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Linking and the Morse complex

Michael Usher(1)

ABSTRACT. — For a Morse function f on a compact oriented manifold
M , we show that f has more critical points than the number required by
the Morse inequalities if and only if there exists a certain class of link
in M whose components have nontrivial linking number, such that the
minimal value of f on one of the components is larger than its maximal
value on the other. Indeed we characterize the precise number of critical
points of f in terms of the Betti numbers of M and the behavior of f with
respect to links. This can be viewed as a refinement, in the case of com-
pact manifolds, of the Rabinowitz Saddle Point Theorem. Our approach,
inspired in part by techniques of chain-level symplectic Floer theory, in-
volves associating to collections of chains in M algebraic operations on
the Morse complex of f , which yields relationships between the linking
numbers of homologically trivial (pseudo-)cycles in M and an algebraic
linking pairing on the Morse complex.

RÉSUMÉ. — Pour une fonction de Morse f sur une variété compacte
orientéeM , nous montrons que f a un nombre de points critiques supérieur
au nombre requis par les inégalités de Morse si, et seulement si, il
existe une certaine classe d’entrelacs dans M , dont les composantes ont
un nombre d’enlacement non trivial, telle que la valeur minimale de f
sur l’une des composantes est supérieure à sa valeur maximale sur l’autre
composante. Nous définissons le nombre exact de points critiques de f en
fonction des nombres de Betti de M et du comportement de f par rapport
aux entrelacs. Ce résultat peut être vu comme un raffinement, dans le cas
des variétés compactes, du théorème du point selle de Rabinowitz. Notre
approche, partiellement inspirée des techniques de théorie symplectique
de Floer au niveau des châınes, est basée sur l’association d’opérations
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algébriques sur le complexe de Morse de f à certaines collections de
châınes de M , ce qui induit des relations entre les nombres d’enlacement
des (pseudo-)cycles homologiquement triviaux de M d’une part, et un
accouplement d’enlacement algébrique sur le complexe de Morse d’autre
part.

1. Introduction

Let f : M → R be a Morse function on a compact n-dimensional manifold
M ; thus around each critical point p of f there are coordinates (x1, . . . , xn)
in terms of which f is given by the formula

f(x1, . . . , xn) = −
k∑

i=1

x2
i +

n∑

i=k+1

x2
i

for some integer k called the index of p and denoted in this paper by |p|f .
For each integer k let ck(f) denote the number of critical points of f having
index k, and define the Morse polynomial of f by

Mf (t) =

n∑

k=0

ck(f)tk.

Meanwhile if K is a field let bk(M ;K) be the rank of the kth homology
Hk(M ;K) with coefficients in K and define the Poincaré polynomial of M
with coefficients in K to be

PM (t;K) =

n∑

k=0

bk(M ;K)tk.

One way of expressing the famous Morse inequalities is to say that one has

Mf (t) = PM (t;K) + (1 + t)Qf (t;K)

for some polynomial Qf (t;K) =
∑n−1

k=0 qk(f ;K)tk all of whose coefficients
qk(f ;K) are nonnegative. Indeed, using the gradient flow of f it is possible
to construct a chain complex (CM∗(f ;K), df ) such that CMk(f ;K) is a K-
vector space of dimension ck(f) and such that the homology of the complex
is isomorphic to H∗(M ;K), and then the coefficients qk(f ;K) of the poly-
nomial Qf (·;K) are the ranks of the differentials df,k+1: CMk+1(f ;K) →
CMk(f ;K).

In particular, for any coeffcient field K, the number of critical points
of index k for any Morse function f obeys ck(f) � bk(f ;K), and equal-
ity holds in this inequality if and only if qk(f ;K) and qk−1(f ;K) are equal
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to zero. Thus a nonzero value of qk(f ;K) corresponds to f having “extra”
critical points in indices k and k + 1. This paper is concerned with giving
alternate interpretations of the numbers qk(f ;K), in terms of the linking
of homologically trivial cycles in M . (Actually, we will generally work with
pseudocycles (see [11, Section 6.5] and Section 3 below for precise defini-
tions) instead of cycles; in view of results such as [20, Theorem 1.1] this will
encode essentially the same information. In particular it makes sense to ask
whether a given pseudocycle is homologically trivial; our convention is that
a pseudoboundary is by definition a homologically trivial pseudocycle.)

Although our methods are rather different, our results are conceptu-
ally related to results along the lines the Saddle Point Theorem of [13],
which assert under various rather general hypotheses that for a function
f : M → R (where M is, say, a Banach manifold) which satisfies the Palais–
Smale condition, if there are null-bordant submanifolds A,B ⊂M such that
infB f > supA f and A and B are linked in the sense that any submani-
fold whose boundary is A must intersect B, then f must have a critical
point with critical value at least infB f . Various extensions and refinements
of this result have appeared; for instance one can see from [3, Theorems
II.1.1′, II.1.5] that if dimA = k then one can arrange to find a critical point
of f whose local Morse homology is nontrivial in degree k, and so the criti-
cal point will have index k provided that it is nondegenerate. However if M
has nontrivial singular homology in degree k and if f is any Morse function
then f will automatically have critical points of index k, which might seem
to indicate that in this case the linking condition in the hypothesis of the
Saddle Point Theorem only leads to critical points whose existence can be
explained just from the homology of M . Our main result shows that this is
not the case: rather, the presence of a link which is separated by f implies
that f has more critical points than required by the homology of M , and
conversely. More precisely:

Theorem 1.1. — Let f : M → R be a Morse function on a compact
oriented n-dimensional manifold M , and let K be any ring1. The following
are equivalent:

(i) The Morse boundary operator2 df,k+1: CMk+1(f ;K) → CMk(f ;K)
is nontrivial ( i.e., in our earlier notation when K is a field, qk(f ;K) �=
0.)

(ii) There are pseudoboundaries b±: B± → M , where dimB+ = k and
dimB− = n−k−1, such that Im(b−)∩Im(b+) = ∅ and the K-valued

(1) In this paper “ring” means “commutative ring with unity.”
(2) To construct the Morse boundary operator one needs to choose an auxiliary Rie-

mannian metric; however its triviality or nontriviality is independent of this choice.
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linking number lkK(b−, b+) is nonzero, and such that min(f |
Im(b−)

) >

max(f |
Im(b+)

).

Moreover, if (i) holds, then from the stable and unstable manifolds of
f associated to a suitable Riemannian metric, one may construct a pair
of pseudoboundaries b±: B± → M of dimensions k and n − k − 1 with
lkK(b−, b+) �= 0 such that the value of min(f |

Im(b−)
)−max(f |

Im(b+)
) is as

large as possible.

Proof. — The equivalence of (i) and (ii) follows from Theorem 5.9 and
the first sentence of Proposition 5.6, since in the notation of Theorem 5.9
the statement (i) is equivalent to the statement that βalg

k (f ;K) > 0, while
statement (ii) is equivalent to the statement that βgeom

k (f ;K) > 0. The final
statement of the theorem follows from the constructions in Section 6 which
are used to prove the implication ‘(i)⇒(ii).’ �

We leave to Section 3 the precise definitions related to linking numbers
of pseudoboundaries. Suffice it to note for the moment that a special case
of a pair of pseudoboundaries b±: B± → M is given by setting B± = ∂C±
for some compact manifolds with boundary C±, and setting b± = c±|B±
for some pair of smooth maps c±: C± → M . Assuming that b+ and b−
have disjoint images, the Z-valued linking number lk(b−, b+) is obtained by
perturbing c+ to make it transverse to b− and then taking the intersection
number of b− and c+ (which, one can show, depends only on b± and not
on c±), and the K-valued linking number lkK(b−, b+) is just the image of
lk(b−, b+) under the unique unital ring morphism Z→ K. The more general
setup of pseudoboundaries generalizes this only in that the domains and
images of b± and c± are allowed some mild noncompactness (the images
should be precompact, and “compact up to codimension two” in a standard
sense that is recalled in Section 3). If we were to instead require the domains
of b± to be compact, then of course the implication ‘(ii)⇒(i)’ in Theorem
1.1 would follow a fortiori, while ‘(i)⇒(ii)’ would hold provided that K has
characteristic zero by Remark 5.8.

Remark 1.2. — ‘(ii)⇒(i)’ is probably the more interesting and concep-
tually novel of the two implications in Theorem 1.1. ‘(i)⇒(ii),’ on the other
hand, is a precise formulation of a phenomenon likely to be familiar to ex-
perts, namely that a nontrivial Morse boundary operator gives rise to a
certain class of link (related ideas are used in [4], for instance). To give a
heuristic explanation for this, recall from [10, Section 2.5] that the closures
of the unstable manifolds of the negative gradient flow of a Morse function
f with respect to a suitable Riemannian metric on M give rise to a cell
decomposition of M . Given a chain c =

∑
nipi which lies in the image of
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the boundary operator of the Morse complex of f , say with f(p1) � f(pi)
for all i, one could try to form a link L− 	 L+ as follows. First let L− be
the boundary of a disk around p1 in the stable manifold of p1. Then form
L+ by gluing together in some appropriate fashion a collection of manifolds
with boundary consisting of ni copies of each of the closures of the unsta-
ble manifolds Wu(pi); one expects the result of this gluing to be, at least
roughly speaking, the boundary of a similarly-glued-together collection of
the unstable manifolds of the critical points contributing to a preimage of
c under the Morse boundary operator. Then L+ would intersect the disk
whose boundary is L− precisely in the point p1, with multiplicity n1. So
L− and L+ would indeed have nontrivial linking number, and we evidently
have inf(f |L−) > sup(f |L+). Our main contribution in proving ‘(i)⇒(ii)’ is
to make this idea precise in a way that is both rigorous and general enough
to serve as a sharp converse to ‘(ii)⇒(i).’

Remark 1.3. — The orientability hypothesis on M in Theorem 1.1 and
in Theorem 1.4 below may be dropped if one restricts to rings K having
characteristic two and modifies the definition of a pseudoboundary (see
Definition 3.1) so that the domains of a pseudoboundary and of its bounding
pseudochain need not be orientable. This can be seen by direct inspection of
the proofs of the theorems if one simply ignores all references to orientations
therein.

Going beyond Theorem 1.1, for any field K one can characterize the
precise values of the coefficients qk(f ;K), not just whether or not they are
zero, in terms of the linking of pseudoboundaries, though this requires a
somewhat more complicated description and indeed requires some knowl-
edge of the gradient flow of the function f with respect to a suitable metric.
If b+: B+ → M and b−: B− → M are pseudoboundaries of dimensions k
and n− k− 1 respectively, from the general theory in Section 4 we obtain a
quantity denoted there by Π(M−f , Ib+,b−Mf ). This quantity may be intu-
itively described as a signed count of those trajectories γ: [0, T ] →M of the
vector field −∇f such that γ(0) ∈ Im(b+) and γ(T ) ∈ Im(b−), where T is
a positive number (which is allowed to vary from trajectory to trajectory).
The quantity Π(M−f , Ib+,b−Mf ) should in general be expected to depend
on the Riemannian metric used to define the gradient flow; however there
is one case where it is obviously independent of the metric and also is easily
computable: since the function f decreases along its gradient flowlines, if
one has sup(f |Im(b+)) < inf(f |Im(b−)) then clearly Π(M−f , Ib+,b−Mf ) = 0
(indeed this is the reason that Π(M−f , Ib+,b−Mf ) did not appear in the
statement of Theorem 1.1). We will see that in general Π(M−f , Ib+,b−Mf )
serves as a sort of correction term in the relationship between geometric
linking of pseudoboundaries in M and the algebraic linking pairing on the
Morse complex of f defined in (4.3).
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Theorem 1.4. — Let f : M → R be a Morse function on a compact
oriented n-dimensional manifold M , and let K be a field. For a residual set of
Riemannian metrics on M , the following are equivalent for all nonnegative
integers k and m:

(i) The rank of the Morse boundary operator df,k+1: CMk+1(f ;K) →
CMk(f ;K) is at least m.

(ii) There are k-dimensional pseudoboundaries b1,+, . . . , br,+ and (n−k−
1)-dimensional pseudoboundaries b1,−, . . . , bs,− such that the matrix
L whose entries are given by

Lij = lk(bj,−, bi,+)− (−1)(n−k)(k+1)Π(M−f , Ibi,+,bj,−Mf )

has rank at least m.

Proof. — See Corollaries 5.4 and 6.7. �

In fact, as noted in Corollary 6.7, if (ii) (or equivalently (i)) holds, then
the pseudocycles bi,+, bj,− can be chosen to obey Π(M−f , Ibi,+,bj,−Mf ) = 0.

To rephrase Theorem 1.4, for each k the rank qk(f ;K) of the Morse
boundary operator df,k+1: CMk+1(f ;K) → CMk(f ;K) can be expressed
as the largest possible rank of a matrix whose entries are given by the
K-valued linking numbers of each member of a collection of k-dimensional
pseudoboundaries with each member of a collection of (n−k−1)-dimensional
pseudoboundaries, corrected by a term arising from “negative gradient flow
chords” from the former to the latter. Moreover, there are collections of
pseudoboundaries for which the maximal possible rank is attained and the
correction term vanishes.

By Poincaré duality, the Betti numbers bk(M ;K) can somewhat simi-
larly be described as the maximal rank of a certain kind of matrix: namely,
a matrix whose entries are given by the K-valued intersection numbers of
each member of a collection of k-dimensional pseudocycles with each mem-
ber of a collection of (n−k)-dimensional pseudocycles. Thus a general Morse
function f on an oriented compact manifold M has (

∑
k bk(M ;K))-many

critical points which can be seen as resulting purely from the homology of
M and may be associated to the intersection of cycles in M , and also exactly
2 (

∑
k qk(f ;K))-many other critical points, and these other critical points

are not accounted for by the homology of M but may be associated to the
behavior of f with respect to linked, homologically trivial cycles in M .
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1.1. Outline of the paper and additional remarks

The body of the paper begins with the following Section 2, which sets
up some notation and conventions relating to orientations and Morse theory
and works out some signs that are useful later; readers, especially those
content to ignore sign issues and work mod 2, may prefer to skip this section
on first reading and refer back to it as necessary.

Section 3 introduces the formalism of pseudochains and pseudobound-
aries that is used throughout the paper; these are natural modifications of
the pseudocycles considered in [11, Section 6.5]. In particular we show that
a pair of pseudoboundaries the sum of whose dimensions is one less than the
dimension of the ambient manifold, and the closures of whose images are
disjoint, has a well-defined linking number, about which we prove various
properties. We also prove Lemma 3.7, which for some purposes allows one
to work with homologically trivial maps of compact smooth manifolds into
M in place of pseudoboundaries; however if one wishes to work over Z or
Z/pZ rather than Q then restricting to maps of compact smooth manifolds
will lead one to miss some topological information, consistently with results
that date back to [17, Théorème III.9].

Section 4 recalls the Morse complex CM∗(f ;K) of a Morse function f
and introduces several operations on it. Among these are rather standard
ones corresponding after passing to homology to Poincaré duality and to
the cap product. Importantly, these operations can be defined on chain
level, and consideration of their chain-level definitions suggests some other
operations that capture different information. In particular the chain level
Poincaré pairing can easily be modified to obtain a Morse-theoretic linking
pairing, whose relation to the linking of pseudoboundaries is fundamental
for this paper. As for the cap product, it is described on chain level by
considering negative gradient trajectories which pass through a given pseu-
dochain, and this chain level operation has natural generalizations obtained
from negative gradient trajectories which instead pass through several pre-
scribed pseudochains at different times. These more general operations (de-
noted Ig0,···,gk−1

) are not chain maps, so they do not pass to homology and,
at least in and of themselves, do not encode topologically invariant infor-
mation (though suitable combinations of them should give rise to Massey
products). While from some perspectives this lack of topological invariance
would be seen as a defect, our focus in this paper is on the “extra” critical
points that a given Morse function f may or may not have, and these extra
critical points are also not topologically invariant in that their existence
typically depends on f (and throughout the paper we are viewing the func-
tion f , not just the manifold on which it is defined, as the basic object of
study).
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While the Ig0,···,gk−1
are not chain maps for k � 2, they do satisfy some

important identities which are obtained by examining boundaries of certain
one-dimensional moduli spaces of gradient trajectories and are described in
general in Remark 4.8. The only ones of these that are used for the main
results of this paper are Propositions 4.3(ii) and 4.7 (which concern the
cases k = 1, 2), though it would be interesting to know if the identities for
k > 2 can be used to provide a relationship between Morse theory and Mil-
nor’s higher-order linking numbers. We would like to take this opportunity
to mention a broader perspective on these identities. Given a finite set of
pseudochains gi: Ci → M which are in suitably general position with re-
spect to each other, a construction in the spirit of [7, Section 3.4] should give
rise to an A∞-algebra C(M) of pseudochains in M with each gi ∈ C(M),
whose operations ml, when applied to tuples of distinct gi from the given
collection, obey

m1(gi) = ±gi|∂Ci
m2(gi1 , gi2) = ±gi1 ×M gi2 if i1 �= i2

ml(gi1 , . . . , gil) = 0 if l � 3 and i1, . . . , il are distinct.

In this case Remark 4.8 would be a special case of the statement that the
Morse complex CM∗(f ;K) is an A∞-module over the A∞-algebra C(M),
with part of the module action given up to sign by the operators Igi0 ...gik−1

.3

This is reminiscent of, though distinct from, the discussion in [8, Chapter 1],
in which Fukaya organizes the Morse complexes associated to all of the var-
ious Morse functions on the manifold M into an A∞-category; by contrast,
we work with a single fixed Morse function f on M , and the relevant A∞
structure on CM∗(f ;K) arises not from other Morse functions but rather
from the interaction of f with an A∞-algebra of (pseudo)chains in M . One
could perhaps enlarge Fukaya’s picture to incorporate ours by regarding
(C(M),m1) as playing the role of the “Morse complex” of the (non-Morse)
function 0 on M . With this said, we will just prove those aspects of the A∞
structures that we require in a direct fashion, so the phrase “A∞” will not
appear again in the paper.

Section 5 begins the process of establishing a relationship between the
linking of pseudoboundaries described in Section 3 with the operations on
the Morse complex described in Section 4; in particular the implications
“(ii)⇒(i)” in Theorems 1.1 and 1.4 are established in Section 5. The key
ingredient in this regard is Proposition 5.2, which uses Propositions 4.3
and 4.7 to associate to a pair b0, b1 of linked pseudoboundaries in M a

(3) To be clear, the existence of this A∞-module structure is not proven either in this
paper or, as far as I know, anywhere else in the literature; this paper does however contain
detailed proofs of the only consequences of the conjectural A∞-module structure that we
require in the proofs of our main theorems, namely Propositions 4.3(ii) and 4.7.
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pair of boundaries in the Morse complexes of ±f , whose Morse-theoretic
linking pairing is determined by the linking number of the pseudoboundaries
together with the correction term Π(M−f , Ib0,b1Mf ) alluded to earlier. If the
pseudoboundary b0 has dimension k, then its associated boundary in the
Morse complex is obtained as a linear combination of those index-k critical
points which arise as the limit in forward time of a negative gradient flowline
of f which passes through the image of b0 (generically there will be only
finitely many such flowlines). This is vaguely similar to the usual strategy
of obtaining critical points in the Saddle Point Theorem as in [13], wherein
one essentially “pushes down” b0 via the negative gradient flow until one
encounters a critical point. However, if one follows Rabinowitz’s approach
naively then one should not even expect to locate a critical point of index
k, since the critical points that one first encounters would be likely to have
higher index. Although there exist ways of guaranteeing that one finds an
index-k critical point by a similar procedure (essentially by first replacing
b0 with a certain other chain which is homologous to it in an appropriate
relative homology group, see [3, Section II.1]), these older methods still
do not seem to suffice to yield the quantitative estimates on qk(f ;K) in
Theorem 1.4, or indeed the nonvanishing of qk(f ;K) in Theorem 1.1 if the
ambient manifold has nonzero kth Betti number. However, by taking the
approach—familiar from Floer theory—of using not the entire gradient flow
of f but rather only certain zero-dimensional spaces of gradient trajectories,
and by exploiting more fully the algebraic structures on the Morse complex,
we are able to obtain these quantitative results.

In Section 5 we also formulate and begin to prove Theorem 5.9, which
can be seen as a more refined version of Theorem 1.1. Theorem 5.9 equates
two quantities associated to a Morse function f : M → R on a compact
oriented manifold and a ring K: the geometric link separation βgeom

k (f ;K)

and the algebraic link separation βalg
k (f ;K). The geometric link separation

describes the maximal amount by which the function f separates any pair of
pseudoboundaries of appropriate dimensions whose linking number is non-
trivial; thus Theorem 1.1 asserts that this quantity is positive if and only if
the Morse boundary operator is nontrivial in the appropriate degree. The
algebraic link separation in general has a more complicated definition which
we defer to Section 5, but when K is a field we show in Proposition 5.6 that
βalg
k (f ;K) is equal to a quantity introduced in the Floer-theoretic context

in [19] called the boundary depth of f : the Morse complex CM∗(f ;K) has
a natural filtration given by the critical values, and the boundary depth is
the minimal quantity β such that any chain x in the image of the boundary
operator must be the boundary of a chain y whose filtration level is at most
β higher than that of x. This paper had its origins in an attempt to obtain a
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more geometric interpretation of the boundary depth in the Morse-theoretic
context—which in particular reflects the fact that the boundary depth de-
pends continuously on the function f with respect to the C0-norm—and
when K is a field that goal is achieved by Theorem 5.9.

