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The set of paths in a space and its algebraic
structure. A historical account

Ralf Krömer(1)

ABSTRACT. — The present paper provides a test case for the significance
of the historical category “structuralism” in the history of modern mathe-
matics. We recapitulate the various approaches to the fundamental group
present in Poincaré’s work and study how they were developed by the next
generations in more “structuralist” manners. By contrasting this devel-
opment with the late introduction and comparatively marginal use of the
notion of fundamental groupoid and the even later consideration of equiv-
alence relations finer than homotopy of paths (their implicit presence from
the outset in the proof of the group property of the fundamental group
notwithstanding), we encounter “delay” phenomena which are explained
by focussing on the actual uses of a concept in mathematical discourse.

RÉSUMÉ. — Le présent document fournit un cas d’école pour la signi-
fication de la catégorie historique « structuralisme » dans l’histoire des
mathématiques modernes. Nous récapitulons les différentes approches pour
le groupe fondamental présentes dans les travaux de Poincaré et étudions
comment celles-ci ont été développées par les générations suivantes dans
des directions plus « structuralistes ». En comparant cette évolution avec
l’introduction tardive et l’utilisation relativement marginale de la notion
de groupöıde fondamental et la prise en compte même plus tardive de rela-
tions d’équivalence plus fines que l’homotopie de chemins (nonobstant leur
présence implicite dès le départ dans la preuve de la propriété de groupe
du groupe fondamental), nous rencontrons des phénomènes « retard » qui
sont expliqués en se concentrant sur les usages réels d’un concept dans le
discours mathématique.

(1) Arbeitsgruppe Didaktik und Geschichte der Mathematik, Bergische Universität
Wuppertal, Gaußstraße 20 D-42119 Wuppertal
rkroemer@uni-wuppertal.de
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“structuralist” outcomes . . . . . . . . . . . . . . . . . . . 928
3.1. Definitions of the fundamental group in the lite-
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The set of paths in a space and its algebraic structure

1. Introduction

Considerations of algebraic structures on the set of paths in a topological
space play an important role in topology and many other parts of modern
mathematics where topological tools are used. Most important is perhaps
the so-called fundamental group π1(X,x0) of the space X with respect to
a certain point x0 ∈ X, given by homotopy classes of closed paths with x0

as initial and endpoint. But there are more structures which can be defined
in a similar way, including the fundamental groupoid (given by homotopy
classes of not necessarily closed paths) or the “thin fundamental group”
(given by classes of paths with respect to an equivalence relation finer than
homotopy).

Now, all this obviously has a history. First of all, the very notions of path,
topological space, set, group and structure underwent a development during
the period relevant to this history; here, the notion of “structure” is much
less of a precise mathematical notion than the other four,1 and the whole
talk about structures on the set of paths is retrospective in that it uses a
vocabulary of a later period in the description of events of an earlier period.
It is true, mathematics (or at least a large part of it) in the first half of the
twentieth century underwent what has been called a “structural transition”
by the advent of structural notions like group, topological space and so on2.
But what is the significance of the historical category “structuralism”? The
present paper provides a test case for this significance. Renaud Chorlay in a
different context provided a sample of the kind of questions one encounters:

The detailed study of the links between problem families and
structural transition should help flesh out the very general de-
scription of the structural approach that can be found, for
instance, in Bourbaki. In 1942, they described mathematics as
a “a storehouse of abstract forms” [8, p. 231]; forms which are
also tools, whose abstract (i.e. context-free), object-like defini-
tion warrant general applicability [. . . ]. The arguments as to
why it should be done, and what the epistemic gains result
(economy of thought, insight into formal analogies, uniform
treatment of seemingly different problems etc.) are quite clear;
but no clue is given as to how it is done. In particular, Bour-
baki stress the fact that the list of important structures is not

(1) See [54, p. 207ff]. Interestingly, it seems that in this case mathematical language
even developed towards less precision, given the quite precise meaning of the term “struc-
ture” in Elie Cartan’s dissertation [14]. This matter certainly would need further historical
elucidation.

(2) See [23], a study which in an illuminating way extends the description of this
structural transition provided by the now classical [24].
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closed, and that invention of structures accounts for numer-
ous recent breakthroughs [. . . ]. They also emphasise the fact
that the axiomatic method is at its best when it succeeds in
showing that some structure plays an important part in a field
where, a priori, it seems it played none [. . . ]. Yet, as to how
these breakthroughs were made, these new structures invented
and these unexpected structures identified in more classical
settings, Bourbaki give no clue; or rather, they leave it to intu-
ition: “more than ever does intuition dominate in the genesis
of discoveries.” [. . . ]! [23, p. 67]

Invention of new structures, identification of unexpected structures in more
classical settings, intuition guiding these discoveries: the present paper is
a study of a case of it. We will focus on the following phenomena: The
standard proof of the group property of the fundamental group (i.e., of
the fact that homotopy classes of closed paths with respect to a point x0

actually form a group) is valid for certain equivalence relations finer than
homotopy as well (see section 5.4). This fact seems to have been “hidden”
for a long time, and these other structures have not been used themselves
until much more recently. Thus, while the rhetoric in various textbooks,
as we will see below, wants the motive to consider homotopy of paths to
be that one thus gets a group or groupoid structure, this cannot describe
completely the historical motives since one could get such a structure in
another way. Another “delay” can be observed with respect to the notion
of fundamental groupoid. It is the aim of the present paper to explain these
two “delay” phenomena.

Here, the talk about “delays” and their “explanation” asks for method-
ological discussion. I think that delay phenomena can be sensibly explained
by focussing on the actual uses of a concept in mathematical discourse. In
my opinion, the conceptual history of mathematics cannot be simply de-
scribed as being composed of transitions from vague original formulations
into later formal precision (and it is thus not the only task of the historian
of mathematics to analyze carefully these transitions). I rather think (and
stressed repeatedly before) that even when the definition of a concept has
reached a state of consolidation, its use in mathematical discourse and re-
search is by far not exclusively determined by its formal definition; there
are many other aspects relevant to this usage. Mathematicians when using
concepts often play “language games” in Wittgenstein’s sense; for instance,
only part of the actual models of the formal definition are considered as
“relevant”. They have learned to play these games through training, and
this is the source of what Bourbaki labelled “intuition” in the quote above.
They operate with the concept in accordance not only with the formal def-
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inition, but also with the “intended model” (what they have in mind about
the “right” usage of the concept through their training). In this situation,
some usage can perfectly be in the scope of the formally defined concept, but
pathological with respect to that intended model (and thus delayed until
the intended model changes or is enlarged).3

The present paper’s originality does reside in this way of interpreting
the historiographical information, while the major part of this information
in itself actually is already contained in an important corpus of secondary
literature.4 In addition to the use of this secondary literature, the building
of the corpus of primary sources at least for the period up to 1942 has
been backed up by automatic query in the Jahrbuch data.5 Of course, not
every hit of these queries has been included in the list of references, but the
usefulness of the procedure will be pointed out at several places in the paper.
One might hope that such automatic procedures allow to continue Volkert’s
short and “hand-made” account of the reception of Poincaré’s topological
work up to 1908 [106, p. 177ff].

We will first recapitulate the various approaches to the fundamental
group present in Poincaré’s work (section 2) and then see how in the work of
the next generation some moves which might be described as “structuralist”
made increase the usefulness of the fundamental group (section 3). The
introduction of the fundamental groupoid is studied in section 4. In section
5, we approach the case of equivalence relations finer than homotopy by
analysing the role played by the intuitive content of continuous deformation
and by the definition of paths as mappings.

(3) This focus on language use and its training has been applied in the analysis of
the historical development of category theory in [54]. In that case like in the present
one, this focus in itself is thought of as a epistemological method for understanding
historical events, especially by showing that there are such things like “intended models”
in mathematics.

(4) The development of the concept of homotopy of paths up to the first decades of
the twentieth century has been studied by Ria Van den Eynde [102, 103], and very few is
to be added concerning this period in the present paper. Van den Eynde’s second paper
being essentially a shortened version of the first, I will use the first paper here (and the
corresponding pagination even for passages also present in the second paper).

For the later period, too, it would be wrong to say that the history of the concept still
has to be written. But the information used in the present work is scattered in studies
written under different perspectives: we have historical accounts of algebraic topology
as a whole [29], accounts of the work of Poincaré [34], [90], [80], histories of particular
concepts (like the concept of group [112] or of manifold [92], the local-global distinction
[22] etc.) or of particular theories in which homotopy played some role at some stage (like
combinatorial group theory [20], the theory of Lie groups [36], [37], knot theory [31], the
theory of 3-manifolds [106], etc.). But we do not have a study which takes these threads
together under the perspective to highlight the role of homotopy in these histories, and
the interaction of the concept’s development with them. The present paper cannot fill
this gap either, but I hope it can go some steps further towards this bold aim.

(5) See http://www.emis.de/MATH/JFM/JFM.html. The queries made were on “de-
form*”, “Fundamentalgruppe”, “Gruppoid”, “homotop”, “Knotengruppe”, “Poincaré
group”, and “Wegegruppe”.
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2. Poincaré’s approaches to the fundamental group

A nice introduction to Poincaré’s topological work is given by a paper
by K.S.Sarkaria contained in James’ Volume on the history of topology [90].
Concerning Poincaré’s 1895 definition of the fundamental group, Sarkaria
notes:6

Poincaré gives four approaches to his groups g and G. Firstly,
as all deck transformations of a covering space over M , viz.,
that whose projection map is the inverse of the multiple val-
ued function Fα [. . . ]. Secondly, his differential equations def-
inition [. . . ] gives g as the holonomy group of a “curvature
zero” or integrable connection on a vector bundle over M
[. . . ]. Thirdly, his definition using “loops”, “equivalences” and
“lacets” amounts to that which one usually finds in most text
books. Lastly, [. . . ], for any M obtained from a polytope by
facet conjugations, Poincaré defines π1(M) via some simple
and elegant (yet intriguing) cyclic relations. [90, p. 144]

In the present section, I intend to pursue these different approaches, to
locate them in Poincaré’s overall work and its historical contexts.7 First of
all, Poincaré does not in all cases explicitly state that the groups defined
according to the various approaches are in fact the same (abstract) group,
and in no case he gives a proof of such a statement. In a more traditional
vocabulary of historiography of mathematics, we would presumably say in
this situation that he only “implicitly” defines the fundamental group in
these various ways; and in a more recent setting of this historiography, we
would say that such a statement about what Poincaré did is worthless for
it is of a retrospective nature. My line of argument will however be a bit
different: I intend to show that the various approaches of Poincaré have
been pursued partly independently of each other, and that the result of
this pursuit was not only that a “common content” has been eventually
discovered, but also that the interpretation of one determination has been
made stable by the existence of the others.8

(6) The meaning of the letters g and G used in this quote will be explained in section
2.3. In the present paper, emphasis in quotes is always original.

(7) The focus will be mostly on the first, third and fourth approach in Sarkaria’s list
and their interaction; we will later have occasion to focus on holonomy groups, too, but
there does not seem to be a historical connection to Poincaré’s work in this case. Moreover,
my presentation of Poincaré’s work will be very short and concentrated on quotes from
Poincaré’s original research papers (pagination in references to which will always be
with respect to the Œuvres) giving some idea about the way in which the approaches
mentioned by Sarkaria appear there. The reader finds more extensive descriptive and
historical accounts of this work, along with Sarkaria’s paper, in [92], [102] and [106].

(8) This is a variant of a Wimsattian robustness argument; see [56] for a similar con-
sideration.
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2.1. 1883

Central contributions to uniformization theory have been made by
Schwarz and later his student Koebe, and by Poincaré who (inspired by
Schwarz) presented a paper in 1883 [72]9. His discussion quite explicitly
resides on analytic continuation of functions along a path; see also [36, p.
189]. And concerning these paths, homotopy is the relevant equivalence re-
lation, as Van den Eynde points out: “The fact that Poincaré considers the
behaviour of many-valued functions on the surface [. . . ] and not the inte-
grals of such functions, forces him to use continuous deformation, and not
homology” [102, p. 158]. Moreover,

it seems likely that Poincaré was inspired by his work on au-
tomorphic functions. [. . . ] Poincaré knew that to a given Rie-
mann surface corresponds a group of linear transformations
in the plane. If the Riemann surface has genus p > 1 these
automorphisms can be interpreted as isometries of the non-
euclidean plane. The collection of the replicas of a fundamental
domain of the group can be seen as the surface S he defines in
his paper of 1883. [102, p. 159]

The following quote shows that the surface S mentioned by van den
Eynde is what latter became called the universal covering.

We consider m analytic functions of x,

y1, y2, . . . , ym

which are in general not uniform. [. . . ] We [. . . ] consider the
variable x as moving [. . . ] on a Riemann surface S. [. . . ] We
trace in the plane an arbitrary closed contour C which begins
and ends at the same point x. The surface will be completely
defined if we state the conditions under which the initial and
final point of this contour must be regarded as belonging to
the same sheet or to different sheets.

Now there are two sorts of contours C:
1o Those which are such that at least one of the m functions
y does not return to its initial value when the variable
describes the contour C;

2o Those which are such that the m functions y return to
their initial values when the variable describes the contour
C.

(9) See [35] and [69] for more details. The contributions to our topic contained in a
second paper from 1908 will be discussed below.
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Among the contours of the second sort, I will distinguish two
species:

1o C will be of the first species, if, by deforming this contour
in a continuous manner, one can pass to an infinitesimal
contour so that the contour never ceases to be of the sec-
ond sort.

