compactness. �

We will say that φ is normalized if it is sup-normalized and φ � 0, i.e.

0 = φ(0) = inf
Rn

φ (2.5)

Given a strictly convex function φ ∈ P+(Rn) we define its normalization φ̃
by

φ̃(a) := φa − φ(a) (2.6)

where a is the point where the infimum of φ̃ is attained and φa(x) := φ(x+a)
defines the action of the group Rn on P+(Rn) by translations. Note that
even if φ̃ is not strictly convex we may always define its normalization φ̃ by
taking some point a where the infimum of φ̃ is attained (but a may not be
uniquely determined). Also note that under the Legendre transform

(φa)
∗(p) = φ∗(p)− 〈a, p〉 (2.7)

for any a ∈ Rn.
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2.5. The functional E and the finite energy class E1
P (Rn)

Fix a reference element φ0 in P+(Rn). Then there is a unique functional
E := E(·, φ0) on P+(Rn) such that

dE|φ = MA(φ) (2.8)

normalized so that E(φ0, φ0) = 0. To see this we may first define

E(φ, φ0) :=

∫ 1

0

(φ− φ0)MA(φ0(1− t) + tφ)dt (2.9)

and then verify that 2.8 indeed holds. This could be shown using integration
by parts, but we will give a different proof in the course of the proof of the
following proposition. We can first extend the functional E to be defined on
EP (Rn) by the formula 2.9 and define the class of all φ in P(Rn) of finite
energy by

E1
P (Rn) := {φ ∈ EP (Rn) : E(φ) > −∞}

Note that the various spaces are related as follows:

P+(Rn) ⊂ E1
P (Rn) ⊂ EP (Rn) ⊂ P(Rn) (2.10)

More generally, given a bounded function g on P replacing MA with MAg

we obtain a corresponding functional Eg, precisely as before. Anyway, since
g is bounded the corresponding finite energy space is independent of g.

Proposition 2.9. — We have that in the space E1
P (Rn) the functional

E(·, φ0) defined by 2.9 (which by definition is finite) satisfies

dE|φ = MA(φ)

In general the functional E(·, φP ) may be uniquely extended to an increas-
ing (wrt the usual order relation) and upper semi-continuous functional
P(Rn) → [−∞,∞[ by setting

E(φ, φP ) = −n!

∫

P

φ∗dp (2.11)

In particular, an element φ in P(Rn) is in E1
P (Rn) iff φ∗ is in L1(P, dp).

For the energy functional associated to a function g on P the formula 2.11
holds with dp replaced by gdp.

Proof. — Denote by H(P ) the space of all convex functions on P and
denote by L the map from EP (Rn) to H(P ) induced by the Legendre trans-
form. i.e (Lφ)(p) := φ∗(p). Let λ be the linear functional on H(P ) defined

– 666 –



Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

by integration against dp on P and let MA be the one-form on EP (Rn) such
that the linear functional MA|φ is defined by integration on Rn against the
Monge-Ampère measure MA(φ). Then we have the following key relation

L∗(−n!λ) = MA (2.12)

Indeed, this follows immediately from the second point in Lemma 2.7,
since by definition 〈L∗, v〉φ = −n! 〈λ, d(L(φ + tv))/dtt=0〉 . Since λ clearly
defines a closed one-form on H(P ) (which is even exact with primitive
IP :=

∫
P

(·)dp), it follows that the pull-back MA is also closed and exact. In
particular it has a primitive E (unique up to the normalization E(φ0) = 0)
such that

E(φ, φ0) =

∫

[0,1]

γ∗MA, γ : [0, 1] → H(Rn)

where γ is any smooth curve connecting φ0 and φ. In particular, taking γ
to be an affine curve in H(Rn) gives the formula 2.9, while taking γ to be
the pull-back under L of an affine curve in H(P ) gives the formula 2.11 on
E1
P (Rn) (using that LφP = 0).

Finally, we note that it follows immediately from the fact that the Legen-
dre transform is decreasing together with Fatou’s lemma that the functional
on P(Rn) defined by 2.11 is increasing and upper-semicontinuous. Indeed,
it follows immediately from the variational definition of the Legendre trans-
form that if φi is a sequence in P(Rn) converging point-wise to φ, then

lim inf
i→∞

φ∗i � φ∗, φ∗i � −C

for some constant C. �

We will often omit the explicit dependence on a reference φ0 in the def-
inition of E(·, φ0). Anyway, as a consequence of the property 2.8 differences
E(φ)− E(ψ) are independent of the choice of φ0.

Remark 2.10. — Since any φ in P(Rn) may be written as a decreasing
limit of elements φj in P+(Rn) (just set φj = max{φ, φp − j}) we could, by
the monotonicity and upper semi-continuity of E in the previous proposition,
equivalently have defined E by P(Rn) by setting

E(φ) = inf {E(ψ) : ψ ∈ P+(Rn), ψ � φ} (2.13)

using formula 2.9 and then let E1
P (Rn) := {E > −∞}. More concretely, we

could even assume that ψ above is smooth (by the approximation Lemma
2.2 ). Compare [11] for the Kähler geometry setting.
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Example 2.11. — The function φ(x) = 0 is not in the space E1
P (Rn).

Indeed, its Legendre transform is identically equal to infinity on the com-
plement of 0 and hence φ∗ is not in L1(P, dp). This also shows that the
formula 2.9 is not valid in general on the complement of EP (Rn).

Remark 2.12. — The reason to use the notation EP (Rn) for the space of
all φ with full Monge-Ampère mass is that, just as in the Kähler geometry
setting [16], φ ∈ EP (Rn) iff φ has finite χ−weighted energy for some convex
positive weight χ, i.e. φ is in the class EχP (Rn) defined as in 2.13, but with
E(ψ) replaced by

∫ 1

0

χ(φ− φ0)MA(φ0(1− t) + tφ)dt (2.14)

2.6. The projection Pr on the convexification

Fix an element φ in P(Rn) and a bounded continuous function v, i.e.
v ∈ C0

b (Rn). If φ is in the “boundary” of P(Rn), i.e. φ is not strictly convex,
then some perturbation φ + v will leave the space P(Rn). As a remedy for
this we define the projection operator Pr from {φ} + C0

b (Rn) onto P(Rn)
by

Pr(φ + v)(x) := sup
ψ∈P(Rn)

{ψ(x) : ψ � φ + v}

Noting that Pr(φ + v)∗ = (φ + v)∗ we could also use

Pr(φ + v) = (φ + v)∗∗

as the definition of Pr(φ + v).

Proposition 2.13. — Fix an element φ in E1
P (Rn). Then the functional

C0
b (Rn) : v �→ (E ◦ Pr)(φ + v)(=

∫

P

(φ + v)∗dp)

is Gateaux differentiable and its differential at v is given by MA(Pr(φ+v)).

Proof. — Let us first consider the differential of the functional at v = 0.
Observe that, for p fixed, t �→ (φ + tv)∗)(p) is convex and hence its right
and left derivatives d±(p) exist everywhere, defining functions which are in
L∞loc(P ) and d+(p) = d−(p) for almost every p (by the first point of Prop
2.7). Moreover, by convexity d±(p) are both defined as monotone limit.
Hence it follows from the Lebesgue monotone convergence theorem that

d(

∫

P

(φ + tv)∗dp)/dtt=0± =

∫

P

d±(p)dp
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and since d+(p) = d−(p) a.e. wrt dp this gives the desired differentiability
property of the functional in question. Moreover, by Lemma 2.7 we have,
settingu := φ∗, that

d(

∫

P

(φ + tv)∗dp)/dtt=0± = −
∫

P

v(dup)dp

and the proof is concluded by invoking the formula in the third point of
Lemma 2.7. Finally, to obtain the differential at any v we note that the
previous argument gives that

d(

∫

P

(φ + tv)∗dp)/dtt=1± = −
∫

P

v(d(φ + v)∗(p))dp.

But since (φ + v)∗ = ψ∗ for ψ = Pr(φ + v) we can now apply the formula
in the third point of Lemma 2.7 to ψ. �

2.7. Geodesics

Given two strictly convex and smooth functions φ0 and φ1 in P+(Rn)
the geodesic φt in P+(Rn) from φ0 to φ1 is defined as the the map [0, 1] →
P+(Rn) defined by

φt = ((1− t)φ∗0 + tφ∗1)
∗

i.e. under the Legendre transform (for t fixed) φt corresponds to an affine
curve in H(P ). In particular, φt(x) is smooth and convex in (t, x).

2.8. Variational principles and a coercive Moser-Trudinger type
inequality

Given (P, g) we consider the following Moser-Trudinger type functional
on P+(Rn) :

G(P,g)(φ) :=
1

V (P, g)
Eg(φ, φP )− I(φ), I(φ) := − log

∫
e−φdx

To simplify the notation we will set g = 1 and write G(P,g) = G, but the
proofs in the general case are the same. Note that G is a well-defined as a
functional on E1

P (Rn) taking values in ]−∞,∞]. The normalization of the
energy term above is made so that G(φ+ c) = G(φ). Moreover, we have the
following simple, but crucial

Lemma 2.14. — The functional G is invariant under the action of Rn

by translations (i.e. under φ �→ φa for a ∈ Rn) iff 0 is the barycenter of P.
Moreover, if G(φ) is bounded from above, then 0 is the barycenter of P.
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Proof. — Since the volume form dx is invariant under translations so is
the functional I and hence G is invariant under translations iff the function
E(·, φP ) is. The proof of the first statement is thus concluded by noting that

E(φa, φP )− E(φ, φP ) = −
∫

P

((φa)
∗ − φ∗)dp =

∫

P

〈a, p〉 dp,

where we have used formula 2.7 in the last equality. Finally, if 0 is not the
barycenter of P we can take a curve φt in P+(Rn) such that φ∗t (0) = tpi0
where p is the barycenter of P and pi0 �= 0. Then it follows as above that

G(φt) = log

∫
e−φP dx + E(φt, φP ) = log

∫
e−φP dx− tpi0

which is unbounded from above when either t→∞ or t→ −∞. �

Next, we have the following key concavity property:

Proposition 2.15. — The functional G is concave along geodesics in
P+(Rn) and strictly concave modulo the action of Rn by translations. In
particular, any solution φ as in the statement of Theorem 1.1 maximizes G
on the space P+(Rn).

Proof. — Let φt be a geodesic in P+(Rn). By the Prekopa-Leindler
inequality

t �→ − log

∫

Rn
e−φtdx (2.15)

is convex, since φt is convex in (x, t) (see [10] for complex geometric genera-
lizations of this inequality). Moreover, by Prop 2.9 E(φt, φ0) is affine wrt t
and hence G(φt) is convex as desired. The statement about strict convexity
follows from the equality case for the Prekopa-Leindler inequality giving
that if the function in 2.15 is affine in t then φt(x) = φ(x + ta) for some
vector a. The final statement of the proposition now follows by connecting
a given element φ (which by approximation may be assumed smooth) and
the solution φ0 with a geodesic and using that the differential of G vanishes
at φ0. �

We are now in the position to prove one of the main results in the present
paper:

Theorem 2.16. — Let P be a convex body containing 0 in its interior.
For any δ > 0 there is a constant Cδ such that

G(φ) � (1− δ)E(φ, φP ) + Cδ
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for any normalized φ ∈ P+(Rn) (i.e. φ(0) = 0 and φ � 0). Moreover, G is
bounded from above on P+(Rn) iff it is invariant under the action of Rn

by translations iff 0 is the barycenter of P.

Proof. — Step one (a crude M-T type inequality): there is a positive
constant C such that

log

∫
e−φdx � −CE(φ, φP ) + C

for any φ ∈ P+(Rn) such that φ(0) = 0 (or equivalently such that sup(φ−
φP ) = 0).

