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Salvetti complex, spectral sequences
and cohomology of Artin groups

Filippo Callegaro(1)

ABSTRACT. — The aim of this short survey is to give a quick introduc-
tion to the Salvetti complex as a tool for the study of the cohomology
of Artin groups. In particular we show how a spectral sequence induced
by a filtration on the complex provides a very natural and useful method
to study recursively the cohomology of Artin groups, simplifying many
computations. In the last section some examples of applications are pre-
sented.

RÉSUMÉ. — Le but de ce travail est de donner une brève introduction aux
complexes de Salvetti comme instrument pour étudier la cohomologie des
groupes d’Artin. Nous montrons comment une suite spectrale donnée par
une filtration sur le complexe va définir une méthode, utile ainsi que très
naturelle, pour étudier récursivement la cohomologie des groupes d’Artin,
avec une grande simplification dans les calculs. Dans la dernière partie du
travail nous présentons des exemples d’applications.

1. Introduction

The classical braid group has been defined in 1925 by Artin ([1]). In 1962

Fox and Neuwirth [18] proved that the group defined by Artin is the funda-

mental group of the configuration space C(R2, n) of unordered n-tuples of

distinct points in the real plane. A more general algebraic definition of Artin

groups can be given starting from the standard presentation of a Coxeter

group W.

(1) Dipartimento di Matematica, Università di Pisa, Italy
callegaro@dm.unipi.it
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Given a Coxeter group W acting on a real vector space V we can consider

the collection HW of all the hyperplanes H which are fixed by a reflection

ρ ∈ W. This collection is the reflection arrangement of W. In [2] Brieskorn

proved that the fundamental group of the regular orbit space with respect

to the action of the group W on the complement of a complexified reflection

arrangement is the Artin group A associated to W.

We illustrate the case of the braid group, that can be considered as

the leading example of this construction. We will use it for several other

examples along this paper. We consider the action, by permuting coordi-

nates, of the symmetric group on n letters Sn on the complex vector space

Cn. If we restrict this action of Sn to the space of ordered n-tuples of dis-

tinct points F (C, n) we obtain a free and properly discontinuous action. The

space F (C, n) is the complement of the union of the hyperplanes of the form

Hij = {zi = zj} in Cn. The quotient C(C, n) = F (C, n)/Sn is the regular

orbit space for Sn and hence its fundamental group is the braid group on

n strands Bn, that is the Artin group associated to Sn.

The result of Brieskorn mentioned above shows the important relation

between Artin groups and arrangements of hyperplanes, since an Artin

group is the fundamental group of a quotient of the complement of a reflec-

tion arrangement.

Research on arrangements of hyperplanes started with the works of E.

Fadell, R. Fox, L. Neuwirth, V.I. Arnol’d, E. Brieskorn, T. Zaslavsky, K.

Saito, P. Deligne, A. Hattori and later P. Orlik, L. Solomon, H. Terao,

M. Goresky, R. MacPherson, C. De Concini, C. Procesi, M. Salvetti, R.

Stanley, R. Randell, G. Lehrer, A. Björner, G. Ziegler and many others. A

basic reference for the subject is [28]. A more recent reference with many

recent developments and a wide bibliography on the theory of hyperplane

arrangements is given by the book (still work in progress) [10].

Given an arrangement H, an important combinatorial invariant is the

intersection lattice L(H), that is the poset of non-empty intersections of

elements of H ordered by reverse inclusion. One of the main problems in the

study of arrangements is to understand the relation between the topology of

the complement of the arrangement and its intersection lattice. For a real

arrangement we have a finer combinatorial invariant, the face poset (see

Definition 2.2 and [28]). In [31] Salvetti introduced a CW-complex Sal(H)

associated to a real arrangement H and determined by the face poset of H.
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He proved that this complex is homotopy equivalent to the complement of

the complexified arrangement. Moreover if H is associated to a reflection

group W, the group W acts on the complex Sal(H) and the quotient complex

XW is homotopy equivalent to the regular orbit space of W (see [32, 14]).

An extension of these results for an oriented matroid can be found in [21].