The implications “(i)⇒(ii)” in Theorems 1.1 and 1.4 are proven in Sec-
tion 6. Our approach is to associate to any element a in the Morse com-
plex CMk+1(f ;Z) a pseudochain which represents a in a suitable sense; see
Lemma 6.4. In the case that the Morse differential of a is trivial, such a
construction already appears in [15], where it is used to construct an equiv-
alence between Morse homology and singular homology. Our interest lies
in the case that the Morse differential df,k+1a of a is nontrivial, and then
the boundary of the pseudochain will be a pseudoboundary whose proper-
ties with respect to linking numbers and with respect to the function f are
patterned after corresponding properties of df,k+1a in the Morse complex;
for this purpose a somewhat more refined construction than that in [15] is
required. Our construction makes use of properties of the manifold-with-
corners structure of the compactified unstable manifolds of f with respect
to metrics obeying a local triviality condition near the critical points, as
established in [10], [2]. (The existence of such a structure has been proven
for more general metrics in [12]; however we also require the evaluation map
from the compactified unstable manifold into M to be smooth, a property
which currently seems to be known only in the locally trivial case.)

Finally, the closing Section 7 contains proofs of three technical results
deferred from Sections 3 and 4, two of which concern issues of transversality
and the other of which works out in detail (with careful attention paid to
orientations) the boundary of the moduli space which gives rise to the key
identity in Proposition 4.7.
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2. Conventions for orientations and Morse theory

The most detailed and coherent treatment of the orientation issues that
one encounters in dealing simultaneously with intersection theory and the
Morse complex that I have found is [1, Appendix A], so I will borrow most
of my orientation conventions from there.
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2.1. Short exact sequences

Many of the vector spaces that one needs to orient in a discussion such
as this are related to each other by short exact sequences, and so one should
first decide on an orientation convention for short exact sequences; following
[1], our convention is that, given a short exact sequence of vector spaces

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

in which two of A,B,C are oriented, the other should be oriented in such
a way that, if {a1, . . . , ap} and {c1, . . . , cq} are oriented bases for A and C
respectively and if bi ∈ B are chosen so that g(bi) = ci, then

{b1, . . . , bq, f(a1), . . . , f(ap)}
is an oriented basis for B.

We orient a vector space given as a direct sum V ⊕W of oriented vector
spaces by using an oriented basis for V followed by an oriented basis for W ;
in terms of our short exact sequence convention this amounts to orienting
V ⊕W by using the short exact sequence

0 −−−→ W −−−→ V ⊕W −−−→ V −−−→ 0

A product M × N of oriented manifolds is then oriented by means of the
direct sum decomposition T(m,n) = TmM ⊕ TnN .

2.2. Group actions

If G is an oriented Lie group with Lie algebra g (for us G will always be
R) acting freely on an oriented manifold M , the quotient M/G is oriented
according to the exact sequence on tangent spaces given by the action:

0 −−−→ g −−−→ TmM −−−→ T[m](M/G) −−−→ 0

2.3. Boundaries

For boundaries of oriented manifolds we use the standard “outer-normal-
first” convention.

2.4. Fiber products

Many of the important spaces that we need to orient can be seen as fiber
products: if f : V →M and g: W →M are smooth maps, the fiber product
V f ×g W is given by

V f ×g W = {(v, w) ∈ V ×W |f(v) = g(w)}.
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In other words, where ∆ ⊂ M is the diagonal, we have V f ×g W = (f ×
g)−1(∆). So if f × g is transverse to ∆ (in which case we say that “the
fiber product is cut out transversely”) then Vf ×g W will be a manifold
of dimension dimV + dimW − dimM . The tangent space to Vf ×g W at
(v, w) may be canonically identified (under the projection TvV ⊕ Tf(v)M ⊕
TwW → TvV ⊕TwW ) with the kernel of the map h: TvV ⊕Tf(v)M⊕TwW →
Tf(v)M⊕Tf(v)M defined by h(eV , eM , eW ) = (f∗eV−eM , eM−g∗eW ). Under
this identification, if orientations on V,W,M are given, then V f ×g W is
oriented at (v, w) by means of the short exact sequence

0 −−−→ kerh −−−→ TvV ⊕ Tf(v)M ⊕ TwW
h−−−→ Tf(v)M ⊕ Tf(v)M −−−→ 0

As noted in [1], this fiber product orientation convention results in a
number of pleasant properties. First, a Cartesian product V ×W can be
viewed as a fiber product V ∗ ×∗ W by taking the target space M to be
a positively-oriented point, and the resulting fiber product orientation on
V × W coincides with the standard orientation. Also, for a smooth map
f : V → M the fiber products V f ×1M M and M1M ×f V are identified
with V by projection, and the orientations on V f ×1M M and M1M ×f V
are consistent with this orientation. Less trivially, given suitably transverse
maps f : U → X, g1: V → X, g2: V → Y , h: W → Y , one has:

(Uf ×g1
V )g2

×h W = Uf × g1
(Vg2

×h W ) (2.1)

as oriented manifolds. Also, if V and W are manifolds with boundary and
f : V → M , g: W → M are smooth maps such that f(∂V ) ∩ g(∂W ) = ∅,
and if all fiber products below are cut out transversely, one has, as oriented
manifolds,

∂(V f ×g W ) = ((∂V )f ×g W )
∐

(−1)dimM−dimV (V f ×g ∂W ) . (2.2)

Moreover, again assuming f × g: V ×W → M ×M to be transverse
to ∆, the obvious diffeomorphism (v, w) �→ (w, v) from V ×W to W × V
restricts as a diffeomorphism of oriented manifolds as follows:

V f ×g W ∼= (−1)(dimM−dimV )(dimM−dimW )W g ×f V. (2.3)

(The proofs of (2.1), (2.2), and (2.3) can all be read off from [1, A.1.8] and
references therein.)

If δ: M →M ×M is the diagonal embedding, and if V f ×g W is cut out
transversely, then V f×gW is diffeomorphic by the map (v, w) �→ (v, w, f(v))
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to the fiber product (V × W )f×g ×δ M . This diffeomorphism affects the
orientations by

V f ×g W ∼= (−1)dimM(dimM−dimW )(V ×W )f×g ×δ M. (2.4)

To see this, one can use the fact that the tangent space to V f ×g W may
be oriented as the kernel of the map h1: TV ⊕ TM ⊕ TW ⊕ TM ⊕ TM →
TM ⊕TM ⊕TM ⊕TM defined by h1(v,m0, w,m1,m2) = (f∗v−m0,m0−
g∗w,m1,m2) while the tangent space to (V ×W )f×g ×δ M is oriented as
the kernel of h2: TV ⊕TW ⊕TM ⊕TM ⊕TM → TM ⊕TM ⊕TM ⊕TM
defined by h2(v, w,m0,m1,m2) = (f∗v−m0, g∗w−m1,m0−m2,m1−m2).
There is a commutative diagram

TV ⊕ TM ⊕ TW ⊕ TM ⊕ TM
h1−−−→ TM ⊕ TM ⊕ TM ⊕ TM� φ

� ψ

TV ⊕ TW ⊕ TM ⊕ TM ⊕ TM
h2−−−→ TM ⊕ TM ⊕ TM ⊕ TM

where φ(v,m0, w,m1,m2) = (v, w,m0+m1,m0+m2,m0) and ψ(m,m′,m1,
m2) = (m −m1,−m′ −m2,m1,m2). The sign in (2.4) is then obtained as
the product of the signs of the determinants of φ and ψ.

If f0: V
0 → M , f1: V

1 → N , g0: W
0 → M , and g1: W

1 → N are
smooth maps such that the fiber products V 0

f0
×g0

W 0 and V 1
f1
×g1

W 1

are both cut out transversely, then the fiber product

(V 0 × V 1)f0×f1
×g0×g1

(W 0 ×W 1)

is also cut out transversely, and the map (v0, v1, w0, w1) �→ (v0, w0, v1, w1)
is a diffeomorphism of oriented manifolds

(V 0 × V 1)f0×f1
×g0×g1

(W 0 ×W 1) ∼=

(−1)(dimN−dimV 1)(dimM−dimW 0)(V 0
f0
×g0

W 0)× (V 1
f1
×g1

W 1). (2.5)

The sign can easily be obtained either directly from the definition of the
fiber product orientation, or by using [1, (83)].

2.4.1. Signed numbers of points and intersection numbers

If X is a 0-dimensional manifold, then an orientation of X of course
amounts to a choice of number ε(x) ∈ {−1, 1} attached to each point x ∈ X.
Assuming X to be compact (i.e., finite) we write #(X) =

∑
x∈X ε(x) and

call #(X) the “signed number of points” of X.
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If, where V,W,M are smooth oriented manifolds, f : V →M and g: W →
M are smooth maps such that dimV + dimW = dimM and such that the
fiber product W g ×f V is cut out transversely and is compact (and so is an
oriented compact zero-manifold), then the intersection number ι(f, g) of f
and g is by definition

ι(f, g) = # (W g ×f V ) .

Note the reversal of the order of f and g; this reversal is justified by the fact
(noted in [1] and easily checked) that if f and g are embeddings of compact
submanifolds f(V ) and g(W ) then the usual intersection number between
f(V ) and g(W ) (given by counting intersections m ∈ f(V ) ∩ g(W ) with
signs according to whether Tmf(V )⊕ Tmg(W ) has the same orientation as
TmM) is equal to ι(f, g) as we have just defined it. Evidently by (2.3) we
have

ι(f, g) = (−1)(dimM−dimV )(dimM−dimW )ι(g, f).

2.5. Morse functions

Let f : M → R be a Morse function where M is a smooth oriented
compact n-dimensional manifold and h a Riemannian metric on M making
the negative gradient flow φt: M → M of f Morse–Smale. For all critical
points p of f we have the unstable and stable manifolds

Wu
f (p) =

{
x ∈M

∣∣∣∣ lim
t→−∞

φt(x) = p

}

W s
f (p) =

{
x ∈M

∣∣∣ lim
t→∞

φt(x) = p
}

We choose arbitrarily orientations of the unstable manifolds Wu
f (p) (re-

call that these are diffeomorphic to open disks of dimension equal to the
index |p|f of p), with the provisos that if |p|f = n, so that Wu

f (p) is an open
subset of M , then the orientation of Wu

f (p) should coincide with the orien-
tation of M ; and that if |p|f = 0, so that Wu

f (p) = {p}, then Wu
f (p) should

be oriented positively. Let iu,p: W
u
f (p) → M and is,p: W

s
f (p) → M be the

inclusions. Having oriented the Wu
f (p), we orient the W s

f (p) by noting that
Wu

f (p) and W s
f (p) intersect transversely in the single point p, and requiring

that

ι(is,p, iu,p) = 1

(in other words, Wu
f (p)iu,p ×is,p W

s
f (p) is a single positively-oriented point).
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The space of parametrized negative gradient trajectories4 M̃(p, q; f)
from p to q may be identified with the fiber product Wu

f (p)iu,p ×is,q W
s
f (q);

the Morse–Smale condition precisely states that this fiber product is cut out
transversely, and we orient M̃(p, q; f) by means of this identification, using
the aforementioned convention for fiber products to orient Wu

f (p)iu,p ×is,q

W s
f (q). For p �= q, the negative gradient flow provides a free R-action

on M̃(p, q; f). We denote the quotient of M̃(p, q; f) by this R action by
M(p, q; f), and we orient M(p, q; f) according to 2.2. In the case that
|p|f − |q|f = 1, the Morse–Smale condition implies that M(p, q; f) is a
compact oriented zero-manifold, and we denote by

mf (p, q) = # (M(p, q; f))

its signed number of points.

There are tautological identifications Wu
f (p) ∼= W s

−f (p) and W s
f (p) ∼=

Wu
−f (p). Having already oriented Wu

f (p) and W s
f (p) as in the last two

paragraphs, we first orient Wu
−f (p) by requiring the tautological identifi-

cation W s
f (p) ∼= Wu

−f (p) to be orientation-preserving. These orientations of

Wu
−f (p) then yield orientations of W s

−f (p) and of the spaces M̃(q, p;−f) and
M(q, p;−f) by the same prescription as before. Routine calculation then
shows that the obvious identifications provide the following diffeomorphisms
of oriented manifolds, where as usual we write n = dimM :

W s
−f (p) ∼= (−1)|p|f (n−|p|f )Wu

f (p) (2.6)

M̃(q, p;−f) ∼= (−1)(|p|f+|q|f )(n−|p|f )M̃(p, q; f) (2.7)

M(q, p;−f) ∼= (−1)1+(|p|f+|q|f )(n−|p|f )M(p, q; f) (2.8)

(the last equation takes into account that the actions of R on M̃(p, q; f)
and M̃(q, p;−f) go in opposite directions).

In the special case that |p|f = |q|f + 1 we obtain

m−f (q, p) = (−1)n−|q|fmf (p, q) = (−1)|q|−fmf (p, q). (2.9)

As described in [15, Section 4] (see also [1, A.1.14] for the relevant signs
in the conventions that we are using), the unstable manifolds Wu(p) admit
partial compactifications W̄u(p), whose oriented boundaries are given by5

∂W̄u(p) =
∐

|r|f=|p|f−1

M(p, r; f)×Wu(r). (2.10)

(4) For the most part we will use notation that suppresses the dependence of the
trajectory space on the metric h; when we wish to record this dependence we will use the
notation M̃(p, q; f, h).

(5) If one prefers, one could use a partial compactification with a larger
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Extending the embedding iu,p: W
u(p) → M to a map on all of W̄u(p)

by means of the embeddings iu,r of the Wu(r), we obtain a smooth map
īu,p: W̄

u(p) → M which is a “pseudochain” in the sense to be described
later: essentially this means that its image may be compactified by adding
sets of codimension at least two (namely the unstable manifolds of some
other critical points of index at most |p|f − 2).

Likewise, one obtains pseudochains whose domains will be denoted W̄ s(q)

and M̃(p, q; f) which partially compactify the stable manifolds and the
parametrized gradient trajectory spaces, respectively. By using the var-
ious formulas and conventions specified above (in particular using that
W s

f (q) = Wu
−f (q), so that the boundary orientation of W s(q) can be deduced

from (2.10)), one obtains that the oriented (codimension-one) boundaries
of the domains of these pseudochains are given by:

∂W̄ s(q) =
∐

|r|f=|q|f+1

(−1)n−|q|fW s(r)×M(r, q; f)

∂M̃(p, q; f) =


 ∐

|r|f=|p|f−1

M(p, r; f)× M̃(r, q; f)




	(−1)|p|f+|q|f


 ∐

|r|f=|q|f+1

M̃(p, r; f)×M(r, q; f)


 ,

and these boundaries are mapped into M by using the inclusions of W s(r) in
the case of ∂W̄ s(q) and by using the inclusions of M̃(r, q; f) and M̃(p, r; f)

in the case of ∂M̃(p, q; f).

3. Linking of pseudoboundaries

The appropriate level of generality for the consideration of linking num-
bers in this paper seems to be given by some natural extensions of the
formalism of pseudocycles, as described in [11, Section 6.5]. Given a smooth

boundary, namely
∐
|r|f�|p|f−1

(−1)|p|f−|r|f−1M(p, r; f) × Wu(r); however since

the images in M of those components corresponding to |r|f � |p|f − 2
have codimension at least two we do not include them. Similarly, as opposed
to what is done below, W s(q) could be partially compactified to have the

larger boundary
∐
|r|f�|q|f+1

(−1)n−|q|fW s(r) × M(r, q; f), and M̃(p, q; f) could be

given the larger boundary

(∐
|r|f�|p|f−1

(−1)|p|f−|r|f−1M(p, r; f)× M̃(r, q; f)

)
�

(−1)|p|f+|q|f
(∐

|r|f�|q|f+1
M̃(p, r; f)×M(r, q; f)

)
.
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map f : V → M , where V is a smooth manifold (possibly with boundary)
and M is a smooth manifold without boundary, recall that the Ω-limit set
of f is by definition

Ωf =
⋂

A�V

f(V \A),

where the notation � means “is a compact subset of.” As can easily be
checked, one has

f(V ) = f(V ) ∪ Ωf .

If S ⊂ M is any subset, S is said to have “dimension at most d” if there
is a smooth map g: W → M such that S ⊂ g(W ) where W is a smooth
manifold all of whose components have dimension at most d.

Definition 3.1. — Let V and M be smooth oriented manifolds, where
V might have boundary and dimV = k, and let f : V → M be a smooth
map.

(i) f is called a k-pseudochain if f(V ) is compact and Ωf has dimension
at most k − 2.

(ii) f : V → M is called a k-pseudocycle if f is a k-pseudochain and
∂V = ∅.

(iii) f : V →M is called a k-pseudoboundary if f is a k-pseudocycle and
there is a (k + 1)-pseudochain g: W → M such that ∂W = V as
oriented manifolds and g|∂W = f . In this case the pseudochain g is
called a bounding pseudochain for f .

In the above definition we have required V to be oriented. Deleting all
references to orientation gives in the obvious way definitions of “unoriented
pseudochains, pseudocycles, and pseudoboundaries;” in the unoriented sit-
uation one may straightforwardly modify the following discussion to obtain
intersection and linking numbers which are defined modulo 2. We remark
that the restriction to the boundary of a pseudochain will not necessarily
be a pseudoboundary, since the Ω-limit set of the restriction might have
codimension one in the boundary.

As explained in [20], a pseudocycle naturally determines a homology
class in M , in a way which induces an isomorphism between the group
H∗(X) of pseudocycles modulo pseudoboundaries (with addition given by
disjoint union) and the integral homology H∗(M ;Z). Moreover, there is a
well-defined intersection pairing on H∗(X) given by the construction of [11,
p. 161], and under the isomorphism H∗(X) ∼= H∗(X;Z) this corresponds to
the standard intersection pairing.
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Essentially the same construction as was used for the intersection pair-
ing on H∗(X) in [11] may be used to define linking numbers between pseu-
doboundaries, as we now describe. The idea, of course, is that if f : V →M
and g: W → M are pseudoboundaries the sum of whose dimensions is
dimM − 1 and whose images have disjoint closures, then the linking num-
ber lk(g, f) should count the number of intersections of g with a bounding
pseudochain for f .

We begin with a technical transversality result.

Lemma 3.2. — M,N, Y be smooth manifolds, let f : M → Y , g: N → Y
be smooth functions, and let S be a compact subset of Y such that, for
every pair (m,n) ∈ M × N such that f(m) = g(n) and (f × g)∗: TmM ×
TnN → T(f(m),f(m))Y ×Y is not transverse to ∆, it holds that f(m) ∈ int(S)
(where int(S) denotes the interior of S). Let DiffS(Y ) denote the space
of diffeomorphisms of Y having support contained in S, equipped with the
(restriction of the) Whitney C∞ topology. Then

S = {φ ∈ DiffS(Y ) |((φ ◦ f)× g) : M ×N → Y × Y is transverse to ∆}

is a residual subset of DiffS(Y ).

Proof. — See Section 7. �

The following consequence of Lemma 3.2 is a small generalization of [11,
Lemma 6.5.5(i)].

Proposition 3.3. — Let F0: X → M be a pseudochain (where X is
a smooth manifold with boundary), and let g: W → M be a pseudocycle
such that F0(∂X) ∩ g(W ) = ∅. Then if U is any neighborhood of F0 in
the Whitney C∞ topology there exists a pseudochain F : X → M such that
F ∈ U and

(i) F |∂X = F0|∂X
(ii) (F × g): X ×W →M ×M is transverse to the diagonal ∆.

(iii) ΩF ∩ g(W ) and F (X) ∩ Ωg both have dimension at most dimX +
dimW − dimM − 2.

Proof. — Write dimX = k, dimW = l, and dimM = n. There are
smooth maps α: A → M and β: B → M , where A and B are smooth
manifolds whose components all have dimension at most k− 2 and at most
l − 2 respectively, such that ΩF0

⊂ α(A) and Ωg ⊂ β(B).
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Since F0(∂X)∩ g(W ) = ∅, and since F0(X)∩ g(W ) is compact, we can
find an open set U ⊂ M containing F0(X) ∩ g(W ) and whose closure is
disjoint from F0(∂X). According to repeated applications of Lemma 3.2 the
following subsets of the group DiffŪ (M) of diffeomorphisms with support
in Ū are all residual in the C∞ topology:

U1 = {φ ∈ DiffŪ (M) |((φ ◦ F0)× g) : X ×W →M ×M is transverse to ∆}
U2 = {φ ∈ DiffŪ (M) |((φ ◦ α)× g) : A×W →M ×M is transverse to ∆}
U3 = {φ ∈ DiffŪ (M) |((φ ◦ α)× β) : A×B →M ×M is transverse to ∆} .
U4 = {φ ∈ DiffŪ (M) |(F0 × (φ ◦ β)) : X ×B →M ×M is transverse to ∆}

In particular we can find a diffeomorphism φ, arbitrarily C∞-close to
the identity and supported in Ū , such that φ ∈ U1 ∩ U2 ∩ U3 and φ−1 ∈ U4.
We claim that F = φ ◦ F0 will have the desired properties.

Since F0(∂X) ∩ (supp(φ)) = ∅ property (i) of the proposition is clear.

The fact that φ ∈ U1 immediately implies property (ii).