We first fix a reference φ0 in P+(Rn) such that
∫
e−φ0dx = 1. Given

φ in P+(Rn) there is a geodesic φt in P+(Rn) starting at φ0 such that
φ1 = φ. By the previous proposition G(φt) is concave giving G(φ1) � G(φ0)+
dG(φt)/dtt=0, where

dG(φt)/dtt=0 =

∫

Rn
(−dφt/dtt=0)(e

−φ0dx−MA(u0))

By the invariance of G under φ �→ φ+c we may assume that sup(φ1−φ0) = 0
and hence by the convexity of φt wrt t we have dφt/dtt=0 � 0. Next we note
that we may take the fixed reference φ0 so that

e−φ0 � C ·MA(φ0) (2.16)

for some constant C. Accepting, for the moment, the existence of such a φ0

we deduce that there is a constant C such that

G(φ)− G(φ0) � C

∫
−dφt/dtt=0)MA(φ0) = −CE(φ, φ0),

using 2.8 and that E(φt, φ0) is affine wrt t. Finally, since E(φ, φ0) = E(φ, φP )+
E(φP , φ0) this concludes the proof up to the existence of φ0 ∈ P+(Rn) sat-
isfying 2.16. An explicit choice of φ0 may be obtained by setting φ0 = φP,1
as in 2.2. The property 2.16 can then be checked by straightforward, but
somewhat tedious calculations. Alternatively, we may set φ0 = φ for a solu-
tion φ ∈ P+(Rn) of the inhomogeneous Monge-Ampère equation MA(φ) =
e−ψdx, where ψ is any given element in P+(Rn), e.g. ψ = φP or even in
EP (Rn) (see Cor 2.20). Since, φ ∈ P+(Rn) we have ψ � φ + A and hence
the property 2.16 follows with C = e−A.

Step two: refinement by scaling. Let now φ be a normalized function
in P+(Rn) and in particular φ � 0. We will improve the inequality in the
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previous step by a scaling argument. To this end fix t ∈]0, 1[. Since φ � tφ
we have that

log

∫
e−φdx � log

∫
e−tφdx = log

∫
e−φtd(x/t)

where φt(x) := tφ(x/t). Note that φt = (tu)∗, where u = φ∗ and in particu-
lar φt ∈ P+(Rn)0. Hence, applying the previous step gives

log

∫
e−φtdx � −CE(φt, φP ) + C = Ct

∫

P

u + C

All in all this means that

log

∫
e−φdx � Ct

∫

P

udp + C + n log t

and hence setting δ = t/C concludes the proof of the first statement of the
theorem.

Finally, if 0 is the barycenter of P then we have, by the previous lemma,
and the definition of the normalization φ̃ that

G(φ) = G(φ̃) � 0 + C

for any P+(Rn). The converse was proved in the previous lemma. �

Remark 2.17. — The scaling argument in the previous proof is somewhat
analogous to a scaling argument used by Donaldson [29] for the Mabuchi
functional on a toric manifold.

Interestingly, the boundedness of G under the moment condition on
(P, g), say for g = 1, is also a consequence of the functional form of the
Santalo inequality [3]. Indeed, the latter inequality says that, for any convex
function φ(x) in Rn the following inequality holds after perhaps replacing
φ by φa for some a ∈ Rn :

∫
e−φ(x)dx

∫
e−φ

∗(p)dp � (2π)n and hence the
boundedness of G follows from Jensen’s inequality. However, for the proof
of Theorem 1.1 we do need the stronger coercivity inequality obtained in
the previous theorem.

2.9. Proof of Theorem 1.1

Step 1: the sup of G is attained, i.e. there exists a maximizer φ of finite
energy.

Proof. — By Prop 2.9 E is upper semi-continuous (usc) on the space
P(Rn). By the invariance under translations (see Lemma 2.14) we can take
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a sequence of normalized functions φj in P+(Rn) such that G(φj) → supG.
But then it follows from the coercivity inequality in Theorem 2.16 that there
is constant C such that E(φj) � −C. By the compactness of P0(Rn) we may,
after perhaps passing to a subsequence, assume that φj → φ in P(Rn), where
E(φ) � −C, since E(φ) is usc. The proof of step 1 is now concluded by noting
that the functional −I is usc along φj , or more precisely that

∫
e−φjdx = lim

j→∞

∫
e−φjdx (2.17)

Indeed, since E(φj) � −C it follows from the coercivity inequality in Theo-
rem 2.16 (and a simple scaling argument) that

∫
e−p(φj−φP )µP � Cp, µP := e−φP dx

for some positive number p > 1. But since φj → φ uniformly on any com-
pact set the desired upper semi-continuity of −I then follows from Hölder’s
inequality. Indeed, integrating the lhs in 2.17 over the complement of a ball
BR of radius R gives

∫

Rn−BR
e−(φj−φP )µP � (

∫

Rn−BR
e−p(φj−φP )µP )1/pµP (Rn −BR)

and since µP has finite mass on Rn the rhs above can be made arbitrary
small by taking R sufficiently large.

Step 2: the maximizer φ satisfies the equation MA(φ) = e−φdx/
∫
e−φdx

in the weak sense

Fix a smooth function v of compact support and and consider the fol-
lowing functional on the real line: t �→ f(t) := 1

V E(Pr(φ+ tv)−I(φ). Since
I is increasing we have that f(t) � G(Pr(φ + tv)) � G(φ) (since φ is a
maximizer), i.e. f(t) � f(0). But by Prop 2.13 f(t) is differentiable and
hence df/dt = 0 at t = 0, which by Prop 2.13 gives the desired equation,
since Pr(φ) = φ.

Step 3: local regularity of solutions

We will give the argument for the more general case when φ is a finite
energy solution of MAg(φ) = Ce−F1(φ) where g(p) = e−F2(p) for F1 a con-
tinuous function on Rn and F2 a bounded function on P (see Remark 2.1 for
the definition of MAg). By Lemma 2.6 φ is proper and hence the sublevel
sets ΩR := {φ < R} are bounded convex domains exhausting Rn. Fixing
R, writing Ω := ΩR and replacing φ with φ − R we then have that φ = 0
on ∂Ω and 1/Cdx � MA(φ) � Cdx on Ω for some positive constant C.
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Hence, it follows from the first point in Theorem 2.24 below that φ is in the
Hölder class C1,α

loc for some α > 1. In particular, the gradient dφ is a single-
valued continuous function and hence MA(φ) = f for a continuous function
f such that 1/C ′ � f � C ′ in Ω. Applying the second point in Theorem
2.24 thus shows that φ is in the Sobolev space W 2,p

loc (Ω) for any p > 1. Fi-
nally, by general Evans-Krylov theory for non-linear PDEs we deduce that
φ ∈ C∞(Rn).

Step 4: global regularity

Applying Cor 2.20 below with ψ = φ shows that φ − φP is globally
bounded on Rn. More precisely, the Legendre transform of φ is Hölder con-
tinuous up to the boundary of P for any Hölder exponent γ < 1.

Uniqueness: Let φ0 and φ1 be two solutions and let φt be the geodesic
segment connecting them. By the strict concavity in Prop 2.15 φt = φ0(x+
ta) for some vector a which concludes the proof. �

2.10. The invariant R of a convex body

Let P be a convex body containing 0 and define the following invariant
RP ∈]0, 1], which is a measure of the failure of P having the property that
its barycenter b coincides with 0 :

RP :=
‖q‖

‖q − b‖ , (2.18)

where q is the point in ∂P where the line segment starting at b and passing
through 0 meets ∂P. In the case when P is the canonical polytope associated
to a smooth Fano variety the invariant RP was introduced in [40], where
it was shown to coincide with another invariant of an analytical nature. A
slight modification of the proof of Theorem 1.1 gives the following theorem,
which – when translated to toric geometry – generalizes the main result of
[40] (see section 3.10):

Theorem 2.18. — Let P be a convex body containing 0 in its interior
and fix an element φ0 ∈ P+(Rn). Then the invariant RP coincides with the
following two numbers, defined as the sup over all r ∈ [0, 1[ such that

• there is a solution φ ∈ P+(Rn) to the equation

det(
∂2φ

∂xi∂xj
) = e−rφe−(1−r)φ0 (2.19)

• The following functional on P+(Rn) is bounded from above:
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Gr,φ0(φ) :=
1

V (P )
E(φ, φP ) +

1

r
log

∫
e−rφe−(1−r)φ0dx

Proof. — First observe that RP is the sup over all r ∈ [0, 1] such that

(1− r)φP (x) + r 〈b, x〉 � 0 (2.20)

Accepting this for the moment we will start by showing that if r is a positive
number such that 2.20 holds for r+δ, for some δ > 0, then Gr+δ is bounded
from above. By assumption −(1− r)φP (x) � r 〈b, x〉 and hence

Gr,φP (φ) � 1

V (P )
E(φ, φP ) +

1

r
log

∫
e−rφer〈b,x〉dx

Applying the boundedness statement in Theorem 2.16 to the translated and
scaled convex body rP −{b} (which has its barycenter at 0) thus shows that
Gr,φP (φ) � Cr and, by the same argument, Gr+δ,φP (φ) � Cr+δ. Moreover,
since φ0 − φP is bounded the corresponding inequalities also hold when φP
is replaced by φ0.

Next, we show that the inequality Gr+δ,φ0
(φ) � Cr+δ implies the exis-

tence of a solution to equation 2.19 for the parameter r. First, by a simple
scaling argument, it follows that the functional Gr,φ0

is coercive, i.e. there
exists positive numbers δ and Cδ such that

Gr,φ0
(φ) � δE(φ, φP ) + Cδ

for any sup-normalized φ. But then it follows, exactly as in the proof of Theo-
rem 1.1, that any sup-normalized maximizing sequence of Gr,φ0

converges
to a solution to the equation 2.19.

Conversely, let r be such that there is solution to the equation 2.19. It
then follows, just like in the proof of Prop 2.15 (now using the Prekopa
inequality for the convex function (t, x) �→ rφt(x)+(1−r)φ0(x)) that Gr,φP

(and hence also Gr,φ0) is bounded from above. Now fix a point a ∈ Rn. By
definition φP (x + a) � φP (x) + φP (a) and hence, for any φ ∈ P+(Rn) we
have

− (1− r)

r
φP (a)+

1

r
log

∫
e−rφe−(1−r)φP dx � 1

r
log

∫
e−rφ(x)e−(1−r)φP (x+a)dx

Making the change of variables x �→ x+a in the latter integral and applying
the boundedness of Gr,φP thus gives that

− (1− r)

r
φP (a) +

1

r
log

∫
e−rφe−(1−r)φP dx � − 1

V (P )

∫
(φ−a)

∗dp + C
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But, using 2.7 and rearranging we deduce that

Gr,φP (φ)− C � (1− r)φP (a) + r 〈b, a〉

Assume for a contradiction that the rhs above is negative (= −δ). Then
replacing a with ta for t a positive number t shows that Gr,φP (φ) � −δt+C
and hence letting t→∞ yields a contradiction.

Finally, we come back to the first claim concerning the inequality 2.20.
First observe that the inequality holds for r � RP . Indeed, by definition,
the lhs in 2.20 is equal to the sup over 〈(1− r)p + rb, x〉 , as p ranges over
all points in P. In particular, for r = RP and p = q we have by definition
(1−r)p+rb = 0 and hence 2.20 holds for r � RP . Conversely, suppose that
r > Rp and let a be the vector defining a supporting hyperplane of P at q,
i.e. 〈p, a〉 � 〈q, a〉 for any p ∈ P. Hence, the lhs in 2.20 for x = a is bounded
from above by 〈(1− r)q + rb, a〉 := f(r). Finally, by assumption f(r) = 0
at r = RP and df(r)/dr = 〈b− q, a〉 < 0, since b is in the interior of P and
hence f(r) < 0 for any r > RP . �

2.11. The inhomogeneous Monge-Ampère equation

In this section we will establish some local and global regularity proper-
ties for the “inhomogeneous” Monge-Ampère equation used above.

Theorem 2.19. — Let P be a convex body in Rn and let µ be measure on
Rn of total mass V (P ). Then there exists a unique (mod R) convex function
φ on Rn such that

MA(φ) = µ (2.21)

with φ ∈ EP (Rn), i.e. the closure of the subgradient image is P :

dφ(Rn) = P

• If moreover ∫

Rn
|x|qµ <∞

for some number q > n then φ− φP is bounded and if the finiteness
holds for any q > 0 then the Legendre transform φ∗ of φ is Hölder
continuous up to the boundary of P for any Hölder exponent in [0, 1[.

• If µ = fdx for f smooth and strictly positive a solution φ is unique
modulo constants and smooth. In particular, the gradient dφ then
maps Rn diffeomorphically onto the image of the interior of P.
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Proof. — Uniqueness modulo constant follows from a comparison prin-
ciple argument as in section 16.2 in [4].