For a general complex arrangement, in [5] Björner and Ziegler construct a

finite regular cell complex with the homotopy type of the complement of

the arrangement.

In this short survey we present some methods and useful tools for the

study of Artin groups through the Salvetti complex. A natural filtration of

the complex allows to define a spectral sequence that can be very helpful in

several homology and cohomology computations. In particular we can use

the Salvetti complex to compute the cohomology of Artin groups, either with

constant coefficients or with a local system of coefficients. The computation

of the cohomology of the Milnor fiber, which is related to a very interesting

abelian local system over a Laurent polynomial ring, plays a special role in

this context.

In Section 2 we recall our main notation for arrangement of hyperplanes

and the Salvetti complex. We try to keep the notation introduced in [29]. In

Section 3 we give a general introduction to computations using a spectral

sequence that arises from a natural filtration of the Salvetti complex. Finally

in Section 4 we provide a few examples that show how the computations via

this spectral sequence can be applied to the study of the cohomology and

homology of braid groups, providing a simpler or shorter proof for previously

known results. A first example is given in Section 4.1 where we provide a

shorter proof of Fuks’s result (see [20]) on the homology of braid groups mod

2. Another example is in Section 4.2: we compute the rational cohomology

of the commutator subgroup of the braid group giving a new proof of some

results already appeared in [19], [23] and [13]. In Section 4.3 we show how

the Salvetti complex can be modified in order to study recursively affine

type Artin groups. In Section 4.4 we show how it can be used for computer

investigations providing the example of a non-abelian local system.

Acknowledgment. — The author would like to thank the organizing

and scientific committees of the School “Arrangements in Pyrénées” held in

June 2012 in Pau, where the idea of these notes started.
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2. Hyperplane arrangements,

Artin groups and Salvetti complex

2.1. Hyperplane arrangements

We recall some definitions and results on hyperplane arrangements and

Artin groups. We follow the notation of [29] and we refer to it for a more

detailed introduction. We refer to [28] for a general introduction on the

subject of hyperplane arrangements.

Let I be an open convex cone in a finite dimensional real vector space

V.

Definition 2.1. — A real hyperplane arrangement in I is a family H
of real affine hyperplanes of V such that each hyperplane of H intersects I

and the family H is locally finite in I.

Definition 2.2. — A real hyperplane arrangement H induces a strati-

fication on the convex cone I into facets. Given two points x and y in I

we say that they belong to the same facet F if for every hyperplane H ∈ H
either x ∈ H and y ∈ H or x and y belong to the same connected component

of I \H. We call the set of all facets S the face poset of H and we equip S
with the partial order given by F > F ′ if and only if F ⊃ F ′.

A face is a codimension 1 facet, i. e. a facet that is contained in exactly

one hyperplane of the arrangement. A chamber of the arrangement is a

maximal facet, that is a connected component C of the complement

I \ ∪H∈HH.

Let H be a real affine hyperplane and let v(H) be its underlying vec-

tor space: the complexified hyperplane HC is the complex affine hyper-

plane HC := {z = x + ıy, x ∈ H, y ∈ v(H)} in the complex vector space

VC := V ⊗R C.

We recall the definition of the complement of the complexified arrange-

ment:

M(H) := (I ⊕ ıV ) \
⋃

H∈H
HC.

Now we consider the case of a Coxeter arrangement. Let the couple

(W,S) be a Coxeter system and assume that the set of generators S is given
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by linear reflections in the vector space V. Then W is a finite subgroup

of GL(V ). We define the reflection arrangement of W as the collection

H = HW := {H ⊂ V | H is the fixed hyperplane of a reflection ρ ∈ W}.
Given any chamber C of the arrangement H we define the convex cone I

associated to (W,S) as the interior of the union

I :=
⋃

w∈W
wC.

The complement of the reflection arrangement is given by M(W ) := M(HW ).

The group W acts freely and properly discontinuously on M(W ) and we

denote by N(W ) the quotient M(W )/W.

Let W be a Coxeter group with Coxeter graph Γ. The fundamental

group of the complement N(W ) is AΓ, that is the Artin group of type Γ.

The fundamental group of the complement M(W ) is the pure Artin group

PAΓ (see [3]).