As for property (iii), since F (X) = F (X)∪ΩF and g(W ) = g(W )∪Ωg,
we need to show that ΩF ∩g(W ), ΩF ∩Ωg, and F (X)∩Ωg all have dimension
at most k + l − n − 2. Now ΩF ∩ g(W ) ⊂ (φ ◦ α)(A) ∩ g(W ), and the fact
that φ ∈ U2 shows that Aφ◦α ×g W is cut out transversely, so since all
components of A have dimension at most k− 2 we see that ΩF ∩ g(W ) has
dimension at most k + l−n− 2. Similarly the fact that φ ∈ U3 implies that
ΩF ∩ Ωg has dimension at most k + l − n− 4. Finally, note that

F (X) ∩ Ωg ⊂ F (X) ∩ β(B) = φ
(
F0(X) ∩ (φ−1 ◦ β)(B)

)
,

so the fact that φ−1 ∈ U4 implies that F (X) ∩ Ωg has dimension at most
k + l − n− 2, completing the proof. �

Assume that the target manifold M is oriented with dimM = n, and
let f : V → M be a k-pseudoboundary and g: W → M a (n − k − 1)-
pseudoboundary, such that f(V ) ∩ g(W ) = ∅, and let F0: X → M be a
bounding pseudochain for f . Use Proposition 3.3 to perturb F0 to F : X →
M obeying (i)-(iii) above; in particular F is also a bounding pseudochain
for f . The fiber product XF ×g W is then a smooth oriented manifold of

dimension zero, with ΩF ∩ g(W ) = F (X) ∩ Ωg = ∅ (since in this case
dimX + dimW − dimM − 2 = −2).

Moreover XF ×g W is compact: if {(xn, wn)} is a sequence in XF ×g

W then since F (X) and g(W ) are compact the sequence {(F (xn), g(wn))}
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would have a subsequence (still denoted by {(F (xn), g(wn))}) converging to
a point (m,m) ∈ (F (X) × g(W )) ∩ ∆. Now F (X) = F (X) ∪ ΩF , so since
ΩF ∩g(W ) = ∅ we must have m ∈ F (X)\ΩF . But since F (X)∩Ωg = ∅ this
implies that also m ∈ g(W )\Ωg. Since m lies in neither ΩF nor Ωg there are

compact sets K � X, L �W such that m /∈ F (X \K) and m /∈ g(W \ L).
So since F (xn) → m and g(wn) → m, infinitely many of the xn lie in K,
and infinitely many of the wn lie in L. So since K and L are compact a
subsequence of {(xn, wn)} converges to a pair (x,w) ∈ K × L ⊂ X ×W
such that F (x) = g(w), i.e. such that (x,w) ∈ FX ×g W . This confirms our
assertion that XF ×g W is compact provided that F is as in Proposition
3.3.

Since XF ×g W is a compact oriented zero-manifold we can take the
intersection number ι(g, F ) = #(XF ×g W ) as described at the end of Sec-
tion 2. We would like to define the linking number of the pseudoboundaries
g and f to be equal to this intersection number; the justification of this
definition requires the following:

Proposition 3.4. — Let f : V → M and g: W → M be two pseu-
doboundaries such that f(V )∩g(W ) = ∅ and dimV +dimW +1 = dimM .
Let F1: X1 → M and F2: X2 → M be two bounding pseudochains for f
such that, for i = 1, 2,

(i) Fi × g: Xi ×W →M ×M is transverse to the diagonal ∆.

(ii) ΩFi ∩ g(W ) = Ωg ∩ Fi(Xi) = ∅.

Then
ι(g, F1) = ι(g, F2).

(Of course, the argument before the proposition shows that (i) and (ii)
suffice to guarantee that Xi Fi ×g W is a compact oriented zero-manifold,
so that ι(g, Fi) is well-defined.)

Proof. — We have, as oriented manifolds, ∂Xi = V and Fi|∂Xi = f . Let
X̄1 denote X1 with its orientation reversed. There are then neighborhoods
U1 of ∂X̄1 in X̄1 and U2 of ∂X2 in X2, and orientation-preserving diffeo-
morphisms φ1: [0,∞) × V → U1 and φ2: (−∞, 0] × V → U2 which restrict
as the identity on {0} × V = ∂Xi. Gluing X̄1 to X2 along their common
boundary V results in a new oriented, boundaryless manifold X, with an
open subset U ⊂ X which is identified via a diffeomorphism φ = φ1 ∪ φ2

with R× V .

Define a map G0: X → M by the requirement that G0|Xi = Fi. Now
G0 is typically not a smooth map (its derivative in the direction normal to
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{0} × V will typically not exist), but this is easily remedied: let β: R →
R be a smooth homeomorphism such that β(t) = t for |t| > 1 and such
that β vanishes to infinite order at t = 0. Where U ⊂ X is identified
with R × V as above, define Φ: X → X by setting Φ(t, v) = (β(t), v) for
(t, v) ∈ U and setting Φ equal to the identity outside U . Then Φ is a smooth
homeomorphism, and the function G := G ◦ Φ will now be smooth, since
the normal derivatives to all orders along {0} × V will simply vanish.

Now since G = G0 ◦ Φ−1 where Φ−1 is a homeomorphism we have
ΩG = ΩG0 . But it is easy to check from the definitions that ΩG0 = ΩF1∪ΩF2 .
Thus ΩG, like ΩF1 and ΩF2 , has dimension at most dimX − 2. So since
∂X = ∅, G: X →M is a pseudocycle. Moreover we have

ΩG ∩ g(W ) = (ΩF1
∩ g(W )) ∪ (ΩF1

∩ g(W )) = ∅,

and since G(X) = F1(X1) ∪ F2(X2),

Ωg ∩G(X) = ∅.

Furthermore, viewing the Xi as submanifolds-with-boundary of X (with
the orientation of X1 reversed) and using that the image under G of V =
X1 ∩X2 is disjoint from g(W ), we have, as oriented manifolds,

XG ×g W = (−X1 F1
×g W )

∐
(X2 F2

×g W ) .

In particular the fiber product XG ×g W is cut out transversely, and the
intersection numbers of G,F1, F2 with g obey

ι(g,G) = −ι(g, F1) + ι(g, F2).

But G: X → M is a pseudocycle and g: W → M is a pseudoboundary, so
by [11, Lemma 6.5.5 (iii)] one has ι(g,G) = 0, and so ι(g, F1) = ι(g, F2). �

We can accordingly make the following definition:

Definition 3.5. — Let M be an oriented n-manifold and let f : V →M
and g: W →M be pseudoboundaries of dimension k and n−k−1 respectively
such that f(V ) ∩ g(W ) = ∅. Then the linking number of g and f is

lk(g, f) = # (XF ×g W )

where F : X →M is any bounding pseudochain for f such that F × g: X ×
W →M ×M is transverse to ∆, and Ωg ∩ F (X) = ΩF ∩ g(W ) = ∅.

Of course, the existence of such an F is implied by Proposition 3.3, and
the independence of lk(g, f) from the choice of F is given by Proposition
3.4. Moreover:
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Proposition 3.6. — For f : V → M and g: W → M as in Definition
3.5 we have

lk(g, f) = (−1)(k+1)(n−k)lk(f, g).

Proof. — Let F1: X → M and G1: Y → M be bounding pseudochains
for f and g respectively, such that F1 × g: X ×W → M ×M and G1 ×
f : Y × V →M ×M are transverse to ∆, and such that

Ωg ∩ F1(X) = Ωf ∩G1(Y ) = ΩF1
∩ g(W ) = ΩG1

∩ f(V ) = ∅.

First, using repeated applications of Lemma 3.2, one can perturb F1 and
G1 to maps F : X → M and G: Y → M which (in addition to the above
properties of F1 and G1) also have the properties that F×G: X×Y →M×
M is transverse to ∆, and ΩF ∩G(Y ) = ΩG ∩F (X) = ∅ (More specifically,
and ignoring issues related to the Ω-limit sets which can be handled as in
the proof of Proposition 3.3, first apply Lemma 3.2 with one map equal to
G1 and the other equal to F1|F−1

1 (U) for some small neighborhood U of f(V )

to perturb G1 to a new map G2 which has no nontransverse intersections
with F1 or f near f(V ). Then similarly perturb F1 to F2 which has no
nontransverse intersections with G2 or g near g(W ). Then finally apply
Lemma 3.2 to F2 and G2 on a suitable compact subset S which is disjoint
from f(V ) ∪ g(W ). We leave the details to the reader.)

The fiber product XF ×G Y will then be an oriented compact one-
manifold with oriented boundary given by, according to (2.2) and (2.3),

∂ (XF ×G Y ) = (V f ×G Y )
∐

(−1)n−k−1 (XF ×g W )

∼= (−1)k(n−k) (Y G ×f V )
∐

(−1)n−k−1 (XF ×g W ) .

So the signed number of points of the boundary the oriented compact one-
manifold XF ×G Y is equal to

(−1)k(n−k)lk(f, g) + (−1)n−k−1lk(g, f).

But the signed number of points of the boundary of any oriented compact
one-manifold is zero, and setting the above expression equal to zero yields
the result. �

While we primarily consider pseudochains and pseudoboundaries in this
paper, it is natural to ask when these can be replaced by smooth maps
defined on compact smooth manifolds. The following lemma helps to answer
this question in some cases.
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Lemma 3.7. — Let φ: V →M be a k-pseudoboundary and let U be any
open neighborhood of φ(V ). Then for some positive integer N , there is a
compact oriented k-manifold B and a smooth map f : B → M which is a
pseudoboundary, such that f(B) ⊂ U and such that, for every (n− k − 1)-
pseudoboundary g: W →M such that g(W ) ∩ U = ∅, we have

lk(g, f) = N lk(g, φ).

Proof. — Choose an open subset U1 ⊂ U such that Ū1 is a smooth
compact manifold with boundary and φ(V ) ⊂ U1 ⊂ Ū1 ⊂ U (for instance,
Ū1 could be taken as a regular sublevel set for some smooth function sup-
ported in U and equal to −1 on φ(V )). Let C2 be the image of Ū1 under the
time-one flow of some vector field that points strictly into U1 along ∂Ū1 and
vanishes on φ(V ), so in particular C2 is a smooth compact manifold with
boundary and we have φ(V ) ⊂ C2 ⊂ U1, with the inclusion i: C2 → U1 a
homotopy equivalence.

Let [φ] ∈ Hk(U1;Z) denote the homology class of φ, as given by the
isomorphism Φ from [20, Theorem 1.1] between the homology of U1 and the
group of equivalence classes of pseudocycles in U1. Since C2, like any smooth
compact manifold with boundary, is homeomorphic to a finite polyhedron,
[17, Théorème III.4] gives a positive integer N , a smooth compact oriented
k-manifold B without boundary, and a continuous map f0: B → C2 such
that (f0)∗[B] = Ni−1

∗ [φ]. So if f : B → U1 is a small perturbation of f0

which is of class C∞, then f∗[B] = N [φ] ∈ Hk(U1;Z).

We can now think of f as a pseudocycle in U1; as is clear from the
construction of the isomorphism Φ in [20, Section 3.2], the homology class
determined by f under Φ is just f∗[B]. Let NV denote the oriented manifold
obtained by taking N disjoint copies of V , and let φN : NV → U1 ⊂ M be
the pseudocycle equal to φ on each copy of V . The injectivity of Zinger’s iso-
morphism Φ shows that f and φN are equivalent as pseudocycles in U1, i.e.,
there is an oriented manifold with boundary X1 with ∂X1 = B

∐
(−NV )

and a pseudochain F1: X1 → U1 such that F1|B = f and F1|−NV = φN .

Now φ: V → M was assumed to be a pseudoboundary, so taking N
copies of a bounding pseudochain for φ gives a bounding pseudochain F2:
X2 → M for φN : NV → M . A gluing construction just like the one in
the second paragraph of the proof of Proposition 3.4 then gives a bounding
pseudochain F : X → M for f , where X is the smooth manifold resulting
from gluing X1 and X2 along NV . In particular this shows that f is a
pseudoboundary in M . Moreover, since Ū1 ⊂ U the gluing construction can
be arranged in such a way that F−1

2 (M \ U) is N copies of F−1(M \ U),
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with the restriction of F2 to each of these copies equal to that of F . So if
g: W →M is any pseudoboundary such that g(W ) ⊂M \U , then we have

lk(g, f) = #(XF ×g W ) = # (X2 F2
×g W ) = N lk(g, φ),

since F2: X2 → M was obtained by taking N copies of a bounding pseu-
dochain for φ. �

4. Operations on the Morse complex

Let M be a compact smooth oriented n-manifold and let f : M → R be
a Morse function, and fix a coefficient ring K. We will work with respect
to a metric h which belongs to the intersection of the residual sets given
by applying the forthcoming Proposition 4.2 to various maps into M that
will be specified later; in particular, the negative gradient flow of f with
respect to h is Morse–Smale. Let Crit(f) denote the set of critical points of
f , and for p ∈ Crit(f) write |p|f for the index of p. As in Section 2.5, orient
the unstable manifolds Wu

f (p) in such a way that when |p|f = n (so that
Wu

f (p) is an open subset of M) the orientation of Wu
f (p) agrees with that

of M , and when |p|f = 0, Wu
f (p) is a positively oriented point. This then

induces orientations of the various W s
f (p), Wu

−f (p), W s
−f (p), M̃(p, q; f), and

M(p, q; f) as prescribed in Section 2.5. Note that these prescriptions also
ensure that when |p|−f = n (so |p|f = 0) the orientation of Wu

−f (p) agrees
with that of M , and when |p|−f = 0, Wu

−f (p) is a positively oriented point.

When |p|f = |q|f +1, the Morse–Smale condition ensures that M(p, q; f)
is a compact 0-dimensional oriented manifold, and so has a signed number
of points #K (M(p, q; f)), evaluated in K (using the unique unital ring ho-
momorphism Z→ K).

The Morse complex (CM∗(f ;K), df ) is defined as usual by letting CMk(f)
be the free K-module generated by the index-k critical points of f , setting
CM∗(f ;K) = ⊕n

k=0CMk(f), and defining df = ⊕kdf,k where df,k: CMk(f ;K)
→ CMk−1(f ;K) is defined by extending linearly from, for p ∈ Crit(f) with
|p|f = k,

df,k(p) =
∑

q ∈ Crit(f) :
|q|f = k − 1

#K (M(p, q; f)) q.

As is familiar (see e.g. [14]), one has df ◦df = 0, and the resulting homology
HM∗(f ;K) is canonically isomorphic to the singular homology H∗(M ;K)
of M with coefficients in K.

Moreover, given our orientation conventions, there is a canonical element
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Mf ∈ CMn(f ;K), defined by

Mf =
∑

p ∈ Crit(f) :
|p|f = n

p. (4.1)

The following shows that Mf is a cycle in the Morse chain complex; in
view of this, it is easy to see that Mf represents the fundamental class of
M under the isomorphism with singular homology (using for instance the
construction of this isomorphism given in [15]).

Proposition 4.1. — dfMf = 0.

Proof. — It suffices to show that, for any q ∈ Crit(f) with |q|f = n−1,
the coefficient on q in dfMf is equal to zero. This coefficient is equal to

∑

p ∈ Crit(f) :
|p|f = n

#K (M(p, q; f)) .

Now since |q|f = n − 1, the Morse–Smale condition (and the trivial
fact that no critical points of f have index larger than n) implies that the
partial compactification W̄ s

f (q) described in Section 2.5 is in fact compact.

Consequently #K
(
∂W̄ s

f (q)
)

= 0, since the signed number of points in the

boundary of a compact one-manifold is always zero. Also, our orientation
conventions ensure that, for each critical point p with |p|f = n, W s

f (p) is a
positively-oriented point. So consulting (2.11) we obtain

0 = #K
(
∂W̄ s

f (q)
)

= −
∑

p ∈ Crit(f) :
|p|f = n

#K (M(p, q; f)) ,

as desired. �

Of course, this can all be done with respect to −f in place of f , and with
the prescriptions above the K-modules CMn−k(−f ;K) and CMk(f ;K) are
defined identically. We may then define a K-bilinear pairing

Π: CMn−∗(−f ;K)× CM∗(f ;K) → K
 ∑

q∈Crit(f)

aqq,
∑

p∈Crit(f)

bpp


 �→

∑

p∈Crit(f)

apbp

Equation (2.9) then translates to

Π (d−fx, y) = (−1)n−k+1Π (x, dfy) for x ∈ CMn−k+1(−f ;K), y ∈ CMk(f ;K),
(4.2)
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so that Π descends to a pairing Π: HM∗(−f ;K)×HM∗(f ;K) → K. Given
that the Morse–Smale condition guarantees that if p and q are distinct crit-
ical points of the same index then W s(q) ∩Wu(p) = ∅, it is easy to check
that, with respect to the identifications of HM∗(±f ;K) with H∗(M ;K)
described in [15], this homological pairing coincides with the standard in-
tersection pairing on M (recall from Section 2.5 that for p ∈ Crit(f) the
direct sum decomposition TpM = TpW

u
−f (p)⊕ TpW

u
f (p) respects the orien-

tations, in view of which Π has the correct sign to agree with the standard
intersection pairing).

From the pairing Π we may construct a linking pairing between the
image of d−f and the image of df :

Λ: (Im(d−f ))× (Im(df )) → K
(x, y) �→ Π(x, z) for any z such that dfz = y. (4.3)

The adjoint relation (4.2) and the fact that x ∈ Im(d−f ) readily imply that
Π(x, z) is indeed independent of the choice of z such that dfz = y. Also, for
x ∈ CMn−k−1(−f ;K) ∩ Im(d−f ) and y ∈ CMk(f ;K) ∩ Im(df ) the above
definition is equivalent to

Λ(x, y) = (−1)n−kΠ(w, y) for any w such that d−fw = x. (4.4)

We now turn to a transversality result for intersections of Morse trajec-
tories with smooth maps, which, while following from fairly standard meth-
ods, will be of fundamental importance for our operations on the Morse
chain complex. Be given an exhausting Morse function f : M → R on an
n-dimensional smooth manifold M , and let Crit(f) denote the set of crit-
ical points of f . If h is a Riemannian metric and p, q ∈ Crit(f) we have
the inclusions of the stable and unstable manifolds is,q: W

s
f (q;h) → M ,

iu,p: W
u
f (p;h) →M and the trajectory space M̃(p, q; f,h)=Wu

f (p;h)iu,p×is,p

W s
f (q;h). In [14, Section 2.3] Schwarz constructs a Banach manifold G all

of whose members are smooth Riemannian metrics, and shows that there
is a residual subset R0 ⊂ G such that for all h ∈ R0 the negative gradient
flow of f with respect to h satisfies the Morse–Smale condition, which is to
say that the fiber products M̃(p, q; f, h) = Wu

f (p;h)iu,p ×is,p W s
f (q;h) are

all cut out transversely.

Of course, M̃(p, q; f, h) may be identified with the space of smooth maps
γ: R → M such that γ̇(t) +∇hf(γ(t)) = 0 for all t and limt→−∞ γ(t) = p
and limt→∞ γ(t) = q. Under this identification we have an embedding

epq: M̃(p, q; f, h) → M

γ �→ γ(0)
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For any k ∈ Z+ define

Ek−1: M̃(p, q; f, h)× (0,∞)k−1 → Mk

(γ, t1, . . . , tk−1) �→
(
γ(0), γ(t1), γ(t1 + t2), . . . , γ

(
k−1∑

i=0

ti

))
.

(Thus, viewing (0,∞)0 as a one-point set, E0 coincides with epq.)

Proposition 4.2. — Let k ∈ Z+ and for 0 � i � k−1 let Vi be a smooth
manifold and gi: Vi →M be a smooth map such that gi(Vi) ∩Crit(f) = ∅.
Then there is a residual subset R ⊂ G such that for every h ∈ R the
negative gradient flow of f with respect to h is Morse–Smale, and for all
p, q ∈ Crit(f) the fiber product

V(p, q, f, g0, . . . , gk−1;h)

:= (V0 × · · · × Vk−1) g0×···×gk−1
×Ek−1

(
M̃(p, q; f, h)× (0,∞)k−1

)

is cut out transversely.

Proof. — See Section 7. �

4.1. Cap products

Continuing to fix the above Morse function f , let g: V → M be any
pseudochain, where V is an oriented v-dimensional manifold with (possibly
empty) boundary and v � n. Thus g(V ) = g(V ) ∪ Ωg, where Ωg is covered
by the image of a smooth map φ: W → M and all components of W have
dimension at most v − 2. If v < n we additionally assume that g(V ) ∩
Crit(f) = ∅. If v = n we instead additionally assume that Crit(f) ∩
(g(∂V ) ∪ Ωg) = ∅, and that every point in Crit(f) is a regular value of g.

Writing ∂g = g|∂V : ∂V → M , we will assume from now on that the
Morse–Smale metric h being used to define the gradient flow of f belongs
to the intersection of the residual sets obtained by applying Proposition 4.2
successively (in each instance with k = 1) to g|g−1(M\Crit(f)), to ∂g, and
to φ.

This being the case, for all p, q ∈ Crit(f) the fiber products V g ×epq

M̃(p, q; f), ∂V g ×epq M̃(p, q; f), and Wφ ×epq M̃(p, q; f) will all be cut

out transversely,6 where epq: M̃(p, q; f) → M is the canonical embedding

(6) In the case that v = n the transversality of fiber products of the form V g ×epp
M̃(p, p; f) follows from the assumption that the critical points of f are all regular values
for g
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(if elements of M̃(p, q; f) are thought of as gradient flow trajectories γ
then epq(γ) = γ(0)). In particular, in the case that |p|f − |q|f = n − v,

the latter two fiber products will be empty, and V g ×epq M̃(p, q; f) will
be an oriented zero-manifold. Moreover this oriented zero-manifold will be
compact: to see this, recall that the images under epq of a divergent sequence

in M̃(p, q; f) will, after passing to a subsequence, converge to an element
of some ers(M̃(r, s; f)) where |r|f − |s|f < |p|f − |q|f , and use the fact

that V g ×ers M̃(r, s; f), ∂V ∂g ×ers M̃(r, s; f), and Wφ ×ers M̃(r, s; f) are
all cut out transversely and hence are empty by dimension considerations.
Consequently we have a well defined K-valued signed count of elements

#K
(
V g ×epq M̃(p, q; f)

)
whenever |p|f − |q|f = n− v.