Existence: First observe that it will be enough to prove the result when
µ has finite first moments, i.e.

∫
µ|x| <∞. (2.22)

Indeed, any measure µ can be written as µ = fν where ν has finite first
moments (e.g. take f = (1 + |x|) and (1 + |x|)−1µ) and we can solve the
MA(φi) = µi where µi = max(f, i)ν with φi ∈ P(Rn)0. Finally, by compact-
ness we have, after perhaps passing to a subsequence, that φi → φ ∈ P(Rn)0
and by the local continuity of MA acting on P(Rn)0 (see section 2.3)
MA(φ) = µ

Assume now that µ has finite first moments. Since, the gradient image
of any φ in P(Rn)0 is uniformly bounded there is a constant C such that
|φ(x)| � C|x| and hence the functional

Iµ(φ) :=

∫
φµ

is finite on P(Rn)0. In fact, it is even continuous. Indeed, if φj → φ in
P(Rn)0 then the convergence is uniform on any large ball BR of radius R, so
that the desired continuity is obtained by decomposing µ = 1BRµ+1Rn−BR
for a large ball BR of radius R and using the uniform bound |φ(x)| � C|x|
on Rn−BR together with 2.22 and finally letting R→∞. As a consequence
the functional

Gµ(φ) :=
1

V
E(φ, φP )− Iµ(φ)

is upper semi-continuous on the compact space P(Rn)0. In particular it has
a maximizer φµ of finite energy and the proof is concluded by noting that
φµ satisfies the equation 2.21. Indeed, this is shown precisely as in the end
of the proof of Theorem 1.1, using the projection operator Pr.

Regularity: this is proved exactly as in the proof of Theorem 1.1, using
Caffarelli’s interior regularity results (see below). For the global C0−bound
and the Hölder regularity see Prop 2.22. �

It should be emphasized that the existence of a (weak) solution φ for
a general measure µ in the previous theorem is essentially well-known (for
example, this is shown in [4] when µ has an L1−density). The result is also
closely related to the theory of optimal transportation of measures (and
can be deduced from the results of Brenier [16] and McCann [45]). Briefly,
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the problem, in the original formulation of Monge, is to find, given two
probability measure measure µ and ν on Rn, a map T such that T∗µ = ν
where T minimizes a certain cost function c(x, p). In the present setting
ν = 1P gdp and c(x, p) = −〈x, p〉 and then T = dφ, for φ the solution in the
previous theorem, under suitable regularity assumptions. Interestingly, the
variational principle used in our proof is equivalent to the duality formula
for the minimum of the Kantorovich problem for optimal transport (see
Theorem 6.1.1 in [2] and references therein).

Corollary 2.20. — Let P be a convex body in Rn. For any given ψ ∈
EP (Rn) there is unique (mod R) function φ ∈ P+(Rn) such that

MA(φ) = V (P )e−ψdx/
∫

e−ψdx

Proof. — We may assume that 0 is contained in the interior of P. By
lemma 2.6 the moment condition in the previous theorem is satisfied, so
that the previous theorem furnishes the desired solution. �

Remark 2.21. — In the Kähler geometry setting the analog of the previ-
ous corollary is known to hold for a Kähler class [ω] on a smooth manifold
X. The point is that if v ∈ E(X,ω) then v has no Lelong numbers and
hence e−pv ∈ L1(X, dV ) for any p > 0, so that v is bounded by Kolodziej’s
estimate.

2.11.1. A global C0−estimate

In the arguments above we used the following

Proposition 2.22. — If the q :th moment of µ is finite for some q > n,
then any solution φ ∈ P(Rn) to equation 2.21 is in P+(Rn). More precisely,
the following inequality holds for any φ ∈ P0(Rn) with full Monge-Ampere
mass:

‖φ− φP ‖C0(Rn) � Cq(−E(φ, φP ) + (

∫

Rn
MA(φ)|x|q))1/q

for any q > n. More generally, the Legendre transform u := φ∗ is in the
Hölder space Cγ(P ) for γ = 1−n/q if the qth moments of MA(φ) are finite.

Proof. — By assumption P is the closure of an open convex domain
D and in particular the boundary of P is Lipschitz (cf. [33] Sec. V.4.1]).
We will deduce the desired inequality from the Sobolev inequality on the
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Lipschitz domain D which says that W q,1 injects in C0(D) in a continuous
manner if q > n and

‖u‖C0(D) � Cq(

∫

D

|u|dp + (

∫

D

|du|q))1/q

Indeed, setting f(x) := |x|q and taking φ ∈ P0(Rn) we let u := φ∗ so
that u � 0 (since φ(0) = 0). But then the inequality to be proved follows
immediately from combining Prop 2.9, Prop 2.3 and the last point in Lemma
2.7. The last claim follows from the general formulation of the Sobolev
embedding theorem for Hölder spaces. �

Remark 2.23. — The moment condition on µ in the previous proposition
may also equivalently formulated in the following way:

∫
µfδ(φ− φP ) <∞

for any φ ∈ P(Rn) and some δ > 0, where fδ(x) := xn+δ. In the Kähler
geometry setting it is known, as a consequence of Kolodziej’s estimates that
a measure µ with the stronger integrability property obtained by setting
f(x) = eδx for any δ > 0, has a bounded Monge-Ampère potential vµ, i.e. a
bounded solution to MA(v) = µ. Moreover, it has been conjectured [27] that
the latter property is equivalent to vµ being Hölder continuous. Comparing
with the real setting it seems hence natural to ask if boundedness of vµ
holds for f(x) = xn+δ?

2.12. Caffarelli’s interior regularity results

Let Ω be a bounded open convex set in Rn and f a function on Ω.
Consider the following boundary value problem for a convex function φ in
Ω, continuous up to the boundary:

MA(φ) = fdx in Ω, φ = 0 on ∂Ω

Theorem 2.24 (Caffarelli [20, 18]). — Assume that f > 0. Then any
(convex) solution φ on Ω of the previous equation is

• strictly convex and locally C1,α for some α > 0 if there exists a con-
stant C such that 1/C � f � C.

• in the class W 2,p
loc for any p > 1, if f is continuous

• smooth if f is smooth

Proof. — For the proof of the first point we first recall the following
special case of Cor 2 in[20]: if the following holds in the viscosity sense;

1/Cdx �MA(φ) � Cdx, φ = 0 on ∂Ω

– 679 –



Robert J. Berman, Bo Berndtsson

in a bounded set Ω, then φ is strictly convex in Ω. Moreover, as pointed out
in [20] if the previous inequalities hold weakly (i.e. in the sense of Alexan-
drov) then they hold in the viscosity sense (see also Prop 1.3.4 in [36] where
it is assumed that f is continuous, which anyway will always be the case
in this paper). Hence φ is strictly convex in our case. But then, as shown
in [19], if follows from the previous differential inequalities that φ is in fact
locally C1,α for some α > 0. As for the second point it is contained in the
main result in [18] and the final point then follows from Evans-Krylov theory
for fully non-linear elliptic operators follows by standard linear bootstrap-
ping. �

3. Toric log Fano varieties, polytopes
and Kähler-Ricci solitons

3.1. Log Fano varieties

Let X be an n−dimensional normal compact projective variety. Recall
that a (Weil-) divisor D on X is a formal sum of prime divisors, i.e. codi-
mension one irreducible subvarieties. As usual we will often identify divisors
up to linear equivalence: D ∼ D′ if D − D′ is principal, i.e. equal to the
zero divisor of a rational function on X. A divisor D is a Cartier divisor
if it is locally principal and we can hence identify Cartier divisors on X
with line bundles on X in the standard manner. In case X is regular these
two notions of divisors coincide. We will use additive notation for tensor
products of line bundles on X.

When X is smooth the canonical line bundle KX is defined as the top-
exterior power of the cotangent bundle of X. When X is singular KX is
well-defined on the regular locus Xreg of X and KX is said to be Q−Cartier
(also called a Q−line bundle) if there is a positive number r such that rKX

extends from Xreg to a line bundle defined on all of X. The minimal such
integer r is called the Gorenstein index of X and X is said to be Gorenstein
if r is equal to one.

A normal variety X is said to be Fano if −KX is Q−Cartier and ample
(in the literature such a variety is sometimes said to be a Q−Fano variety).
When X is toric any Fano variety has log-terminal singularities (also called
Kawamata log-terminal, or klt for short); see Remark 3.6. Such singularities
play a key role in the Minimal Model Program (MMP); see [12] and refe-
rences therein. From the algebro-geometric point of view klt singularities
are defined in terms of discrepancies on resolutions of X, but there is also a
direct analytical definition on X that is the one that we will use here (see
below).
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A log pair (X,∆) (in the sense of MMP) consists of a normal variety X
and a Q−divisor ∆ on X such that the log-canonical line bundle

K(X,∆) := KX + ∆

is Q−line bundle. Here will also assume that ∆ has coefficients < 1 (in
particular we do allow negative coefficients). We will write X0 for the com-
plement of ∆ in Xreg. A log pair (X,∆) is said to be a log Fano variety if
−K(X,∆) is ample. We will also fix a section s∆ on Xreg whose zero divisor
is r∆ for some integer r. There is also a notion of klt singularities for log
pairs (X,∆) (see below).

3.2. Metrics on line bundles, ω−psh functions and the klt condi-
tion

Given a holomorphic L → X we let H(X,L) be the space of all (pos-
sibly singular) metrics on L with positive curvature current and denote by
Hb(X,L) the subspace consisting of the locally bounded metrics (see below).
We will use additive notation for (Hermitian) metrics on L. This means that
a metric ‖·‖ on L is represented by a collection of local functions φ(:= {φU})
defined as follows: given a local generator s of L on an open subset U ⊂ X
we define φU by the relation

‖s‖2 = e−φU ,

where φU is upper semi-continuous (usc). It will convenient to identify the
additive object φ with the metric it represents. Of course, φU depends on s
but the curvature current

ddcφ :=
i

2π
∂∂̄φU

is globally well-defined on X and represents the first Chern class c1(L),
which with our normalizations lies in the integer lattice of H2(X,R). By
definition the metric φ is smooth if φU can be chosen smooth, i.e. it is the
restriction of a smooth function for some local embedding U → Cm. When
X is smooth a smooth metric φ is said to be strictly positively curved if
ddcφ > 0 (as a (1, 1)−form) and for a general variety X the metric φ is
said to be smooth if it is locally the restriction of a positively curved metric
on some ambient space, i.e. ddcφ is a Kähler form on X. Continuous and
bounded (also called locally bounded) metrics etc are defined in a similar
manner and then ddcφ is a well-defined positive current on X. Fixing φ0 ∈
Hb(X,L) and setting ω0 := ddcφ0 the map φ �→ v := φ − φ0 thus gives an
isomorphism between the space of all metrics on L with positive current
and the space PSH(X,ω0) of all ω0−psh functions, i.e. the space of all usc
functions on X such that ddcv + ω0 � 0 [35].
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3.2.1. The measure µφ and the klt condition

In the particular case when L = −KX a locally bounded metric φ deter-
mines a measure µφ on X defined as follows on X0 (and extended by zero
to all of X) :

µφ = in
2

e−φUχ1/r ∧ χ̄1/r (3.1)

where χ is the local (n, 0)−form which is dual to a given local generator s

of −rKX , i.e. χ = s−1 and ‖s‖2φ = e−rφU . In particular, if χ1/r is taken as
dz1 ∧ · · · ∧ dzn wrt some local coordinates zi then we will, abusing notation
slightly, write µφ = 1Xrege

−φdz ∧ dz̄. Now the analytical definition of X
having klt singularities amounts to µφ having finite total mass for some
(and hence any) locally bounded metric φ. It is sometimes convenient to
represent µφ globally as follows: if s ∈ H0(X,−rKX) is such that X0 is
contained in the Zariski open set Y := {s �= 0} we can write

µφ = 1Y i
n2

s−1/r ∧ s−1/r ‖s‖2/rφ

More generally, if (X,∆) is a log pair then any metric φ on −(KX + ∆)
determines a measure µφ defined as above, but replacing s with a local
generator of −r(KX + ∆) and then taking the tensor product with (sr∆ ⊗
sr∆)1/r, where s∆ is a section with zero-divisor ∆ on Xreg. As before, we
can also write µφ = 1Xrege

−(φ+ψ∆)dz ∧ dz̄, where ψ∆ := log(|s∆|2)/r is the
singular metric defined by ∆ on the line bundle L∆ → Xreg. The log pair
(X,∆) is then said to be klt if µφ has finite mass for any locally bounded
metric φ. See [12] for the equivalence with the algebro-geometric definition.