2o C will be of the second species in the contrary case.
Well, the initial and the final point of C will belong to different
sheets if this contour is of the first sort or of the second species
of the second sort. They belong to the same sheet if C is of the
first species of the second sort. [. . . ]

The Riemann surface is then defined completely. It is simply
connected [. . . ]. [77, p. 58f]10

Thus, the definition of S is such that the lifting of homotopically trivial
loops (“second species”) is still closed (“second sort”). In other words, S is
the universal covering. Klaus Volkert describes the content of this passage
thus: “Poincaré already in 1883 in a paper on algebraic curves [. . . ] studied
universal coverings and recognized the connection between decktransforma-
tions and the fundamental group.”11 [106, p. 111]. Volkert points to [29, p.
295] and [92, p. 202f] for this reading. But I think that one would read too
much into this passage when claiming that Poincaré already discusses the
connection between decktransformations and the fundamental group here.

(10) Translation quoted from [36, p. 179]. Original passage: “Considérons m fonctions
de x, y1, y2, . . . , ym, analytiques, non uniformes en général. [. . . ] Nous considérons la
variable x se mouvant [. . . ] sur une surface de Riemann S. [. . . ] Traçons dans le plan
un contour fermé quelconque C partant d’un point initial x et revenant finit à ce même
point x. La surface S sera complètement définie, si nous disons à quelles conditions le
point initial et le point final de ce contour devront être regardés comme appartenant à
un même feuillet ou à des feuillets différents.

Or il y a deux sortes de contours C :

1o Ceux qui sont tels que l’une au moins des m fonctions y ne revient pas à sa valeur
initiale quand la variable x décrit le contour C ;

2o Ceux qui sont tels que les m fonctions y reviennent à leurs valeurs initiales quand
la variable x décrit le contour C.

Parmi les contours de la deuxième sorte, je distinguerai deux espèces :

1o C sera de la première espèce, si l’on peut, en déformant ce contour d’une façon
continue, passer à un contour infinitésimal de telle façon que le contour ne cesse
jamais d’être de la seconde sorte ;

2o C sera de la seconde espèce dans le cas contraire.

Eh bien, le point initial et le point final de C appartiendront à des feuillets différents
si ce contour est de la première sorte, ou de la seconde espèce de la seconde sorte. Ils
appartiendront au même feuillet si C est de la première espèce de la seconde sorte. [. . . ]

La surface de Riemann est alors complètement définie. Elle est simplement connexe
[. . . ].”
(11) “Poincaré hatte bereits 1883 in einer Arbeit über algebraische Kurven [. . . ] uni-

verselle überlagerungen studiert und den Zusammenhang zwischen Decktransformationen
und Fundamentalgruppe erkannt.”
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2.2. 1892

Poincaré’s bold aim in 1892 is the classification of closed (hyper-)surfaces
in n-space up to homeomorphism. In the case of R3, the Betti numbers are
topological invariants; in Rn for n > 3, finer invariants than Betti numbers
are needed. Poincaré’s proof of this fact consists of an ingenious construction
of an example; see the end of section 2.3. Given this situation, Poincaré is
lead to introduce a certain group which seems to be appropriate to charac-
terize a hypersurface; at least, this would be in agreement with his example
since the latter consists of two manifolds with same Betti numbers but dif-
ferent group. Here is the definition (where “surface” means “hypersurface”,
actually):

Let x1, x2, . . . , xn+1 be the coordinates of a point on the
surface. These n+ 1 quantities are connected by the equation
of the surface. Now let

F1, F2, . . . , Fp

be any p functions of the n+ 1 coordinates x (which I always
suppose to be connected by the equation of the surface, and
which I suppose to take only real values).

[. . . ] suppose that our point now describes a finite closed con-
tour on the surface. It may then happen that the p functions
do not return to their initial values, but instead become

F ′1, F
′
2, . . . , F

′
p

In other words, they undergo the substitution

(F1, F2, . . . , Fp;F
′
1, F

′
2, . . . , F

′
p).

All the substitutions corresponding to the different closed con-
tours that we can trace on the surface form a group which is
discontinuous [78, p. 190].12

(12) Quoted after [80, p. 1]. Original quote: “[. . . ] Soient x1, x2, . . . , xn+1 les coor-
données d’un point de la surface ; ces n+ 1 quantités sont liées entre elles par l’équation
de la surface. Soient maintenant

F1, F2, . . . , Fp

p fonctions quelconques de ces n+1 coordonnées x (coordonnées que je suppose toujours
liées par l’équation de la surface et auxquelles je conviens de ne donner que des valeurs
réelles).

[. . . ] supposons que notre point décrive sur la surface un contour fermé fini, il pourra
se faire que nos p fonctions ne reviennent pas à leurs valeurs initiales, mais deviennent

F ′1, F
′
2, . . . , F

′
p
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Even if Poincaré does not give a reference to his work on the monodromy
group of linear differential equations here, there is obviously a great similar-
ity between the two conceptions; see [71] and [73]. There, in turn, he makes
clear from the outset that this work continues his earlier work on fuchsian
functions. The same group had been studied earlier by Camille Jordan [50],
[49]. In particular, Jordan there makes some rather informal allusions which
might be read as describing an enveloping of the singular points of a sur-
face by continuous deformation of paths. We will come back on this issue in
section 5 in order to show that Jordan’s treatment represents a certain way
of interpreting the conception of continuous deformation.13

2.3. 1895

The treatment in the 1895 paper contains a novel element. Poincaré first
defines a group g in a way very similar to what he did in 1892. He then
enters a study of an equivalence relation and a composition of closed paths,
eventually yielding the definition of a second groupG. It is worth to be noted
that Poincaré does not speak about a group with respect to the homotopy
classes themselves. To the contrary, he will make a (substitution) group
correspond to the set of closed paths with this relation and composition:14

This being given, it is clear that we can envisage a group G
satisfying the following conditions:

1o Each closed contour M0BM0 corresponds to a substitu-
tion S of the group,

2o The necessary and sufficient condition for S to reduce to
the identity substitution is that

M0BM0 ≡ 0;

ou, en d’autres termes, qu’elles subissent la substitution

(F1, F2, . . . , Fp;F
′
1, F
′
2, . . . , F

′
p).

Toutes les substitutions correspondant aux divers contours fermés que l’on peut tracer
sur la surface forment un groupe qui est discontinu [. . . ].”
(13) The reader can find a short presentation of the theory of the monodromy group

of a linear differential equation in an Enzyklopädie article by Emil Hilb [38]. Hilb on p.
499 n.110 cites Poincaré’s and Jordan’s papers as the first studies using this group; one
might however argue that it is implicitly present in Riemann’s work on the hypergeo-
metric equation [68, p. 76]. While Jordan and Poincaré spoke only about the “groupe
de l’équation”, Hilb gives credit to Klein [51, p. 134] for the terminology “monodromy
group”. A short discussion of Jordan’s work on monodromy groups of linear differential
equations in relation to earlier work by Puiseux and Jordan’s work on substitution groups
can be found in [10] p. 346; on this aspect of Puiseux’ work, see also [102, p. 140].
(14) Here, M0BM0 ≡ 0 means the closed path with initial point and endpoint M0 and

passing through B is nullhomotopic.
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3o If S and S′ correspond to contours C and C ′ and if

C ′′ ≡ C + C ′,

then the substitution corresponding to C ′′ will be SS′.

[78, p. 242]15

It is to be assumed that Poincaré proceeds in this manner because a group
for him is still a group of substitutions. (There is a passage in the 5th
complement very clearly confirming this hypothesis; see [78, p. 450] or [102,
p. 161]). Next, Poincaré compares the groups g and G:

We compare [the group G] to the group g of substitutions un-
dergone by the functions F .

The group g will be isomorphic to G.

The isomorphism can be holoedric, but it will not be if there is
a closed contour M0BM0 indecomposable into hairpin bends
on which the functions F return to their original values [78,
p. 242]16

Poincaré’s terminology is still that of [48] where isomorphisms can be “mérié-
drique” (i.e., surjective, but not necessarily injective homomorphisms) or
“holoédrique” (isomorphisms in the modern sense of the term). Poincaré’s
last remark is crucial: a function continued analytically along a homotopi-
cally nontrivial path can nevertheless be single-valued. This constitutes a
difference (expressed in the noninjectiveness of the homomorphism) of the
two groups. A proof of the claimed “isomorphy” of the two groups has been

(15) Quoted after [80, p. 40]. Original quote:
“Cela posé, il est clair que l’on peut imaginer un groupe G satisfaisant aux conditions

suivantes :

1o A chaque contour fermé M0BM0 correspondra une substitution S du groupe ;

2o La condition nécessaire et suffisante pour que S se réduise à la substitution iden-
tique, c’est que

M0BM0 ≡ 0 ;

3o Si S et S′ correspondent aux contours C et C′ et si

C′′ ≡ C + C′,

la substitution correspondant à C′′ sera SS′.”

(16) Quoted after [80, p. 40]. Original quote: “Comparons [le groupe G] au groupe g des
substitutions subies par les fonctions F .

Le groupe g sera isomorphe à G.
L’isomorphisme pourra être holoédrique.
Il pourra être mériédrique si un contour fermé M0BM0 non décomposable en lacets

ramène les fonctions F à leurs valeurs primitives.”
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worked out by Volkert; in this proof, the universal covering is used [106, p.
121f]. Poincaré later on (p. 247) stresses that in some cases, the fuchsian
group is the fundamental group. In the fifth complement, there is a longer
passage where this relation is studied [78, p. 448-459]. Therefore, Volkert
conjectures that Poincaré was inspired by the terminology “domaine fon-
damental” from the context of fuchsian functions when choosing the term
“groupe fondamental” [106, p. 117, 130].

We should ask which role the approach by generators and relations
(Sarkaria’s fourth approach) actually played in Poincaré’s topological work.
This approach to groups in general certainly had some influence in the field
of discontinuous groups (see the remarks in [20, p. 11] concerning the work
of Fricke and Klein, for instance). It was also used before Poincaré in the
field of classification of manifolds: Camille Jordan achieves a classification
of compact orientable surfaces with a boundary and determines what we
would call now generators and relations of the fundamental group of these
surfaces [47], [46].17 Chandler and Magnus also point to the crucial role
played by this approach for one of the central results of [75]:

The construction of a three-dimensional space for which the
Betti number and the torsion coefficients [. . . ] are the same as
for the closed three-dimensional spherical space but which has
a fundamental group Γ a perfect group which, in turn, has the
group of the icosahedron [. . . ] as a quotient group. [. . . ] this
group is given by a finite presentation. But apart from this
example, one cannot say that Poincaré used group-theoretical
methods in any decisive manner. [20, p. 14f]

The example in question is obtained by identification of faces, and the group
is calculated from the gluing data; see [78, p. 493-496]. While Chandler
and Magnus suggest that the influence of the approach was limited to this
example (see the last sentence of the quotation), Poincaré at least treated
other examples in this way; detailed descriptions can be found in [90] and
[106].

2.4. 1908

In 1908, Poincaré publishes a second paper on uniformization in which
the concept of covering is discussed in greater generality.18 We find the

(17) See [102, p. 148] and [92] for details.
(18) I should justify my dating, for throughout the secondary literature, this paper is

cited as published in 1907. This is the year given in the Œuvres [77]; maybe most authors
cite the Œuvres rather than the Acta themselves. Now, the volume 31 of the Acta bears
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following definition of the universal covering in [76]:19

Now let D be an arbitrary domain. I claim that we can find
a domain ∆ which is a regular multiple of D and simply con-
nected. [. . .] One can go from M0 to M on D by many paths.
Consider two of these paths. They could be equivalent, that is
they could bound a continuous area situated on D; but they
may not be, at least if D is not simply connected [77, p. 91].20

Thus, like in 1895, “equivalent” means homotopic, but here for not nec-
essarily closed paths. (We will see in section 5.1 that the usage in [75] is
similar). Poincaré continues:

That given, let us define the domain ∆. A point of this domain
will be characterized by the point M of D to which it corre-
sponds and by the path by which one proceeds from M0. In
order that two points so characterized be identical it is neces-
sary and sufficient that one has come from M0 by equivalent
paths. It is clear that ∆ is simply connected [77, p. 91].21

In the considerations to follow, Poincaré uses neighborhoods on ∆ with-
out having defined them explicitly in the construction of ∆ quoted above.
Maybe this is implicit in his notion of “domain”. As we will see below when
discussing Weyl’s work, composition of paths plays a role in the definition
of these neighborhoods.

actually 1908 as year of publication, and this is a sufficient reason to adopt this date, given
that readers might wish to look up the paper in the Acta themselves. Things get more
complicated when on the first page of Poincaré’s paper we read “printed March 19, 1907”
(“imprimé le 19 mars 1907”). It is clear from the correspondence with Mittag-Leffler that
Poincaré had finished the paper even well before, since he sent it to Mittag-Leffler on
June 13, 1906 (see [79] letters 232, 233). It was not unusual that sheets of the volumes
of journals were printed as the papers came along, whence the discrepancy between the
printing date of the paper and the publication date of the volume.
(19) See [36, p. 181] for further discussion of the following passage.
(20) Translation partly taken from the quotation given in [36, p. 181] ; original passage :

“Soit maintenantD un domaine quelconque ; je dis que nous pourrons trouver un domaine
∆, régulièrement multiple de D et simplement connexe. [. . . ] On peut aller sur le domaine
D de M0 en M par plusieurs chemins; envisageons deux de ces chemins ; ils pourront
être équivalents, c’est-à-dire qu’ils pourront limiter une aire continue située sur D ; mais
ils pourront aussi ne pas l’être, à moins que D ne soit simplement connexe.”
(21) Translation quoted from [36, p. 181] ; original passage : “Cela posé, définissons

le domaine ∆ ; un point de ce domaine sera caractérisé par le point M de D qui lui
correspond, et par le chemin par lequel on est venu de M0 en M ; pour que deux points
de ∆ ainsi caractérisés soient identiques, il faudra et il suffira qu’ils correspondent à un
même point M de D et qu’on soit venu de M0 en M par deux chemins équivalents. Il est
clair que ∆ est simplement connexe [. . . ].”
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3. The fundamental group after Poincaré: coverings and
“structuralist” outcomes

In this section, we try to show that the notion of fundamental group
reached a certain “stability” in the work of the generation after Poincaré
thanks to several reasons: the simultaneous pursuit of the various approaches
to the group, notably including its fruitful interplay with the concept of
covering,22 and a focus on “structural” aspects like the study of subgroups
and quotients.