Accordingly, given g: V → M as above (and a suitable Morse–Smale
metric) we define a map Ig: CM∗(f ;K) → CM∗(f ;K) as a direct sum of
maps

Ig: CMk(f ;K) → CMk−(n−v)(f ;K)

obtained by extending linearly from the formula

Ig(p) =
∑

q ∈ Crit(f) :
|q|f = k − (n− v)

#K
(
V g ×epq M̃(p, q; f)

)
q

Ig(x) might be thought of as a chain-level version of the cap product of
x ∈ CM∗(f ;K) with the pseudochain g: V →M .

Evidently we have an identically-defined map (using the same metric h)
Ig: CMk(−f ;K) → CMk−(n−v)(−f ;K).

Proposition 4.3. — The maps Ig: CM∗(±f ;K) → CM∗−(n−v)(±f ;K)
enjoy the following properties:

(i) For x ∈ CM2n−k−v(−f ;K) and y ∈ CMk(f ;K),

Π (Ig(x), y) = (−1)(n−v)(n−k)Π (x, Ig(y)) .

(ii) Assuming that ∂g: ∂V → M is also a pseudochain, so that I∂g is
defined,

I∂g − dfIg + (−1)n−vIgdf = 0.

Proof. — Since Π is bilinear it suffices to check the equation in (i) when
x = q for some critical point q with |q|f = k − (n − v) (so that |q|−f =
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2n− k − v) and y = p for some critical point p with |p|f = k. By definition
we have

Π (q, Ig(p)) = #K
(
V g ×epq M̃(p, q; f)

)

and

Π (Ig(q), p) = #K
(
V g ×epq M̃(q, p;−f)

)

In view of (2.7), these differ from each other by a factor (−1)(|p|f+|q|f )(n−|p|f )

= (−1)(n−v)(n−k), proving (i).

(ii) is proven by examining the boundary of the one-manifolds V g ×Ē0

M̃(p, q; f) where |p|f −|q|f = n−v+1. Recall here that, as described above

(2.10), M̃(p, q; f) is a partial compactification of M̃(p, q; f), with oriented
boundary given by

∂M̃(p, q; f) =


 ∐

|r|f=|p|f−1

M(p, r; f)× M̃(r, q; f)




	(−1)|p|f+|q|f


 ∐

|r|f=|q|f+1

M̃(p, r; f)×M(r, q; f)


 ,

and the characteristic map Ē0: M̃(p, q; f) →M is equal to epq on the inte-

rior M̃(p, q; f) and to the canonical embeddings of M̃(r, q; f) and M̃(p, r; f)
on M(p, r; f)× M̃(r, q; f) and M̃(p, r; f)×M(r, q; f), respectively.

Now the Ω-limit set ΩĒ0
of Ē0 is contained in spaces of the form M̃(r, s; f)

of dimension at most |p|f − |q|f − 2 = n − v − 1, and so is disjoint from

g(V ) by our transversality assumptions on the metric h. For similar di-

mensional reasons, Ωg is disjoint from Ē0

(
M̃(p, q; f)

)
, and also g(∂V ) ∩

Ē0

(
∂M̃(p, q; f)

)
= ∅. Therefore V g ×Ē0

M̃(p, q; f) is a compact oriented

one-manifold with boundary (and no corners, since the fiber product of the
boundaries is empty); according to (2.2) the oriented boundary is given by

(
(∂V )∂g ×epq M̃(p, q; f)

) ∐
(−1)n−v

(
V g ×Ē0

∂M̃(p, q; f)
)

(4.5)

Of course, since (4.5) is the boundary of a compact oriented one-manifold, its
signed number of points must be zero. The signed number of points (counted
in K) in (∂V )∂g×epq M̃(p, q; f) is Π(q, I∂gp). As for the other set appearing
in (4.5), we have, freely using properties of fiber product orientations from
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Section 2.4,

V g ×Ē0
∂M̃(p, q; f) =


 ∐

|r|f=|p|f−1

(
V g ×Ē0

M̃(r, q; f)
)
×M(p, r; f)




	(−1)|p|f+|q|f


 ∐

|r|f=|q|f+1

(
V g ×Ē0

M̃(p, r; f)
)
×M(r, q; f)




The signed number of points in the first of the two large unions above
is easily seen to be Π (q, Ig(dfp)), while the signed number of points in the
second large union (ignoring the sign (−1)|p|f+|q|f ) is Π (q, dfIg(p)). So since
in this case (−1)|p|f+|q|f = (−1)n−v+1, setting the signed number of points
in (4.5) equal to zero gives

0 = Π(q, I∂gp) + (−1)n−v
(
Π (q, Ig(dfp)) + (−1)n−v+1Π (q, dfIg(p))

)

= Π
(
q,

(
I∂g − dfIg + (−1)n−vIgdf

)
p
)
.

Since this equation holds for all p, q ∈ Crit(f) of the appropriate indices,
we have proven (ii). �

We also mention the following somewhat trivial proposition, which we
will appeal to later. Recall the canonical cycle Mf =

∑
|p|f=n p ∈ CMn(f ;K)

from (4.1); similarly we have a canonical cycle M−f =
∑
|q|f=0 q ∈

CMn(−f ;K).

Proposition 4.4. — Let V be a compact oriented zero-manifold, let
g: V → M be a map such that g(V ) ∩ Crit(f) = ∅, and assume that the
metric h belongs to the residual set of Proposition 4.2 applied with k = 1
to the map g, so that Ig: CM∗(f ;K) → CM∗−n(f ;K) is defined. Then the
signed number of points in V is given by

#K(V ) = Π (M−f , IgMf ) .

Proof. — Since dimV = 0, by dimensional considerations our assump-
tion on h amounts to the statement that V g ×epq M̃(p, q; f) = ∅ unless
|p|f = n and |q|f = 0. Now as p varies through index-n critical points of f

and q varies through index-0 critical points, the M̃(p, q; f) are sent by their
canonical embeddings epq to disjoint open subsets of M , and our orienta-
tion prescription for the unstable manifolds of index-n and index-0 critical
points ensures that the orientation of each such M̃(p, q; f) coincides with

– 54 –



Linking and the Morse complex

its orientation as an open subset of M . As a result, we obtain

#K(V ) = #K (V g ×1M M) =
∑

|q|f=0

∑

|p|f=n

#K
(
V g ×epq M̃(p, q; f)

)

=
∑

|q|f=0

∑

|p|f=n

Π (q, Igp) = Π


 ∑

|q|f=0

q,
∑

|p|f=n

Igp


 = Π (M−f , IgMf ) ,

as desired. �

4.2. Gradient trajectories passing through two chains

Having defined the chain-level cap product by using Proposition 4.2 with
k = 1, we now set about defining new operations on the Morse chain
complex by means of the k = 2 version of Proposition 4.2. This will re-
quire us to understand the boundaries of (compactifications of) moduli

spaces of the form (V0 × V1)g0×g1 ×E1

(
M̃(p, q; f)× (0,∞)

)
, where the

map E1: M̃(p, q; f)× (0,∞) →M ×M is defined by

E1(γ, t) = (γ(0), γ(t)).

Lemma 4.5. — Assume that the negative gradient flow of the exhaust-
ing Morse function f : M → R on a smooth oriented manifold M is Morse–
Smale and that p, q ∈ Crit(f) are distinct. There is a pseudochain

Ē1: M̃(p, q; f)× (0,∞) →M×M , where M̃(p, q; f)× (0,∞) is an oriented
manifold with boundary whose interior is M̃(p, q; f) × (0,∞) and whose
oriented boundary is given by

(−1)|p|f−|q|f∂M̃(p, q; f)× (0,∞)=
(
(−1)|p|f−|q|fC1

)
	C2	C3	(−C4)	C5	C6

where

C1 =
∐

|r|f=|p|f−1

M(p, r; f)× M̃(r, q; f)× (0,∞) Ē1|C1([γ1], γ2, t) = (γ2(0), γ2(t)),

C2 =
∐

|r|f=|q|f+1

M̃(p, r; f)×M(r, q; f)× (0,∞) Ē1|C2(γ1, [γ2], t) = (γ1(0), γ1(t)),

C3 =
∐

|q|f<|r|f<|p|f
M̃(p, r; f)× M̃(r, q; f) Ē1|C3(γ1, γ2) = (γ1(0), γ2(0)),

C4 = M̃(p, q; f) Ē1|C4
(γ) = (γ(0), γ(0)),

C5 = M̃(p, q; f) Ē1|C5
(γ) = (p, γ(0)),

C6 = M̃(p, q; f) Ē1|C6
(γ) = (γ(0), q).

Moreover the Ω-limit set ΩĒ1
is contained in the union of sets of the fol-

lowing form:
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(i) Images of maps E1: M̃(a, b; f)×(0,∞) →M×M with |a|f−|b|f �
|p|f − |q|f − 2

(ii) ea,b

(
M̃(a, b; f)

)
×ec,d

(
M̃(c, d; f)

)
with (|a|f−|b|f )+(|c|f−|d|f ) �

|p|f − |q|f − 1

(iii) δ(e0(M̃(a, b; f))) where δ: M → M ×M is the diagonal embedding
and |a|f − |b|f � |p|f − |q|f − 1.

(iv)
(
e0(M̃(a, b; f))× Crit(f)

)
∪

(
Crit(f)× e0(M̃(a, b; f))

)
with |a|f −

|b|f � |p|f − |q|f − 1.

Proof. — See Section 7. �

We assume again that M is compact and fix a Morse function f : M → R.

Now suppose that we have two pseudochains g0: V0 →M and g1: V1 →
M ; for i = 1, 2 write vi = dimVi, ∂gi = gi|∂Vi , and let φi: Wi → M be a
smooth map from a manifold whose components all have dimension at most
vi − 2 such that Ωgi ⊂ φi(Wi). Furthermore we assume the following:

(A) g0(V0) ∩ Ωg1 = g1(V1) ∩ Ωg0 = ∅.

(B) The fiber products V0 g0
×g1

V1, (∂V0)∂g0
×g1

V1, V0 g0
×∂g1

(∂V1), and
(∂V0)∂g0 ×∂g1 (∂V1) are all cut out transversely.

(C) g0(V0) ∩ Crit(f) = g1(V1) ∩ Crit(f) = ∅.

Also, as a general point of notation, if α: A → M and β: B → M are
smooth maps such that Aα×βB is cut out transversely, we will write α×M β
for the map from Aα ×β B to M defined by (α×M β)(a, b) = α(a) = β(b).

Definition 4.6. — Where f, g0, g1, φ0, φ1 are as above, a Riemannian
metric h on M will be said to be generic with respect to f, g0, g1 provided
that it belongs to the residual sets given by Proposition 4.2 applied with:

• k = 1, to each of the functions

g0, g1, ∂g0, ∂g1, φ0, φ1, g0×M g1, g0×M ∂g1, ∂g0×M g1, ∂g0×M ∂g1

• k = 2, to each of the pairs of functions

(g0, g1), (g0, ∂g1), (g0, φ1), (∂g0, g1), (∂g0, ∂g1), (∂g0, φ1), (φ0, g1),

(φ0, ∂g1), (φ0, φ1).
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Choose a Riemannian metric which is generic with respect to f, g0, g1

and let p, q ∈ Crit(f) with v0 + v1 + |p|f − |q|f + 1 = 2n. Then the fiber
product

(V0 × V1)g0×g1 ×Ē1
M̃(p, q; f)× (0,∞)

is cut out transversely and by dimension considerations is an oriented zero-
manifold. Moreover the characterization of ΩĒ1

in Lemma 4.5, the as-
sumption on the indices of p and q, and the genericity assumption on
h ensure that any hypothetical divergent sequence in (V0 × V1)g0×g1

×Ē1

M̃(p, q; f)× (0,∞) would have a subsequence whose image under (g0 ×
g1) ×M Ē1 converging to a point in a transversely-cut-out fiber product
which has negative dimension and so is empty. Thus (V0 × V1)g0×g1

×Ē1

M̃(p, q; f)× (0,∞) is compact and we may define

Ig0,g1(p) =
∑

q ∈ Crit(f) :
|q|f = |p|f + 1− (2n− v1 − v2)

#K
(
(V0 × V1)g0×g1 ×Ē1

M̃(p, q; f)× (0,∞)
)
q

Extending this linearly gives us a map

Ig0,g1
: CMk(f ;K) → CMk+1−(2n−v1−v2)(f ;K).

Proposition 4.7. — The maps Ig0
, Ig1

, and Ig0,g1
obey the following

identity:
I∂g0,g1 + (−1)v0Ig0,∂g1 + (−1)v0+v1Ig0,g1df + dfIg0,g1

+(−1)v0(n−v1)Ig1
Ig0

+ (−1)1+n(n−v1)Ig0×Mg1
= 0

Proof. — Let p, q ∈ Crit(f) be critical points whose indices obey |p|f −
|q|f + v0 + v1 = 2n. Then the transversely-cut-out fiber product (V0 ×
V1)g0×g1 ×Ē1

M̃(p, q; f)× (0,∞) is one-dimensional, and the genericity as-
sumption on h together with dimensional considerations7 imply that this
fiber product is compact after adding its oriented boundary, which is given
by

∂
(
(V0 × V1)g0×g1 ×Ē1

M̃(p, q; f)× (0,∞)
)

=
(
(∂ (V0 × V1)) g0×g1 ×Ē1

M̃(p, q; f)× (0,∞)
)

∐(
(V0 × V1) g0×g1 ×Ē1

(−1)2n−v0−v1∂M̃(p, q; f)× (0,∞)
)

(7) i.e., any hypothetical divergent sequence would have a subsequence converging to
a transversely-cut-out fiber product of negative dimension
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Now

(∂ (V0 × V1)) g0×g1
×Ē1

M̃(p, q; f)× (0,∞)

=
(
((∂V0)× V1) (∂g0)×g1

×Ē1
M̃(p, q; f)× (0,∞)

)

	(−1)v0

(
(V0 × (∂V1)) g0×∂g1

×Ē1
M̃(p, q; f)× (0,∞)

)

has signed number of points (evaluated in K) equal to

Π (q, I∂g0,g1p) + (−1)v0Π (q, Ig0,∂g1p) .

Meanwhile since 2n− v0 − v1 = |p|f − |q|f we see that, with notation as
in Lemma 4.5,

(
(V0 × V1) g0×g1 ×Ē1

(−1)2n−v0−v1∂M̃(p, q; f)× (0,∞)
)

= (V0 × V1) g0×g1 ×Ē1

(
((−1)v0+v1C1) 	 C2 	 C3 	 (−C4)

)

(The fiber products with C5 and C6 are empty since g0(V0) and g1(V1) are
disjoint from Crit(f).)

Now the signed number of points in (V0 × V1) g0×g1
×Ē1

((−1)v0+v1C1)
is easily seen to be

(−1)v0+v1Π (q, Ig0,g1
dfp) ,

while that in (V0 × V1) g0×g1
×Ē1

C2 is

Π (q, dfIg0,g1
p) .

Meanwhile for any critical point r with |q|f < |r|f < |p|f we have, using
(2.5),

(V0 × V1) g0×g1 ×epr×erq
(
M̃(p, r; f)× M̃(r, q; f)

)

= (−1)(n−v1)(n−|p|f+|r|f )
(
V0 g0 ×epr M̃(p, r; f)

)
×

(
V1 g1 ×erq M̃(r, q; f)

)
.

In order for neither V0 g0 ×epr M̃(p, r; f) nor V1 g1 ×erq M̃(r, q; f) to be
nonempty it is necessary that v0 + |p|f −|r|f = n, in view of which it follows
that the signed number of points in (V0 × V1) g0×g1

×Ē1
C3 is

(−1)v0(n−v1)Π (q, Ig1Ig0p) .

Finally, where δ: M →M ×M for the diagonal embedding, using (2.1)
and (2.4) we have
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(V0 × V1) g0×g1
×Ē1

(−C4)=− (V0 × V1) g0×g1
×δ

(
M1M ×epq M̃(p, q; f)

)

=− ((V0 × V1) g0×g1 ×δ M) 1M ×epq M̃(p, q; f)

= (−1)1+n(n−v1) (V0 g0
×g1

V1) g0×Mg1
×epqM̃(p, q; f)

Thus the signed number of points in (V0 × V1) g0×Mg1
×Ē1

(−C4) is

(−1)1+n(n−v1)Π (q, Ig0×Mg1
p) .

We have now computed the signed number of points in all of the compo-
nents of the boundary of the compact oriented one-manifold (V0×V1)g0×g1

×Ē1

M̃(p, q; f)× (0,∞). Of course, the total signed number of boundary points
of this manifold is necessarily zero, and so we obtain

0 = Π
(
q, I∂g0,g1p + (−1)v0Ig0,∂g1p + (−1)v0+v1Ig0,g1dfp + dfIg0,g1p

+(−1)v0(n−v1)Ig1Ig0p + (−1)1+n(n−v1)Ig0×Mg1p
)
.

Since this holds for all critical points p and q of the appropriate indices
the result follows. �

Remark 4.8. — Of course, one may continue in this fashion and define,
for any positive integer k and suitably transverse pseudochains gi: Vi →M
for i = 0, . . . , k − 1 of dimension vi, operations

Ig0,...,gk−1
: CM∗(f ;K) → CM∗−1−

∑k−1

i=0
(n−vi−1)

(f ;K)

by counting elements of fiber products

(V0 × · · · × Vk−1) g0×···×gk−1
×Ek−1

(
M̃(p, q; f, h)× (0,∞)k−1

)
.

One can see that these operations satisfy

(−1)kdfIg0,...,gk−1 + (−1)

∑k−1

i=0
(n−vi)Ig0,...,gk−1df +

k−1∑

l=0

(−1)

∑l−1

i=0
viI...,gl−1,∂gl,gl+1,...

+

k−1∑

l=1

(
(−1)

kl+
(
1+

∑l−1

i=0
(vi−1)

)(∑k−1

j=l
(n−vj)

)
Igl,...,gk−1Ig0,...,gl−1

+(−1)
k+l+n

∑k−1

j=l
(n−vj)

I...,gl−2,gl−1×Mgl,gl+1,...

)
= 0
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The proof of this identity for the most part follows straightforwardly
by the same arguments as were used in the proofs of Lemma 4.5 and
Proposition 4.7; a little additional effort is required to obtain the sign on
I...,gl−2,gl−1×Mgl,gl+1,..., which entails comparing the orientations of

(
· · · × Vl−2 × (Vl−1 gl−1

×gl Vl)× Vl+1 × · · ·
)
...×gl−2×gl−1×Mgl×gl+1,...

×Ēk−2
(M̃(p, q; f)× (0,∞)k−2) (4.6)

and

(V0 × · · · × Vk−1)g0×···×gl−1
×δl◦Ēk−2

(M̃(p, q; f)× (0,∞)k−2) (4.7)

where δl: M
k−1 →Mk is defined by δl(m0, . . . ,mk−2) = (m0, . . . ,ml−1,ml−1,

. . . ,mk−2). To do this, note that we can rewrite (4.7) as

(
(V0 × · · · × Vk−1)g0×···×gl−1

×δl M
k−2

)
1
Mk−1

×Ēk−1
(M̃(p, q; f)×(0,∞)k−2),

so that the problem reduces to comparing the orientation of (V0 × · · · ×
Vk−1)g0×···×gl−1

×δl M
k−1 to that of V0 × · · · × Vl−2 × (Vl−1 gl−1

×gl Vl) ×
Vl+1 × · · · × Vk−1. In turn, this can be done by repeated use of (2.5) and
(2.4). We will not use this construction for k > 2, so further details are left
to the reader.

5. From linked pseudoboundaries to critical points

We are now prepared to demonstrate a relationship between linking num-
bers of pseudoboundaries and the Morse-theoretic linking pairing (4.3); in
particular this will fairly quickly lead to proofs of the implications ‘(ii)⇒(i)’
in Theorems 1.1 and 1.4. We continue to fix a Morse function f : M → R
where M is a compact oriented smooth n-dimensional manifold.

Definition 5.1. — For any integer k with 0 � k � n− 1,

• Bk(M) denotes the set of k-pseudoboundaries in M .

• Tk(M,f) denotes the collection of pairs (b0, b1) ∈ Bk(M)×Bn−k−1(M)
such that

Im(b0) ∩ Crit(f) = Im(b1) ∩ Crit(f) = Im(b0) ∩ Im(b1) = ∅.

Thus if (b0, b1) ∈ Tk(M,f) then we obtain a well-defined linking number
lk(b0, b1), and by Proposition 4.2, all metrics h in some residual subset will
be generic with respect to f, b0, b1 in the sense of Definition 4.6. For any such
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metric h we may then define the maps Ib0 , Ib1 : CM∗(±f ;K) → CM∗(±f ;K)
and Ib0,b1 : CM∗(f ;K) → CM∗(f ;K).

Recall that the Morse complex CM∗(f ;K) on an n-dimensional manifold
M carries a distinguished element Mf ∈ CMn(f ;K) defined in (4.1), which
is a cycle by Proposition 4.1.

Proposition 5.2. — Let f : M → R be a Morse function on a com-
pact smooth oriented n-dimensional manifold M , suppose that (b0, b1) ∈
Tk(M,f) where 0 � k � n− 1, let K be any ring, and choose a Riemannian
metric h which is generic with respect to f, b0, b1. Then:

(i) The elements Ib0Mf and Ib1M−f belong to the images of the maps
df : CMk+1(f ;K) → CMk(f ;K) and d−f : CMn−k(−f ;K) → CMn−k−1

(−f ;K), respectively.