3.3. Pluricomplex energy and the Monge-Ampère measure

Let us first recall the definition of the energy type-functional E on
Hb(X,L) for a given ample line bundle L → X over a variety X [12]. It
depends on the choice of a reference metric φ0 in Hb(X,L) :

E(φ, φ0) :=
1

(n + 1)

n∑

j=0

∫

X

(φ− φ0)(dd
cφ)n−j ∧ (ddcφ0)

j

where the integration pairing
∫
X

refers, as usual, to integration along the
regular locus X0 of X and the wedge products are defined in the usual
sense of pluripotential theory a la Bedford-Taylor (see [12] and references
therein). In particular, we will write

MA(φ) := (ddcφ)n

for the Monge-Ampère measure of φ ∈ Hb(X,L). We will often omit the
explicit dependence of E on the reference φ0. The functional E is, up to

– 682 –



Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

an additive normalizing constant, uniquely determined by the variational
property

dE|φ = MA(φ)

(viewed as one-forms on Hb(X,L)). As a consequence the differences E(φ)−
E(ψ) are independent of the choice of fixed reference metric. Now for any
arbitrary positively curved singular metric φ on L we define, following [12],

E(φ) = inf {E(ψ) : ψ ∈ Hb(X,L), ψ � φ}

and let E1(X,L) := {E > −∞}. We point out, even though this fact will
not be used here, that the Monge-Ampère measure can be defined for any
φ ∈ H(X,L) in terms of non-pluripolar products and one then denotes by
E(X,L) the space of all φ with full Monge-Ampère mass, i.e.

∫
X
MA(φ) =

c1(L)n. In particular, we then have the relations

Hb(X,L) ⊂ E1(X,L) ⊂ E(X,L) ⊂ H(X,L)

(see [16, 12])

3.4. Kähler-Einstein metrics on log Fano varieties

Following [12] an element φ ∈ E1(X,−KX) is said to be a (singular)
Kähler-Einstein metric if

(ddcφ)n = Cµφ (3.2)

for some constant C, where µφ is the canonical measure 3.1 associated to
φ. Similarly, on a (log) Kähler-Einstein metric φ ∈ E1(X,−(KX + ∆)) on
the log Fano variety on (X,∆) is defined by the same equation as above,
using the corresponding measure µφ. By the regularity result in [12] φ is
in fact automatically smooth on the complement X0 of ∆ in the regular
locus of X and continuous on all of X. In particular, the curvature current
ω := ddcφ is a bona fide Kähler-Einstein metric on X0, i.e. Ric ω = ω on
X0 and globally on X the equation Ric ω = ω + [∆] holds in the sense of
currents.

3.5. Geodesics, convexity and Ding type functionals

As explained in [9] any two metrics φ0 and φ1 in Hb(X,L) can be con-
nected by a geodesic φt defined as the point-wise sup over all subgeodesics
ψt connecting φ0 and φ1, where such a curve of metrics ψt on L is defined
as follows: complexifying t to take values in the strip T := [0, 1] + iR the
corresponding metric ψ(z, t) := ψt(z) is an iR−invariant continuous semi-
positively curved metric ψ on the pull-back of L to X × T. This is a weak
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analog of bona fide geodesics defined wrt the Mabuchi metric on the space
of Kähler metrics (see [9] and references therein). We recall the complex
version of the Prekopa theorem [13, 14, 12] in this context: If X is a Fano
variety and ψt a subgeodesic in H(X,−KX), then the functional

t �→ − log

∫

X

µψt (3.3)

is convex in t. We note that, since ψt + ψ∆ is a subgeodesic in H(X,−KX)
the result also applies if (X,∆) is a Fano variety and ψt is a subgeodesic
in H(X,−(KX + ∆). Following [12] (up to a sign difference) we define the
Ding type functional.

G(X,∆) := E(φ) + log

∫

X

µψt (3.4)

Proposition 3.1 [14, 12]. — Let (X,∆) be a log Fano variety. Then
any Kähler-Einstein metric φKE for (X,∆) maximizes the functional G(X,∆)

on E(X,−(KX + ∆)).

For future reference we also note that there is a “twisted” variant of the
previous setting obtained by replacing µφ with µrφ+(1−r)φ0

for any given
φ0 ∈ Hb(X,−(KX + ∆)) and r ∈ [0, 1]. Then the previous proposition still
holds (with the same proof) when G(X,∆) is replaced by the correspond-
ing functional G(X,∆,φ0,r) and φKE with the corresponding twisted Kähler-
Einstein metric (see also the even more general setting of mean field type
equations in [7]).

3.6. Toric varieties and polytopes

Let T be the unit-torus in Cn of real dimension n and denote by
Tc := (C∗)n its complexification, with its standard group structure. A
n−dimensional algebraic variety X is said to be toric if it admits an ef-
fective holomorphic action of the complex torus Tc with an open dense
orbit. In practice we will fix such an embedding and identify Tc with its
image in X.

We will next briefly recall the well-known correspondence between
Tc−equivariant polarizations (X,L) and convex lattice polytopes P. In fact,
using the scaling L �→ rL and P �→ rP this will give a correspondence be-
tween polarizations by Q−line bundles and rational polytopes. First recall
that there are two equivalent ways of defining a polytope P in a vector
space, say in Rn :

1. P is the convex hull of a finite set of points A (and P is called a
lattice (rational) polytope if A ∈ Zn (Qn)).
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2. P is the intersection of a finite number of half spaces 〈lF , ·〉 � −aF ,
where lF is a vector in the dual vector space and the label F thus
runs over the facets F of P.

In the following all polytopes P will assumed to be full-dimensional.
Let us first consider the correspondence referred to above using the first
description of a lattice polytope above. Starting with a Tc−equivariant am-
ple line bundle L on X one considers the induced action of the group Tc
on the space H0(X, kL) of global holomorphic sections of kL → X (for k
a given positive integer). Decomposing the action of Tc according to the
corresponding one-dimensional representations em, labeled by m ∈ Zn :

H0(X, kL) = ⊕m∈BkCeα

one then defines the lattice polytope P(X,L) as the convex hull of Bk in Rn.
Note that, from an abstract point of view, Rn thus arises as M ⊗Z R, where
M is the character lattice of the group Tc (compare [25]).

Conversely, given a convex lattice polytope P one obtains a pair (XP , kLP )
by letting XP be the closure of the image of XP under the following map:

Tc → P(⊕m∈kP∩ZnCem), z �→ [zm1 : · · · zmN ] (3.5)

equipped with its standard action of Tc, taking kL as the restriction of the
line bundle O(1) on PN−1 (it is well-known [25] that this is an embedding
for k sufficiently large, where in fact k = 1 will do if X is smooth).

Next, we will briefly recall how the second description of P(X,L) above
arises from the toric point of view. After perhaps twisting the action on Tc
(which corresponds to translating the polytope) we may as well assume that
0 in an interior point of P(X,L). Now any rational polytope P containing zero
in its interior may be uniquely represented as

P = {p ∈MR : 〈lF , p〉 � −aF } (3.6)

for primitive dual lattice vectors lF and strictly positive rational numbers
aF , where the index F runs over all facets of P. Let s0 be the equivariant
element in H0(X,L) corresponding to 0 and denote by D0 its zero-divisor.
By the orbit-cone correspondence (or rather orbit-face correspondence) [25]
the facets F of P(X,L) correspond to the Tc−invariant prime divisors DF on
X and hence any Tc−invariant divisor D on X can be written uniquely as

D =
∑

F

cFDF (3.7)

for some integers cF . When D = D0 the integers cF are precisely the positive
numbers aF appearing in 3.6 (note that the divisor D0 is referred to as DP

– 685 –



Robert J. Berman, Bo Berndtsson

in [25]). In other words, aF = νDF (so); the order of vanishing of s0 along
the corresponding prime divisor DF :

D0 =
∑

F

aFDF

As a consequence, if sm is an arbitrary equivariant element in H0(X,L)
then

νDF (sm) = νDF (χmso) = νDF (χm) + νDF (s0) = 〈lF ,m〉+ αF � 0,

where χm is the character corresponding to m which may be identified
with a rational function on Tc and where we have used the basic fact that
νDF (χm) = 〈lF ,m〉 . Hence m is a lattice point in P(X,L) (which was the
starting point of the previous correspondence).

3.6.1. The canonical divisor and toric (log) Fano varieties

Let X be a toric variety. Then ±KX exists as a divisor on X (but in
general not as Q−line bundles) and

−KX ∼
∑

F

DF , (3.8)

where the index F ranges over all Tc−invariant prime divisors of X. As we
will next explain there is a correspondence between toric log Fano varieties
(X,∆) on one hand and rational convex polytopes P containing 0 in the
interior. This is conceptually a bit different than the more standard corre-
spondece, referred to above, between polarized toric varieties (X,L) with
a fixed Tc- action and rational convex polytopes. As we will see the point
is simply that writing L = −(KX + ∆) for a fixed divisor ∆ corresponds
to fixing a particular lift of the Tc−action to L. To see this first note that
in the particular case when X is a Fano variety there is a canonical lift of
Tc to the line bundle rKX , which thus, as explained above, gives rise to
a lattice polytope rPX . Similarly, if (X,∆) is a log Fano variety then we
can get a canonical rational polytope P(X,∆) by setting P(X,∆) = P(X,L) for
L = −(KX + ∆) with the Tc action induced by the one from −KX , i.e. the
action is compatible with the natural isomorphism between L and −KX on
the embedding ofTc (using that ∆ has a canonical trivialization on Tc).

Proposition 3.2. — Let (X,∆) be a log-Fano variety and let P(X,∆) be
the corresponding rational polytope in Rn. Then P(X,∆) is a rational polytope
containing 0 in its interior and the coefficients cF of ∆ in 3.7 are given by
1− aF :

∆ =
∑

F

(1− aF )DF
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Conversely, if P is a rational polytope containing zero in its interior then
P = P(X,∆) for a log Fano variety (X,∆). In particular, ∆ is effective iff
aF � 1 and X �→ P(X,0) gives a correspondence between Fano varieties and
polytopes P as above with aF = 1.

Proof. — Let us start with the case when ∆ = 0, where a proof can be
found in [25] and hence we just sketch the proof. First, assume that X is
a Fano variety and −rKX is an ample line bundle, for r large. Then there
is a section s ∈ H0(X,−rKX) with zero divisor r

∑
DF (as follows form

the linear equivalence 3.8). Under an equivariant embedding of Tc in X the
section s pulls back to a multiple of the r th tensor power of the holomorphic
n−vector field z1

∂
∂z1

∧ · · · ∧ zn
∂

∂zn
on Tc (using that the latter n−vector

field is naturally defined on Xreg and that its zero divisor there is given by
r
∑

DF ). As a consequence, s is invariant under the Tc− action, i.e. in the
notation above s = s0 and hence aF (rPX) = νDF (s0) = r, i.e. aF (PX) = 1
as desired. Conversely, if aF (P ) = 1 and we take r such that rP is a lattice
polytope. Then s0 ∈ H0(X, rL) is such that νDF (s0) = aF (rP ) = r · 1,
i.e. the zero divisor of s0 ∈ H0(X, rLP ) is equal to r

∑
DF and hence

(by 3.8) −KX ∼ LP is ample as desired. The proof for a general ∆ is
similar: if −r(KX + ∆) is an ample line bundle, for r large, we can take
s ∈ H0(X,−r(KX + ∆) with zero divisor r(

∑
F DF − ∆) which is indeed

effective iff ∆ has coefficients < 1. We then deduce that s = s0 as before
(since ∆ is trivial on Tc) and hence aF (P(X,∆)) = νDF (s0)/r is a rational
positive number. The converse is then obtained as before. �

3.7. Toric metrics as convex functions on Rn and Legendre trans-
forms

Let now (X,L) be a toric variety with corresponding polytope P and
assume that 0 ∈ P. As before we denote by s0 the corresponding element in
H0(X,L). Given any metric ‖·‖ on L we obtain a function φ(x) on Rn by
setting

φ(x) := − log ‖s0‖2 (z), (3.9)

where x = log z, coordinate-wise (see section 2.2) wrt the fixed embedding
of Tc in X, where s0 is non-vanishing.