Example 2.3. — We consider the example of the group W = S3 act-

ing on I = R3 by permuting coordinates. The corresponding reflection

arrangement is the given by the hyperplanes H1,2, H1,3, H2,3, where we

define Hi,j = {x ∈ R3 | xi = xj}. We fix the fundamental chamber

C0 = {x ∈ R3 | x1 < x2 < x3} in the complement of HW . The complement

M(W ) is the ordered configuration space F (C, 3), while the space N(W ) is

the unordered configuration space C(C, 3). The following is Coxeter graph

of S3

that is the Coxeter graph of type A2. The standard generators of the Coxeter

group S3 are the elements s1, s2 with relations s2
1 = s2

2 = e and s1s2s1 =

s2s1s2. We can identify the generator s1 (resp. s2) with the transposition

(1, 2) ∈ S3(resp. (2, 3)). The fundamental group of C(C, 3) is the classical

braid group on three strands B3 and the fundamental group of F (C, 3) is

the pure braid group braid group on three strands PB3. The braid group

B3 is generated by the elements σ1, σ2 with relation σ1σ2σ1 = σ2σ1σ2 (see,

for example, [3]).
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2.2. The Salvetti complex

The key geometric object that we consider in this survey is the Salvetti

complex. This is a CW-complex which has the homotopy type of the com-

plement M(H). Moreover in the case of finite arrangements the Salvetti

complex has a finite number of cells. Its explicit description and the simple

structure, especially in the case of reflection arrangements, turn out to be

very important for filtrations and recursive arguments.

In this survey we don’t provide an explicit definition of the Salvetti

complex. The reader interested on the subject can find the original definition

in [31]. An extended definition of can be found in [29]. Further in this

section we provide a description of the algebraic complexes that compute

the homology and cohomology of the quotient of Salvetti complex Sal(HW )

by the action of the group W.

Theorem 2.4 ([31]). — The complement M(H) has the homotopy type

of a CW-complex Sal(H) that is a deformation retract of M(H). The k-cells

of the complex Sal(H) are in 1 to 1 correspondence with the couples (C,F )

where C is a chamber of the arrangement and F is a codimension k facet

adjacent to the cell C.

If the arrangement H is the reflection arrangement of a Coxeter group

W, the complex Sal(H) is W -invariant and the homotopy that gives the

retraction from the space M(H) to the complex Sal(H) can be chosen to be

W -equivariant. Furthermore, the action on the cells follows from the action

of W on the sets of chambers and facets. Fix a fundamental chamber C0 for

the arrangement HW .

Theorem 2.5 ([32, 14]). — Let W be a Coxeter group. The orbit space

N(W ) has the same homotopy type of the CW-complex XW = Sal(HW )/W.

The k-cells of the complex XW are in 1 to 1 correspondence with the

facets of HW that are adjacent to the fundamental chamber C0.

Let (W,S) be the Coxeter system associated to the Coxeter group W

and to the fundamental chamber C0. Let Γ be the corresponding Coxeter

graph. We recall that the nodes of Γ are in bijection with the elements of S.

Since the arrangement HW is locally finite, the facets of the arrangement

HW that are adjacent to the fundamental chamber C0 are in bijection with

the finite parabolic subgroups of W generated by subsets of S.
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Corollary 2.6 ([32, 11, 9]). — Let (W,S) be a Coxeter system. The

k-cells of the complex XW are in 1 to 1 correspondence with the k-subsets

of S that generate finite parabolic subgroups.

Example 2.7. — In Figure 1 there is a picture of the complex XW for the

symmetric group W = S3 with set of generators S = {s1, s2}. The 6 vertices

of the hexagon are all identified to a single vertex corresponding to the empty

subset of S. The 6 edges of the hexagon are identified according to the arrows

and correspond to the subsets {s1} and {s2}. The 2-cell corresponds to the

set S itself. The complex XW is homotopy equivalent to the configuration

space C(C, 3).