(ii) Where lkK(b1, b0) is the image of lk(b1, b0) under the unique unital
ring morphism Z→ K, and where Λ is defined in (4.3),

Λ(Ib1M−f , Ib0Mf ) = lkK(b1, b0)− (−1)(k+1)(n−k)Π(M−f , Ib0,b1Mf ).
(5.1)

Remark 5.3. — Observe that the last term in (5.1) counts integral curves
γ: [0, T ] → M of −∇f (with T > 0 arbitrary) such that γ(0) ∈ b0(B0) and
γ(T ) ∈ b1(B1). In particular the last term of (5.1) automatically vanishes
if inf(f |b1(B1)) � sup(f |b0(B0)), by virtue of the fact that f decreases along
its negative gradient flowlines. In view of this, the implication ‘(ii)⇒(i)’ in
Theorem 1.1 follows from Proposition 5.2.

Proof. — For notational convenience we will first give the proof assum-
ing that k < n−1; at the end of the proof we will then indicate how modify
the proof if instead k = n− 1.

Since b0 and b1 are assumed to be pseudoboundaries, there are pseu-
dochains c0: C0 → M and c1: C1 → M , of dimensions k + 1 and n − k
respectively, such that ∂C0 = B0, ∂C1 = B1, c0|B0 = b0, and c1|B1 = b1. By
a suitable perturbation we may assume that the conclusion of Proposition
3.3 holds with F = c0 and g = b1, and moreover that Ωc1 ∩ Crit(f) =
c0(C0)∩Crit(f) = ∅ (for the latter we use the assumption that k �= n− 1)
and that each point of Crit(f) is a regular value for c1. We will always
assume below that the Riemannian metric is chosen from the intersection of
an appropriate collection of the residual subsets given by Proposition 4.2.
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Statement (i) then follows from Propositions 4.1 and 4.3(ii), as we have

df (Ic0Mf ) = Ib0Mf + (−1)n−k−1Ic0dfMf = Ib0Mf

and likewise d−f (Ic1M−f ) = Ib1M−f .

Moreover, by Definition 3.5 and Proposition 4.4 we have

lkK(b1, b0) = Π (M−f , Ic0×Mb1Mf ) .

Now since ∂B1 = ∅ and since c0|∂C0
= b0, Proposition 4.7 applied with

g0 = c0 and g1 = b1 gives (bearing in mind that (−1)k(k+1) = 1)

Ic0×Mb1 − (−1)(n−k)(k+1)Ib0,b1 =

(−1)nIc0,b1df + (−1)n(k+1)dfIc0,b1 + (−1)(n+1)(k+1)Ib1Ic0 . (5.2)

Now since dfMf = 0 and d−fM−f = 0 we have

Π(M−f , Ic0,b1dfMf ) = 0

and Π(M−f , dfIc0,b1Mf ) = (−1)nΠ(d−fM−f , Ic0,b1Mf ) = 0.

So by (5.2) and Proposition 4.3(i) we obtain

lkK(b1, b0)− (−1)(n−k)(k+1)Π(M−f , Ib0,b1Mf )

= (−1)(n+1)(k+1)Π(M−f , Ib1Ic0Mf )

= (−1)(n+1)(k+1)(−1)(k+1)(n−k−1)Π(Ib1M−f , Ic0Mf ) = Π(Ib1M−f , Ic0Mf )

Since df (Ic0Mf ) = Ib0Mf , we have by definition Π(Ib1M−f , Ic0Mf ) =
Λ(Ib1M−f , Ib0Mf ), proving (5.1).

This completes the proof if k < n − 1. Now suppose that k = n − 1 �
1. Then n − k − 1 < n − 1, so in the first paragraph of the proof we
may instead arrange for c1(C1) ∩ Crit(f) = Ωc0 ∩ Crit(f) = ∅ and for
every point of Crit(f) to be a regular value for c0. Just as in the k <
n − 1 case we have Ib0Mf = d(Ic0Mf ) and Ib1M−f = d(Ic1M−f ). If the
image of c0 intersects Crit(f) then the operator Ic0,b1 is no longer defined;
however now Ib0,c1 is defined, and using Proposition 3.6 we have lk(b1, b0) =
−Π(M−f , Ib0×Mc1Mf ). Then using Proposition 4.7 with g0 = b0 and g1 = c1
together with (4.4), an identical argument to the one given above yields
(5.1).
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The only remaining case is where n = 1 and k = 0, i.e. where M is a
disjoint union of circles and the pseudoboundaries b0 and b1 are homologi-
cally trivial linear combinations of points on these circles. In this case the
proposition is an exercise in the combinatorics of points on one-manifolds
equipped with a Morse function, for which we give the following outline,
leaving details to the reader. The linking number lk(b1, b0) is computed by
pairwise connecting the points of b0 by a collection I0 of intervals and then
counting the intersections of these intervals with the points of b1. To com-
pute Λ(Ib1M−f , Ib0Mf ), one modifies the intervals of I0 by, for each point p
of b0, adding or deleting the segment from p to the local minimum adjacent
to p, and then counts the intersections of these modified intervals with the
points of b1. The difference Λ(Ib1M−f , Ib0Mf )− lkK(b1, b0) then counts the
points of b1 which lie between a point of b0 and its adjacent minimum, i.e.,
the points of b1 which lie below a point of b0 on a gradient flowline of f .
Such points are precisely counted by Π(M−f , Ib0,b1Mf ), proving (5.1). �

The following establishes the implication ‘(ii)⇒(i)’ in Theorem 1.4.

Corollary 5.4. — Let K be a field, let f : M → R be a Morse function
on a compact smooth oriented n-manifold M , and suppose that, for 1 � i �
r, 1 � j � s, we have bi,+ ∈ Bk(M) and bj,− ∈ Bn−k−1(M) such that,
for all i, j, (bj,−, bi,+) ∈ Tk(M,f). Choose a Riemannian metric which is
generic with respect to f, bi,+, bj,− for all i and j and consider the r × s
matrix L with entries

Lij = lkK(bj,−, bi,+)− (−1)(n−k)(k+1)Π(M−f , Ibi,+,bj,−Mf )

particular if min f |
qj(Qj)

� max f |
pi(Pi)

for all i, j then Lij = lkK(qj , pi)).

Then the rank of the operator df,k+1: CMk+1(f ;K) → CMk(f ;K) is at least
equal to the rank of the matrix L. Thus where cj(f) denotes the number of
critical points of f with index j, and where bj(M ;K) is the rank of the jth
singular homology of M with coefficients in K, we have

ck(f) � bk(M ;K) + rank(L) and ck+1(f) � bk+1(M ;K) + rank(L).

Proof. — Denote

Bf
k = Im (df : CMk+1(f ;K) → CMk(f ;K))

B−fn−k−1 = Im (d−f : CMn−k(−f ;K) → CMn−k−1(−f ;K)) .

The Morse-theoretic linking form Λ gives a linear map Λ
: Bf
k → HomK

(B−fn−k−1;K) defined by (Λ
x)(y) = Λ(y, x). Define Af : Kr → Bf
k by

Af (x1, . . . , xr) =
∑

i xiIbi,+Mf , and A−f : Ks → Bf
n−k−1 by A−f (y1, . . . , ys)
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=
∑

j yjIbj,−M−f . Then where A∗−f : HomK(Bf
n−k−1,K) → HomK(Ks,K)

denotes the adjoint of A−f , Proposition 5.2 shows that we have a commu-
tative diagram

Kr Af−−−→ Bf
k

L�

�

� Λ�

HomK(Ks,K) ←−−−
A∗−f

HomK(Bf
n−k−1,K)

where L
 is defined by (L
<x)(<y) =
∑

i,j Lijxiyj . The rank of the linear map

L
 is equal to the rank of the matrix L, so since L
 factors through Bf
k it

follows that Bf
k has dimension at least equal to the rank of L.

The last sentence of the corollary then follows immediately, since
CMk(f ;K) and CMk+1(f ;K) are freely generated over K by the critical
points of f with index, respectively, k and k+1, and since the singular homol-
ogy of M is equal to the homology of the complex (CM∗(f ;K), df ) (so that
ck(f) and ck+1(f) are each equal to at least the rank of df : CMk+1(f ;K) →
CMk(f ;K) plus, respectively, bk(M ;K) and bk+1(M ;K)). �

We would now like to connect some of these results to the filtration struc-
ture on the Morse complex CM∗(f ;K) of f . Define a function =f : CM∗(f ;K)
→ R ∪ {−∞} by

=f


 ∑

p∈Crit(f)

app


 = max{f(p)|ap �= 0},

where the maximum of the empty set is defined to be −∞. Then for any
λ ∈ R and k ∈ N,

CMλ
∗ (f ;K) = {y ∈ CM∗(f ;K)|=f (y) � λ}

is a subcomplex of CM∗(f ;K) (with respect to the Morse boundary op-
erator associated to any Morse–Smale metric), owing to the fact that the
function f decreases along its negative gradient flowlines. Of course we have
corresponding notions with f replaced by −f .

One useful fact is that the filtered isomorphism type of the Morse com-
plex CM∗(f ;K) is independent of the choice of the Morse–Smale metric h
used to define it. This was essentially observed in [5, Theorem 1.19, Remark
1.23(b)]; see also [19, Lemma 3.8] for a proof of the analogous statement in
the more complicated setting of Hamiltonian Floer theory.
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Definition 5.5. — Let f : M → R be a Morse function on a compact
n-dimensional manifold and fix a coefficient ring K, a metric h with respect
to which the negative gradient flow of f is Morse–Smale, and a number
k ∈ {0, . . . , n− 1}. The algebraic link separation of f is the quantity

βalg
k (f ;K) = sup{0} ∪ {−=−f (x)− =f (y)|x ∈ Im(d−f,n−k),

y ∈ Im(df,k+1), Λ(x, y) �= 0}).

As the notation suggests, this quantity depends on K but not on the
metric h. This can be proven in a variety of different ways; for instance, for a
given metric h, the complex CM∗(−f ;K) is given as the dual of the complex
CM∗(f ;K) by means of the pairing Π according to (4.2). Consequently

βalg
k (f ;K) is determined by the filtered isomorphism type of CM∗(f ;K),

which as mentioned earlier is independent of h.

The second sentence of the following is an easy special case of [18, Corol-
lary 1.6]; we include a self-contained proof to save the reader the trouble
of wading through the technicalities required for the more general version
proven there.

Proposition 5.6. — For any nontrivial coefficient ring K and any grad-
ing k we have βalg

k (f ;K) = 0 if and only if df,k+1 = 0. Furthermore, if K
is a field, then

βalg
k (f ;K)=

inf
{
β�0

∣∣∣(∀λ∈R)
(
Im(df,k+1)∩CMλ

k (f ;K)⊂df,k+1(CMλ+β
k+1 (f ;K))

)}
.

(5.3)

Proof. — Denote the right-hand side of (5.3) by βk(f ;K). Note first
that if df,k+1 = 0 then (for any ring K, not necessarily a field) it follows

immediately from the definitions that βalg
k (f ;K) = βk(f ;K) = 0. So for the

rest of the proof we assume that df,k+1 �= 0; we now show that this implies

that βalg
k (f ;K) > 0.

Since df,k+1 �= 0 let us choose an element y =
∑l

i=1 yipi ∈ Im(df,k+1) \
{0} (where the pi are all distinct). Reordering the indices if necessary we
may assume that y1 �= 0 and f(p1) = =f (y). Now view p1 as an element of
CMn−k(−f ;K) and let x = d−f,n−kp1. By (4.4) we see that

Λ(x, y) = (−1)n−kΠ(p1, y) = (−1)n−ky1 �= 0.

Moreover where µ is the smallest critical value of f which is strictly larger
than f(p1), one has =−f (x) � −µ. Thus

−=−f (x)− =f (y) � µ− f(p1) > 0.
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By the definition of βalg
k (f ;K) this completes the proof of the first sentence

of the proposition.

Let us now prove the second sentence of the proposition; in fact our
argument will show that βalg

k (f ;K) � βk(f ;K) for any ring K, with equality
if K is a field.

Consider any y ∈ CMk(f ;K) with 0 �= y ∈ Im(df,k+1). Suppose that
x ∈ CMn−k−1(−f ;K) obeys Λ(x, y) �= 0. Then for any z ∈ CMk+1(f ;K)
such that dfz = y, we have Π(x, z) �= 0. But it is easy to see that the fact
that Π(x, z) �= 0 implies that =−f (x) + =f (z) � 0, i.e., −=−f (x) � =f (z).
Thus, for all y ∈ Im(df,k+1) \ {0}, we have

sup{−=−f (x)− =f (y)|x ∈ CMn−k−1(−f ;K),Λ(x, y) �= 0} (5.4)

� inf{=f (z)− =f (y)|z ∈ CMk+1(f ;K), df,k+1z = y}.

Now since we have already shown that βalg
k (f ;K) > 0, βalg

k (f ;K) is equal
to the supremum of the left-hand side of (5.4) over all y ∈ Im(df,k+1)\{0}.
On the other hand, given that df,k+1 �= 0, it is easy to see that βk(f ;K)
is equal to the supremum of the right-hand side of (5.4) over all y ∈
Im(df,k+1) \ {0}. Thus taking the suprema of the two sides of (5.4) over y
establishes that

βalg
k (f ;K) � βk(f ;K).

It remains to prove the reverse inequality, for which we restrict to the
case that K is a field (it is not difficult to construct counterexamples to
this inequality when K is not a field). Let α < βk(f ;K); we will show that

βalg
k (f ;K) � α. For notational convenience we may assume that α is not

equal to the difference between any two critical values of f . By definition
there is then some λ ∈ R and some element y ∈ (Im(df,k+1)) ∩CMλ

k (f ;K)
such that y /∈ df,k+1(CMλ+α

k (f ;K)); decreasing λ if necessary we may as-
sume that λ = =(y), so that λ is a critical value of f , and therefore λ + α
is not a critical value of f by our choice of α. Since y ∈ Im(df,k+1), y is a
cycle, but since y /∈ df,k+1(CMλ+α

k (f ;K)), y represents a nontrivial element
[y] in the filtered homology Hk(CMλ+α

∗ (f ;K)).

Consider the quotient complex D−λ−α∗ := CM∗(−f ;K)
CM−λ−α(−f ;K)

. Since λ+α is

not a critical value of f the Poincaré pairing Π vanishes on CM−λ−α∗ (−f ;K)
×CMλ+α

∗ (f ;K), and descends to a perfect pairing Π: D−λ−α∗ ×CMλ+α
∗ (f ;K)

→ K. Moreover by (4.2) the differential on the quotient complex D−λ−α∗
induced by d−f is (up to a grading-dependent sign) dual via Π to the
differential df on CMλ+α

∗ (f ;K). Therefore by the field-coefficient case of
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the universal coefficient theorem the pairing Π induces a nondegenerate
pairing between the homologies of D−λ−α∗ and CMλ+α

∗ (f ;K). In particu-
lar since our element y is homologically nontrivial in CMλ+α

∗ (f ;K) there

is a degree-(n − k) cycle w̄ ∈ D−λ−α∗ = CM∗(−f ;K)

CM−λ−α∗ (−f ;K)
which pairs non-

trivially with y; thus where w ∈ CMn−k(−f ;K) is a representative of w̄
we have Π(w, y) �= 0. Now the fact that w̄ is a degree-(n − k) cycle in
D−λ−α∗ implies that x := d−fw ∈ CM−λ−αn−k−1(−f ;K). By (4.4) we have

Λ(x, y) = (−1)n−kΠ(w, y) �= 0. Moreover =−f (x)+=f (y) � −λ−α+λ = −α.
Thus we have found x ∈ Im(d−f,n−k) and y ∈ Im(df,k+1) such that

Λ(x, y) �= 0 and −=−f (x) − =f (y) � α, proving that βalg
k (f ;K) � α. Since

α was an arbitrary number smaller than βk(f ;K) (and not equal to the
difference between any two critical values of f), this implies that

βalg
k (f ;K) � βk(f ;K),

completing the proof. �

Definition 5.7. — If f : M → R is a Morse function on a compact n-
dimensional manifold, K is a ring, and k ∈ {0, . . . , n − 1}, the geometric
link separation of f is

βgeomk (f ;K) =

sup



min(f |

Im(b−)
)−max(f |

Im(b+)
)

∣∣∣∣∣∣

b−: B− →M is an (n− k − 1)-pseudoboundary,
b+: B+ →M is a k-pseudoboundary,

b−(B−) ∩ b+(B+) = ∅, lkK(b−, b+) �= 0



 .

Remark 5.8. — If the ring K has characteristic zero (i.e., if for every
nonzero integer n one has n1 �= 0 where 1 is the multiplicative identity in
K and we view K as a Z-module), then one could restrict the pseudobound-
aries b± in the definition of βgeom

k (f ;K) to have domains which are compact
smooth oriented manifolds. Indeed this follows easily from two instances of
Lemma 3.7, applied using appropriately small open sets around b±(B±). In
this regard note also that if B is a compact smooth oriented manifold with-
out boundary and b: B →M is a smooth map, then it follows from results
of [20] that b is a pseudoboundary if and only if b∗[B] = 0 ∈ H∗(M ;Z).

The following is one of our main results.

Theorem 5.9. — For any Morse function f : M → R on a compact n-
dimensional manifold, any nontrivial ring K, and any k ∈ {0, . . . , n − 1},
we have

βalg
k (f ;K) = βgeom

k (f ;K).

We will prove the inequality “�” in Theorem 5.9 now, and the reverse
inequality in the following section.
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Proof that βalg
k (f ;K) � βgeom

k (f ;K). — Suppose that α < βgeom
k (f ;K).

There are then an (n − k − 1)-pseudoboundary b−: B− → M and a k-
pseudoboundary b+: B+ →M such that b−(B−)∩b+(B+) = ∅, lkK(b−, b+)
�= 0, and min(f |

b−(B−)
) − max(f |

b+(B+)
) > α. By replacing b− and b+ by

φ ◦ b− and φ ◦ b+ where φ is an appropriately-chosen diffeomorphism which
is close to the identity, we may arrange that the above properties still hold
and additionally b−(B−) ∩ Crit(f) = b+(B+) ∩ Crit(f) = ∅.

We intend to show that βalg
k (f ;K) > α. If α < 0 this is obvious, since by

definition βalg
k (f ;K) � 0, so assume α � 0. So min f |

b−(B−)
> max f |

b+(B+)
,

and (with respect to a suitably generic metric in order to define the relelvant
operations on the Morse complex CM∗(f ;K)) we may apply Proposition 5.2.
This gives elements Ib−M−f ∈ Im(d−f,n−k) and Ib+Mf ∈ Im(df,k+1) such
that Λ(Ib−M−f , Ib+Mf ) = lkK(b−, b+) �= 0 (the other term in (5.1) vanishes
by Remark 5.3). Now the fact that f decreases along its negative gradient
flowlines is easily seen to imply that

=f (Ib+Mf ) < max f |
b+(B+)

,

since the critical points contributing to the Morse chain Ib+Mf are the limits
in positive time of negative gradient flowlines of f that pass through the
image of b+. Similarly we have

=−f (Ib−M−f ) < max
(
−f |

b−(B−)

)
= −min f |

b−(B−)
.

Thus

−=−f (Ib−M−f )− =f (Ib+Mf ) > min f |
b−(B−)

−max f |
b+(B+)

> α.

Since Ib−M−f and Ib+Mf have nontrivial linking pairing over K this shows
that βalg(f ;K) > α. So since α was an arbitrary nonnegative number smaller

than βgeom
k (f ;K) this proves that βalg

k (f ;K) � βgeom
k (f ;K). �

6. From critical points to linked pseudoboundaries

We now turn attention to the proof of the inequality βalg � βgeom in
Theorem 5.9, and to the implications “(i)⇒(ii)” in Theorems 1.1 and 1.4.
Throughout this section we fix a Morse function f : M → R where M is a
compact n-dimensional manifold without boundary, and we fix a Rieman-
nian metric h such that the gradient flow of f with respect to h is Morse–
Smale; we moreover assume that the pair (f, h) is locally trivial in the sense
that around each critical point p there are coordinates (x1, . . . , xn) such

that f(x1, . . . , xn) = f(p)−∑k
i=1 x

2
i +

∑n
i=k+1 x

2
i and such that h is given
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by the standard Euclidean metric in some coordinate ball around the origin.
Metrics which simultaneously have this local triviality property and make
the gradient flow of f Morse–Smale exist in abundance by [2, Proposition
2] (note that, in constrast to our usage, the definition of “Morse–Smale”
that is used in [2] already incorporates the local triviality property). Our
purpose in assuming local triviality is that, by [2, Theorem 1(2)] (see also
[10, Proposition 2.11(2)]), it guaranteees that the standard broken-flowline
compactification of the unstable manifolds is a smooth manifold with cor-
ners (indeed, with faces), with the evaluation map extending smoothly up
to the corners.

6.1. Manifolds with corners

Let us briefly recall some facts about manifolds with corners; see [6],[9,
Section 1.1] for more details. An n-dimensional smooth manifold with cor-
ners is by definition a second-countable Hausdorff space X locally modeled
on open subsets of [0,∞)n, with smooth transition functions. For x ∈ X
and a coordinate patch φ: U → [0,∞)n with x ∈ U , the number of coordi-
nates of φ(x) which are equal to 0 is independent of the choice of coordi-
nate patch φ, and will be denoted by c(x). For k ∈ {0, . . . , n}, the subset
∂
◦kX = {x ∈ X|c(x) = k} is an (n− k)-dimensional smooth manifold. One

has ∂◦kX = ∪n
l=k∂

◦lX, and ∂
◦kX is open as a subset of ∂◦kX. Of course,

X \ ∪k�2∂
◦kX is naturally a manifold with boundary.

We intend to build pseudochains and pseudoboundaries out of maps
defined on manifolds with corners; since both of the former have domains
which do not have corners the following will be useful.