Proposition 3.3. — The correspondence 3.9 gives a bijection between
the space of Hb(X,L)T of T−invariant locally bounded metrics on L → X
with positive curvature current and the space P+(Rn). In particular, the
Legendre transform induces a bijection between Hb(X,L)T and the space
Hb(P ) of bounded convex functions on P.
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Proof. — First note that, by definition, ‖·‖ has positive curvature iff

φ(z) is psh iff φ(x) is convex. Next, let h0(= ‖·‖2) be a fixed element in
Hb(X,L)T with curvature current ω0. Writing an arbitrary metric on L
as h = e−vh0 gives a bijection, h �→ v, between Hb(X,L) and the space
PSHb(X,ω0)

T . Moreover, since Tc is embedded as a Zariski open set in
X it follows from the basic fact that any psh function, which is bounded
from above, extends uniquely over an analytic set, that we may as well
replace PSHb(X,ω0)

T with its restriction to Tc. Now, by definition, the
space of all φ(x) in P+(Rn) may be identified with PSHb(Tc, ωP )T , where
ωP := ddcφP . To conclude the proof it will thus be enough to show that
ωP = F ∗ω0 for some h0 ∈ Hb(X,L), where F is the embedding of Tc in
X. To this end we fix k > 0 such that kL is very ample, i.e the map 3.5
is an embedding. Let h0 be the locally bounded (in fact continuous) metric
with positive curvature on O(1) → PN−1 induced by the continuous two-
homogenous psh function Φ(Z) := log maxi=1,..,N |Zi|2 on CN − {0} (the
total space of O(1)∗ → PN−1). By definition the restriction of h0 to the
image of X in PN−1 is an element in Hb(X,L) and − log h0(s0)(z) = φP (z)
and hence F ∗ω0 = ddcφP as desired. �

Remark 3.4. — As shown by Guillemin smooth strictly positively met-
rics correspond, under the Legendre transform, to smooth functions on the
interior of P with a particular boundary singularity (see [17] for the exten-
sion to singular toric varieties).

3.8. Toric Kähler-Einstein metrics and solitons (proofs of Theo-
rems 1.2, 1.3)

Here we will prove Theorems 1.2 and 1.3 apart from the statements
concerning K-stability and Futaki invariants which will be considered in
section 4.3.

Let X be a toric log Fano variety (X,∆) and denote by P (= P(X,∆))
the corresponding rational polytope. As explained above P contains 0 as an
interior point and the corresponding invariant element s0 ∈ H0(X,−r(KX+
∆)) is such that Tc = {s0 �= 0}. Moreover, under the canonical identification
of KX with KX + ∆ on Tc we may identify the dual of an rth root of
s0 with the standard invariant (n, 0)−form dz on Tc and hence under the
correspondence in the previous section the canonical measure on X defined
by a metric φ on −(KX + ∆) satisfies

Log ∗µφ = e−φ(x)dx (3.10)

Hence, the Kähler-Einstein equation 3.2 is equivalent to the equation

MAR(φ) = Ce−φdx (3.11)
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for a convex function φ ∈ E1
P (Rn), where dx denotes the usual Euclidean

measure. Recall that geometrically e−φ is the point-wise norm of s
1/r
0 for the

given metric on −(KX + ∆). We can now deduce the equivalence between
the first two points in Theorem 1.2 from Theorem 1.1 with g = 1 (the
regularity is shown in [12]).

More generally, given a toric holomorphic vector field V =
∑

ai
∂
∂zi

we
may define the corresponding (singular) Kähler-Ricci soliton metric φ ∈
E(X,−(KX + ∆)) by the equation

MAR(φ) = Ce−φ+〈a,dφ〉dx (3.12)

for φ ∈ E1
P (Rn). By Theorem 1.3 φ is in fact automatically smooth on Rn,

i.e. the corresponding metric on −(KX +∆) is smooth on the complex torus
Tc in X. Note that, for any smooth φ in P(Rn) the function

HV (φ) := 〈a, dφ〉 (3.13)

is globally bounded on Rn. Indeed, dφ takes values in the bounded set P
and hence

|HV (φ)| � C (3.14)

for a constant C independent of φ. To see the relation to the usual Kähler-
Ricci soliton equation 1.3 we note that a simple computation gives,

ddcHV (φ) := −d(iV ω) (3.15)

where ω = ddcφ and where the rhs above, by Cartan’s formula, equals
−LV ω. Hence ω indeed satisfies the equation 1.3 on the complex torus Tc.
Finally, applying Theorem 1.1 with g(p) = e〈a,p〉 and using that 0 is the
barycenter of (P, e〈a,p〉) iff a is the unique critical point of the strictly convex
function a �→ log

∫
P
e〈a,p〉dp, proves Theorem 1.3 up to the global regularity

statement on X. The global continuity of the metric on −(KX + ∆) → X
defined by φ follows from the bound 3.14, which implies that the Monge-
Ampère measure of the finite energy metric has a density in Lp(X,µP ) for
any p > 1 and hence the continuity follows immediately as in the case a = 0
considered in [12]. As for the global smoothness on the complement of ∆ in
the regular locus of X it will be established in section 5.1.

Example 3.5. — When n = 1 we have P = [a1, a2] and X is the Riemann
sphere C ∪ {∞} with ∆ = (1− a1)[0] + (1− a2)[∞]. The barycenter condi-
tion for the existence of a log Kähler-Einstein metric forces a1 = a2 = t
for some positive number t. For any t a direct calculation reveals that
φ(x) = log(etx + e−tx) gives a solution to equation 3.11 and hence, by
the uniqueness statement in Theorem 1.3, any other solution is given by
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log(et(x+s) + e−t(x+s)) for some s ∈ R. Geometrically, the corresponding
Kähler metrics ωa on the two-sphere are thus “foot-balls” with a cone angle
2πt :

ωt := ddcφ(z)/t =
1

2π

|z|2(t−1)

(1 + |z|2t)2 dz ∧ dz̄ (3.16)

and the parameter s comes from the action of the automorphism group
of (X,∆), which does not change the isometry class of the corresponding
Riemannian metrics on the two-sphere. However, for some t > 1, there
may be different mutually non-isometric Kähler metrics ω solving the log
Kähler-Einstein equation for (X,∆). In fact, as shown in [55], this happens
precisely when ∆ has negative integer coefficients.

Remark 3.6. — Any toric log Fano variety (X,∆) in fact has klt singu-
larities See [25] for an algebraic proof, but from the analytical point this
follows almost immediately. Indeed, letting φ be a locally bounded metric on
X represented by the function φ ∈ P+(Rn) the mass of µφ on X coincides,
according to formula 3.10 with

∫
P
e−φ(x)dx. But, since 0 is in the interior of

P and φ− φP is bounded we have φ(x) � |x|/C −C and hence the integral
is indeed finite.

3.9. Relations to complete Kähler-Ricci solitons

Now assume for simplicity that X is a smooth toric variety and consider
a family of toric Q−divisors ∆t with coefficients < 1 for t ∈]0, 1], such
that ∆t is affine wrt t and converges to a reduced divisor ∆0 as t → 0,
i.e. ∆t = ∆0 + O(t). More precisely, the coefficients cF (t) are assumed to
tend to either zero or one, as t → 0. Let ωt be the corresponding curve
of log Kähler-Ricci solitons associated to (X,∆t), which, by Theorem 1.3,
is uniquely determined modulo toric automorphisms. It seems natural to
conjecture that, as t→ 0, the scaled metrics ω̃t := ωt/t converge towards a
complete (translating) Kähler-Ricci soliton on the quasi-projective variety
Y := X −∆0, i.e.

Ric ω =LV ω (3.17)

on Y for some holomorphic vector field V on Y, which is the limit of
Ṽt := tVt. Of course, the notion of convergence needs to be made precise,
but the least one could ask for is that – modulo toric automorphisms – the
convergence holds in the weak topology of currents on Y. The rational for
this conjecture is that, on X, we have Ric ω̃t =tω̃t+LṼt

ω̃t+[∆t] and hence,
when t → 0, at least heuristically, one obtains a limiting Kähler current
ω such that Ric ω = LV ω+[∆0], which indicates that ω is asymptotic to a
Euclidean cylinder in the normal directions close to the “boundary” ∆0 of
Y. For example, taking X to be Pn and ∆0 the hyperplane at infinity, so
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that Y = Cn, should give the the complete Kähler-Ricci soliton on Cn con-
structed by Cao [22], generalizing Hamilton’s “cigar soliton” in C. Similarly,
taking X to be the total space of the bundle P(O(k)⊕O(0))→ Pn−1 and ∆0

the “section at infinity” should give the complete Kähler-Ricci soliton in the
total space of O(k) → Pn−1 found in [22]. For similar limit considerations,
with very precise converge results, see [34].

3.10. The invariant R(X,∆) of a log Fano variety and lower bounds
on the Ricci curvature

Let (X,∆) be a log Fano variety and fix a smooth semi-positive form
ω0 ∈ c1(−(KX + ∆). Given r ∈ [0, 1] we consider the following “twisted
Kähler-Einstein equation” for a Kähler current ω ∈ c1(−(KX + ∆)) :

Ric ω −∆ = rω + (1− r)ω0 (3.18)

for ω smooth on X0(:= Xreg −∆) and with continuous local potentials on
X. In the case when X is smooth and ∆ = 0 the equation was introduced
by Aubin as a continuity method to produce Kähler-Einstein metrics. The
following theorem generalizes the main result of [40] (which concerned the
case when ∆ = 0 and X is smooth):

Theorem 3.7. — Let (X,∆) be a toric log Fano variety and ω0 a smooth
semi-positive form in c1(−(KX + ∆). Then the supremum over all r such
that the equation 3.18 admits a solution coincides with the invariant RP

(formula 2.18) of the canonical polytope P associated to (X,∆).

Proof. — Given the “toric dictionary” above the theorem follows imme-
diately from Theorem 2.18, apart from the global regularity of the solutions,
which in turn follows from Theorem 1.5 in [12]. �

As shown in [54] when X is any smooth (and not necessarily toric) Fano
manifold and ∆ = 0 the sup over all r ∈ [0, 1[ such that the equation 3.18
admits a solution coincides with the geometric invariant R(X) defined as
the the sup of all numbers r ∈ [0, 1[ such that there exists a Kähler metric
ω ∈ c1(−KX) with Ric ω � rω. Here we note that one can similarly define
an invariant R(X,∆) of any log Fano variety (X,∆), as the sup over all
r ∈ [0, 1[ such that there exists a Kähler current ω ∈ c1(−(KX +∆), smooth
on X0 and such that Ric ω −∆− rωis a smooth positive form. Then the
following generalization of the main result of [54] holds:

Theorem 3.8. — Let (X,∆) be a log Fano variety with klt singularities.
If ∆ is an effective divisor and ω0 a given semi-positive form in c1(−(KX +
∆)), then the invariant R(X,∆) coincides with the sup over all r such that
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the equation 3.18 admits a solution. Moreover, in the case when (X,∆) is
toric the divisor ∆ need not be effective.

Proof. — Let us start by noting that the sup over all r such that the
equation 3.18 admits a solution coincides with the sup over all r ∈ [0, 1[
such that the Ding type functional G(X,∆,φ0,r)(=: Gr,φ0

) is bounded from
above. First, if Gr+δ,φ0 � C then a simple scaling argument gives that Gr,φ0

is coercive and by the variational approach in [12] there hence exists a
solution ω to the equation 3.18. Conversely, if the latter equation admits a
solution, then it follows from Prop 3.1 and the subsequent discussion that
the functional Gr,φ0 is bounded from above (note that in the toric case the
convexity argument uses Prekopa’s theorem in Rn, or its generalization in
[10], and hence does not rely on the positivity of the current). Finally, we
note that since φ0−φ′0 is bounded the upper boundedness of Gr,φ0 holds for
one choice of φ0 precisely one it holds for any choice of φ0 and hence the
invariants above both coincide with R(X,∆). �

3.11. Relations to the work of Song-Wang and Li-Sun

We start by rephrasing the existence results in Theorem 1.2 in terms of a
given polarized toric variety (X,L), where L is thus an ample toric Q−line
bundle over X. As explained in section 3.6 the rational polytope P := P(X,L)

may be written as P(X,∆L) for a toric (Weil) Q−divisor ∆L such that L is
linearly equivalent to −(KX+∆L). Next, after replacing P by P ′ := P−{b},
where b is the barycenter of P, we obtain a new polytope P ′ with barycenter
in the origin. This amounts to replacing ∆L with another toric divisor ∆,
linearly equivalent to ∆L, such that P ′ = P(X,∆). Hence applying Theorem
1.2 we deduce the following

Corollary 3.9. — Let X be a toric variety and L an ample toric Q−line
bundle over X. Then there exists a toric Q−divisor ∆ with coefficients in
]−∞, 1[ and a Kähler current ω ∈ c1(L) with continuous potentials on X,
such that ω is Kähler-Einstein on X −∆, satisfying Ric ω − [∆] = ω in the
sense of currents on X.