Figure 1

In order to provide a complete description of the complexes Sal(W ) and

XW for a given Coxeter system (W,S) we need to show how the cells glue

together. We refer the reader to [31] and [32] (see also [29]) for this. Here we

recall the description of the boundary map for the cochain complex of XW

with coefficients in an assigned local system. Let M be a Z-module and let

λ : AΓ → Aut(M)

be a representation of the fundamental group of XW . Such a representation

determines a local system Lλ on the complex XW . Moreover let (C∗, δ) be

the algebraic complex associated to the CW-complex XW that computes

the cohomology H∗(XW ;Lλ). The complex C∗ is given by a direct sum of

some copies of the Z-module M indexed by elements eT

Ck :=
⊕

M.eT (2.1)
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where the sum goes over all the subset T ⊂ S such that | T |= k and the

parabolic subgroup WT is finite. The complex C∗ is graded with

deg eT =|T | .

In order to define the differential δ we recall some well known facts about

Coxeter groups and Artin groups. The first result we need is the following

one (see for example Proposition 1.10 in [22]).

Proposition 2.8. — Let (W,S) be a Coxeter system with length func-

tion l. Any element w ∈ W can be written in a unique way as a product

w = uv with v ∈WT and u ∈ w ∈W/WT such that l(w) = l(u) + l(v).

The element u is the unique element of minimal length in the coset w ∈
W/WT and it is called the minimal coset representative of w.

Given a Coxeter system (WΓ, S), with Coxeter graph Γ, and the associ-

ated Artin group AΓ, there is a natural epimorphism π : AΓ �WΓ defined

by mapping each standard generator gs of AΓ to the corresponding element

s ∈WΓ for all s ∈ S. Matsumoto proves the following lemma (see also [36]):

Lemma 2.9 ([24]). — Let (WΓ, S) be a Coxeter system. Given an ele-

ment w ∈ W expressed as a positive word si1 · · · sil of minimal length l in

the generators sj ∈ S, the corresponding element g = gsi1 · · · gsil ∈ AΓ is

well defined and does not depend on the choice of the word representing w.

As a consequence the map π has a natural set-theoretic section ψ : W →
AΓ. We remark that the section ψ defined according to the previous lemma

is not a group homomorphism.

Let < be a total ordering on the set S. We can define the coboundary

map δ as follows: for a generator eT ∈ C∗ and an element a ∈M we have

δ(a.eT ) :=
∑

s∈S\T,|WT∪{s}|<∞
(−1)σ(s,T )+1

∑

w∈WT∪{s}/WT

(−1)l(w)λ(ψ(w))(a).eT∪{s}

(2.2)

where w is the minimal length representative of the coset w ∈WT∪{s}/WT

and σ(s, T ) is the number of elements of the set T that are strictly smaller

than s with respect to the order < .

Theorem 2.10 ([32]). — Let Lλ be the local system induced on the

space N(W ) by a representation λ of the group AΓ on the Z-module M.

– 274 –



Salvetti complex, spectral sequences, Artin groups

Let (C∗, δ) be the complex defined by formulas (2.1) and (2.2) above for the

group W = WΓ. We have the following isomorphism:

H∗(C∗) = H∗(N(W );Lλ).

We recall the following fundamental result.

Theorem 2.11 ([16]). — If W is a finite linear reflection group, then

N(W ) is aspherical.

As a consequence if W is finite the space N(W ) is a classifying space for

AΓ and we have an isomorphism

H∗(N(W );Lλ) = H∗(AΓ;Mλ)

where Mλ is the Z-module M considered as a AΓ-module through the rep-

resentation λ.

2.3. Abelian representations and Poincaré series

We focus now on abelian representations of AΓ since in that case the

expression of formula (2.2) became very simple.

Remark 2.12. — We recall how to compute the abelianization AAb
Γ :=

AΓ/[AΓ, AΓ] of the group AΓ. For a given Coxeter graph Γ we consider the

graph Γ with vertices set S, the set of vertices of Γ and with an edge es,t
for the couple (s, t) if and only if the element m(s, t) in the Coxeter matrix

is odd. The abelianization AAb
Γ is the free abelian group generated by the

connected components of the graph Γ. The abelianization map Ab : AΓ →
AAb

Γ maps each standard generator gs ∈ AΓ to the generator corresponding

to the connected component of the graph Γ containing the vertex s.