3.1. Definitions of the fundamental group in the literature after
Poincaré

First of all, we should note that the early literature shows a great diver-
sity in the treatment of the fundamental group, not only with respect to the
definition used, but as well with respect to the name given. We encounter
not only other terms for that group, but also another usage of the term
“fundamental group”. The Jahrbuch has 174 entries containing the term
“Fundamentalgruppe” and 25 entries containing “Wegegruppe”. Seven of
them actually contain both terms; thus, we have 192 entries in all. Among
those containing “Fundamentalgruppe”, 131 concern the fundamental group
in one of Poincaré’s senses, while the 43 remaining concern other usages, 35
of them in a sense promoted by Elie Cartan and ultimately relying on the
role groups play in Klein’s Erlanger Programm.

In fact, Cartan uses the term “groupe fondamental” for the group oper-
ating on a space. This usage is applied throughout his work,23 and actually
by several other authors relying, like Cartan, on the work of Klein and Lie.24

Cartan expresses the idea very clearly:

I developed, in these last years, a general theory of spaces com-
prising the classical theory of Riemannian spaces as well as the
more recent theory of Weyl spaces. [. . . ] I tried to extend that
fruitful principle of Klein’s according to which every geometry
is the study of the properties of a group of transformations G:

(22) From the presentation of the uniformization problem above, the reader might have
got the impression that the concept of covering exclusively developed from this context.
This impression would however be misleading; other relevant contexts are the question
of orientation in the work of Möbius and Klein and the “Raumproblem” of Clifford-Klein
(see [32] here). As to the history of the concept of covering in general, these few remarks
should suffice, since we are not trying to write such a history here, but rather study the
role of coverings for the conceptual development of the fundamental group.
(23) See for instance [16], [15], [17]. In [19, p. 14], the space is homogeneous.
(24) Fano seems to use the terminology like Cartan [33, p. 367f], and it is extensively

used by Koebe in various publications.
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the continuum in which the figures of this geometry are located
and the only essential properties of which are those which are
stable under an arbitrary transformation of G is called a space
with fundamental group G.25

A group isomorphic with the fundamental group in our sense is called
“groupe de connexion au sens de l’Analysis situs” on p. 28 of [19].

Some authors simply speak about the “Poincaré group”.26 In 1929, Hell-
muth Kneser suggests to replace Poincaré’s terminology of fundamental
group by “Wegegruppe” (path group; [52, p. 256]). He argues that this
term cannot be misunderstood as easily as Poincaré’s. However, he does
not point to the competing usage of Cartan; rather, he finds that homology
groups are more or less “fundamental” as well — a statement which reflects
well the situation in 1929 but would not make sense in Poincaré’s situation.
This proposal has been pursued for a while, as we have seen: there are 25
entries in the Jahrbuch.

Now to definitions; some definitions to be found in the early literature
after Poincaré are presented here while others will be presented later to-
gether with their applications (because the conceptual outcome of these
applications will prove important for my line of argument).

As far as the wording is concerned, Dehn and Heegaard in their 1907 En-
zyklopädie article give the now standard definition of the fundamental group,
based on the totality of closed oriented curves through a given point and
identified if homotopic. However, their notion of homotopic curves is combi-
natorial (defined with respect to the corresponding “Streckenkomplexe”; p.
164); they postulate the equivalence of homotopy so defined and continuous
deformability in the “Deformationsaxiom” (p. 169). As to the proof of the
group property, they merely say that the curves running through a point of
an Mn yield a discontinuous group “by their composition properties” [28,
p. 207]. Dehn further stresses in [26] that the question whether two based
paths are homotopic is a group theoretical question (the “word problem”);
see [20, p. 17] and [102, p. 173].

(25) My translation. Original quote: “J’ai développé, dans ces dernières années, une
théorie générale des espaces englobant la théorie classique des espaces de Riemann et celle
plus récente des espaces de Weyl. [. . . ] j’ai cherché à étendre le principe si fécond de Klein,
d’après lequel toute Géométrie est l’étude des propriétés d’un groupe de transformations
G: le continuum dans lequel sont localisées les figures dont s’occupe cette Géométrie,
et dont les seules propriétés jugées essentielles sont celles qui se conservent par une
transformation arbitraire de G, s’appelle un espace à groupe fondamental G” [18, p. 1].
(26) The Jahrbuch has only five relevant entries, four by Zariski and one by Flexner.

But the terminology is also used in [57, p. 82f].
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Tietze defines the fundamental group of a manifold by generators and
relations obtained from the “scheme” (“Schema”) of the manifold (the com-
binatorial encoding of the manifold he is working with) [101, p. 65ff]. He
notes that there is a connection of the fundamental group so defined with
“the multivalued but unbranched functions conceived of as extended on
the manifold”27 but this connection is, in Tietze’s words, only allusively
touched upon in the paper. Tietze thinks here of his n.6 on p. 67 where he
explains in detail how the values of such functions determine substitutions
corresponding to paths (“Wegstücke”). On p. 69, Tietze proceeds to the
proof that his fundamental group is a topological invariant (which means,
in his case, that it is invariant by transition to a homeomorphic scheme),
and notes that in Poincaré’s presentation, this emanates from the “signifi-
cance of the fundamental group for the unbranched functions extended on
the manifold”.28 Hence, in Tietze’s view, Poincaré did not need a proof of
this invariance thanks to the connection to those functions — while Tietze
needs such a proof, given his strictly combinatorial approach. Tietze does
not prove the group property of his group, which is clear since he explicitly
gives generators and relations for it.

Veblen’s treatment in [104, p. 132f] is again strictly combinatorial and
very close to Dehn-Heegaard. The role of paths is played by oriented closed
1-cells called “equivalent” if homotopic in the combinatorial sense. Veblen
explicitly notes the group axioms, and says it is “clear” that they are fulfilled
here.

Solomon Lefschetz in [57, p. 82] defines the fundamental group (“Poincaré
group”) by homotopy classes of loops; he notes how the composition, the
identity and inverses are defined, but otherwise does not bother about the
proof. He refers to [74] and [75]. Later on, he says:

Recently the Poincaré group has been the object of highly in-
teresting investigations, notably in connection with the theory
of knots by Alexander and Reidemeister, and with the isolation
of fixed points of certain surface transformations by Nielsen
and other manifolds by Hopf. The group appears also in dis-
guise in Morse’s investigations on geodesics of open and closed
surfaces.29

(27) “den auf der Mannigfaltigkeit ausgebreitet gedachten mehrdeutigen, jedoch un-
verzweigten Funktionen” (p. 65). He refers to [74, p. 60f] for this viewpoint; this is [78,
p. 239f].
(28) “Bedeutung der Fundamentalgruppe für die in der Mannigfaltigkeit ausgebreiteten

unverzweigten Funktionen”.
(29) The references given by Lefschetz are [1], [4], [3], [40], [61], [62], [64], [65], [66],

[85] and [86]. Among these 11 references, only five (the first, the sixth and the last
three, actually) have been found by our Jahrbuch query; this shows the limitations of the
automatic search procedure.
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The “disguise” in Morse’s case is the group of decktransformations of the
universal covering—at least in the reading of the Jahrbuch reviewer. Morse
himself does not use this terminology, but rather goes directly back to
Poincaré’s seminal paper on the theory of fuchsian groups [70].

Threlfall and Seifert define the fundamental group (or “Wegegruppe”) F
as the set of “Wegeklassen” [100, p. 44]; these are classes of closed oriented
curves through a given point identified if continuously deformable one in
another. They indicate how to form the product of two such classes, and
how the unit element is defined, but give no further details of the proof that
there is indeed such a group.

3.2. Weyl

One prominent place where the theory of coverings is developed is Die
Idee der Riemannschen Fläche [107].30 Weyl defines paths explicitly as con-
tinuous mappings of [0, 1] into the space; he however calls them curves
(“Kurven”).31 Weyl’s construction of the universal covering (“Universelle
b̈erlagerungsfläche”) in [107, p. 51] is the following. As expected, Weyl in-
troduces the construction only for surfaces F with a base point p0. A point
p̃ of F̃ over a point p of F is given by a path γ from p0 to p, and two such
paths γ, γ′ define the same point p̃ if in any covering of F, two paths start-
ing in the same point and mapped to γ, γ′ in F always end in the same
point. (We have seen in section 2.4 that Poincaré expressed this condition
in a way more close to the modern standpoint according to which γ, γ′ are
homotopic.)

In the definition of the topology on F̃, composition of paths (written
additively by Weyl) plays some role: given a path γ0 from p0 to p and
defining the point p̃ in F̃, a neighbourhood of p̃ consists of the points defined
by all the paths γ0 + γ where γ has p as a starting point and is completely
contained in a neighbourhood of p.

The fact that Weyl does not use the notions of homotopy of paths,
and of fundamental group, has already been stressed in the literature.32

Actually, instead of using the fundamental group, Weyl exclusively considers
the group of automorphisms (“Gruppe der Decktransformationen”) of the
covering. When using the composition of paths again later (p. 68ff), it is in
order to speak about “lineare Kurvenfunktionen” and “Integralfunktionen”

(30) For further discussion, see in particular [36, p. 182ff] and [22, p. 506]. [23, p. 52]
stresses that there are important changes in later editions.
(31) There is also a usage of the term “Weg” (which is the German equivalent of “path”)

in a different sense; this usage will be discussed in section 5.
(32) Weyl managed “to eschew the use of homotopy” [102, p. 154]. See also [36, p. 183].
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(locally null-homologous linear “Kurvenfunktionen”), these notions giving
rise to the notion of genus of a Riemann surface (half the maximal number
of linearly independent Integralfunktionen) and later the Riemann-Roch
theorem (p. 122). With the exception of §19 and §20, Weyl’s book is very
much geared towards integration, so that it is not surprising that Weyl
focuses on homology rather than homotopy. This is a first reason why the
absence of homotopy is not so astonishing; another could be that Weyl was
giving a lecture course on function theory, after all, and certainly was not
interested in multiplying more than necessary the uses of abstract notions
his students were not acquainted with.

Another point is that Weyl is concerned with surfaces, where homology
is enough to obtain a topological classification. That is, he might have been
aware that Poincaré had used a certain group to bring forward the classifi-
cation of higher-dimensional manifolds, but thought that this is irrelevant
to his interest in surfaces. Moreover, given his own background, he might
have found the presentation of the surface by functions and the definition
of the group by linear transformations more natural than the definition by
composition and deformation of paths.

Weyl might also have disliked Poincaré’s terminology “fundamental
group” (and therefore have avoided its use), for the following reason: he
certainly was aware of the usage of the term by Fano, Koebe and others
in reference to the ideas of Klein’s Erlanger Programm. Incidentally, this
terminology is adopted in the Jahrbuch review of [108]; even if Weyl does
not use this terminology himself in that paper, this shows that this usage
was both widespread and related to Weyl’s preferred fields of work.

3.3. The fundamental group and decktransformations

The connection skipped by Weyl between the fundamental group of a
space and the group of decktransformations of the universal covering has
been explicitly stressed by other authors of that generation. In the 1920s,
Jakob Nielsen made important applications of the fundamental group con-
cerned with “the isolation of fixed points of certain surface transformations”
[57, p. 82]. On the group-theoretical aspects of Nielsen’s work, the reader
can find a wealth of informations in [20, p. 81ff]. We will pick out here just
one article by Nielsen, [67], since his reading of Poincaré’s achievements
presented there is relevant to my line of argument.

Nielsen on p. 204 defines the fundamental group F of a closed two-sided
surface as a group of substitutions (shown to be hyperbolic on p. 208). He
then constructs the universal covering Φ of a surface φ with respect to the

– 932 –



The set of paths in a space and its algebraic structure

fundamental group F of φ as group of decktransformations (he does not use
this terminology, and does not give a reference to Weyl here; such a reference
can be found only on p. 286). On p. 206, Nielsen credits Poincaré to have
disclosed completely, in the fifth complement, the connection between curves
on a surface φ and curves on the universal covering Φ using the fundamental
group F of φ. This connection Nielsen explains thus (p. 207): he proves that
two curves on φ corresponding to the same element of F are homotopic and
vice versa, and the proof actually runs through a parametrized “Schar” of
curves yielding the deformation.

Now, an inspection of the fifth complement shows that Nielsen refers
here to [78, p. 465f], but that most of the matters mentioned by Nielsen are
far less explicitly said there. Nielsen is presenting a “synthetic” reading of
Poincaré here, thus testifying the claimed features of stabilization.