Lemma 6.1. — Let X be an n-dimensional manifold with corners such
that ∂

◦kX = ∅ for all k � 3. Then there is a smooth manifold with boundary
X ′ and a smooth homeomorphism π: X ′ → X which restricts to π−1(X \
∂
◦2X) as a diffeomorphism between π−1(X \ ∂◦2X) and X \ ∂◦2X.

(Of course, if ∂
◦2X �= ∅, the inverse π−1 must not be smooth.)

Proof. —

The manifold X ′ will be formed by removing ∂
◦2X and then gluing

in a smooth manifold with boundary which is homeomorphic to a tubular
neighborhood of ∂

◦2X.

In this direction, note that the structure group of the normal bun-
dle E to ∂

◦2X reduces to that subgroup G of O(2) which preserves the
quadrant {(x, y) ∈ R2|x � 0, y � 0}. Of course G is just given by G =
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{(
1 0
0 1

)
,

(
0 1
1 0

)}
. In other words, there is a principal G-bundle P →

∂
◦2X with E given as the associated bundle

E = P ×G R2 =
P × R2

(pg, v) ∼ (p, gv)

(Geometrically, given a Riemannian metric on X, the fiber of P over a point
x ∈ ∂

◦2X can be identified with the pair of unit vectors which are normal
to ∂

◦2X and tangent to ∂◦1X.)

Write Q = {(x, y) ∈ R2|x � 0, y � 0} and H = {(x, y) ∈ R2|x + y � 0},
so the standard action of G on R2 restricts to actions on both Q and H.
Moreover, there exists a G-equivariant smooth homeomorphism φ: H → Q
with φ(0, 0) = (0, 0) such that φ|H\{(0,0)} is a diffeomorphism; for instance,
identifying R2 with C, one can use the map

φ(reiθ) = β(r)e
i
2 (θ+

π
4 )

(
for− π

4
� θ � 3π

4

)
,

where β: R → R is a smooth surjective map with β′(r) > 0 for all r �= 0
such that β vanishes to infinite order at r = 0.

Now the normal cone to ∂
◦2X in X (i.e., the subset of the normal bundle

E consisting of tangent vectors γ′(0) to smooth curves γ: [0, 1) → X with
γ(0) ∈ ∂

◦2X) is naturally identified with the associated bundle B = P ×GQ
over ∂

◦2X, with fiber the quadrant Q. By a special case of [6, Théorème 1],
there is a neighborhood N ⊂ X of ∂

◦2X and a diffeomorphism Ψ: N → B,
which restricts to ∂

◦2X as the standard embedding of the zero-section.

Now form the associated bundle C = P ×G H; this has an obvious
manifold-with-boundary structure, with ∂C = {[p, (x, y)] ∈ C|x + y = 0}.
Where φ: H→ Q is as above, the G-equivariance of φ implies that we have
a well-defined map φ̃: C → B defined by φ̃[p, h] = [p, φ(h)]; evidently φ̃ is a
smooth homeomorphism which restricts to the complement of {[p, (0, 0)]} ⊂
C as a diffeomorphism to the complement of {[p, (0, 0)]} ⊂ B.

The assumption that ∂
◦kX = ∅ for all k � 3 implies that ∂

◦2X is a
closed subset of X. We now define

X ′ =
C

∐ (
X \ ∂◦2X

)

c ∼ Ψ−1(φ̃(c)) if φ̃(c) ∈ Ψ(N \ ∂◦2X)
.

Since Ψ−1 ◦ φ̃ restricts to the open set φ̃−1(Ψ(N \ ∂
◦2X)) ⊂ C as a dif-

feomorphism to its image, which is open in X, and since C and X \ ∂◦2X
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are both manifolds with boundary (and without corners), X ′ inherits the
structure of a manifold with boundary from C and X \ ∂◦2X. The desired
map π: X ′ → X is then obtained by setting π equal to Ψ−1 ◦ φ̃ on C and
equal to the inclusion on X \ ∂◦2X. �

If X is a manifold with corners, following [9], a connected face of X is by
definition the closure of a connected component of ∂

◦1X. X is then said to be
a manifold with faces if every point x ∈ X belongs to c(x) distinct connected
faces (said differently, if U is a small connected coordinate neighborhood
of x then the inclusion-induced map π0(U ∩ ∂

◦1X) → π0(∂
◦1X) should

be injective). A face of a manifold with faces is a (possibly empty) union
of pairwise disjoint connected faces. If X is a manifold with faces and if
F ⊂ X is a face then F inherits the structure of a manifold with corners,
with ∂

◦kF = F ∩ ∂
◦k+1X.

Lemma 6.2. — Let X be a manifold with faces, let F−, F+ ⊂ X be two
disjoint faces of X, and let φ: F− → F+ be a diffeomorphism. Then the
topological space

Xφ =
X

x ∼ φ(x) if x ∈ F−
may be endowed with the structure of a smooth manifold with corners in
such a way that, where π: X → Xφ is the quotient projection, for any other
smooth manifold Y and any smooth map g: X → Y such that g(x) = g(φ(x))
for all x ∈ F−, the unique map ḡ: Xφ → Y obeying g = ḡ ◦ π is smooth.
The corner strata of Xφ are determined by

∂◦kXφ = π(∂◦kX \ (F− ∪ F+)).

Moreover, if X is oriented and if φ: F− → F+ is orientation-reversing
with respect to the induced boundary orientations on F±, then Xφ carries
an orientation such that π|X\(F−∪F+) is an orientation-preserving diffeo-
morphism onto its image.

Proof. — The faces F± are, in the sense of [6], submanifolds without
relative boundary of X having coindex and codimension both equal to 1;
consequently the tubular neighborhood theorem [6, Théorème 1] applies to
give diffeomorphisms Φ±: (−1, 0]× F± → U± where U± is a neighborhood
of F± with U+ ∩ U− = ∅, Φ±|{0}×F± restricts as the identity map to F±,
and (−1, 0]×F± is endowed with its obvious product manifold-with-corners
structure. If X is oriented then Φ± will necessarily be orientation preserving
with respect to the standard product orientation on (−1, 0]× F±.

Given these tubular neighborhoods, the lemma is a straightforward gen-
eralization of a standard gluing construction from the theory of manifolds
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without corners; we briefly indicate the argument, leaving details to the
reader. Let V = (−1, 1) × F− and F = {0} × F− ⊂ V . Let β: (−1, 1) →
(−1, 1) be a smooth homeomorphism such that β(t) = t for |t| > 1/2,
β′(t) > 0 for all t �= 0, and β vanishes to infinite order at t = 0. We
can then define a diffeomorphism Ψ: V \ F → (U− \ F−) ∪ (U+ \ F+) by
Ψ(t, x) = Φ−(β(t), x) for t < 0 and Ψ(t, x) = Φ+(−β(t), φ(x)) for t > 0.
Then

(X \ (F− ∪ F+))
∐

V

v ∼ Ψ(v) for v ∈ V \ F
inherits the structure of a smooth manifold with corners, and is clearly
homeomorphic to Xφ. The various required properties are easy to check; we
just note that, if g: X → Y is a smooth map with g|F− = g ◦ φ, then the
induced map ḡ: Xφ → Y restricts to V as the map

(t, x) �→
{

(g ◦ Φ−)(β(t), x) if t � 0,
(g ◦ Φ+)(−β(t), φ(x)) if t � 0.

This map is smooth along F by virtue of the facts that g|F± is smooth and
that β vanishes to infinite order at t = 0, so that the derivatives of all orders
of ḡ in directions normal to F vanish as well. �

6.2. Constructing pseudochains from Morse chains

Our Morse–Smale pair (f, h) where h is locally trivial determines Morse
complexes CM∗(±f ;K) and stable and unstable manifolds W s

f (p) = Wu
−f (p)

and Wu
f (p) = (−1)|p|f (n−|p|f )W s

−f (p), oriented as in Section 2.5. We in-
tend to construct, for any given pair b− ∈ df,n−k(CMn−k(−f ;K)), b+ ∈
df,k+1(CMk+1(f ;K)) with Λ(b−, b+) �= 0, a corresponding pair of pseu-
doboundaries β−: B− →M , β+: B+ →M such that lkK(β−, β+) = Λ(b−, b+)
and min(f |

β−(B−)
) − max(f |

β+(B+)
) = −=−f (b−) − =f (b+). This construc-

tion generalizes one found in [15, Section 4], in which Schwarz associates
a pseudocycle to any Morse cycle. Before formulating the key lemma we
introduce a definition:

Definition 6.3. — Let X,Y, Z be smooth oriented manifolds, possibly
with boundary, let f : X → Z and g: Y → Z be smooth maps, and z ∈ Z.
We say that f is coincident to g near z if there is a neighborhood U of z
and an orientation-preserving diffeomorphism φ: f−1(U) → g−1(U) such
that f |f−1(U) = g ◦ φ.

Also, as a point of notation, if X is an oriented manifold and m ∈ Z we
denote by mX the oriented manifold obtained by taking |m| disjoint copies
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of X, all oriented in the same way as X if m > 0 and oriented oppositely
to X if m < 0.

For any j ∈ N let Critj(f) denote the collection of index-j critical points
of f .

Lemma 6.4. — Let a =
∑l

i=1 aipi ∈ CMk+1(f ;Z), with df,k+1a =∑m
j=1 zjqj, where we assume all ai and zj are nonzero and the pi and qj are

all distinct. Then there is a smooth map αa: Ya →M , where Ya is a smooth
oriented (k + 1)-manifold with boundary, having the following properties:

(i) αa is a (k + 1)-pseudochain, and αa|∂Ya is a k-pseudoboundary.

(ii)

αa(Ya) ⊂
⋃

p∈Crit(f),|p|f�k+1

Wu
f (p) and αa(∂Ya) ⊂

⋃

q∈Crit(f),|q|f�k
Wu

f (q)

(iii) For each i, αa is coincident near pi to the map
∐

aiW
u
f (pi) →

M which is equal to the inclusion on each component of the do-
main. Similarly, for each j, αa|∂Ya is coincident near qj to the map∐

zjW
u
f (qj) →M which is equal to the inclusion on each component

of the domain.

(iv) If p ∈ Critk+1(f) \ {p1, . . . , pl} then p /∈ αa(Ya). Similarly, if q ∈
Critk(f) \ {q1, . . . , qm} then q /∈ αa(∂Ya).

(v)

max(f |
αa(∂Ya)

) = max{f(qj)|j = 1, . . . ,m}.

Proof. — Following [15], let ∆a denote the compact oriented zero-mani-
fold obtained as a disjoint union of ai-many copies of each of the oriented
zero-manifolds M(pi, q), as i varies from 1 to l and as q varies through
Critk(f). For q0 ∈ Critk(f) write ∆a(q0) for the oriented zero-submanifold
of ∆a consisting of the copies of those M(pi, q; f) with q = q0. Thus we
have

df,k+1a =
∑

q∈Critj(f)

# (∆a(q)) q,

and so

# (∆a(q)) =

{
zj if q = qj ,
0 otherwise.

Now it is a general combinatorial fact that, if S is a compact oriented
zero-manifold, then an equivalence relation may be constructed on S so that
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|#(S)|-many of the equivalence classes are singletons (oriented consistently
with sign(#(S))) and the rest of the equivalence classes are two-element
sets {s−, s+} where s− is negatively oriented and s+ is positively oriented.
Choose such an equivalence relation on each of the oriented zero-manifolds
∆a(q), and let ∼∆ denote the union of these equivalence relations, so that
∼∆ is an equivalence relation on ∆a. For i = 1, 2 let ∆ia(q) denote the
set of elements of ∆a(q) whose equivalence class has cardinality i, and let
∆ia = ∪q∆

ia(q), so ∆a = ∆1a ∪∆2a.

The disjoint union
∐l

i=1 aiW
u
f (pi) has a broken-trajectory compacti-

fication Ŷ as in [2, Theorem 1(2)] which is a smooth compact manifold
with faces and a smooth evaluation map; a general codimension-c con-
nected stratum of this compactification is given by a connected component
of a product M(pi, r1; f)×M(r1, r2; f)×· · ·M(rc−1, rc; f)×Wu

f (rc) where
|rc|f < · · · < |r1|f < |pi|f , with the evaluation map restricting to the stra-
tum as the natural embedding of Wu

f (rc) (and, of course, we take ai copies of
each of these strata). Here and below a “codimension-c connected stratum”
of a manifold with corners X refers to a connected component of ∂

◦cX, and
a “codimension-c stratum” is a disjoint union of codimension-c connected
strata. We will first form a manifold with faces Y0, defined to be the open
subset of Ŷ given as the union of the following types of strata:

(0) All of the codimension-zero strata (i.e., ai copies of Wu
f (pi) for each

i);

(1A) Those codimension-one strata of the form M(pi, q; f)×Wu
f (q) where

|q|f = k;

(1B) Those codimension-one strata of the form M(pi, r; f)×Wu
f (r) where

|r|f = k − 1 and where, for some j, we have M(qj , r; f) �= ∅.

(2) Those codimension-two strata of the form M(pi, q; f)×M(q, r; f)×
Wu

f (r) where |q|f = k and |r|f = k − 1 is such that, for some j, we
have M(qj , r; f) �= ∅.

(The fact that this is indeed open in Ŷ follows from the fact that the con-
nected faces which contain any of the strata in (2) are closures of connected
components of strata appearing in (1A) or (1B).)

Among the connected faces of the manifold with corners Y0 are the
closures {γ} ×Wu

f (q) where γ ∈ ∆a; an element of such a closure is rep-
resented by a broken trajectory whose first component is γ, and so all of
these faces are disjoint as γ varies through ∆a. Let F− be the union of
the connected faces {γ} ×Wu

f (q) as γ varies through those elements of ∆2a
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which are negatively oriented, and let F+ be the union of the connected faces
{γ} ×Wu

f (q) as γ varies through those elements of ∆2a which are positively
oriented. Our equivalence relation ∼∆ induces an orientation-reversing dif-
feomorphism φ: F− → F+ which maps {γ} ×Wu

f (q) to {γ′} ×Wu
f (q) by

the identity on Wu
f (q) whenever γ ∼∆ γ′ and γ is negatively-oriented while

γ′ is positively oriented. Thus we may apply Lemma 6.2 to glue F− to F+,
resulting in a new oriented manifold with corners Y φ

0 .

The faces of Y φ
0 include (the images under the projection π: Y0 → Y φ

0

of) the faces {γ} ×Wu
f (q) where γ ∈ ∆1a (and so q = qj for some j), as well

as unions of images under π of faces M(p, r; f)×Wu
f (r) where |r|f = k− 1

and M(pj , r; f) �= ∅ (in some cases, different faces of this form have been

joined together along their boundary by the gluing process that created Y φ
0

from Y0).

Lemma 6.1 then gives a smooth oriented manifold with boundary Ya

and a smooth homeomorphism π1: Ya → Y φ
0 . Since the evaluation map

E: Y0 → M descends to a smooth map Ē: Y φ
0 → M by Lemma 6.2, the

composition αa = Ē ◦ π1: Ya → M is smooth. We will now show that αa

is a pseudochain and that αa|∂Ya is a pseudoboundary. In other words we
must show that the Ω-limit sets Ωαa and Ωαa|∂Ya have dimensions at most
k − 1 and k − 2 respectively.

Now evidently Ωαa = ΩE and Ωαa|∂Ya = ΩE|π−1(π1(∂Ya))
. Any divergent

sequence in Y0 has a subsequence which converges in the compactification Ŷ
to a point which is sent by the evaluation map to an element of an unstable
manifold Wu

f (s) where |s|f � k − 1; it quickly follows from this that ΩE

(and hence also Ωαa) has dimension at most k − 1.

As for Ωαa|∂Ya = ΩE|π−1(π1(∂Ya))
, note that π1(∂Ya) is just the union of

the boundary and corner strata of Y φ
0 , and so π−1(π1(∂Ya)) is the union

of all of the boundary and corner strata of Y0 except those of the form
{γ} × Wu

f (q) where γ ∈ ∆2a(q). If {xn}∞n=1 is a divergent sequence in

π−1(π1(∂Ya)), then after passing to a subsequence either each xn belongs to
some {γ}×Wu

f (qj) where γ ∈ ∆1a(qj) (and where the closure is taken in Y0,

not in Ŷ ), or else each xn belongs to some M(pi, r; f)×Wu
f (r) where |r|f =

k−1 and whereM(qj , r; f) �= ∅ for some j. Now in view of the codimension-
two strata that were included in Y0 (all of which are still contained in

π−1(π1(∂Ya)), though some of them will project to subsets of ∂
◦1Y φ

0 ), if such
a sequence diverges in π−1(π1(∂Ya)) then, considering it now as a sequence

in the compact space Ŷ , it must have a subsequence which converges to
a point which is sent by the evaluation map to an element of an unstable
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manifold Wu
f (s) where |s|f � k − 2. Thus indeed Ω|α|∂Ya has dimension at

most k − 2.

We have now proven property (i) of Lemma 6.4; the other properties
follow quickly from the construction. Indeed property (ii) follows directly
from the facts that αa(Ya) ⊂ E(Y0), that αa(∂Ya) ⊂ E(∂◦1Y0), and that
for p ∈ Critl(f) the closure of Wu

f (p) is (thanks in part to the Morse–
Smale property) contained in the union of unstable manifolds of critical
points of index at most l. This latter fact also implies that for each γ ∈
∆2a(q) the face {γ} ×Wu

f (q) is disjoint from some neighborhood V of the
index k + 1 critical points, and therefore the evaluation maps E: Y0 → M
and Ē: Y φ

0 → M are coincident near each p ∈ Critk+1(f). Moreover the

region on which π1: Ya → Y φ
0 fails to be a diffeomorphism (namely, the

preimage of the corner locus of Y φ
0 ) is also disjoint from a neighborhood of

α−1
a (Critk+1(f)), in view of which αa is coincident to Ē, and so also to E,

near each p ∈ Critk+1(f). This immediately implies the first sentences of
both (iii) and (iv).

The second sentences of (iii) and (iv) follow similarly, since any point
of ∂Ya which is mapped to a suitably small neighborhood of Critk(f) is
contained in the preimage under π1 of the image under π of a face of the form
{γ} ×Wu

f (qj) where γ ∈ ∆1a(qj), and π−1
1 ◦ π is an orientation-preserving

diffeomorphism onto its image when restricted to such a face.

Finally, αa(∂Ya) contains each of the points qj since we assume zj �= 0
for all j, while any point x ∈ αa(∂Ya) lies either on an unstable manifold
Wu

f (qj) or on an unstable manifold Wu
f (r) where M(qj , f ; r) �= ∅ for some

j. Since f decreases along its negative gradient flowlines, in either case we
will have f(x) � f(qj) for some j, proving (v). �

Proposition 6.5. — Let a− ∈ CMn−k(−f ;Z) and a+ ∈ CMk+1(f ;Z),
giving via Lemma 6.4 pseudochains αa− : Ya− → M and αa+

: Ya+
→ M

(using the Morse function −f for the former and f for the latter). Write
B± = ∂Ya± , so that b− := αa− |B− is a (n − k − 1)-pseudoboundary and
b+ := αa+ |B+ is a k-pseudoboundary. These pseudoboundaries satisfy the
following properties:

(i) min(f |
b−(B−)

)−max(f |
b+(B+)

) = −=−f (d−f,n−ka−)− =f (df,k+1a+).

(ii) The linking number of the pseudoboundaries b− and b+ is well-defined,
and given by

lk(b−, b+) = Λ(d−f,n−ka−, df,k+1a+).
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(iii) For all φ belonging to a C∞-residual subset of Diff(M), our given
Morse–Smale locally trivial Riemannian metric h is generic with re-
spect to f, φ ◦ b+, φ ◦ b− in the sense of Definition 4.6, so we have a
well-defined map Iφ◦b+,φ◦b− : CMn(f ;K) → CM0(f ;K). If addition-
ally φ is sufficiently C1-close to the identity then Iφ◦b+,φ◦b− is equal
to zero.

Proof. — Write z− = d−f,n−ka− and z+ = df,k+1a+. The statement (i)
follows directly from Lemma 6.4(v), as

max(±f |
b±(B±)

) = =±f (b±),

and so

min(f |
b−(B−)

)−max(f |
b+(B+)

) = −=−f (z−)− =f (z+).

Turning to (ii), by Lemma 6.4(ii) b+(B+) is contained in the union of
the unstable manifolds of the critical points of f with index at most k,
while b−(B−) is contained in the union of the unstable manifolds of the
critical points of −f with index at most n−k−1 (i.e., the stable manifolds
of the critical points of f with index at least k + 1). The Morse–Smale
condition therefore implies that b+(B+) ∩ b−(B−) = ∅, and so these two
pseudoboundaries have a well-defined linking number, given by

lkK(b−, b+) = #(Ya+αa+
×b− B−).

Now αa+(Ya+) is contained in the union of the unstable manifolds of critical
points of f with index at most k + 1; again by the Morse–Smale condition
we have, if p, q ∈ Crit(f) obey |p|f � k + 1 � |q|f , then

Wu
f (p) ∩W s

f (q) =

{
{p} if p = q and |p|f = |q|f = k + 1,
∅ otherwise.

Let us write a+ =
∑

i ai,+pi and z− =
∑

j zj,−qj . It then follows from
Lemma 6.4(iii) and (iv) and the fact that Wu

−f (qj) = W s
f (qj) as oriented

manifolds that

#(Ya+αa+
×b− B−) =

∑

i,j

ai,+zj,−#K(Wu
f (pi)iu,pi ×is,qj

W s
f (qj)).