Note however that the divisor ∆ may not be effective, i.e. its coefficents
may be negative. In particular if X is a Fano variety and L = −rKX for
some r < 1 then it is natural to ask for which r the corresponding divisor ∆
above is effective? We next observe that for r � RP , where RP defined as
in section 2.10, the corresponding divisor ∆ is indeed effective. To see this
we take ∆L to be the canonical divisor scaled by r so that P(X,L) = rPX ,
where we recall that PX is the set where 〈lF , ·〉 � −1. Accordingly, P ′ is the
set where 〈lF , ·〉 � −r(−1 − 〈lF , b〉)(:= −aF (P ′)). Since the coefficents of
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∆ are given by cF = 1− aF = 1− r − 〈rlF , b〉 it follows that ∆ is effective
iff

1− r − r 〈lF , b〉 � 0,

for any F. But when r = RP the previous inequality follows immediately
from relation 2.20 applied to x := −lF and we thus deduce the following

Corollary 3.10. — Let X be a toric Fano variety and denote by P the
canonical rational polytope associated to X. Then, for any r ∈]0, RP ], there
exists an effective toric Q−divisor Dr, linearly equivalent to −KX and a
singular Kähler metric ωr ∈ c1(−KX) with continuous potentials, such that

Ric ωr = rωr + (1− r)[Dr],

More precisely, the coefficent cF of Dr along the invariant divisor DF de-
fined by the facet F of P, is given by cF = 1− 〈lF , b〉 r/(1− r), where lF is
the primitive lattice vector defining an inward normal of the facet F.

In the case when X is smooth it is shown in [53], using a method of
continuity, that the metric ωr in the previous corollary in fact has edge-
cone singularities along the divisor Dr. As explaind in [53] this latter result
is closely related to a conjecture of Donaldson [32] concerning the invariant
R(X) (i.e. the greatest lower bound on the Ricci curvature) of a smooth
Fano variety. According to Donaldson’s conjecture, if one replaces the metric
ω0 in equation 3.18 with a current [D], where D is a given smooth divisor
linearly equivalent to −KX , then the corresponding equation is still solvable
for any r ∈]0, RX [. In other words, for any such r there exists a log Kähler-
Einstein metric ωr associated to the pair (X, (1 − r)D). It was moreover
conjectured by Donaldson that the metric has edge-cone singularities. Very
recently, Li-Sun [42] confirmed a variant of this conjecture on a smooth
toric Fano variety, by using the result of Song-Wang (see Cor 3.10 and the
subsequent discussion). More precisely, it was shown that for a “generic”
divisor Dλ linearly equivalent to −λKX , for λ a sufficently divisible integer,
Donaldson’s conjecture holds for D := Dλ/λ. Let us briefly recall their
elegant argument. By the result of Song-Wang the equation in question
can be solved for r = RP if one replaces D with DRP . Next, Li-Sun use
a C∗−action to produce a deformation of Dλ to Dr and deduce, by the
convexity results in [14] (compare Prop 3.1), that the log Ding functional of
(X, (1 − RP )Dλ) is bounded from below. To conclude the proof they then
need to show that the log Ding functional of (X, (1 − r)Dλ) is proper for
any r < RP (so that the existence results in [37] can be invoked). To this
end Li-Song use a result from [7] which gives that the properness holds for
r sufficently small and then finally conclude by an interpolation argument.
It may be worth comparing with the singular situation considered here. In
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case X is a singular Fano variety then Cor 3.10 can be used as a starting
point and by the generalized convexity results in [12] the same argument as
in the smooth case gives that the log Ding functionals of (X, (1− r)D) are
bounded for any r � RP . However, to deduce the properness (so that the
existence results in [12] can be invoked) one would need to further study
the regularity properties of the log pairs (X,Dλ).

4. K-energy type functionals and K-stability

Let us start by recalling the definition of the Mabuchi K-energy func-
tional M in Kähler geometry. This functional was first introduced in the
case when X is smooth and L → X is an ample line bundle. Then M
is defined by the property that its differential at φ ∈ H(X,L) is equal to
−(Sφ − S̄)(ddcφ)n, where Sφ is the (suitably normalized) scalar curvature
of the Kähler metric ddcφ. In the case when L = −KX and X is a Fano
variety with log-terminal (klt) singularities it was shown in [7, 12] how to
extend the definition of M to a singular setting (see also [28] for related
results). In case φ is smooth and positively curved the formula reads

M(φ) = F (MA(φ)), F (µ) := −E(µ) + D(µ, µφ0
) (4.1)

where E(µ) is the pluricomplex energy of the measure µ (relative to ddcφ0)
and D(µ, µ′) denotes the classical relative entropy of µ wrt to µ′ :

D(µ, µ′) =: Dµ′(µ) :=

∫

X

log(µ/µ′)µ(� 0)

if µ is absolutely continuous wrt µ′ and D(µ, µ′) = ∞ otherwise. When
µ = MA(φ) for φ ∈ H(X,L) we have, by definition, that

E(MA(φ)) = E(φ, φ0)−
∫

X

(φ− φ0)MA(φ)

It should be pointed out that in the case when X is smooth the corre-
sponding formula 4.1 is equivalent to a previous formula of Tian and Chen
[56].

We next come back to the setting of convex functions in Rn associated
to a convex body P, taking φ0 = φP as the reference. We also equip P with
a smooth positive density g(p). For any function φ in P+(Rn) we define the
following Mabuchi type functional associated to (P, g) :

M(P,g)(φ) =
1

V (P, g)

(
−Eg(φ, φP ) +

∫
φMAg(φ) + D(MAg(φ), dx)

)
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Note that M(φ + c) =M(φ) and hence M is determined by its restriction
to the subspace of all sup-normalized elements. In this case when P is the
canonical rational polytope associated to Fano variety X the functional
MP (φ) coincides with the Mabuchi functional of the T−invariant metric on
−KX corresponding to φ. Indeed, the push-forward from Tc to Rn of µφP
may be written as e−φP dx and hence D(MA(φ), µP ) = D(MA(φ), dx) −∫
φPMA(φ).

More generally, in the setting of a log Fano variety (X,∆) with canon-
ical rational polytope P, with φ denoting a positively curved metric on
−(KX + ∆), we will write M(X,∆,V ) for the Mabuchi type functional cor-

responding to M(P,g) for g(p) = e〈a,p〉, where V is the holomorphic toric
vector field V with components ai. In the case when ∆ = 0 and X is a Fano
manifold the functional M(X,∆,V ) essentially coincides with the “modified
Mabuchi functional” appearing in [59]. Similarly, we will write G(X,∆,V ) for
the functional corresponding to Gg.

4.1. Variational principles and coercivity

We will say that a functional F on P+(Rn) is relatively coercive if there
exists a positive constant C such that

F(φ) � −E(φ, φP )/C − C

on the subspace of all normalized φ. In particular, F is then bounded from
below on the latter subspace. In order to relate this notion to other equiva-
lent notions of coercivity (sometimes also called strong properness) in Kähler
geometry we recall the definition of Aubin’s J−functional, which is the scale
invariant analog of −E :

J(φ, φ0) := −E(φ, φ0) +

∫
(φ− φ0)MA(φ0)

In particular, in the toric setting, J(φ, φP ) = −E(φ, φP ) if φ is sup-norma-
lized, since φ − φP = 0 on the support of MA(φP ). Fixing a smooth posi-
tively curved metric φ0 we will simply write J(φ) := J(φ, φ0).

Lemma 4.1. — Let L→ X be a semi-positive line bundle over a projec-
tive variety X and let H0 denote the space of all smooth positively curved
metrics on L such that supX(φ − φ0) = 0 for a fixed reference φ0 ∈ H0.
Then there is a constant C (only depending on the reference φ0) such that

|J(φ, φ0)− |E(φ, φ0)| | � C

for any φ ∈ H0.
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Proof. — The lemma follows immediately from the following estimate:
there is a constant C such that, if µ0 := MA(φ0)

∫
(φ− φ0)MA(φ0) � C

When X is smooth the lemma is well-known [35] and holds more generally
for any measure µ0 such that φ − φ0 is in L1(X,µ) for any φ ∈ H. Taking
a smooth resolution Y → X and pulling back L thus proves the general
case. �

The following proposition reveals the close connections between the two
functionals GP and MP :

Proposition 4.2. — Let P be a convex body containing 0 in its interior.
Then

inf
P+(Rn)

−G(P,g) = inf
P+(Rn)

M(P,g). (4.2)

Moreover, the minimizers of the two functionals coincide and −GP is rela-
tively coercive iff MP is relatively coercive.

Proof. — This is proved using Legendre transforms in infinite dimension,
following the argument in [7]. First note that, up to a trivial scaling, we
may assume that V (P, g) = 1 and to simplify the notation we will omit
the subindex g in the following. To conform to the sign conventions for the
Legendre transforms used in the present paper it is convenient to introduce
the functional I−(v) := log

∫
Rn e

−vµP and E−(v) := −(E ◦ Pr)(φP + v)
and set G− = E− − I− which is thus a difference of two convex functionals
defined on the vector space Cb(Rn) of all bounded continuous functions v
on Rn. By definition, −G(φ) = G−(φP +v), for v := φ−φP if φ ∈ P+ (Rn).
Then, just as in Step 2 in the proof of Thm 1.1, the infimum of −G over
P+(Rn) coincides with the infimum of G− over Cb(Rn). We will also use
the pairing (v, µ) := −

∫
Rn vµ between Cb(Rn) and the space M(Rn) of all

signed measures on Rn. The sign conventions have been chosen so that, if
µ is a probability measure, then we can write the energy of a measure µ as
a Legendre transform:

E(µ) = (E−)∗(µ),

where the Legendre transform of a functional F on the vector space M(Rn)
is defined by F∗(µ) := supv∈Cb(Rn)((v, µ) − F(u)). Next, one notes that,
since, by Prop 2.13, the gradient of E− takes values in the subspaceM1(Rn)
of all probability measures in M(Rn), it follows that (E−)∗(µ) =∞, unless
µ is a probability measure. Similarly, it well-known that D(µ) = I∗−(µ).
Hence, M(φ) = −(E−)∗(µ) + I∗−(µ) for µ = MA(φ). With these prepara-
tions in place the proof of the equality 4.2 follows immediately from the
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monotonicity of the Legendre transform and the fact that it is an involution
(compare formula 2.3). Finally, the last two statement are proved exactly
as in [7]. �

From the results in section 2.8 concerning G(P,g) we then deduce the
following variational principle:

Proposition 4.3. — The following is equivalent for φ ∈ P+(Rn) :

• MAg(φ) = e−φ

• φ minimizes the functional −G(P,g)

• φ minimizes the functional M(P,g)

Combining Proposition 4.2 with Theorem 2.16 also immediately gives
the following analog of the latter theorem (and Theorem 1.1):

Theorem 4.4. — Let P be a convex body such that 0 is in the interior of
P. Then M(P,g)(φ) is relatively coercive. Moreover, M(P,g) is bounded from
below on all of P+(Rn) iff 0 is the barycenter of (P, g) iff M(P,g) admits an
absolute minimizer φ solving the Monge-Ampère equation in Theorem 1.1.