We have already seen how the definition of the fundamental group is dis-
cussed in [100]. Their overall goal is related to Nielsen’s work, but phrased
already in more “structural” terms: it is the theorem that the fundamental
group F of the domain of discontinuity of a finite group of motions (“Bewe-
gungsgruppe”) G of the hypersphere is the quotient of G and the subgroup
N of G generated by all motions admitting a fixed point (“fixpunkthaltigen
Bewegungen”) of G. We might conjecture that the letter N has been chosen
for “Nielsen”.

This “quotient” approach is treated in a more abstract manner in Seifert
and Threlfall’s monograph on topology. A notion of monodromy group
(without mention of multivalued functions) is defined and its relation to
the fundamental group is made explicit in terms of coverings [95, p. 199f].
They are looking for all coverings of a finite complex K with a finite number
g of sheets. To a closed path W from a point O in K belong g covering
paths with initial points Õ1, Õ2, . . . , Õg and endpoints a permutation of

these Õk1 , Õk2 , . . . , Õkg . The monodromy group is simply the group M of
permutations

(
1 2 . . . g
k1 k2 . . . kg

)
.

Since homotopic paths correspond to the same permutation, and a composed
path to the composition of the permutations, there is a homomorphism of
the fundamental group F onto M. The result is that M is isomorphic to the
quotient group F/T where T is obtained from the conjugate subgroups of F
corresponding to the covering.
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Reidemeister in [89] studies the relation between two ways of defining
the fundamental group: “as the path group of the complex on the one hand,
as the group of automorphisms of the corresponding universal covering com-
plex on the other hand”.33 He shows the equivalence of the two definitions
in his strictly combinatorial setting.

3.4. Schreier: coverings for groups

Hermann Weyl, despite making path-breaking contributions to the the-
ory of Lie groups in the 1920s, still avoided using the fundamental group in
these years, as far as I can see.34 It was Otto Schreier who transferred the
interplay of coverings and the fundamental group to the theory of topologi-
cal groups, and thereby contributed to important progress in the treatment
of Hilbert’s fifth problem. In the case of interest for us, Schreier investigated
the relation between topological groups with identical “group germ” (i.e.,
there is a neighborhood of unity identical in both groups). Schreier’s main
result is the following:

All continuous groups locally having the same structure can be
considered as factor groups of a particular group among them,
the covering group. The normal subgroups occuring are abelian
and isomorphic to the fundamental group of the corresponding
factor group, considered as a space.35

Schreier gives two accounts of this, one with proofs couched in terms
of abstract group theory (generators and relations) [93], another with new
proofs stressing, as Schreier puts it, “the topological point of view” (which
means: how the covering group (“überlagerungsgruppe”) can directly be
defined globally) [94]. Schreier gives credit to Artin for the terminology
“überlagerungsgruppe” [93, p. 24 n.6] and also for a certain example [93,
p. 32]. This is but one of several benefits of a “Vienna-Hamburg-exchange”
taking place in these years; see below.

The explicit constructions are the following. Schreier starts with R a
“Konvergenzraum” (some kind of topological space). He then defines the
notion of path (“Weg”) as follows: “By a path w on R, we mean a univalent
function F (t) continuous in the interval 0 � t � 1 and whose values are

(33) “als die Wegegruppe des Komplexes einerseits, als die Automorphismengruppe des
zugehörigen universellen überlagerungskomplexes andererseits”.
(34) See [36] and [37] for detailed accounts on Weyl’s work in this direction.
(35) “alle kontinuierlichen Gruppen, die im kleinen dieselbe Struktur haben, [können] als

Faktorgruppen einer bestimmten unter ihnen, der überlagerungsgruppe, aufgefaßt werden
[. . . ]. Die dabei auftretenden Normalteiler sind abelsch und mit der Fundamentalgruppe
der — als Raum aufgefaßten — zugehörigen Faktorgruppe isomorph” [94, p. 233].
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points of R”36 (p. 233f). Schreier then defines the notions of closed path,
contractible closed path (defined by continuation of a function on the border
of a circle to the entire circle), inverse path, and product path, and from
now on considers two paths as equal if w−1

1 w2 is contractible (this being
equivalent to w1 being homotopic to w2). He then says: “Thus, the same
path can now be determined by various functions”.37 This remark inciden-
tally underlines that by “Weg” he does mean neither just a point set nor a
class of point sets related by change of parameter38—for in both cases, it
would have been the case before that different functions can determine the
same path.

Schreier then imposes the supplementary condition (α) which we could
express by saying that R is path-wise connected. According to Schreier,
(α) implies that the paths form a groupoid;39 Schreier cites [9]. This is
presumably the first use of Brandt’s concept in topology, and the first ex-
plicit appearance of the fundamental groupoid in the literature. We will
discuss Brandt’s work and the further history of the concept of fundamen-
tal groupoid in section 4.

On p. 236, Schreier passes to the consideration of a group G which
is supposed to be an “L-Gruppe” (which means that its elements form a
“Konvergenzraum” and that product and passage to the inverse are contin-
uous) fulfilling condition (α) and another condition. For A in G, the paths
determined by F (t) and by AF (t) are considered as equal. Schreier then
says:

By an appropriate choice of A, we can transfer the initial point
of a given path to an arbitrary element of G or put differently,
we can start the run through S the path from an arbitrary
point. It is thus possible to compose any two given paths. It
follows from 1. that with this composition, the set of paths on
G is turned into a group g.40

(36) “Unter einem Weg w auf R verstehen wir eine im Intervall 0 � t � 1 (eindeutige
und) stetige Funktion F (t), deren Werte Punkte von R sind”.
(37) “derselbe Weg kann also jetzt durch verschiedene Funktionen bestimmt werden”.
(38) See section 5.3 below.
(39) They actually form a groupoid in the modern sense for any R; however, the

groupoid is transitive, and hence a Brandt groupoid (see section 4.3 below), only if R is
path-wise connected.
(40) “Durch passende Wahl von A können wir den Anfangspunkt eines gegebenen Weges

nach einem beliebigen Element von G verlegen, den Weg also von einem beliebigen Punkt
aus durchlaufen. Wir sind daher auch in der Lage, irgend zwei Wege miteinander zu
multiplizieren. Aus 1. folgt, daßwir so die Menge der Wege auf G zu einer Gruppe g
machen” [94, p. 236].
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By “1.”, Schreier refers to the preceding paragraph where he showed that
homotopy classes of paths form a groupoid. Thus, Schreier overcomes the
fact that composition of these classes is only partially defined by passing
to equivalence classes of these classes for left translation. g is shown to be
itself an “L-Gruppe”; in fact, topologically, g is just the universal covering:
Schreier could have worked on the topological level perfectly well with a
base point instead of classes for left translation, and every path with the
base point as the initial point represents an element of g. In this sense, he
would have obtained the same group.

In the next step, Schreier reintroduces a base point (the unit element
E of G), in order to get a well-defined homomorphism from g to G which
maps any path with initial point E to its endpoint. The fundamental group
f of G (which is the group of paths with initial point and end point the
unit element E of G) is shown to be an invariant subgroup of g, and g/f
is isomorphic with G. From Satz 8 of the 1925 paper, it follows that f is
abelian.

We cannot pursue here the far-reaching applications these results had
in the context of Hilbert’s fifth problem in work by Pontrjagin and van
Dantzig.41 At present, we should note that, as [36, p. 192] points out, Car-
tan arrived independently at a similar result. As we have stressed already,
Cartan’s wording for the fundamental group in [19] is “groupe de connexion
au sens de l’Analysis situs” (p. 28). In fact, Cartan considers a connected
topological groupG operating on a homogeneous Lie space E and the largest
subgroup g of G leaving unchanged a certain point O of the space. This g
can itself be connected or “mixed” (“mixte”) (this terminology goes back
to Klein and Lie; see [33, p. 295], for instance). If g is mixed, to each of its
connected components gι corresponds in E a homotopy class of closed paths
(in our present terminology), constructed by joining the unit element of G
to an element of gι, and applying the elements of the path in G so obtained
to the point O in E yields a closed path in E. Thus, the number of homo-
topy classes is the number of connected components. This construction of
the fundamental group of a Lie group is very similar to the one given by
Schreier.

3.5. Reidemeister’s knot theory: Subgroups and coverings

It is well known that great advances in the theory of knots have been
made by the introduction of the “knot group” (the fundamental group of
the complement of the knot), most notably in [27] and in the papers by

(41) See [81] and [25]. I plan to discuss these issues in more detail in a paper on the
history of direct and inverse limits under preparation.
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Alexander on our list of references.42 Another crucial step has been made
by Kurt Reidemeister in [84] by extending the theory of coverings by the
study of the subgroups of the fundamental group of the covered space.
The discovery of this tool43 lead to important progress not only in knot
theory, but also in the theory of Lie groups. As explained in [20, p. 91ff],
Reidemeister’s method to calculate a presentation for a subgroup H of G,
given a presentation for G, has been extended and simplified by Schreier
and is therefore duly called the “Reidemeister-Schreier method”.

First of all, it is worth noting that in [84, p. 14], the knot group is
defined directly by indicating certain generators and relations, and for a
proof of the fact that it is the fundamental group of the complement of
the knot, Reidemeister refers to [5, p. 57-62]. The method used by Artin
for constructing generators and relations is Wirtinger’s; Artin says (p. 58)
to have learned it from Schreier. Again, we find that the Vienna-Hamburg
exchange played an important role in the development of an application of
the fundamental group. 44 This historical context actually even played a role
for Reidemeister’s decision to adopt the strictly combinatorial viewpoint in
his topological work (a feature which gives rise to very particular definitions
of the basic notions); see [31, p. 322ff].

Reidemeister emphasizes that the knot group as such is not very useful
as an invariant since among the many properties of such groups, only one is
recognizable from the defining relations, namely the structure of the factor
group of the commutator subgroup, or the “Poincaré numbers”,45 and these
are identical for all knots. We would say that the abelianization of the
fundamental group of R3 \K for every knot K is just Z. But Reidemeister
succeeds in determining defining relations for certain subgroups of the knot
group whose Poincaré numbers are not trivial any longer.

Chandler and Magnus raised doubts about the claim that this strategy
actually has been invented by Reidemeister.

[Reidemeister in 1927] emphasizes the fact that the group Hn
defined above is the fundamental group of an n-fold covering
space of the space which has K as a fundamental group. Cer-
tainly, this is not a new insight. Probably, it is due to Poincaré;
we have no reference and it is, of course very difficult to claim
that something is not due to Poincaré. [20, p. 95]

(42) See [31] for the history of knot theory in general and [20, p. 19] for a short account
on Dehn’s paper [27].
(43) This wording has been introduced by [31] in the present context.
(44) See [20, p. 90f] on the influence of Wirtinger on Reidemeister.
(45) This terminology is due to [101, p. 56ff] and also used by [104, p. 141].
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But in the absence of any concrete evidence, I think we should continue
to attribute the idea to Reidemeister. Poincaré in his study of the universal
covering in uniformization theory does not even speak about the fundamen-
tal group he introduced elsewhere. Both Nielsen’s and Sarkaria’s reading of
Poincaré discussed above only point to uses of the fundamental group in
studies of the universal covering, not of coverings in general. It is clear that
he studies such coverings in [76], but the only one important for the purpose
is the universal covering since he needs a simply connected covering for the
definition of the uniformization. The consideration of the group aspect is
restricted to this case as well (see §9 of his paper). Reidemeister himself
in the introduction to his monograph on combinatorial topology only very
vaguely gives credit to Poincaré for the general idea, but clearly points to
the accessibility of the subgroups of the fundamental group as something
new in the field:

The close relationship [between groups and complexes] has al-
ready been known since the fundamental work of Henri Poinca-
ré. If it did not show up in all distinctiveness in the further
development of combinatorial topology, this was due to the dif-
ficulty of those problems in which topology and group theory
meet: it might have seemed pointless to investigate relations
which at first glance only allowed to translate open topological
questions into open group-theoretical questions. Such doubts
would not be justified any longer today. Ever since, for a group
given by generators and relations, generators and defining re-
lations for subgroups can be determined, group theory forms
a fruitful instrument of calculation for the topologist, allowing
to submit many formerly intractable questions to a systematic
investigation.46

(46) “Die enge Beziehung [zwischen Gruppen und Komplexen] ist schon seit den
grundlegenden Arbeiten Henri Poincarés bekannt. Wenn sie in der Weiterentwicklung
der kombinatorischen Topologie nicht immer mit nachdrücklicher Deutlichkeit hervor-
tritt, so lag das an den Schwierigkeiten jener Probleme, in denen sich Topologie und
Gruppentheorie berühren: Es mochte unfruchtbar erscheinen, Beziehungen nachzugehen,
die zunächst nur ungelöste topologische Fragen in ungelöste gruppentheoretische Fragen
zu übersetzen erlaubten. Solche Bedenken wären heute nicht mehr gerechtfertigt. Seitdem
sich Erzeugende und definierende Relationen von Untergruppen einer durch Erzeugende
und Relationen erklärten Gruppe bestimmen lassen, bildet die Gruppentheorie für den
Topologen ein ertragreiches Recheninstrument, mit dem sich viele bisher unzugängliche
Fragen einer systematischen Untersuchung unterwerfen lassen” [87, p. vii].
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4. Composition of general paths and groupoids

[. . . ] the success of algebraic methods in topology [. . . ] explains
the preference for theories with “base point” and constrained
deformation even though free deformation is a more natural
concept [102, p. 182].