By our orientation conventions and index considerations, Wu
f (pi)iu,pi ×is,qj

W s
f (qj) consists of a single positively-oriented point if pi = qj and is empty

otherwise. We thus have

lk(b−, b+) =
∑

{(i,j)|pi=qj}
ai,+zj,− = Π(z−, a+) = Λ(z−, z+),

proving (ii).
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As for (iii), the fact that h is generic with respect to f, φ ◦ b+, φ ◦ b−
for a C∞-residual set of φ ∈ Diff(M) follows straightforwardly by apply-
ing Lemma 3.2 to the various relevant fiber products. If the final statement
of the proposition were false, then we could find a sequence {φn}∞n=1 in
Diff(M) which C1-converges to the identity, critical points p, q ∈ Crit(f),
and a sequence (γn, Tn) ∈ M̃(p, q; f)×(0,∞) such that γn(0) ∈ φn(b+(B+))
and γn(Tn) ∈ φn(b−(B−)). A standard compactness result (e.g. [14, Propo-
sition 2.35]) would then give a possibly-broken Morse trajectory for f which
passes first through b+(B+) and then, either strictly later or at precisely the
same time, through b−(B−). But since b+(B+) is contained in the union of
the unstable manifolds of critical points with index at most k, while b−(B−)
is contained in the union of the stable manifolds of critical points with in-
dex at least k + 1, this is forbidden by the Morse–Smale property. This
contradiction completes the proof. �

We can now finally complete the proof of Theorem 5.9 and thus The-
orem 1.1. For clarity we will, unlike elsewhere in the paper, incorporate
the ring over which we are working into the notation for the Morse bound-
ary operator and the Morse-theoretic linking pairing: thus we have maps
dKf,k+1: CMk+1(f ;K) → CMk(f ;K) and ΛK: Im(dK−f,n−k)× Im(dKf,k+1) →
K. We first make the following almost-obvious algebraic observation:

Lemma 6.6. — Let 0 �= z ∈ dKf,k+1(CMk+1(f ;K)). Then there are z1, . . . ,

zN ∈ dZf,k+1(CMk+1(f ;Z)) and r1, . . . , rN ∈ K such that z =
∑N

i=1 zi ⊗ ri
and =f (zi) � =f (z) for all z.

Proof. — The lemma amounts to the statement that, for all λ ∈ R, the
natural map

(
Im(dZf,k+1) ∩ CMλ

k (f ;Z)
)
⊗K→ Im(dKf,k+1) ∩ CMλ

k (f ;K)

is surjective. Write A = Im(dZf,k+1) and B = CMλ
k (f ;Z) and view them as

submodules of the Z-module CMk(f ;Z); we then have Im(dKf,k+1) = A⊗K
and CMλ

k (f ;K) = B ⊗K, and so we wish to show that the natural map

jK: (A ∩B)⊗K→ (A⊗K) ∩ (B ⊗K)

is surjective. But this is true on quite general grounds: there is a short exact
sequence

0 → A ∩B → A⊕B → A + B → 0

where the first map is x �→ (x, x) and the second is (a, b) �→ a − b. The
right exactness of the tensor product functor then shows that the induced
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sequence

(A ∩B)⊗K→ (A⊗K)⊕ (B ⊗K) → (A + B)⊗K→ 0

is exact, and exactness at the second term implies that jK is surjective. �

Proof that βalg � βgeom in Theorem 5.9. — First of all we observe that,
for any nontrivial ring K and any grading k, we have βgeom

k (f ;K) � 0. In-
deed, in any coordinate chart U ⊂ M it is straightforward to construct
smooth maps α−: Bn−k → U , α+: Bk+1 → U (where Bl denotes the
closed l-dimensional unit ball), the images of whose boundaries are dis-
joint, such that lk(α−|∂Bn−k , α+|∂Bk+1) = 1 (and so since K is a nontrivial
ring lkK(α−|∂Bn−k , α+|∂Bk+1) �= 0). For any ε > 0, by taking the coor-
dinate chart U so small that max f |Ū − min f |Ū < ε we guarantee that
min(f |α−(∂Bn−k)) − max(f |α+(∂Bk+1)) > −ε. This proves that βgeom

k (f ;K)
� 0.

So for the rest of the proof we may assume that βalg
k (f ;K) > 0, since

otherwise the inequality βalg
k � βgeom

k is immediate. Since βalg
k (f ;K) is

independent of the choice of Morse–Smale metric, we may use one which is
locally trivial near Crit(f), allowing us to use the constructions of Lemma
6.4. Let a− ∈ CFn−k(−f ;K) and a+ ∈ CFk+1(f ;K) be such that, where
z− = dK−f,n−ka− and z+ = dKf,k+1a+, we have ΛK(z−, z+) �= 0 (such a± do

exist, since βalg
k (f ;K) > 0). By Lemma 6.6 we may write

z− =

N−∑

i=1

z−,i ⊗ ri z+ =

N+∑

i=1

z+,i ⊗ si

where ri, si ∈ K, z−,i ∈ Im(dZ−f,n−k), z+,i ∈ Im(dZf,k+1), and

=±f (z±,i) � =±f (z±) (6.5)

for all i. We then have

0 �= ΛK(z−, z+) =
∑

i,j

ΛZ(z−,i, z+,j)risj ,

so there must be some indices i0, j0 such that, where εK: Z → K denotes
the unique unital ring morphism, εK(ΛZ(z−,i0 , z+,j0)) �= 0.

Applying Proposition 6.5 to z−,i0 and z+,j0 gives an (n − k − 1)-
pseudoboundary b− and a k-pseudoboundary b+ such that lkK(b−, b+) =
εK(lk(b−, b+)) = εK(ΛZ(z−,i0 , z+,j0)) �= 0 and such that

min(f |
Im(b−)

)−max(f |
Im(b+)

) = −=−f (z−,i0)−=f (z+,j0) � −=−f (z−)−=f (z+)

– 79 –



Michael Usher

where the last inequality uses (6.5).

Since z− ∈ Im(dK−f,n−k) and z+ ∈ Im(dKf,k+1) were arbitrary elements
subject to the condition that ΛK(z−, z+) �= 0, it immediately follows that

βgeom
k (f ;K) � βalg

k (f ;K). �

We also obtain the following, which shows that Corollary 5.4 is sharp
and completes the proof of Theorem 1.4.

Corollary 6.7. — Let K be a field, and let h be a metric such that
the gradient flow of f with respect to h is Morse–Smale and such that h
is locally trivial. Then the rank of the operator dKf,k+1: CMk+1(f ;K) →
CMk(f ;K) is the largest integer m such that there exist b1,−, . . . , bs,− ∈
Bn−k−1(M), b1,+, . . . , br,+ ∈ Bk(M) with the properties that for each i, j
we have (bi,+, bj,−) ∈ Tk(M,f) and the metric h is generic with respect to
f, bi,+, bj,−, and that the matrix L with entries given by

Lij = lkK(bj,−, bi,+)− (−1)(n−k)(k+1)Π(M−f , Ibi,+,bj,−Mf )

has rank m. Moreover, given an integer m, if any such bi,+ and bj,− exist,
they may be chosen in such a way that Π(M−f , Ibi,+,bj,−Mf ) = 0.

Proof. — The statement that the rank of dKf,k+1 is at least equal to
m is proven in Corollary 5.4. For the reverse inequality, note first that
if the inequality holds for some field K0, then it must also hold for all
field extensions of K0 since the relevant ranks are not affected by the field
extension. Therefore for the rest of the proof we may assume that K is equal
either to Q or to Z/pZ for some prime p, since any field is an extension of
one of these.

Denote m = rank(dKf,k+1). Of course since dK−f,n−k is adjoint to dKf,k+1

by (4.2), we also have m = rank(dK−f,n−k). Now the linking pairing ΛK:

Im(dK−f,n−k) × Im(dKf,k+1) → K is nondegenerate by the same argument

as in the proof of Proposition 5.6: if z =
∑

q zqq ∈ Im(dKf,k+1) \ {0}, then
choosing any q0 such that zq0 �= 0, we have ΛK(d−f,n−kq0, z) �= 0. Con-

sequently since K is a field there are x1,−, . . . , xm,− ∈ Im(dK−f,n−k) and

x1,+, . . . , xm,+ ∈ Im(dKf,k+1) such that

ΛK(xj,−, xi,+) =

{
1 if i = j,
0 if i �= j.

(6.6)

Suppose that K = Q, so we may consider Im(dZ−f,n−k) and Im(dZf,k+1)

as subgroups of Im(dK−f,n−k) and Im(dKf,k+1), respectively. Then for some

– 80 –



Linking and the Morse complex

nonzero integer N each of the elements zi,± = Nxi,± will belong to

Im(dZ−f,n−k) or Im(dZf,k+1). Apply Proposition 6.5 (using primitives ai,±
for zi,±) to obtain pseudoboundaries b0i,±: Bi,± →M so that

lk(b0j,−, b
0
i,+) = ΛZ(zj,−, zi,+) =

{
N2 if i = j,
0 if i �= j,

and, for generic diffeomorphisms φ which are C1-close to the identity,
Iφ◦b0

i,+
,φ◦b0

j,−
= 0. Of course, for such a diffeomorphism φ we will have

lk(φ◦b0j,−, φ◦b0i,+) = lk(b0j,−, b
0
i,+). So where bi,+ = φ◦b0i,+ and bj,− = φ◦b0j,−,

the matrix L described in the proposition is N2 times the m×m identity,
and in particular has rank m. This completes the proof in the case that
K = Q.

Finally suppose that K = Z/pZ where p is prime. We again have xi,± as
in (6.6). Choose ai,− ∈ CMn−k(−f ;Z) and ai,+ ∈ CMk+1(f ;Z) such that

dZ−f,n−kai,− and dZf,k−1ai,+ reduce modulo p to, respectively, xi,− and xi,+.

Applying Proposition 6.5 to obtain pseudoboundaries b0i,±, and then letting

bi,± = φ ◦ b0i,± for a suitably generic diffeomorphism φ which is C1-close to
the identity, we see that Ibi,+,bj,− = 0 (over Z, and hence also over Z/pZ),
and

lk(bj,−, bi,+) = lk(b0j,−, b
0
i,+) = ΛZ(dZ−f,n−kaj,−, d

Z
f,k−1ai,+).

But ΛZ(dZ−f,n−kaj,−, d
Z
f,k+1ai,+) reduces modulo p to ΛZ/pZ(xj,−, xi,+), which

is 1 when i = j and 0 otherwise. Thus the matrix L described in the propo-
sition is the m×m identity, which has rank m. �

7. Some technical proofs

This final section contains proofs of Lemma 3.2, Proposition 4.2, and
Lemma 4.5.

Proof of Lemma 3.2. — This is a fairly standard sort of application of the
Sard–Smale theorem [16]; as in [11] a minor complication is caused by the
fact that DiffS(Y ) is not a Banach manifold, but this is easily circumvented
by first considering the Banach manifold Diffk

S(Y ) of Ck diffeomorphisms
supported in S for sufficiently large integers k.
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Namely, for any positive integer k > dimM + dimN − dimY consider
the map

Θ: Diffk
S(Y ) ×M ×N → Y × Y

(φ,m, n) �→ (φ(f(m)), g(n)) .

This is a Ck map of Ck-Banach manifolds and we will show presently that
it is transverse to ∆ ⊂ Y × Y .

Let (φ,m, n) ∈ Θ−1(∆), so that φ(f(m)) = g(n). If φ(f(m)) /∈ int(S),
then since {y|φ(y) �= y} is an open subset contained in S we must have
φ (φ(f(m))) = φ(f(m)), and therefore f(m) = φ(f(m)) ∈ Y \ int(S).
Now since φ is the identity on the open set Y \ S, the linearization φ∗
acts as the identity at every point of Y \ S, and therefore (by continuity)
also at every point of Y \ S = Y \ int(S). In particular φ∗: Tf(m)Y →
Tf(m)Y is the identity. Consequently our assumption on S implies that
((φ× f)× g)∗ : TmM × TnN → T(f(m),f(m))Y × Y is already transverse to
∆, and so Θ is certainly transverse to ∆ at (φ,m, n).

There remains the case that φ(f(m)) ∈ int(S). But then a small per-
turbation of φ in Diffk

S(Y ) can be chosen which moves φ(f(m)) in an arbi-
trary direction in Y ; in other words, there are elements of form (ξ, 0, 0) ∈
Tφ Diffk

S(Y )⊕TmM ⊕TnN such that Θ∗(ξ, 0, 0) is equal to an arbitrary ele-
ment of Tφ(f(m))Y ×{0} � T(φ(f(m)),φ(f(m)))(Y ×Y ). So since Tφ(f(m))Y ×{0}
is complementary to T(φ(f(m)),φ(f(m)))∆ in T(φ(f(m)),φ(f(m)))(Y × Y ) this
proves that Θ is transverse to ∆.

Consequently the implicit function theorem for Banach manifolds shows
that Θ−1(∆) is a Ck-Banach submanifold of Diffk

S(Y )×M×N . The projec-
tion π: Θ−1(∆) → Diffk

S(Y ) is Fredholm of index dimM + dimN − dimY
(which we arranged to be less than k), and so the Sard–Smale theorem
applies to show that the set of regular values of π is residual in Diffk

S(Y ).
Moreover a standard argument (see for instance the proof of [14, Proposi-
tion 2.24]) shows that φ ∈ Diffk

S(Y ) is a regular value for π if and only if
the restriction Θ|{φ}×M×N is transverse to ∆.

This shows that, for all positive integers k > dimM+dimN−dimY , the
set Sk of φ ∈ Diffk

S(Y ) such that (m,n) �→ (φ(f(m)), g(n)) is transverse to
∆ is residual in Diffk(S). To complete the proof of the lemma it remains only
to replace the integer k by ∞, which we achieve by an argument adapted
from [11, p. 53]. Write M = ∪∞r=1Mr and N = ∪∞s=1Ns where each Mr and
Ns is compact, and let

Srs={φ∈DiffS(Y )| ((φ ◦ f)×g) is transverse to ∆ at all points of Mr×Ns}.
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For each r, s ∈ Z+, Srs is easily seen to be open in the C1 (and so also the
Ck for all 1 � k �∞) topology on DiffS(Y ). Likewise the set

Sk
rs = {φ∈Diffk

S(Y )| ((φ ◦ f)×g) is transverse to ∆ at all points of Mr×Ns}

is open in the Ck-topology on Diffk
S(Y ).

We now show that Srs is dense in DiffS(Y ). Let φ∞ ∈ DiffS(Y ) be arbi-
trary. For any sufficiently large integer k, since Sk = ∩r,sSk

rs is residual and

therefore dense in Diffk
S(Y ) there is φk ∈ Sk such that dCk(φk, φ∞) < 3−k,

where dCk denotes Ck distance (with respect to an arbitrary auxiliary Rie-
mannian metric; since our diffeomorphisms are the identity off a fixed com-
pact set, different choices of Riemannian metrics will result in uniformly
equivalent distances dCk). Now the smooth diffeomorphisms DiffS(Y ) are
dense in Diffk

S(Y ), and Sk
rs is open, so there is φ′k ∈ Srs = Sk

rs ∩ DiffS(Y )
arbitrarily Ck-close to φk; in particular this allows us to arrange that
dCk(φ

′
k, φ∞) < 2−k. Letting k vary, we have constructed a sequence {φ′k} in

Srs such that dCk(φ
′
k, φ∞) < 2−k, which implies that the φ′k converge to φ∞

in the C∞ topology. Thus Srs is indeed dense in DiffS(Y ). Since we have
already shown that Srs is open, this proves that the countable intersection
S = ∩r,sSrs is residual, as desired. �

Proof of Proposition 4.2. — The argument is similar to that in [15,
Lemma 4.10]. Let p, q ∈ Crit(f). Of course the fiber product is empty in
case p = q, so from now on we assume p �= q. In [14, Appendix A] Schwarz
constructs a Banach manifold P1,2

p,q (R,M) consisting of class H1,2 maps
γ: R → M suitably asymptotic to p as t → −∞ and to q as t → +∞.
Moreover there is a vector bundle Ep,q → P1,2

p,q (R,M) whose fiber over
γ ∈ P1,2

p,q (R,M) is γ∗TM , and the section

Φ: G × P1,2
p,q (R,M) → L2

R(Ep,q)
(h, γ) �→ γ̇ + (∇hf) ◦ γ

is shown to be smooth as a map of Banach manifolds and to be transverse
to the zero-section on [14, p. 47].

Write

M̃univ(p, q; f) = {(h, γ) ∈ Φ: G × P1,2
p,q (R,M)|Φ(h, γ) = 0}.

In other words, M̃univ(p, q; f) consists of those pairs (h, γ) where γ is a
negative h-gradient flowline of f asymptotic in large negative time to p
and in large positive time to q. Since Φ is transverse to the zero-section,
M̃univ(p, q; f) is a smooth Banach manifold. Where πp,q: M̃univ(p, q; f) →
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G is the projection, the statement that h ∈ G is a regular value of πp,q for
each p, q is equivalent to the statement that the negative gradient flow of f
with respect to the metric h is Morse–Smale (see [14, pp. 43–45] for more
details).

We have a map Ẽk−1: M̃univ(p, q; f)× (0,∞)k−1 →Mk defined by

Ẽk−1(γ, h, t1, . . . , tk−1) =

(
γ(0), γ(t1), . . . , γ

(
k−1∑

i=1

ti

))
,

and we now claim that Ẽk−1 is a submersion. Indeed, more specifically, we
claim that for any (γ, h, t1, . . . , tk−1) ∈ M̃univ(p, q; f) × (0,∞)k−1 → Mk,

writing sj =
∑j

i=1 ti for j = 0, . . . , k − 1, the linearization of Ẽk−1 at

(γ, h, t1, . . . , tk−1) restricts to T(γ,h)M̃univ(p, q; f) × {<0} as a surjection to∏k−1
j=0 Tγ(sj)M . As in [15, (4.15)], with respect to a suitable frame along γ

the linearization of the operator Φ: G × P1,2
p,q (R,M) → L2

R(Ep,q) takes the

form Φ∗(ξ, A) = ξ̇ + S(t)ξ +A · ∇hf . Here ξ varies through H1,2(γ∗TM) ∼=
H1,2(R,Rn) and A varies through a Banach space consisting of smooth sec-
tions (and containing in particular all compactly supported smooth sections)
of the bundle of symmetric endomorphisms of γ∗TM . Moreover t �→ S(t) is
a certain smooth path of symmetric operators on Rn. To prove our claim
we need to check that if vj ∈ Tγ(sj)M are arbitrary vectors then there is an
element (ξ, A) ∈ ker Φ∗ such that ξ(sj) = vj for each j = 0, . . . , k − 1. Now
γ is a nonconstant (since p �= q) flowline of −∇hf , and so the points γ(sj)
are all distinct, and ∇hf is nonvanishing at each γ(sj). But then we can
simply choose ξ ∈ H1,2(γ∗TM) to be an arbitrary smooth section which
is compactly supported in a union of small disjoint neighborhoods of the
various sj , and such that ξ(sj) = vj . Having chosen this ξ, since ∇hf is
nonvanishing on the support of ξ it is straightforward to find a section A of
the bundle of symmetric endomorphisms of γ∗TM , having the same com-
pact support as ξ, with the property that A ·∇hf = −ξ̇−S(t)ξ everywhere.
This pair (ξ, A) will be as desired, confirming that Ẽk is a submersion.

In view of this, given our maps gi: Vi →M , the fiber product

Vuniv(p, q, f, g0, . . . , gk−1;h)

= (V0 × · · ·Vk−1) g0×···×gk−1
×Ẽk−1

(
M̃univ(p, q; f)× (0,∞)k−1

)

is cut out transversely, and so is a Banach manifold. If the metric h ∈ G is
a regular value for the projection πV,p,q: Vuniv(p, q, f, g0, . . . , gk−1;h) → G,
then the original fiber product V(p, q, f, g0, . . . , gk−1;h) appearing in the
proposition will be cut out transversely. Using the Sard–Smale theorem,
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the residual subset of the proposition is then given by the intersection of
the sets of regular values of πV,p,q as p and q vary through Crit(f) with
the sets of regular values of the maps πp,q from the second paragraph of the
proof. �

Proof of Lemma 4.5. — First we need to construct M̃(p, q; f)× (0,∞)
as a manifold with boundary by providing collars for the various parts of
the boundary C1, . . . , C6, in such a way that E1 extends smoothly to the
boundary in accordance with the formulas given in the lemma. To prepare
for this, let us recall some features of the trajectory spaces M̃(x, y; f) and
of the gluing map constructed in [14, Section 2.5].

Assuming that x, y ∈ Crit(f) with x �= y and M̃(x, y; f) �= ∅, so that
in particular f(y) < f(x), choose a regular value a for f with f(y) <
a < f(x). Where for a trajectory γ ∈ M̃(x, y; f) we denote its equivalence
class in M(x, y; f) by [γ], the choice of a induces an orientation-preserving
diffeomorphism αa,x,y: M̃(x, y; f) →M(x, y; f)×R defined by αa,x,y(γ) =
([γ], sa.γ), where sa,γ is the real number characterized by the property that

f(γ(−sa,γ)) = a. For any s ∈ R and γ ∈ M̃(x, y; f) define σsγ ∈ M̃(x, y; f)
by

(σsγ)(t) = γ(s + t).

Then if for an element [γ] ∈ M(x, y; f) we write γ0 for the unique repre-
sentative of [γ] such that f(γ0(0)) = a, the inverse of αa,x,y is given by
α−1
a,x,y([γ], s) = σsγ0.