In the setting of toric varieties the previous results give the following

Theorem 4.5. — Let (X,∆) be a toric log Fano variety with canonical
polytope P and V a toric holomorphic vector field on X with components
ai. Then the following is equivalent:

• For any δ > 0 there is a constant Cδ such that for any T−invariant
locally bounded metric on −(KX + ∆) with positive curvature

M(X,∆,V )(φ) � (1− δ) inf
t∈Tc

J(t∗φ)− Cδ

(and similarly for the functional G(X,∆,V ))

• 0 is the barycenter of (P, e〈a,p〉) (i.e. a is the critical point of the
Laplace transform of 1P dp)

• (X,∆) admits a (singular) Kähler-Ricci soliton with vector field V

Proof. — By Prop 4.2 it will be enough to consider the functional
G(X,∆,V )). If the inequality in the first point holds then G(X,∆,V )(φ) is
bounded from below and hence the second point holds, by the previous
theorem. Conversely, if the second point above holds, then G(X,∆,V )(φ) is
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invariant under normalizations φ �→ φ̃ (by Lemma 2.14) and hence by the
previous theorem 4.1

G(X,∆,V )(φ) � (1− δ)(−E(φ̃, φ0))− Cδ

Now, by the definition of normalization −E(φ̃, φ0) � inft∈Tc(−E)(t∗φ, φ0).
Finally, using that G(X,∆,V )(φ) is invariant under φ �→ φ + c and invok-
ing Lemma 4.1 concludes the proof of the equivalence between the first
and the second point (which we already know is equivalent to the third
point). �

4.2. The Mabuchi functional expressed in terms of the Legendre
transform on P

In this section we will consider the “Kähler-Einstein case” when g = 1.
Following Donaldson [29] we denote by C∞ the space of all functions u on
P which are smooth and strictly convex in the interior and continuous up
to the boundary and set

F(u) :=MP (u∗)V (P )/n!

(note that if u ∈ C∞ then φ := u∗ is a smooth and strictly convex function
in P(Rn)+). We will show how to express the functional F in terms of the
following linear functional:

LσP (u) :=

∫

∂P

uσP − n

∫

P

udp,

where σP is the canonical measure on ∂P defined by

σP :=
d

dt |t=1+
(1tP dp) (4.3)

Equivalently, a simple argument shows that P is absolutely continuous wrt
the standard measure λ∂P on ∂P induced by the Euclidean structure Rn

and
σP = λ∂P / ‖dρ‖ (4.4)

a.e. on ∂P, where ρ is the Minkowski functional of P, i.e. the one-homogenous
defining convex function such that P = {ρ < 1}. The next proposition can
be seen as a generalization of a formula of Donaldson [29] concerning the
case when P is a rational simple polytope (which by definition means that
there are precisely n facets meeting any given vertex). One virtue of the
present approach is that it avoids any integration by parts on P (which
seem rather complicated in the case of a non-simple polytope). See section
4.2 for a comparison with Donaldson’s notation.
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Proposition 4.6. — The following formula holds:

F(u) := −
∫

P

log det(uij)dp + LσP (u) (4.5)

Proof. — We start by noting that

D(MA(φ), dx) = −n!

∫

P

log det(uij)dp,

which follows from making the change of variables p = dφ|x in the integral
defining the lhs above and using that, by duality, det(uij) det(φij) = 1. The
rest of the proof then follow from combining formula 2.11 with the following
lemma. �

Lemma 4.7. — Let φ ∈ P+(Rn). Then

1

n!

∫
φMA(φ) =

∫

∂P

udσP − (n + 1)

∫

P

udp

where u = φ∗, the Legendre transform of φ.

Proof. — By definition φ(x) = 〈p, x〉−v(p) for x = dv(p). Hence, making
the change of variables p = dφ(x) in the integral

1

n!

∫
φMA(φ) = (

∫

P

〈p, dv〉−v(p))dp =

(∫

P

〈p, dv〉+ nv(p)dp

)
−

∫

P

(n+1)

∫

P

vdp,

where we have rearranged the rhs in order to identify the first integral with∫
∂P

vdσ. To see this set σ(t) :=
∫
tP

vdp for t > 0. On one hand, by definition,
dσ(t)/dtt=1 =

∫
∂P

vσP . On the other making the change of variables p→ tp
in the integral defining σ(t) and using Leibniz rule gives an integral over P
which is precisely the one in the bracket above. �

Theorem 4.8. — Let P be a convex body containing 0 in its interior.
Then the following is equivalent:

• The functional F (formula 4.5) admits a minimizer u in C∞
• 0 is the barycenter of P

• For any convex function on P we have LσP (v) � 0 with equality iff v
is linear.

Moreover, the minimizer (when it exists) is unique modulo the addition of
affine functions and satisfies Abreu’s equation

S(u) = 1 (4.6)
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Proof. — As explained above, we have, up to normalization, that F(u) =
MP (φ) for φ = u∗ and hence the equivalence between the first two points
follows from Theorem 4.4 combined with Proposition 4.5. The equivalence
between the second and third point follows from Lemma 4.9 below. To see
that equation 4.6 holds we recall that if u minimizes F then, by Prop 4.3,
φ satisfies the corresponding real Monge-Ampère equation with g = 1. But
then the corresponding Kähler metric on Tc has constant Ricci curvature
and in particular constant scalar curvature so that the equation 4.6 follows
from Abreu’s formula [1]. �

As explained in the introduction of the paper the previous theorem con-
firms a special case of a conjecture of Donaldson in [29]. In the proof of the
previous theorem we used the following

Lemma 4.9. — Let P be a convex body containing 0 in its interior. Then

LσP (u) =

∫

∂P

uσP − n

∫

P

udp �
∫

P

udp

for any convex function v on P such that u(0) = 0. Moreover, equality holds
iff u is linear. In particular, LσP (u) > 0 for any non-affine convex function
v iff 0 is the barycenter of P.

Proof. — The lemma could be proved exactly as in Lemma 4.1 and
Lemma 4.2 in [62], which applies to any convex polytope. But for complete-
ness we give a simple alternative proof which works direct for any convex
body P. Fix a convex function u on P (by a simple approximation argument
we may assume that u is smooth on P̄ ) and set σ(t) :=

∫
tP

udp for t > 0. By
definition dσ(t)/dtt=1 =

∫
∂P

udσP . Since u(0) = 0 and u is convex u(tp)/t
is increasing in t, Hence, σ(t)/tn+1 is also increasing in t (using the change
of variables p → tp in the integral), i.e. d(σ(t)/tn+1)/dt � 0. Evaluating
the previous derivative at t = 1 then proves the desired inequality (using
Leibniz rule) and the equality case also follows since u(tp)/t is constant if
u is linear. �

4.2.1. Comparison with Donaldson’s setting

In [29] Donaldson associates to any rational polytope P a measure on
∂P, that we will here denote by σ′P and which in general is different than
the measure σP introduced above (which is defined for any convex body P ).
Donaldson’s measure is induced from the integral lattice in Rn and defined
as σ′P := dλ/ ‖dρ‖ , where now ρ is given by ρ(p) := maxF (−〈lF , p〉 − aF )
of P (compare formula 3.6), i.e. ρ is a defining one-homogenous function of
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P such that dρ is a primitive integral vector on any facet. Hence, on any
facet F of P

σP = σ′P /aF (4.7)

and σP = σ′P iff P is the canonical polytope of a Fano variety. As shown by
Donaldson, when P is a Delzant polytope, i.e. P corresponds to a polarized
toric manifold (X,L) and the boundary of P is equipped with the measure
σP , the solutions u as in Theorem 1.4 (which moreover satisfy Guillemin’s
boundary conditions) are precisely the Legendre transforms of toric metrics
on L whose curvature form ω ∈ c1(L) has constant scalar curvature on X.
On the other hand, writing, as in section 3.6,

L = −(KX + ∆), ∆ =
∑

F

(1− aF )DF

the solutions obtained here, i.e. those induced by the measure σP , satisfy
the following equation on X :

Ric ω = ω +
∑

F

(1− aF )DF , (4.8)

Accordingly they have constant scalar curvature on the complement of the
toric divisor “at infinity” D with singularities along the components DF of
D determined by the numbers aF .

For future reference we also record the following consequence of the
relation 4.7:

LσP (u)−Lσ′
P
(u) =

∑

F

(1− aF )(bF

∫

P

udp−
∫

F

uσ′P ), bF =

∫

F

σ′P /
∫

P

dp,

(4.9)
where Lσ(u) is defined by Donaldson’s general formula 1.5.

4.3. Futaki invariants and K−stability

4.3.1. Futaki invariants

The Futaki invariant was originally defined for X a smooth Fano man-
ifold as a Lie algebra character. Here we will follow the approach of Ding-
Tian [28] which applies to any irreducible normal Fano variety X. Given a
holomorphic vector field W on the regular locus X0 of X the corresponding
Futaki invariant f(W ) ∈ R may be defined as

fX(W ) :=
d

dt
MX(φt)
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where φ0 is a fixed metric, invariant under the corresponding S1−action
and φt is the curve obtained by pull-back φ0 under the flow of W (strictly,
speaking in [28] there is an extra extension condition on V but as observed
in [12] the condition is always satisfied). As shown in [28] fX(W ) thus
defined is independent of the reference φ0 and the time t. More generally,
given a log Fano variety (X,∆) and a holomorphic vector field W whose
flow preserves the log regular locus X0(=: Xreg − ∆) we may define the
log Futaki invariant f(X,∆)(W ) as above, by replacing MX with M(X,∆).
Even more generally, given holomorphic vector fields V and W as above we
define the modified log Futaki invariant f(X,∆,V )(W ) as above, by replacing
MX with M(X,∆,V ). The independence on φ0 and t can then be checked
as before.

In the toric log Fano case we have the following result, well-known in
the smooth case [45, 29] (when ∆ is trivial):

Proposition 4.10. — Let (X,∆) be a toric log Fano variety and W the
invariant vector field on X with components a ∈ Rn. Then

f(X,∆)(W ) := −LσP (〈a, p〉)

In particular, f(X,∆)(W ) = 0 for all W iff 0 is the barycenter in the corre-
sponding polytope P(X,∆).

Proof. — Letting φ0 be a T−invariant metric we note that φt(x) =
φ(x + at). Setting ut := (φt)

∗ this means that ut = u0 − 〈a, p〉 t and hence
the previous formula follows immediately from Lemma 4.9. �

4.3.2. K-stability

Let us start by recalling Donaldson’s general definition [29] of K-stability
of a polarized variety (X,L), generalizing the original definition of Tian
[57]. First, a test configuration for (X,L) consists of a polarized projective
scheme L → X with a C∗−action and a C∗−equivariant map π from X
to C (equipped with its standard C∗−action) such that any polarized fiber
(Xt, Lt) is isomorphic to (X, rL) for t �= 0, for some integer r. The corre-
sponding Donaldson-Futaki invariant f(X ,L) is defined as follows: consider
the Nk−dimensional space H0(X0, kL0) over the central fiber X0 and let
wk be the weight of the C∗−action on the complex line detH0(X0, kL0).
Then the Donaldson-Futaki invariant of f(X ,L) is defined as the sub-leading
coefficient in the expansion of wk/kNk in powers of 1/k. More precisely, ex-
panding

wk = a0k
n+1 + a1k

n + O(kn−1), Nk := b0k
n + O(kn−1)
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gives

f(X ,L) =
1

b20
(a1b0 − a0b1)

The polarized variety (X,L) is said to be K-polystable if, for any test config-
uration, f(X ,L) � 0 with equality iff (X ,L) is a product test configuration.
Following [43] we will also assume that the total space X of the test con-
figuration is normal, to exclude some pathological phenomena observed in
[43].

Similarly, if one also fixes a Q−divisor ∆ on X, with normal crossings,
one can more generally define the log K-polystability of (X,L) wrt ∆ as
before [32, 41, 47], but phrased in terms of the corresponding log Donaldson-
Futaki invariants defined by

f(X ,L,∆) := f(X ,L) + a0
b̃0
b0
− ã0,

where ã0 is the leading coefficient of the weight of detH0(∆0, kL0) and a0 is
the leading coefficient of the dimension of H0(∆0, kL0) (in the definition we
first assume that ∆ is an irreducible divisor and then extend by linearity).
In particular, if (X,∆) is a log Fano variety then we say that (X,∆) is log
K-stable if L := −(KX + ∆) is log K-stable wrt ∆.