Whatever it means that free deformation47 is “more natural” than con-
strained deformation, this quotation shows that talk about “algebraic meth-
ods” is easily taken to mean just the use of groups. From our present view-
point, however, to restrict attention to group structures implies to impose
a particular restriction on the kind of set of paths admitted for the use of
structural methods. We can ask, historically, when this choice has been rec-
ognized as such, according to which criteria it has been made, and whether
there have been exceptions. We find that there indeed have been exceptions
in that the concept of fundamental group has given rise to the concept of
fundamental groupoid. This concept was used at various places with vari-
able effect, and there is an interesting but a bit intricate interaction with
later generalizations of the concept of fundamental group. In the present
section, we will retrace briefly both the history of the groupoid concept in
general and more specifically of the fundamental groupoid.

4.1. Poincaré and partially defined group operations

We already have seen that Poincaré’s use of the term “group” is quite
informal. It is but another interesting fact about this use that he actually
speaks about “groups” where the composition he has in mind actually only
is partially defined. This is the case, for instance, for the “group” presented
in [78, p. 198], whose elements are diffeomorphisms and which is actually a
groupoid; see [92, p. 289] for discussion. (It is clear that Poincaré wants this
“group” to play a role related to Klein’s conception of a group as charac-
terizing a geometry; see [31, p. 228].) But for the present paper, examples
related to path composition would be more relevant.48

4.2. Reidemeister

Early usage of the notion of groupoid in topology can be found not only
in Schreier’s work discussed in section 3.4, but also in Reidemeister’s mono-
graph on combinatorial topology: “In some topological questions, a gener-

(47) A terminology that stems from [95, p. 174], actually.
(48) Volkert points to [78, p. 243] for a composition of not necessarily closed paths
M1AM2, M2BM3 [106, p. 119f n.91], but Poincaré apparently does not discuss the alge-
braic structure of such a composition.

– 939 –



Ralf Krömer

alization of the group concept, the groupoid, is a useful auxiliary notion”49

[87, p. 27]. Reidemeister on p. 30 studies the generators of a groupoid, in
analogy with the study of the generators of a group. On p. 107, Reide-
meister considers the “Gruppoid aus den Klassen beliebiger äquivalenter
Wege” (we would say now: the fundamental groupoid; actually, Reidemeis-
ter adopts the terminology “Wegegruppe” for the fundamental group), and
indicates possible applications to surfaces of higher genus.

Like Schreier, Reidemeister gives explicit reference to the work of the
algebraist Heinrich Brandt for the notion of groupoid. Thus, we should now
take a look at this work, and at further evidence for its influence in topology.

4.3. Algebraic origin of the explicit groupoid concept

The concept of groupoid has first been explicitly defined by Heinrich
Brandt.50 In his dissertation (1913), Brandt generalized Gauss’ notion of
composition of equivalence classes of binary quadratic forms contained in
the Disquisitiones arithmeticae51 to the case of quaternary forms. While
in the binary case this composition yields a finite group, it yields a finite
groupoid in the quaternary case. Brandt extensively studied the structure
of this groupoid in various publications and eventually in 1926 published
a paper exclusively devoted to this generalization of the group concept [9].
The fact that the operation is only partially defined makes the basic axioms
tedious, as in the case of associativity:

If AB and BC exist, then (AB)C and A(BC) exist as well;
if AB and (AB)C exist, then BC and A(BC) exist as well; if
BC and A(BC) exist, then AB and (AB)C exist as well, and
in each case (AB)C = A(BC), such that one can write it as
ABC as well.52

Brandt then postulates the existence, for any element A, of left and
right unities (“Einheiten”) E,E′ with AE = E′A = A and of (left) inverse
elements. Brandt next shows that an element E is a left or right unity for
some other element if and only if EE = E. Brandt’s last axiom guarantees

(49) “Bei manchen topologischen Fragen ist eine Verallgemeinerung des Gruppenbe-
griffs, das Gruppoid, ein nützlicher Hilfsbegriff”.
(50) Fuller accounts of the history of the groupoid concept can be found in [39] and [13].

The historical question whether Brandt’s concept did play a role in the introduction of
category theory or not will be treated elsewhere.
(51) For Gauss’ work, see [112, p. 40ff] and [91].
(52) “Wenn AB und BC existiert, so existiert auch (AB)C und A(BC), wenn AB und

(AB)C existiert, so existiert auch BC und A(BC), wenn BC und A(BC) existiert, so
existiert auch AB und (AB)C, und jedesmal ist (AB)C = A(BC), so dass dafür auch
ABC geschrieben werden kann” [9, p. 361].
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transitivity in the following sense: for every two E,E′ such that EE = E
and E′E′ = E′ (hence, by the preceding proposition, for every two unities),
there is an A with AE = E′A = A. This is a restriction compared with the
now usual definition of a groupoid; as we have seen above, it was in this
restricted sense that the term has been used by Schreier and Reidemeister.

Despite being published in the Annalen, Brandt’s paper is only eight
pages long and does not contain any “deep” theorem about the notion. After
the definition, Brandt develops some basic groupoid theory by adapting in
a more or less obvious way some notions from basic group theory (like
homomorphisms, subgroups, factor groups and composition tables). While
it would probably be easy to retrace these results to the original context
of application (quaternary quadratic forms), it would be interesting to look
for archival material explaining the fact that this paper has been accepted
for publication in the Annalen at all.

The early reception of this paper by Brandt is visible through the Jahr-
buch. Actually, there are only 22 hits for “Gruppoid”; these publications fall
into the following categories:53

• 3 on groupoids in general: Brandt 1926, 1927, Richardson 1939;

• 1 concerning the fundamental groupoid: Reidemeister 1932 (in the
Schreier review, the term is not present);

• 7 concerning applications of Brandt’s notion in the theory of algebras
and their ideals: Brandt 1928 (2 papers), Hasse 1931, Deuring 1935,
Chevalley 1936, Eichler 1938, Asano 1939;

• 3 concerning other applications: Schmidt 1927, Baer 1929, Suschke-
witsch 1930;

• 8 which do not use the term groupoid in Brandt’s sense, but in a
different sense. 3 papers by Birkhoff concern the following notion:
“every ordered pair of elements corresponds uniquely to an element of
the system as its product; multiplication is associative, and there is a
left and right unity”.54 The papers Hausmann and Ore 1937, Boruvka
1941, Dubreil 1941 and 1942 concern a “set in which a multiplicatively
written operation is possible”55, and finally Vandiver 1940 concerns
commutative semi-groups, in modern terms.

(53) Most of the publications listed here are not included in the list of references of the
present paper since they are only mentioned here for statistical purposes. The reader can
easily identify them by doing the corresponding query on the Jahrbuch web page.
(54) “Jedem geordneten Paar von Elementen entspricht eindeutig ein Element des Sys-

tems als Produkt; die Multiplikation ist assoziativ, und es gibt eine beiderseitige Einheit”;
JFM60.1086.09.
(55) “Menge, in der eine als Multiplikation geschriebene Operation ausführbar ist”.
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Thus, we find that the use of Brandt’s notion in topology suggested by
Schreier and Reidemeister was an isolated one and had no followers, at
least as far as the Jahrbuch data and the period up to 1942 is concerned.
The only field were the notion acquainted some recognition (expressed in
a wider use) is the theory of algebras and their ideals. Moreover, there
was a variety of differing usages of the term; although they were even less
influential than Brandt’s usage, this shows that his usage was far from being
well-established by then.

4.4. Veblen and Whitehead

Brandt was not the only author generalizing the group concept in the
direction of partially defined composition. This conception played a central
role also in the generalization of the Erlanger Programm for the purposes
of relativity theory undertaken by Veblen and Whitehead [105]; see [22]
chapter 13. In this context, they arrive at the concept of a pseudo-group of
transformations:

A set of transformations will be called a pseudo-group if it
satisfies the conditions:

(i) If the resultant of two transformations in the set exists it
is also in the set.

(ii) The set contains the inverse of each transformation in the
set.

[105, p. 38]

Towards the end of their book, this concept is applied in the following
way:

With each point P of an underlying regular manifold there
is associated a space S(P ), and all these spaces are isomor-
phic. A family of displacements is a set of transformations
S(P ) → S(Q) [fulfilling four conditions]. Thus, a family of
displacements is a pseudo-group of isomorphisms between as-
sociated spaces. The standard method of determining a family
of displacements is by means of a geometric object, such as
an affine connection, which, together with a curve joining two
points P and Q, determines a transformation S(P ) → S(Q)
[105, p. 91].

Without going into the details of this definition, we can note that what
is defined, implicitly, is a functor on a space of paths. Let us note further
that on p. 92, they introduce the holonomy (“holonomic”) group as a group
contained in this pseudo-group.
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4.5. Steenrod, local systems and axiomatic homotopy theory

Another appearance of the fundamental groupoid can be found a bit
later in Steenrod’s “local systems”. Steenrod develops this concept in [97]
and then devotes a paper on its own to it, entitled “Homology with local
coefficients” [98]. This work belongs to the prehistory of sheaf theory.56

Steenrod does not cite [105], but this book presumably is well known to
him when introducing his “local systems”. Actually, [97, p. 117] refers to
[111] for the concept of differentiable manifold who in turn refers to [105].

The situation is the following:57 for a point x of an arc-wise connected
space R, Fx denotes the fundamental group of R with respect to x; there are
isomorphisms αxy : Fx → Fy determined by the classes αxy of homotopic
paths from x to y. Steenrod generalizes this situation by speaking of a
“system of local groups” when for each x there is a group Gx and for each
class of paths axy there is a group isomorphism Gx → Gy. The reader
will at once recognize the great similarity of this situation with the one
found in Veblen-Whitehead; this makes an influence of Veblen-Whitehead
on Steenrod’s work even more probable.

On the other hand, Steenrod’s work is closely related to work by Rei-
demeister. Actually, Steenrod cites five publications by Reidemeister, one
of which, namely [88], contains the notion of “Überdeckung”; according to
Steenrod, this notion is equivalent to homology with local coefficients, but
Reidemeister’s paper only came to his attention after his own paper had
been written [97, p. 124].

In modern terms, a local system as defined above is actually a functor
from the fundamental groupoid to the category of groups, but Steenrod
does not use any of these terms. Concerning the fundamental groupoid,
it is not clear whether Steenrod knew the groupoid terminology by that
time. He could have known from Reidemeister. But not only does Reide-
meister in [88] not speak about the fundamental groupoid, but moreover
in his setting of “Überdeckungen”, the fundamental groupoid is not easily
visible, first of all because the setting is strictly combinatorial. For Rei-
demeister, a “Überlagerung” of an n-dimensional simplicial complex K is
another such complex U each of whose cells lays over a unique simplex of
K. In a “Überdeckung”, the cells over a simplex form a group whose com-

(56) See [41], [42], [54], [22].
(57) A detailed account of the problem situation attacked by Steenrod (especially how

Steenrod uses these systems to obtain local coefficients for homology) can be found in [23,
p. 48f]. For our present purposes, it is sufficient to know that Steenrod is studying fibre
bundles and that the coefficients come from the higher homotopy groups of the fibers.
Accordingly, Steenrod in [99, p. 154] explains that homotopy groups form a special local
system.
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position corresponds in a certain way to the incidence relations in K, and it
follows from the precise definition that all these groups are isomorphic. Rei-
demeister then explains how the incidence matrices of U can be obtained
from that group, and that they relate to the “Wegegruppe” in the same
way exposed earlier by him for “Überlagerungen”. All this presumably is
re-translatable in the more structural setting of Steenrod. Groupoids are
still absent from Steenrod’s book on fibre bundles [99]. Local systems are
now presented as “bundles of coefficients” (p. 155)—a setting actually closer
to Reidemeister’s—, and in this setting the role of paths is less obvious.

As concerns the terminology of functors and categories, as is well known,
Steenrod was involved in Eilenberg’s and Mac Lane’s enterprise from an
early stage on, but his paper on local systems was received January 1942,
hence slightly before Eilenberg and Mac Lane’s first writings on functors
and categories could have induced him to use the term functor here.

The fundamental groupoid is explicitly mentioned in a presentation of lo-
cal systems by Jean Frenkel (Exposé 10 in the Séminaire Cartan 1948/49).58

Also Steenrod himself later used the fundamental groupoid explicitly in con-
nection with local systems when sketching, with Eilenberg, a possible way
to an axiomatization of homotopy theories following the model of their
axiomatic homology theories. In the first 1952 edition of Foundations of
algebraic topology one reads:

In axiomatizing the homotopy groups one would need an addi-
tional basic concept, namely: the isomorphisms πq(X,A, x0) ≈
πq(X,A, x1) assigned to a homotopy class of paths in A from x0

to x1. One would deal not with single groups but with systems
of groups connected by isomorphisms assigned to the funda-
mental groupoid of A [30, p. 49]

So Eilenberg and Steenrod thought local systems would be useful in axiom-
atizing homotopy theories (and eventually had adopted the terminology of
fundamental groupoid by 1952, in agreement with Eilenberg’s earlier use of
the term in a Bourbaki draft to be described below).

However, when an axiomatization of homotopy theories actually was
achieved somewhat later by John Milnor [60], local systems played no longer
a role. Jean-Pierre Marquis says the Eilenberg-Steenrod proposal “turned
out to be inadequate” [59] but gives no further evidence for that claim.
The passage quoted above from [30] is still present in the second printing

(58) See http://www.numdam.org/numdam-bin/feuilleter?j=SHC.
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of 1957, but a pointer to Milnor’s paper is added. We will see in section 5.5
that Milnor’s work eventually influenced later work generalizing the concept
of fundamental group in an entirely different direction.