Now let r ∈ Crit(f) be any critical point distinct from p and q such
that M(p, r; f)×M(r, q; f) is nonempty. Choose regular values a and b of
f such that f(q) < a < f(r) < b < f(p). Then if V is any open subset
of M(p, r; f) ×M(r, q; f) such that V̄ is compact, [14, Proposition 2.56]
gives a number ρV > 0 and a smooth embedding #V : (ρV ,∞) × V →
M(p, q; f) having the following features. For an element ([γ], [η]) ∈ V ⊂
M(p, r; f) × M(r, q; f) choose the unique representatives γ ∈ M̃(p, r; f)
and η ∈ M̃(r, q; f) such that γ(0) = b and η(0) = a. Then a suitable
representative γ#ρη of #(ρ, [γ], [η]) has the property that, on any fixed
compact subset of R, σ−ρ(γ#ρη) → γ uniformly exponentially fast as ρ →
∞, and σρ(γ#ρη) → η uniformly exponentially fast as ρ → ∞ (with the
constants independent of the choice of ([γ], [η]) from the precompact subset
V ).

Furthermore, if V1 and V2 are two open subsets of M(p, r; f)×M(r, q; f)
each with compact closure, the gluing maps #V1 and #V2 coincide on their
common domain of definition (as follows from examination of the construc-
tion and was also noted in [15, Proof of Lemma 4.4]). Consequently if {χβ}
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is a partition of unity subordinate to an open cover {Vβ} of M(p, r; f) ×
M(r, q; f) by open sets with compact closure, and if we define ρ0: M(p, r; f)×
M(r, q; f) → R by ρ0 =

∑
β χβρβ , then the gluing maps #Vβ piece together

to give a smooth map

#: {(ρ, [γ], [η]) ∈ R×M(p, r; f)×M(r, q; f)|ρ > ρ0([γ], [η])} →M(p, q; f),
(7.1)

which (in view of the convergence properties of the γ#ρη) can be arranged
to be an embedding after possibly replacing ρ0 by a larger smooth function.

With respect to our orientation conventions from Section 2.5, the gluing
map # can be seen to affect the orientation by multiplication by (−1)|p|f−|r|f−1

(see also [1, A.1.14]).

We now use these facts to produce collars for the parts C1, . . . , C6 of

∂M̃(p, q; f)× (0,∞). More specifically, for each i we will construct, for a
suitable smooth function εi: Ci → (0,∞), a smooth embedding

ψi: {(t, x) ∈ R× Ci|0 < t < εi(x)} × Ci → M̃(p, q; f)× (0,∞),

such that E1 ◦ ψi extends smoothly to {0} × Ci in a way that agrees with
the formulas for Ē1|Ci in the statement of the lemma. Let Ĉi = {(t, x) ∈
R × Ci|0 � t < εi(x)}, so that Ĉi has the structure of a manifold with
boundary {0} × Ci. We can then set

M̃(p, q; f)× (0,∞) =
Ĉ1 	 Ĉ2 	 · · · 	 Ĉ6 	

(
M̃(p, q; f)× (0,∞)

)

z ∼ ψi(z) for z ∈ Ĉi \ ∂Ĉi, i = 1, . . . , 6
.

This will be a Hausdorff topological space, since our formulas imply that the

continuous extension Ē1: M̃(p, q; f)× (0,∞) → M ×M of E1 is injective,
and any space that admits an injective continuous map to a Hausdorff space
is Hausdorff. The ψi will be diffeomorphisms to their images by dimensional

considerations, so M̃(p, q; f)× (0,∞) will inherit a smooth manifold-with-
boundary atlas from M̃(p, q; f) × (0,∞) and from the Ĉi, making Ē1 a
smooth function. Since if Ci is oriented, one has ∂Ĉi = −Ci as oriented
manifolds (as we use the outer-normal-first convention), the boundary ori-
entation of Ci induced by the orientation of M̃(p, q; f)× (0,∞) will be the
orientation of Ci that makes ψi into an orientation-reversing embedding.

So we now construct the ψi, starting with ψ1. Let r ∈ Crit(f) with

|r|f = |p|f − 1 and M(p, r; f)× M̃(r, q; f) �= ∅, and let a and b be regular
values of f with f(q) < a < f(r) < b < f(p), inducing an orientation-

preserving diffeomorphism αa,r,q: M̃(r, q; f) →M(r, q; f)×R and a gluing

map # as in (7.1). Recall that the map # lifts to a map into M̃(p, q; f),
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given by (ρ, [γ], [η]) �→ γ#ρη where the representatives γ and η are chosen

so that f(γ(0)) = b and f(η(0)) = a. Using αa,r,q to identify M̃(r, q; f) with
M(r, q; f)×R, the part of our collar ψ1 corresponding to the critical point
r is the map
{

(δ, [γ], [η], s, T )∈(0,∞)×M(p, r; f)×M(r, q; f)×R×(0,∞)| 0<δ< 1

ρ0([γ], [η])

}

→ M̃(p, q; f)× (0,∞)

defined by
ψ1 (δ, [γ], [η], s, T ) = (σs+δ−1(γ#δ−1η), T ) .

The fact that the map # of (7.1) is a smooth embedding readily implies
that ψ1 is a smooth embedding as well (at least after possibly lowering
the upper limit on δ to prevent overlap between the images of maps from
overlapping for different choices of the finitely many r). Our identification
of M(r, q; f) × R with M̃(r, q; f) has ([η], s) corresponding to σsη, so the
fact that σs+δ−1(γ#δ−1η) converges exponentially quickly on any compact
subset of R to σsη as δ−1 → ∞ readily implies that the function E1 ◦ ψ1

extends smoothly to {0} × C1 ⊂ Ĉ1 by the formula stated in the lemma.
(The exponential nature of the convergence yields, on compact subsets of
C1, uniform estimates dist(E1 ◦ψ1(δ, z), Ē1|C1(z)) � Be−β/δ, which ensures
smoothness up to the boundary, with normal derivatives of all orders vanish-
ing.) As for the orientation, using the orientation preserving identification
αa,p,q: M̃(p, q; f) ∼= M(p, q; f)×R and the fact that (since |p|f = |r|f +1 in
this case) the gluing map (δ, [γ], [η]) �→ ([γ#δ−1η]) is orientation-reversing,
it is clear that ψ1 is orientation-reversing. Consequently C1’s orientation as

part of the boundary of M̃(p, q; f)× (0,∞) coincides with its usual orien-
tation.

The construction of ψ2 is very similar to that of ψ1: Given r ∈ Crit(f)
with |r|f = |q|f +1 and M(r, q; f) �= ∅, choose a regular value b with f(r) <

b < f(p), inducing an identification αb,p,r: M̃(p, r; f) ∼= M(p, r; f)×R. With
respect to this identification, for 0 < δ < 1

ρ0([γ],[η]) define

ψ2(δ, [γ], s, [η], T ) = (σs−δ−1(γ#δ−1η), T ) (7.2)

where the representatives γ and η are chosen just as in the definition of ψ1.
The exponential convergence of σ−δ−1(γ#δ−1η) to γ on compact subsets
can be seen to imply that this ψ2 has the properties that we require. The
boundary orientation of C2 may be computed by switching the positions
of the parameters s and [η] in the domain and using the facts that the
gluing map # of (7.1) affects the orientation by a sign (−1)|p|f−|r|f−1 =
(−1)|p|f−|q|f , and that M(p, r; f) is zero-dimensional.
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As for ψ3, now let r be any critical point distinct from p and q such
that M̃(p, r; f)× M̃(r, q; f) �= ∅, and as usual choose regular values a and
b with f(q) < a < f(r) < b < f(p). This induces an orientation-preserving
diffeomorphism

αb,p,r × αa,r,q: M̃(p, r; f)× M̃(r, q; f) ∼= M(p, r; f)× R×M(r, q; f)× R.

With respect to this identification, define, for ([γ], s, [η], u) ∈ M̃(p, r; f) ×
M̃(r, q; f) and 0 < δ < ρ0([γ], [η]),

ψ3(δ, [γ], s, [η], u) =
(
σs−δ−1(γ#δ−1η), 2δ−1 − s + u

)
,

where as usual the representatives γ and η are chosen so that f(γ(0)) =
b and f(η(0)) = a. The convergence of σ−δ−1(γ#δ−1η) to γ on compact
subsets gives that σs−δ−1(γ#δ−1η)(0) converges to σsγ(0) as δ → 0 for
all s, and the convergence of σδ−1(γ#δ−1η) to η on compact subsets gives
that σs−δ−1(γ#δ−1η)(2δ−1 − s + u) converges to σuη(0) as δ → 0 for all u.
This implies that E1 ◦ ψ3 extends continuously to C3 × {0} in the manner
asserted in the statement of the lemma. The fact that ψ3 is an embedding
(at least after appropriately shrinking the domain) and that the extension
of E1 is smooth follows just as in the case of ψ1. To compute the boundary
orientation of C3, note that moving the parameter s past [η] in the domain
leads to a sign (−1)|r|f−|q|f−1, which when combined with the usual sign
coming from the gluing map # leads to the boundary orientation of C3

being (−1)|p|f−|q|f times its usual orientation, as stated in the lemma.

For i = 4, 5, 6 we have Ci = M̃(p, q; f), and we can use the following
rather simpler collars ψi: (0, 1)× M̃(p, q; f) → M̃(p, q; f)× (0,∞):

ψ4(δ, γ) = (γ, δ)

ψ5(δ, γ) = (σ−δ−1γ, δ−1)

ψ6(δ, γ) = (γ, δ−1)

That ψ4, ψ5, ψ6 satisfy the required properties and induce the stated ori-
entations is in each case straightforward; perhaps the only point to mention
is that the fact that the extension of E1 is smooth up to the boundary along
C5 and C6 follows from the fact that any γ ∈ M̃(p, q; f) has γ(t) → p ex-
ponentially fast as t→ −∞, and γ(t) → q exponentially fast as t→∞ (see
e.g. [14, Lemma 2.10]).

This completes the construction of M̃(p, q; f)× (0,∞); it remains to
show that the Ω-limit set of Ē1 is as described. In other words we need
to show that if {(γn, tn)}∞n=1 is any sequence in M̃(p, q; f) × (0,∞) then
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after passing to a subsequence {(γn, tn)}∞n=1 will either converge in

M̃(p, q; f)× (0,∞) or else will have the property that E1(γn, tn) = (γn(0),
γn(tn)) converges to a point in one of the sets described in (i)-(iv) of the
statement of the Lemma. (Since M̃(p, q; f) × (0,∞) is dense in

M̃(p, q; f)× (0,∞) we need only consider sequences in M̃(p, q; f)×(0,∞)).

So let {(γn, tn)}∞n=1 be a sequence in M̃(p, q; f) × (0,∞). By the ba-
sic compactness result [14, Proposition 2.35], we may pass to a subse-
quence such that, for some ν ∈ {1, . . . , |p|f − |q|f}, some critical points

p = p0, p1, . . . , pν = q of f , some trajectories γj ∈ M̃(pj−1, pj ; f), and some
sequences {τn,j}∞n=1 in R for j = 1, . . . , ν, we have for each j,

στn,jγn → γj uniformly with all derivatives on each compact subset of R.
(7.3)

(In this case {γn}∞n=1 is said to converge weakly to the broken trajectory
(γ1, . . . , γν).)

These conditions continue to hold if we remove all constant trajectories
γj from consideration, so without loss of generality we assume that each γj

is nonconstant, so that pj �= pj−1 for all j.

Since the values f(γn(0)) and f(γn(tn)) are confined to the compact in-
terval [f(q), f(p)] and have f(γn(0)) > f(γn(tn)), and since f is exhausting,
by passing to a further subsequence we may assume that γn(0) → x0 and
γn(tn) → xT for some x0, xT ∈M with f(q) � f(xT ) � f(x0) � f(p).

We may then choose j ∈ {1, . . . , ν} such that f(pj) � f(x0) � f(pj−1).
Passing to a further subsequence, we may assume that {τn,j}∞n=1 either
converges to a limit −τ0 or diverges to +∞ or diverges to −∞. In the first
case we obtain by (7.3) that

γn(0) = στn,jγn(−τn,j) → γj(τ0) as n→∞,

and thus x0 ∈ epj−1,pj

(
M̃(pj−1, pj ; f)

)
. Suppose that instead τn,j → +∞.

Then for any given t ∈ R, once n is so large that −τn,j � t we will have

f (γn(0)) = f
(
(στn,jγn)(−τn,j)

)
� f

(
(στn,jγn)(t)

)
.

Thus f(x0) � f(γj(t)) for all t ∈ R, and since j was chosen so that f(x0) �
f(pj−1) this forces f(x0) = f(pj−1). We will now show that, continuing to
assume that τn,j → +∞, we in fact have x0 = pj−1. For any small open
ball B around pj−1 and any ε > 0 there is T > 0 such that γj(−T ) ∈ B
and f(γj(−T )) > f(pj−1) − ε, and therefore for large enough n we will
have γn(τn,j − T ) ∈ B and f (γn(τn,j − T )) > f(pj−1) − ε. So since γn is
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a negative gradient trajectory of f and f(γn(0)) < f(pj−1) + ε for large
enough n we have

∫ τn,j−T

0

‖γ̇n(t)‖2dt = f(γn(0))− f(γn(τn,j − T )) < 2ε

for all sufficiently large n. Now if x0 = lim γn(0) were not equal to pj−1, we
could find8 ε-independent constants δ,D > 0 and disjoint balls B around
pj−1 and B′ around x0 such that for any path η: [0, R] → {x|f(x) �
f(pj−1) + 1} beginning in B′ and ending in B there would be a segment
η|[r1,r2] having length at least D and such that ‖∇f(η(t))‖ � δ for all
t ∈ [r1, r2]. In particular for large n this would apply to η = γn|[0,τn,j−T ],
where T has been chosen based on an arbitrary ε > 0 as above. We would
then obtain

2ε >

∫ r2

r1

‖∇f(γn(t))‖2dt � (r2 − r1)δ
2,

so r2 − r1 < 2ε
δ2 . But if C is the maximum of ‖∇f‖ on {f � f(pj−1) +

1}, γn|[r1,r2] would then have length at most 2Cε
δ2 , which if we choose ε

sufficiently small is a contradiction with the fact that η|[r1,r2] needs to have
length at least D. This contradiction shows that we must indeed have x0 =
pj−1.

The same argument shows that if τn,j → −∞ then x0 = pj . More-
over, applying the same argument to the sequence {γn(tn)}∞n=1 in place of
{γn(0)}∞n=1 shows that, if k is chosen so that f(pk) � f(xT ) � f(pk−1),
then xT = limn→∞ γn(tn) is given by

xT =





γk(τT ) if limn→∞ τn,k − tn = −τT
pk−1 if limn→∞ τn,k − tn = +∞
pk if limn→∞ τn,k − tn = −∞

(and of course we may and do pass to a subsequence such that one of the
above three alternatives holds).

So we can now check case-by-case based on the number ν of trajectories
that appear in the limit and on the behavior of the sequences {τn,j}∞n=1

that, having passed to this subsequence, either {(γn, tn)}∞n=1 converges in

M̃(p, q; f)× (0,∞) or else {E1(γn, tn)}∞n=1 converges to a point in one of
the sets (i)-(iv) in the statement of the lemma.

(8) Specifically, choose disjoint balls around all of the critical points of f with critical
value at most f(pj−1) + 1 and also a ball around x0, let δ be the infimum of ‖∇f‖ in
{x|f(x) � f(pj−1) + 1} off of these balls, and let D be the minimal distance between
any two of the balls.

– 90 –



Linking and the Morse complex

First suppose that ν = 1. If neither {τn,1}∞n=1 nor {tn − τn,1}∞n=1 con-
verges in R then it follows from the last few paragraphs that both x0 =
limn→∞ γn(0) and xT = limn→∞ γn(tn) converge to p or q and so E1(γn, tn)
converges to a point of (iv) (allowing the possibilities a = b = p or a = b =
q). If {τn,1}∞n=1 converges, say to −τ0, then since στn,1γn → γ1 it follows

that γn → στ0γ
1 ∈ M̃(p, q; f). Thus if {tn}∞n=1 converges to a positive real

number T then {(γn, tn)}∞n=1 converges to a point (namely (στ0γ
1, T )) of

M̃(p, q; f)× (0,∞); if tn → 0 then (as follows directly from the formula for
ψ4) {(γn, tn)}∞n=1 lies in the image of ψ4 for large n and finally converges
to a point of C4; and if {tn}∞n=1 diverges to ∞ then {(γn, tn)}∞n=1 similarly
converges to a point of C6. The only remaining possibility when ν = 1 is
that {τn,1}∞n=1 diverges but {tn − τn,1}∞n=1 converges, say to τT . So in this
case tn → ∞ and σtnγ → στT γ

1, in view of which {(γn, tn)}∞n=1 lies in the
image of ψ5 for large n and converges to the element στT γ

1 of C5.

Now suppose ν = 2; thus the trajectories γn converge weakly to the
broken trajectory (γ1, γ2), where for some r ∈ Crit(f) distinct from p and
q, γ1 ∈ M̃(p, r; f) and γ2 ∈ M̃(r, q; f). Now the analysis above shows
that, where x0 = limn→∞ γn(0) and xT = lim∞n=0 γn(tn), we have x0, xT ∈
{p, q, r}∪γ1(R)∪γ2(R). If either x0 or xT belongs to {p, q, r} then E1(γn, tn)
converges to a point in a set in (iv) of the statement of the lemma. Also, if
x0 = xT , then E1(γn, tn) converges to a point in a set in (iii) of the statement
of the lemma. Thus we may assume that x0 and xT are distinct points,
each lying on γ1(R) ∪ γ2(R). Also, in the case that both x0, xT ∈ γ1(R),
if |r|f > |q|f + 1 then E1(γn, tn) converges to a point in a set in (i) of
the statement of the lemma; the same also holds if x0, xT ∈ γ2(R) and
|r|f < |p|f − 1. So if x0, xT ∈ γ1(R) we may assume that |r|f = |q|f + 1,
and if x0, xT ∈ γ2(R) we may assume that |r|f = |p|f − 1.

Suppose that x0, xT ∈ γ1(R). As noted earlier, this implies that the
sequences {τn,1}∞n=1 and {τn,1− tn}∞n=1 both converge, say to −τ0 and −τT ,
respectively, and in this case we have x0 = γ1(τ0) and xT = limn→∞ γ1(τT ),
so τT > τ0 since xT �= x0. Recall that in defining the collar ψ2 for C2 we
made a choice of regular values a and b such that f(q) < a < f(r) <
b < f(q). By the last sentence of [14, Proposition 2.57], for large n the
equivalence class [γn] of γn will lie in the image of the gluing map (7.1); thus
there will be γ1

n ∈ M̃(p, r; f) and γ2
n ∈ M̃(r, q; f) such that f(γ1

n(0)) = b,
f(γ2

n(0)) = a, and sequences of real numbers ρn, un such that ρn →∞ and

γn = σun
(
γ1
n#ρnγ

2
n

)
,

with ρn remaining in an interval [ρ̄,∞) and ([γ1
n], [γ2

n]) remaining in a fixed
compact subset of M(p, r; f)×M(r, q; f).
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Consequently, keeping in mind that the formula for ψ2 used the identi-
fication of M̃(p, r; f) with M(p, r; f) × R determined by the regular value
b, we obtain that for large n,

(γn, tn) = ψ2

(
ρ−1
n , σρn+unγ

1
n, [γ

2
n], tn

)
,

and in particular our sequence eventually enters and never leaves the collar
around C2. By considering the properties of the function Ē1 on the image of
C2, the weak convergence properties of the γn then imply that, as n→∞,

ψ−1
2 (γn, tn) → (0, στ0γ

1, [γ2], τT−τ0) ∈ {0}×M̃(p, r; f)×M(r, q; f)×(0,∞),

proving that the sequence {(γn, tn)}∞n=1 converges to a point of

C2 ⊂ M̃(p, q; f)× (0,∞) when ν = 2 and x0, xT ∈ γ1(R).

In the case that ν = 2 and x0, xT ∈ γ2(R), an identical analysis based
on the sequences {τn,2}∞n=1 and {τn,2 − tn}∞n=1 shows that {(γn, tn)}∞n=1

converges to a point of C1 ⊂ M̃(p, q; f)× (0,∞).

The remaining case when ν = 2 is where x0 ∈ γ1(R) and xT ∈ γ2(R)
(since tn > 0 the opposite is impossible). Then the sequence {τn,1}n=1

converges (say to −τ0) since x0 ∈ γ1(R), and the sequence {τn,2 − tn}∞n=1

converges (say to −τT ) since xT ∈ γ2(R). For large enough n, the weak
convergence of {γn}∞n=1 and [14, Proposition 2.57] give large real numbers
ρn and trajectories γ1

n ∈ M̃(p, r; f) and γ2
n ∈ M̃(r, q; f) with f(γ1

n(0)) = b
and f(γ2

n(0)) = a such that

γn = σun
(
γ1
n#ρnγ

2
n

)

for some real numbers un, with ρn remaining in an interval [ρ̄,∞) and
([γ1

n], [γ2
n]) remaining in a fixed compact subset of M(p, r; f) ×M(r, q; f).

From this one obtains that, for large n,

(γn, tn) = ψ3

(
ρ−1
n , σρn+unγ

1
n, σun+tn−ρnγ

2
n

)
.

Thus our sequence eventually enters and never leaves the collar around C3,
and the weak convergence properties of the sequence imply that

ψ−1
3 (γn, tn) → (0, στ0γ

1, στT γ
2) ∈ {0} × M̃(p, r; f)× M̃(r, q; f).

This completes the proof in case ν = 2.

Finally suppose that ν > 2. Since all of the trajectories γj are non-
constant and so (by the Morse-Smale condition) 1 � |pj |f − |pj+1|f �
|p|f − |q|f − 2 for all j, and since x0, xT ∈ Crit(f) ∪ γ1(R) ∪ · · · ∪ γν(R),
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it is straightforward to see that in any case (x0, xT ) = limn→∞En(γn, tn)
belongs to one of the sets (i)-(iv). �
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