Remark 4.11. — As explained in [29], in the case when X smooth, the
equivariant Riemann-Roch theorem shows that the Donaldson-Futaki in-
variant f(X ,L) is proportional (with a sign difference) to the Futaki-invariant
fX0

(W ), where W is the generator of the induced C∗−action on X0 (and a
similar relation holds in the log setting [41]).

In the case when X is a general polarized toric variety it was shown by
Donaldson [29] how to obtain toric test configurations from a convex piece-
wise linear rational function u on a polytope (called toric degenerations).
Briefly, (X ,L) is the polarized toric variety such that the corresponding
rational polytope Q is defined as one side of the graph of u over P with the
projection π defined so that the “roof” of Q corresponds to the central fiber
X0.

Proposition 4.12 (Donaldson [29]). — Let (X,L) be a polarized toric
variety, P the corresponding polytope and u a piece-wise affine convex func-
tion on P. Then u determines a test configuration such that the correspon-
ding Donaldson-Futaki invariant is given by LσP ′ (u) (up to a numerical
factor).

Combining the previous proposition with formula 4.9 we then arrive at
the following
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Proposition 4.13 (same notation as in the previous proposition). —
Write L = −(KX +∆) for a toric divisor ∆. Then the log Donaldson-Futaki
invariant of (X,L,∆) is given by LσP (u).

Proof. — By linearity we may as well assume that ∆ = DF for a fixed
facet F of P. As explained in the proof of Prop 4.12 in [29] the formula
a0 = −

∫
P
udp holds and since we may apply the same result to the polarized

toric variety (DF , L|DF ) we also have ã0 = −
∫
F
udσ′P . Moreover, since

b0 =
∫
P
dp (and similarly b̃0 =

∫
F
σ′P ) combining the previous proposition

with formula 4.9 concludes the proof. �

4.3.3. End of proof of Theorem 1.2

By Theorem 1.2 we just have the verify the equivalence between the last
three points above. But this follows immediately from Lemma 4.9 combined
with Prop 4.10 and Prop 4.13, at least for Futaki invariants defined with
respect to toric vector fields V. Finally, if there is a Kähler-Einstein metric
on for (X,∆) and ∆ is effective, then, by Prop 3.1 the corresponding Ding
type functional is bounded from above and hence so is the corresponding
Mabuchi type functional M(X,∆) (by the analogue of Prop 4.2; see [7, 12]).
But M(X,∆)(φt) is linear in t if φt comes from the flow of V and hence it
must be that it is actually constant, i.e. its derivative f(X,∆)(V ) vanishes.

5. Convergence of the Kähler-Ricci flow

Recall that the Kähler-Ricci flow on a Fano manifold X is defined by

dωt

dt
= −Ric ωt + ωt (5.1)

for a given initial Kähler form ω0. It may be equivalently formulated as the
following flow of positively curved metrics φt on −KX :

dφt
dt

= log
MA(φt)

µ̃φt
,

where µ̃φt is the measure defined by the metric φt (formula 3.1), normalized
by its mass. As shown by Song-Tian [52] the latter flow can also be given a
meaning on any Fano variety X with log terminal singularities. In particular,
the corresponding flow of currents ωt := ddcφt restricts to the usual Kähler-
Ricci flow 5.1 on the regular locus X0. In fact, all the constructions and
results in this section carry over immediately to the general setting of a log
Fano variety (X,∆) with klt singularities, with X0 denoting the complement
of ∆ in the regular locus of X, but to simplify the notation we will assume
that ∆ = 0.
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Theorem 5.1. — Let X be a toric Fano variety and let ωt evolve ac-
cording to the corresponding Kähler-Ricci flow. Then there exists a family
At of toric automorphisms of X such that A∗tωt converges weakly towards a
(singular) Kähler-Ricci soliton ω on X.

Given the coercivity estimate for the modified Mabuchi functional in
Theorem 4.5 the proof of the previous theorem is a rather straight-forward
adaptation of the proof in [12] of the convergence of Kähler-Ricci flow on
a Fano manifold for which the ordinary Mabuchi K-energy functional is
proper.

Turning to the details of the proof we let ψt be defined as the pull-
back of the metric φt under the time t flow exp(tV ) of the holomorphic
vector field V, where V is the unique toric vector field with components
ai determined by the canonical polytope P corresponding to X. Then ψt

satisfies the following modified Kähler-Ricci flow (compare [59]):

dψt

dt
= log

MAg(ψt)

µ̃ψt
, (5.2)

where, g(p) = e〈a,p〉 and MAg is the corresponding Monge-Ampère type
operator. Now, a direct computation reveals that, along the latter flow,

dG(ψt)

dt
= D(MAg(ψt), µ̃ψt),

where we recall that D denotes, as before, the relative entropy. In particular,
Gg(ψt) is increasing in t. Strictly, speaking the previous computation is only
valid in the smooth setting, but it can easily be justified by regularizing,
precisely as in the proof of Lemma 6.4 in [12].

Now, by Theorem 2.16, Gg(ψt) is bounded from above and hence there is
a subsequence tj such that the rhs above tends to zero. But then it follows
from the Pinsker inequality that

∥∥∥µ̃ψtj −MAg(ψtj )
∥∥∥→ 0, (5.3)

in the absolute variation norm of the measures (i.e. the L1−norm between
the densities wrt any fixed background measure). Let now ψ̃t be the normal-
ization of ψt, obtained by applying an appropriate toric automorphism Bt

and denote by ψ̃ a weak limit point of ψ̃tj . By invariance the convergence

5.3 still holds when ψt is replaced with its normalization ψ̃t and Gg(ψ̃t)
is still increasing in t (by the invariance of Gg under toric automorphism,
which holds as in the proof of Theorem 1.1). It thus follows from the relative
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coercivity inequality in Thm 2.16 that

E(ψ̃t) � −C (5.4)

and hence E(ψ̃) � −C. In particular, ψ̃t and ψ̃ have full Monge-Ampère
mass and hence it follows from Prop 2.4 and 5.3 that

MAg(ψ̃) = µ̃ψ̃, (5.5)

All we have to do now is to verify the following

Claim: Eg(ψ̃tj ) → Eg(ψ̃)

Indeed, accepting the latter claim for the moment we note that, since, ψ̃
satisfies the equation 5.5 and hence (by Prop 4.3) maximizes the functional
Gg) it follows, using that G(ψ̃t) is increasing in t, that any subsequence of

ψ̃tj is an asymptotic maximizer of the functional Gg. Hence, by the proof of
Theorem 1.1, it converges to the unique normalized finite energy minimizer
of Gg (which thus coincides with ψ̃).

All in all, setting At = Bt ◦ exp(tV ) concludes the proof of the theorem
up to the claim above to whose proof we finally turn. First note that since
the modified Mabuchi functional Mg is bounded from below it follows from
5.4 that

Dµ0
(MAg(ψ̃t)) � C ′

At this point we can invoke the following crucial compactness property (see
Theorem 3.10 in [12]):

Lemma 5.2. — Let µ0 be a probability measure with locally Hölder poten-
tials and let φj → φ be a weakly convergent sequence such that E(φj) � −C.
For each probability measure ν with finite relative entropy, i.e. Dµ0(ν) <∞,
we then have ∫

X

(φj − φ)ν → 0,

uniformly wrt Dµ0
(ν).

Applying the previous lemma to φj := ψ̃tj and ν = MAg(ψ̃tj ) gives,
after perhaps passing to a subsequence, that

∫

X

(ψ̃tj − ψ̃)MAg(ψ̃tj ) → 0

But then it follows, since ψ̃tj is sup-normalized, that the convergence in the
claim indeed holds (compare the proof of Lemma 2.4 in [12]).
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5.1. Regularity of singular Kähler-Ricci solitons

Here we will use the Kähler-Ricci flow to show that any toric (singular)
Kähler-Ricci soliton (ω, V ) on a toric Fano variety X has the property that
ω(= ddcψ) is smooth on the regular locus X0. As explained in section 3.8
we already know that ψ is continuous, viewed as a metric on −KX . We
take ψ := ψ0 as the initial data for the modified Kähler-Ricci flow ψt (for-
mula 5.2). By the work of Song-Tian [52] the usual Kähler-Ricci flow φt is
smooth om X0 for t > 0 and hence so is ψt, since the two flows coincide
up to conjugation by the flow of V. Now, by Prop 4.3 ψ0 is a maximizer
for Gg and, since, as explained above, the corresponding functional Gg(ψt)
is increasing ψt is also a maximizer for Gg for any t > 0 (more precisely,
as explained above Gg(ψt) is increasing for t > 0 which is enough since it
is also continuous up to t = 0). But then it follows from Prop 4.3 that for
any t > 0, ψt satisfies the corresponding Kähler-Ricci soliton equation and
is smooth on X0. By the uniqueness of solutions modulo automorphisms we
deduce that ψ0 is also smooth on X0. Actually, we do not need to use the
uniqueness: since the time-derivative of the flow vanishes for t > 0 it follows,
by continuity, that ψ0 = ψt for any t > 0 and hence ψ0 is also smooth on
X0, as desired.

6. Appendix: proof of Lemma 2.7

A proof of the first point in Lemma 2.7 can be found in [50]; but it is also
a special case of the following slightly more general claim that we will use to
prove the second point: let G0 be a proper upper semi-continuous function
on Rn with a unique maximizer x0 and let Gt(x) := G0(x) + tv(x) for a
bounded continuous function v. Then g(t) := supx∈Rn Gt(x) is differentiable
at t = 0 and

dg(t)

dt t=0
= v(x0)

This is without doubt a well-known fact but for completeness we include
the proof. First note that G0 is bounded from above (since it is usc and
hence, by properness, G0(x) → −∞ as |x| → −∞. Since v is bounded it
then follows that, for t sufficiently small, the sup of Gt is attained at some
(but not necessarily unique) point xt. Hence, g(t)− g(0) =

= Gt(xt)−G0(x0) = (Gt(x0)−G0(x0))+(G0(xt)−G0(x0))+t(v(xt)−v(x0))

Next we will show that

v(xt)− v(x0) = o(t). (6.1)
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By the continuity of v it will be enough to establish that xt = x0 + o(t).
To this end we first note that since v is bounded and G0 is proper it
follows that the xt stay in a compact subset K and lim supt→0 G(xt) �
G(x0)(= supx∈Rn Gt(x)). Hence, if x∗ is a limit point of xt then the upper-
semicontinuity of G0 implies that x∗ is a maximizer for G0. By the unique-
ness assumption this means that x∗ = x0 and hence xt = x0 + o(t) as
desired, thus proving 6.1.

If G0 were differentiable at x0 we could use the maximization property

of x0 to deduce that (G0(xt)−G0(x0)) /t = o(t) and hence that dg(t)
dt t=0

=
v(x0)+0+0. But in general we only know, a priori, that (G0(xt)−G0(x0)) �
0 with equality at t = 0, so that dg(t)

dt t=0+ � v(x0). Moreover, by symmetry

(i.e. replacing t by −t) we also have dg(t)
dt t=0− � v(x0). On the other hand gt

is convex in t (as it is defined as a sup of affine functions) and hence its right

and left derivatives exist and satisfy the inequality dg(t)
dt t=0− �

dg(t)
dt t=0+ .

Thus it must be that the right and left derivatives both coincide with v(x0)
which concludes the proof of the claim above.

To prove the first point set Gt(x) = 〈p + ta, x〉 − φ(x) for given vectors
p and a and for the second point one set G(x, t) := 〈p, x〉 − (φ(x) + tv(x)).
As for the last point we first assume that φ is smooth and strictly convex
and that f is bounded. Making the change of variables p = dφ|x then gives

∫
vMA(φ) =

∫
v(x)d(p(x)) =

∫
v(xp)dp,

where xp is uniquely determined by p = dφ|xp , which by duality and the
first point above means that xp = dφ∗|p, proving the desired formula in the
case. Finally, we take smooth and strictly φj decreasing to a given φ and
hence uj := φ∗j increase to u := φ∗. By convexity duj|p → du|p for any
p ∈ S where S is the set of points p where u is finite and differentiable.
By assumption S = P − N where N has measure zero. Finally, letting
j →∞ and using Prop 2.4 in the lhs and dominated convergence in the rhs
concludes the proof for v bounded. But writing v as an increasing limit vj
of non-negative bounded continuous functions and then using the Lebesgue
monotone convergence theorem then proves the general case.
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