4.6. Groupoids in Bourbaki

The fundamental groupoid is not contained in any published part of
the Éléments de Mathématique. But we can find traces of it in internal
reports; and the groupoid concept actually is present in Algèbre. In the first
1942 edition of chapter I (Structures algébriques) of Algèbre, the very first
definition reads as follows:

We call an internal law of composition between elements of a
set E a function f of a subset A of E × E into E.59

Thus, the Bourbaki members found it useful, by 1942, to provide for
operations only partially defined (i.e., only defined on a subset of E × E).
The discussion is visible in the corresponding internal minutes, La Tribu
no5, Congrès de Clermont (7-10 Décembre 1940). Concerning §1 of livre II:
Algèbre, there is a handwritten commentary saying “provide for laws not
everywhere defined, see groupoids, Fastringe and so on” (“prévoir lois non
définies partout, cf. groupöides, Fastringe, etc.”)60 So far, I was not able to
identify the hand. It is worth noting, in this context, that Claude Chevalley
was among the authors contributing in the 1930s to the applications of
Brandt’s groupoid in the theory of algebras and their ideals ([21]; see above).
It is an interesting fact that the passage “d’une partie A” disappears in later
editions and thus is also absent from the 1974 english translation based on
the 1971 edition. I know of no archival material documenting this change of
mind.

But there has also been implanted an exercise in Algèbre (still existing
in later editions) presenting the concept of groupoid.61 In this case, archival
material shows that the exercise has been added into the typescript by
cutting and gluing. The relevant rédaction is no33 which actually exists in
Nancy (Archives Delsarte) in two versions, 33 (1) and 33 (2). Unfortunately,
only 33 (1) is available on line,62 but the readers can convince themselves

(59) “On appelle loi de composition interne entre éléments d’un ensemble E une appli-
cation f d’une partie A de E × E dans E” [7].
(60) See http://mathdoc.emath.fr/archives-bourbaki/PDF/nbt 006.pdf. Read-

ers not acquainted with the Bourbaki archival material might wish to read
http://mathdoc.emath.fr/archives-bourbaki/a propos.php, and section 1 of [53].
(61) See §6 exercice 22 in 11942 and 21951, or §4 exercice 23 in the nouvelle édition

(31970).
(62) See http://mathdoc.emath.fr/archives-bourbaki/consulter.php?id=033 iecnr 040
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that 33 (1) differs in important respects from the published 1942 version.
The version used for printing actually is 33 (2), and there, the exercise is
glued in at the appropriate place.

In another unpublished Bourbaki draft, the fundamental groupoid is
used; see rédaction no103 entitled “Rapport SEAW sur la topologie prého-
mologique”.63 This is one of the first contributions of Samuel Eilenberg
to the Bourbaki project, written together with André Weil for a Congrès
Bourbaki in April 1949.64 The major part of the 82 typewritten pages of the
report is concerned with the theory of fibre spaces; the text however starts
with a short section I on groupoids. There is a definition of the groupoid
concept, together with a pointer to the corresponding exercise in Algèbre.
The definition is Brandt’s, with the exception that Brandt’s transitivity ax-
iom is not any longer postulated for groupoids in general; groupoids having
this additional transitivity property are called “connexe”. It is then noted
that paths in a space identified if homotopic form a groupoid (actually using
the terminology “fundamental groupoid”) which is “connexe” for path-wise
connected spaces.65

On p. 69 of that manuscript, there is a combinatorial definition of paths
composed of abstractly given vertices (“sommets”) and edges (“arêtes”);
interestingly, they then say:

Let [∼] be the strongest equivalence relation on the set of paths
which is compatible with the law of composition [. . . ] and such
that: 1) if b is an edge with vertices a, a′, then (a, b, a′, b, a) ∼
(a); 2) if c is a face with vertices a, a′, a′′ and edges b, b′, b′′,
then (a, b, a′, b′, a′′, b′′, a) ∼ (a). [. . . ] the equivalence classes of
paths form [. . . ] a groupoid, the fundamental groupoid of the
complex [. . . ].66

Note that by this definition the relation ∼ is chosen to be the finest rela-
tion guaranteeing that 1- and 2-simplexes are homotopically trivial. Thus,
homotopy is overtly build in the definition of the groupoid structure. This
groupoid is “connexe” for the space B supposed connected and locally con-

(63) See http://mathdoc.emath.fr/archives-bourbaki/PDF/103 nbr 014.pdf.
(64) Concerning this dating hypothesis, a detailed argumentation can be found in [55].
(65) This generalization of Brandt’s original definition is essential in a later application

of the fundamental groupoid, namely Ronald Brown’s extension of the Seifert-van Kam-
pen theorem to spaces whose intersection is not path-wise connected. This application
was first presented in Brown’s Elements of modern topology [12]; see [13] for a survey.
(66) “Soit [∼] la relation d’équivalence la plus stricte sur l’ensemble des chemins qui soit

compatible avec la loi de composition [. . . ] et telle que : 1) si b est une arête de sommets
a, a′, on ait (a, b, a′, b, a) ∼ (a); 2) si c est une face de sommets a, a′, a′′ et d’arêtes b, b′,
b′′, on ait (a, b, a′, b′, a′′, b′′, a) ∼ (a). [. . . ] les classes d’équivalence de chemins forment
[. . . ] un groupöıde, le groupöıde fondamental du complexe [. . . ].”
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nected, and there are some results about representations of such a groupoid
in a group, eventually applied to the group of a covering. From p. 71 on,
the combinatorial setting is replaced by “la méthode des chemins”, including
the “relèvement”, or more generally “chenilles” (which are defined on a sim-
ply connected space other than [0, 1]). The equivalence relation in this case
again is chosen as “la plus stricte” compatible with the composition and ful-
filling a supplementary condition, again guaranteeing homotopic triviality
of certain simple parts of the space.67

From this data, we can conjecture that members of the Séminaire Cartan
were aware of the Bourbaki report when reading Steenrod there, and there-
fore identified the fundamental groupoid implicit in Steenrod’s construction
of local systems. It is also probable that it was Eilenberg (who coauthored
the report, after all) who introduced the explicit use of the fundamental
groupoid in the discussion of local systems in Eilenberg-Steenrod.

5. Equivalence relations finer than Homotopy

5.1. The intuitive conception of continuous deformation

From today’s point of view, the formally defined concept of homotopy of
paths includes the homotopy of two different paths consisting of the same
point set. In this section, I however intend to show that in the literature up
to the first half of the twentieth century, continuous deformation of paths
intuitively was conceived exclusively as a deformation of one point set into a
different one. The methodological difficulty with this claim is the size of the
corpus. The Jahrbuch has more than 3400 answers to the query “deform*”;
this only shows how central the idea of deformation is to many fields of
mathematics. But I see no simple way so far to pick out those relevant for
my study. I thus cannot help to present just some more or less incidental
findings which underpin my claim.

Let us see first how deformation of paths appears in Jordan’s paper on
the monodromy group [49, p. 101f]. In the following quote, x is the complex
variable, and y1, . . . , yn are the solutions of the given equation.

Let us now suppose that x, after having varied according to
any determined law whatsoever, returns to its point of depar-
ture, and let us follow the variations of the integral y1 and its
derivatives. [. . . ] The change produced on the system of inte-

(67) It would be interesting to compare in detail this report with the exposés on fibre
space contained in the 1949/1950 Séminaire Cartan, in particular to check whether in
the latter there were uses of the fundamental groupoid too.
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grals y1, . . . , yn could be represented by a linear substitution
[. . . ]

Now, if we vary x in every possible way, in order to envelop
successively the various singular points α, β . . ., we will obtain
a certain number of substitutions the combination of which
will form a group G.68

Jordan’s wording does not necessarily imply the use of homotopy classes.
The expression “varier suivant une loi déterminée quelconque” does not im-
ply continuity of variation or variation along a path, and the expression
“varier x de toutes les manières possibles, de manière à envelopper succes-
sivement les divers points singuliers” does not imply continuous deforma-
tion. It is just the intuitive idea to envelop the singularities. But my point
here is not whether Jordan really considered noncontinuous paths and non-
continuous deformation or not; I just would like to stress that Jordan aims
at exhausting the non-singular part of the plane, and in this situation it is
certainly not useful to consider deformations of paths leaving the point set
stable. This is what I would like to call the intended model of homotopy of
paths; it will be shown to be assumed (sometimes tacitly, sometimes not)
at key places in the literature under inspection.

We can find a similar but less detailed consideration of enveloping singu-
larities in [71]; in [76], Poincaré very clearly presupposes that two different
paths are different as a point set, since he says “they could be equivalent,
that is they could bound a continuous area situated on D”.69 There is also
evidence for the same phenomenon in Poincaré’s writings on analysis situs.
In [74], Poincaré saysM0BM0 ≡ 0 if the closed contourM0BM0 constitutes
the complete boundary of a 2-dimensional manifold contained in V [78, p.
241]. Also the following quote, taken from [75], shows that Poincaré thinks
about deformations of one point set into another:70

When we write
C ≡ C ′

(68) “Supposons maintenant que x, après avoir varié suivant une loi déterminée quel-
conque, revienne à son point de départ, et suivons les variations de l’intégrale y1 et de ses
dérivées. [. . . ] L’altération produite sur le système des intégrales y1, . . . , yn pourra être
représentée par une substitution linéaire [. . . ]

Si maintenant nous faisons varier x de toutes les manières possibles, de manière à
envelopper successivement les divers points singuliers α, β . . ., nous obtiendrons un certain
nombre de substitutions dont la combinaison formera un groupe G.”
(69) “ils pourront être équivalents, c’est-à-dire qu’ils pourront limiter une aire continue

située sur D” [77, p. 91]
(70) The context of the passage is the one referred to in Nielsen’s comment on the fifth

complement discussed in section 3.3.
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we understand that the initial and endpoint of the closed cycle
C is the same as that of C ′, and that there is a simply con-
nected area between C and C ′ whose boundary consists of C
and C ′. In other words, we can pass from C to C ′ by making
C vary in a continuous manner so that it always forms a single
closed curve with fixed initial and endpoint. This is what we
may call proper equivalence.71

According to Sarkaria, the subsequent notion of improper equivalence means
free homotopy [90, p. 162]. Brouwer expressed much the same conception
[11, p. 523].72

Now, while Poincaré still used many basic concepts of the theory of topo-
logical manifolds (including the concept of deformation) in an informal way,
Dehn and Heegaard, as we have already stressed, replaced many of these
informal conceptions by formally (and even strictly combinatorially) defined
ones in [28]. We should ask whether there is still an intuitive residue in their
treatment of deformation. Such a residue can be found in what they call the
“Anschauungssubstrat”. Recall that they postulate the equivalence of their
purely combinatorial notion of homotopy and continuous deformability in
the “Deformationsaxiom” (p. 169). Now, they do not define what continuous
deformability means, but homotopy for them is an external transformation.
This means the following (p. 164): let there be given on a manifold Mn a
“Streckenkomplex” C ′1 constituted by “Strecken” Sl1 = (P i0, P

k
0 ). Let there

be given moreover a function mapping every point P i0 to another point Qi0
of Mn and every Sl1 to T l1 = (Qi0, Q

k
0); this gives another “Streckenkom-

plex” C ′′1 .73 Now, suppose that one can join every two points P i0 and Qi0
by a “Strecke” U i1 such that the closed circle {Sl1, Uk1 , T l1, U i1} bounds an
elementary manifold. Then they say that C ′1 is transformed into C ′′1 by an
external transformation. The fact that the condition involves a closed circle
bounding a manifold together with the “Deformationsaxiom” means that
deformation involves a change of point set.74

(71) Quoted after [80, p. 200]. Original quote: “Quand nous écrivons

C ≡ C′
nous entendons que le point initial et final du cycle fermé C est le même que le point initial
et final du cycle fermé C′, et qu’il existe entre C et C′ une aire simplement connexe dont
la frontière complète est formé par C et C′ en faisant varier C d’une manière continue de
la façon que le cycle reste constamment formé d’une seule courbe fermée et que le point
initial et final demeure invariable. C’est ce qu’on peut appeler l’équivalence propre” [78,
p. 465f].
(72) We will come back on Brouwer’s work in more detail in the next section. See also

[102, p. 180].
(73) The indices represent dimensions.
(74) Van den Eynde gave a thorough conceptual comparison between the Dehn-
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The “Anschauungssubstrat” by Dehn-Heegaard is also referred to by
Tietze [101, p. 2]. Tietze underlines that “one will consider the idea of
the cell system as taken from intuition”.75 He then notes that this “An-
schauung” is drawn on in deductions to a large extent. Later on, he notes
that “Anschauung” occasionally has been drawn on for the sake of clar-
ity at places where a purely logical deduction would have been possible
without difficulty either (p. 4). But which intuitive features are lost in the
strictly combinatorial approach? As we have seen, Tietze stressed that the
multivalued-functions context is among the things one loses. Things that
flow directly from this context as long as it is present have to be proved
as soon as it is absent. But in this context, deformations of a path inside
its point set are of no use, since this changes nothing with respect to the
singularities.

5.2. From paths to general mappings

The observations made in the preceding section incidentally motivate
to focus a bit on an interesting aspect of the modern formal conceptual
apparatus, concerning the very notion of path. Formally, a path in a space
X is not just a point set but a continuous function [0, 1]→ X. The curve is
determined and tied to the continuum of a real interval by a parametrization.
This guarantees for the “continuity” and the “1-dimensionality” of the path,
but also for the existence of a sense in which to run through it.76 Historically,
these features certainly were needed because paths are typically paths of
integration. We have seen in what precedes that paths have been defined in
this way by various protagonists of our story, e.g. Weyl and Schreier.

But once paths are defined as such mappings, one needs to know what
a continuous deformation of such a mapping into another is. (Note that
Dehn-Heegaard and still Veblen defined homotopy of complexes rather than
of mappings, and saw paths as a special type of 1-cells.) And then one
might start to think about continuous deformations of arbitrary continuous
mappings into other arbitrary continuous mappings. This step has first been
made by Brouwer [11, p. 527]. Vanden Eynde, after giving the corresponding
quotation, comments:

Heegaard conception of homotopy and Jordan’s [102, p. 165f]. But the results of this
comparison do not alter the point I am making here.
(75) “die Vorstellung des Zellensystems [. . . ] wird man [. . . ] als der Anschauung ent-

nommen [. . . ] ansehen”.
(76) Philosophically speaking, we could say that the mathematically precise definition of

“path” seems to involve necessarily a sidestep to the real numbers. We do not understand
what a one-dimensional continuum in general is; we only can recognize continua by
relating them to a “sample continuum”, the continuum of real numbers.
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The explicit statement which says that the position of a point is
a continuous function of its initial position and the parameter
is the mathematically rigorous definition of the deformation
process. It marks the transition of the intuitive understanding
of this process to a rigorously defined concept and allows for
the extension of the homotopy concept from paths to maps in
general. [102, p. 179]

I agree that it is the explicit statement mentioned by Vanden Eynde
which “allows” for that extension, but this does not tell us anything about
the motives for this extension. At least, the intuitive understanding of the
process of deformation of a map in general is much less clear than in the case
of a path. Anyway, Vanden Eynde describes in some detail how Brouwer uses
the device for the study of mappings. He defines homotopy classes of maps,
and shows in particular that his central tool for the study of mappings, the
degree, characterizes the homotopy classes of maps of the 2-sphere in itself
[102, p. 178f].

As soon as the general notion is available, the homotopy of paths be-
comes a simple (but still crucial) example of it. This approach is chosen, for
instance, in the influential textbook by Seifert and Threlfall [95]: they first
introduce the concept of a homotopy of two mappings in general (p. 113)
and consider path homotopy as a special case of homotopy of mappings (p.
148).

This new conceptual situation had a variety of consequences. It made
possible the introduction of higher homotopy groups by Hurewicz (and Čech
independently of him). While Čech gave a recursive definition, Hurewicz
defined them as fundamental groups of iterated loop spaces: πi(M)
= π1(Ω

i−1M) [90, p. 144].77 Another consequence is a stress put on map-
pings instead of spaces, yielding new concepts based on mappings and of
fundamental importance for topology, like homotopy equivalence of spaces
and homotopy invariance of functors. The general concept of homotopy
equivalence of spaces was introduced by Hurewicz [43], [44] (see [103, p.
98]): Two spaces X and Y have the same homotopy type if there exist map-
pings f : X → Y and g : Y → X such that the composed mappings are
homotopic to the identity mappings.

(77) To write the history of this generalization of the fundamental group would require
a study of its own (a task in which other authors actually are more advanced than myself)
and will thus not be extensively discussed in the present paper – even if (at least in the
Hurewicz definition) it is also about structures on classes of paths. Recall, however, the
role played by higher homotopy groups in one of the contexts where the fundamental
groupoid is useful (section 4.5).
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As to homotopy invariance of functors, I was not able to find out who
first used this notion, and as a historical topic, this certainly needs further
elucidation. But recall that one of the aims of this paper spelled out in
the introduction is to find the true motivation to focus on homotopy of
paths as the crucial equivalence relation on appropriate sets of paths of a
space. Technically, the choice of homotopy as the crucial equivalence relation
can be justified by the observation that typical topological tools used for
the classification of spaces and similar tasks are homotopy-invariant in the
functorial or some looser sense. Can this line of thought provide more than
just a technical, namely a historical answer to our question?

Just to set the stage: Poincaré introduced the fundamental group pre-
cisely because it yields a finer invariant than the Betti numbers. Thus,
in a rather loose, informal sense, homology is homotopy-invariant from the
outset. Tietze, when describing the outcome of his paper [101], notes in par-
ticular that he has shown that from the fundamental group of a two-sided
closed three-dimensional manifold, all other topological invariants known
(by 1908) can be deduced (p. 2). But how about homotopy invariance in
the technical sense? Recall Poincaré’s definition of the fundamental group
as a group of transformations acting on a set of functions from 1892 and
1895 discussed above. In [78, p. 190], he argues that the group actually does
not depend on the functions chosen, but only on the hypersurface. From
this he concludes: “The group G can then serve to define the form of the
surface and it is called the group of the surface”78 [80, p. 2]. And then he
makes the following remark:

It is clear that if two surfaces can each be transformed to the
other by a continuous transformation, then their groups are
isomorphic. The converse, though less evident, is again true
for closed surfaces [78, p. 190].79

This passage in a typical way exhibits the difficulties in interpreting Poinca-
ré’s writings. The translation “continuous transformation” for “déformation
continue” is debatable. If Poincaré means homeomorphism, his statement
affirms the invariance up to homeomorphism of the fundamental group (and
in this case the converse, contrary to Poincaré’s second statement, would
be wrong for 3-manifolds, see [2]). If he means isotopy, it affirms a prefor-
mal type of homotopy invariance (and the converse would be wrong a for-
tiori). But arguably Poincaré never distinguished clearly between homeo-

(78) “Le groupe G peut donc servir à définir la forme de la surface et s’appeler le groupe
de la surface”.
(79) Quoted after [80, p. 2]. Original quote: “Il est clair que si deux surfaces peuvent

se transformer l’une dans l’autre par voie de déformation continue, leurs groupes sont
isomorphes. La réciproque, quoique moins évidente, est encore vraie [. . . ].”
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morphism and isotopy. And then there is the problem that his notion of
isomorphism is weaker than the now standard one, of course (see section
2.3). The fact that homotopy is not used otherwise in the 1892 paper but
everything is expressed in the monodromy language rather runs against the
stronger interpretation. But even if the stronger reading turns out to be
an over-interpretation, it has become clear that the matter of homotopy
invariance of functors deserves further historiographical attention.

To sum up, we find that the transition from paths as 1-cells to paths
as functions is more than just a necessary step in the “transition of the
intuitive understanding of [the deformation] process to a rigorously defined
concept”, as Vanden Eynde puts it. It is the decision to abandon the intuitive
conceivability of such a process in favour of making it more tractable and
easier to generalize by embedding it in a rich theoretical framework (given
by the composition of arrows, in category-theoretic terms).

5.3. Paths and changes of parameter

The observations of section 5.1 notwithstanding, it is possible to define on
one and the same point set different paths formally homotopic to each other.
And these are not just “pathological” instances of the concept of homotopy
of paths, but play a crucial role in the proof of the group property of the
fundamental group, as we will see below. In order to get there, we shall first
study the notion of paths related by a change of parameter.

We start this study with a discussion of Weyl’s usage of the term “Weg”
(path) in [107]. This usage deviates from the one now standard, in the
sense that Weyl rather considers equivalence classes of paths in the latter
sense as “Wege”. Actually, we have seen before that what we call path now
has been called “Kurve” by Weyl, and this term is used throughout Weyl’s
development of the theory of coverings at places where we would speak about
paths. The term “Weg”, on the other hand, has a different meaning which
is not used throughout the book, but only appears at a very early stage,
namely among the examples for definition by abstraction (“Definition durch
Abstraktion”). This is a technique of forming new objects central not only
to Weyl’s book80, but to modern mathematics as a whole as well; it consists
in considering a particular equivalence relation on given objects, and the
corresponding equivalence classes. For a modern reader, this might seem to
be a quite common idea, but the way Weyl presents the idea incidentally
shows that he did take greatest care to make his students understand it;
after all, the lecture course was delivered in a time when axiomatics and

(80) Weyl’s main use of the idea is to define the notion of “analytic form” (“analytisches
Gebilde”) by abstraction.
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structural mathematics were quite young, and the average student far from
being used to such an approach. Here is Weyl’s definition of “Weg”:

A “motion” (of a point) is specified if the position of the moving
point p is given at each instant λ of a certain time interval
λ0 � λ � λ1: p = p(λ). If one has two such motions, p = p(λ),
q = q(µ), then one says these motions travel the same “path”
if and only if λ, the time parameter of the first motion, can be
expressed as a continuous monotone increasing function of the
time parameter µ of the second motion, λ = λ(µ), such that
thereby the first motion becomes the second: p(λ(µ)) ≡ q(µ).
Here it is the concept of “path” which is to be defined [110, p.
6].81

At this place, Weyl in a note stresses that such a “Weg” is not to be
confounded with the underlying point set:

This concept is something more than that of the point set which
consists of all points passed in the motion. We are concerned
with the same distinction as, in the case of a pedestrian, that
between the path traced (which, as long as he walks, is in statu
nascendi) and the path (long since existing) on which he walks
[110, p. 6].82

The equivalence relation Weyl uses for defining his concept of “Weg”
actually is also studied in a textbook written by Newman [63]83. In contrast
with Weyl, however, Newman does not define a path to be an equivalence
class with respect to this equivalence relation. Rather, he defines a path
in a metrisable space S as a mapping s(τ) of the segment [0, 1] into S (p.
175), thus in the way which is now standard. Newman also speaks about
composition of paths (defined as usual; p. 176) and some of its properties,
but without considering the totality of homotopy classes explicitly as a

(81) Original passage: “Eine “Bewegung” (eines Punktes) ist gegeben, wenn die Lage des
beweglichen Punktes p in jedem Moment λ eines gewissen Zeitintervalls λ0 � λ � λ1
gegeben ist: p = p(λ). Hat man zwei solche Bewegungen p = p(λ), q = q(µ), so sagt
man dann und nur dann, diese Bewegungen durchlaufen denselben “Weg”, falls λ, der
Zeitparameter der ersten Bewegung, sich derart als stetige monoton wachsende Funktion
des Zeitparameters µ der zweiten Bewegung ansetzen läßt: λ = λ(µ), daß dadurch die
erste Bewegung in die zweite übergeht: p(λ(µ)) ≡ q(µ). Hier ist es der Begriff des “Weges”,
der auf diese Weise definiert werden soll” [107, p. 7].
(82) Original passage: “Dieser Begriff meint etwas Anderes als die Punktmenge, welche

aus allen während der Bewegung passierten Punkten besteht. Es handelt sich hier um
den gleichen Unterschied wie zwischen dem von einem Fußgänger zurückgelegten Wege
(der, solange der Fußgänger marschiert, in statu nascendi ist) und dem (seit langem
existierenden) Wege, auf dem er marschiert” [107, p. 7].
(83) We quote from the second 1951 edition, but the quoted passages are already in the

first 1939 edition.
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group (probably in accordance with the very basic level of his text). It is with
respect to the problem of non-associativity that the equivalence relation
enters the stage. Newman first says what it means that two paths are related
by change of parameter (defined pretty much like Weyl’s equivalence of two
“Bewegungen”) and then proves that if s1 and s2 are related by a change
of parameter, they are deformable into each other with fixed endpoints and
inside the “track” (the point-set; p. 179). This theorem is commented on
like this:

The inconveniences that might be expected to arise from the
non-associative addition of paths do not occur in view of this
theorem, and the fact that it is homotopies [. . . ] and not iden-
tities between paths that are interesting.”

So in a way we have a careful analysis with a result not carefully spelled
out: Newman finds presumably the finest equivalence relation on paths
yielding associativity of composition but then does not make any use of
this result since it is homotopy classes that are “interesting” anyway. Let
us now see how this way of presenting the matter repeatedly can be found
in the textbook literature.

5.4. Homotopic paths and the group(oid) property

Our next step is to look at the role of the passage to homotopy classes
of loops in the proof (or rather: the rhetoric surrounding it) of the group
property of the fundamental group in various textbook presentations. I did
not make a systematic inspection of the available textbook literature. A
first observation to be made is that the full details of this proof (including
the definition of the homotopies between the products of paths on the two
sides of the group axioms) are very often left to the reader; we have seen in
section 3.1 that the presentations in [104] and [57] belong to this class, and
two more such cases will be discussed below (but also two examples for the
contrary case). Put differently, there seem to be relatively few textbooks
where an explicit discussion of the role of this passage can be found.

The example of [63] has been considered above; Newman was quite ex-
plicit about the details of the proof for associativity but did not discuss
the other group axioms. A fuller discussion is contained in [95]. Seifert and
Threlfall explicitly give the unit element and the inverse elements of the
group; as to associativity, however, they succinctly say “the associative law
is obviously valid”84 (p. 153). But there is another aspect of their treatment
worth to be discussed here. As we have noted above, Seifert and Threlfall

(84) “das assoziative Gesetz ist offenbar erfüllt”.
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consider homotopy of paths as a special case of homotopy of mappings.
Actually, already in the more general context, they included an alternative
description of a homotopy of mappings as a single mapping defined on the
“Deformationskomplex”. In the case of a homotopy of paths, this means
the following (p. 150). A path for them is a continuous mapping w of an
oriented straight line (“Strecke”) w in a complex Kn. The homotopic de-
formation of such a path w0 into a path w1 is given by a set of continuous
mappings gt : w → Kn for every value 0 � t � 1 with the initial point and
end point fixed. Now, this set of mappings gt can be replaced by a single
mapping f defined on the “Deformationskomplex” w× t where t is the unit
line (“Einheitsstrecke”) 0 � t � 1. In particular, one can choose for w× t a
rectangle from the euclidean plane, the “deformation rectangle”. This yields
a new type of picture, called a “deformation rectangle”:

Note that their figure 79 displays a deformation actually affecting the
point set of the path, hence a deformation like the ones in the “intended
model” of continuous deformations of paths identified in section 5.1 above.
Figure 78, however, would also apply to a different situation, namely a
deformation leaving the point set invariant (like one by a simple change
of parameter). We could say that by making available this more widely
applicable type of illustration, Seifert and Threlfall extend the scope of an
intuitive grasp of the concept of deformation to a type of instances where
the original way of displaying the effect of the deformation by a picture (like
in figure 79) would not apply. We will see that deformation rectangles have
been used later precisely for this purpose.85

(85) Newman in [63] instead of deformation rectangles uses a different kind of figure
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Let us now see two examples of textbooks whose authors clearly spelled
out informal motivations in the context of this proof. Pontrjagin in his 1939
textbook on topological groups says the following:

One should not think that the totality of all paths given in
the space G forms a group. First, multiplication is not always
possible. Moreover, the product does not satisfy the associative
law, and the product of the path l by its inverse l−1 is not a null
path; nor is the product of the path l by a null path the path l,
but rather something new. Because of this the paths themselves
will not interest us a great deal. What will be important for
our purposes are the classes of equivalent or homotopic paths.
Certain totalities of these classes also form a group, namely
the fundamental group. [82, p. 218]86

Thus, Pontrjagin stresses that composition on the paths themselves has
not the desired properties, but that composition on homotopy classes of
paths has. (A sketch of the proof, including the definition of the homotopies
needed, is present in both editions of Pontrjagin’s book.) At this stage, the
reader of Pontrjagin’s text might easily get the impression that this fact
is precisely the reason for the passage to homotopy classes. One can get a
similar impression when reading the textbook by Spanier [96]:

We should like to form a category whose objects are the points
of X, whose morphisms from x0 to x1 are the paths from x0

to x1, and with the composite defined to be the product path.
With these definitions, neither axiom of a category is satisfied.
That is, there need not be an identity morphism for each point,
and it is generally not true that the associative law for product
paths holds [. . . ]. A category can be obtained, however, if the
morphisms are defined not to be the paths themselves, but
instead, homotopy classes of paths. [96, p. 46]

We notice at once the greater generality of Spanier’s overall approach,
couched in the language of category theory. Much like Pontrjagin, Spanier
does not even mention the existence of relations like being related by a
change of parameter, but immediately presents a proof of the fact that
homotopy classes of paths form a groupoid. In contrast with many other
presentations, this proof is given in great detail, providing both for exact

which however is “equivalent” to deformation rectangles as far as the scope of the dis-
playable situations is concerned.
(86) It is worth noting that the second english edition of 1966 contains a similar passage

but (due to the new translation) with a quite different wording [83, p. 346].
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definitions of the homotopies needed,87 and carefully made deformation rect-
angles (like in Fig.78 from [95] reproduced above). In fact, the “homotopies”
used in Spanier’s proof just could not be displayed by a picture like Fig.79
ibid. Here are the definitions and pictures for the particular assertions to be
checked:

(1) Compatibility of path composition with homotopy:

(F ∗ F ′)(t, t′) =

{
F (2t, t′) 0 � t � 1/2
F (2t− 1, t′) 1/2 � t � 1

(2) Construction of identities: use the homotopy class of the constant
map εx : [0, 1] �→ x. The proof that ω ∗ εx ∼= ω goes like this:

F (t, t′) =





ω

(
2t

t′ + 1

)
0 � t � t

′ + 1

2

x
t′ + 1

2
� t � 1

(3) Proof of the associativity (ω ∗ ω′) ∗ ω′′ ∼= ω ∗ (ω′ ∗ ω′′):

G(t, t′) =





ω

(
4t

t′ + 1

)
0 � t � t

′ + 1

4

ω′ (4t− t′ − 1)
t′ + 1

4
� t � t

′ + 2

4

ω′′
(

4t− 2− t′
2− t′

)
t′ + 2

4
� t � 1

(4) Existence of inverses: define ω−1(t) := ω(1−t); to prove that [ω−1] =
[ω]−1, one shows that ω ∗ ω−1 ∼= εω(0):

(87) Recall that formally, a homotopy of two paths ω, ω′ is a continuous function F :
[0, 1]× [0, 1]→ X such that F (t, 0) = ω(t), F (t, 1) = ω′(t) for all t ∈ [0, 1].
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H(t, t′) =





ω(0) 0� t � t
′

2

ω(2t− t′) t′

2
� t � 1

2

ω(2− 2t− t′) 1

2
� t � 1− t

′

2

ω(0) 1− t
′

2
� t � 1

What does this proof actually prove? If a path ω is related to another
ω′ by change of parameter in the sense of Weyl-Newman explained above,88

we shall write ω ∼=cp ω
′. This is clearly an equivalence relation (that’s why

Weyl spoke about it at all), actually much finer than homotopy. But the
exclusive use of deformation rectangles reveals what an inspection of the
formulæ confirms: Spanier’s proof shows that the ∼=cp-classes of paths form
a category, for

• composition of paths respects ∼=cp;

• ω ∗ εx ∼=cp ω;

• (ω ∗ ω′) ∗ ω′′ ∼=cp ω ∗ (ω′ ∗ ω′′).

Does anyone care about the structure of the set of ∼=cp-classes of paths?
We could say that this relation is not interesting since there is a problem
with inversion:

ω ∗ ω−1 �cp εω0 .

But we still can have
ω ∗ ω−1 ∼ εω0

for a relation ∼ coarser than ∼=cp, but much finer than homotopy, e.g. “point
set-stable deformation” (deform only inside the point set; two homotopic
paths in general are not point set-stably homotopic, but two paths in the
same ∼=cp-class are).

It is interesting that the textbooks so unanimously skip such finer rela-
tions and rather step immediately to “true” homotopies (namely homotopies
in agreement with what has been called the “intended model” above). This

(88) I.e., if there is a homeomorphism

τ : [0, 1]→ [0, 1] with τ(0) = 0, τ(1) = 1

such that
∀t ∈ [0, 1] : ω(t) = ω′(τ(t))
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notwithstanding, such finer relations ∼ later on indeed have been used, as
we will see in the next section.

5.5. “Thin” homotopies

We have seen in section 4 that the fundamental groupoid was at first
supposed to play a role in the axiomatization of homotopy theories, but
that this axiomatization as finally presented by Milnor took a somewhat
different road. It is interesting, however, that Milnor’s work much later
influenced papers from theoretical physics by Barrett [6], who developed
an approach in turn taken up by Mackaay and Picken.89 Before entering a
(necessarily very short) discussion of these recent papers, we should very
briefly speak about holonomy groups.

Recall that Sarkaria among Poincaré’s approaches to the fundamental
group mentioned another one which hardly appeared so far in our study,
namely the treatment of the fundamental group as a certain homology
group. More than in the other cases, this seems to be a retrospective as-
cription, since the very concept of holonomy group was introduced only in
the 1920s by Elie Cartan. The origin of the notion is Cartan’s effort to put
Riemannian geometries into the scope of a (suitably generalized) Erlangen
program. We have seen a quote from his seminal paper [18] for Cartan’s
usage of the terminology “groupe fondamental” in this respect; in the se-
quel of this passage, Cartan very clearly explains the strategy of such a
generalization. The problem of including Riemannian geometries into the
Erlangen program might be very succinctly described thus: how to make
compatible the local Riemannian data (tangent spaces) with Klein’s global
approach. Cartan’s idea is to introduce a “connection” between the tangent
spaces. Now, passing from one point of the space to another by different
paths might yield different results on the level of the connection of the tan-
gent spaces; Cartan’s speaks about the “non-holonomy” of the space, and
it is this non-holonomy which is measured by the holonomy group. In [17],
Cartan had shown that such a group is given by infinitesimal closed paths;
the construction was taken up by Veblen-Whitehead, as we have seen.

Now, let us try to see what happens in Barrett’s and Mackaay-Picken’s
work. The central objects are bundles on a smooth base manifold M with
structure group G (the “fundamental group” in Cartan’s sense) and the
holonomy map H : ΩM → G defined on the loop space of M . Barrett’s
mathematical result (with applications in theoretical physics) is a recon-
struction theorem allowing to reconstruct a fiber bundle and a connection
from an H fulfilling some conditions [6, p. 1178]. Barrett relates his result

(89) I am indebted to Tim Porter for a pointer to Picken’s work.
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to earlier work, notably Milnor’s, in which a similar result is contained in
a topological (not differentiable) framework. We will not at present try to
understand how such a consideration related to Milnor’s goal of an axiom-
atization of homotopy theories. Rather let us see the consideration of a
certain kind of homotopies in the work of Mackaay and Picken motivated
by Barrett’s construction:

[. . . ] the holonomy of a connection in a principal G-bundle
[. . . ], defined over a connected smooth manifold M assigns an
element of G to each smooth (based) loop in M . [. . . ] two ho-
motopic loops have different holonomies in general. However,
when there is a homotopy between the loops whose differen-
tial has rank at most 1 everywhere, the holonomies around
the two loops are the same. We call these homotopies thin ho-
motopies. One glance at any introductory book on algebraic
topology shows that the homotopies used in the proof that the
fundamental group obeys the group axioms are all thin (af-
ter smoothing at a finite number of non-differentiable points).
Therefore the holonomy map descends to a group homomor-
phism from the thin fundamental group of M [. . . ] to G. [58,
p. 288]

In general, two different loops have different holonomies, but two thinly
homotopic loops have the same holonomy. The relation “thinly homotopic”
is a finer equivalence relation than just “homotopic”. And Mackaay-Picken’s
pointer to “any introductory book” reminds us of the observation of the
preceding section that the standard proof of the group property of the fun-
damental group applies to such finer equivalence relations. So there is by
now a serious mathematical application of them.

6. Conclusions

The aim of the present paper spelled out in the introduction was to pro-
vide a test case for the significance of the historical category “structural-
ism”, especially concerning the process (guided by “intuition”, according to
Bourbaki), of invention of new structures and identification of unexpected
structures in more classical settings. This test case was obtained by focussing
on the late introduction and comparatively marginal use of the notion of
fundamental groupoid and the even later consideration of equivalence rela-
tions finer than homotopy of paths, in contrast with the “importance” or
“success” of the notion of fundamental group.

It is relatively easy to enumerate a variety of reasons for that “impor-
tance” or “success”. First of all, the group concept was well established
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before the notion of fundamental group was introduced, and it was (or
quickly became) known to provide a rich theory (subgroups, generators and
relations). Next, the notion of fundamental group and the corresponding
theory was relevant for central problems in fields like knot theory, classifica-
tion of 3-manifolds, structure of Lie groups etc. And then there are various
different ways of presenting (and making use of) the fundamental group.
By consequence, there is more to the concept of fundamental group than
just the formal definition; when using the concept, one has also these back-
ground ideas in mind — and this explains the stability of the concept, as
we have seen.

In contrast, the notion of groupoid neither was equally well established
nor endowed with an equally rich theory when topologists started to work
with it. The fundamental groupoid, in particular, was neither presented
in various different ways nor used in many fields. Also, Brandt’s notion
of groupoid was too restricted to cover cases where one really needs the
fundamental groupoid (Brown).

As to the case of the finer equivalence relations, we have seen that the
conceptual situation changed considerably from the beginnings of our his-
tory in the 19th century to the present state of affairs. In the setting of
the 19th century, the objects of study were properties of multivalued com-
plex functions and similar analytic problems, and the tools were algebraic
descriptions of the topological properties of the corresponding Riemann sur-
faces. The algebraic structure on the set of homotopy classes of paths proved
useful for a study of the properties of these (hyper-)surfaces in a neigh-
bourhood of singularities, but equivalence relations leaving the point set
untouched were not interesting since the interesting things (singularities)
are located outside the point set of the path. Accordingly, the crucial type
of homotopy was homotopy between paths different as point sets, and the
relevant pictures (visual representations) resembled Fig.79 from [95] repro-
duced above. Still in early 20th century algebraic topology, homotopy was
considered as the crucial equivalence relation, probably because many topo-
logical tools are homotopy invariant; again, finer equivalence relations are
not useful.

In the modern setting, an intuitive vision of a path as a special type of
point set is no longer sufficient, but paths are now precisely described as
continuous functions ω : [0, 1] → X. In the proof that sets of such paths
have some kind of algebraic structure, a special kind of homotopy is needed
which yields the same point set without yielding the same path (the same
ω). Consequently, the relevant pictures in this case are deformation rectan-
gles like in Fig.78 of [95] or in Spanier’s figures. By transition from paths as
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1-cells to paths as functions, the intuitive conceivability of the deformation
process has been abandoned in favour of embedding it in a rich theoret-
ical framework (given by the composition of arrows, in category-theoretic
terms).

Thus, the proof that there actually is an algebraic structure on the set of
homotopy classes of paths only uses instances of homotopy of paths which
are pathological with respect to the operations related to the originally
intended analytic and topological applications (like exhaustion of the non-
singular part of the space by continuous deformation). In a first phase of
historical development, this state of affairs apparently has been taken as
a necessary evil, the key interest being to prove the group property of the
set of homotopy classes. In a second phase, one gradually became aware of
the usefulness of group(oids) defined for other equivalence relations. Thus,
a group structure was eventually discovered which was not used before (un-
like the fundamental group in the guise of the monodromy group) — but
became used later.

Hopefully these considerations make clear why I think it is helpful in
historical investigations to focus on the ways mathematical concepts are
used and to distinguish between formal extension and intended uses. In this
way, the historian is no longer committed to resort to finesses like Bourbaki’s
“intuition” when encountering phenomena in the development of structural
mathematics asking for historical explanation.
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(1895).
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