If λ is an abelian representation, then λ factors through the abelianiza-

tion map Ab and the elements in the image of λ commute.

Given a subset H ⊂W we define the sum

Hλ :=
∑

w∈H
λ(ψ(w)).

In particular, given a subset T ⊂ S that generates the parabolic subgroup

WT , we call the sum (WT )λ the Poincaré series of the group WT with

coefficients in the representation λ.
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As a consequence of Proposition 2.8 we obtain the following formula:

(WT )λ
∑

h∈WT∪{s}/WT

λ(ψ(h)) = (WT∪{s})λ

where h is the minimal coset representative of h ∈WT∪{s}/WT .

Example 2.13. — We define a representation λ(q) : AΓ → Aut(L), where

L = R[q±1] is a Laurent polynomial ring with coefficients in a ring R and

λ(q)(gs) is multiplication by q for each standard generator of AΓ. In this

case the series W (q) := Wλ(q) is called the Poincaré series for W. From

formula (2.2) we get

δ(a.eT ) :=
∑

s∈S\T,|WT∪{s}|<∞
(−1)σ(s,T )+1WT∪{s}(−q)

WT (−q) .eT∪{s} (2.3)

If W is a finite Coxeter group with exponents m1, . . . ,mn the Poincaré series

is actually a polynomial and the following product formula holds ([33]):

W (q) =

n∏

i=1

(1 + q + · · ·+ qmi).

Example 2.14. — An analog of Example 2.13 is given by a representation

on the Laurent polynomial ring in two variables L = R[q±1
1 , q±1

2 ]. Let Φ be

a root system with two different root-lengths. As an example consider the

root systems of type Bn or any reducible root system. Let W be the Coxeter

group associated to the root system Φ. We can define a representation of W

on the ring L as follows: if α is a short root and s is the reflection associated

to α ∈ Φ the generator gs maps to multiplication by q1 and if t is the

reflection associated to a long root β ∈ Φ gt maps to multiplication by q2.

The Poincaré series for WBn with coefficients in such a representation are

computed in [30].

Example 2.15. — We show an explicit computation of the cochain com-

plex C∗ and we compute the coboundary δ in the case of the Coxeter group

W = WA2
= S3, with coefficients in the local system Lλ = Z[q±1] given

as in Example 2.13. The complex that we are going to describe computes

the cohomology of the commutator subgroup of the braid group B3, up to

a degree shift (see Theorem 3.7):

H∗(C∗) = H∗(B3;Z[q±1]λ) = H∗+1(B′3;Z).
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We recall that the set of standard generators for the group W is S = {s1, s2}.
Hence the complex C∗ is given by

C0 = Z[q±1].e∅;

C1 = Z[q±1].e{s1} ⊕ Z[q±1].e{s1};

C2 = Z[q±1].e{s1,s2}.

According to the formulas in Example 2.13, the Poincaré series are given by

W∅(q) = 1;

W{s1}(q) = W{s2}(q) = 1− q;

W{s1,s2}(q) = (1− q)(1− q + q2)

and hence the coboundary is

δe∅ = (1− q)e{s1} + (1− q)e{s2}

δe{s1} = −δe{s2} = (1− q + q2)e{s1,s2}.

Remark 2.16. — The analog construction of the algebraic complex (C∗, δ)
can be given for homology. We have a complex

Ck :=
⊕

|T|=k,|WT|<∞
M.eT (2.4)

with boundary maps

∂(a.eT ) :=
∑

s∈T
(−1)σ(s,T )+1

∑

w∈WT /WT\{s}

(−1)l(w)λ(ψ(w))(a).eT\{s} (2.5)

so that H∗(C∗) = H∗(N(W );Lλ).
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3. Filtrations and spectral sequences for the Salvetti complex

3.1. A natural filtration for the Salvetti complex

In this section we assume that we have a Coxeter graph Γ with finite set

of vertices S and a corresponding Coxeter group W = WΓ and a Coxeter

system (W,S). We fix an ordering < on S and we assume S = {s1, · · · , sN},
with s1 < · · · < sN . Moreover we set a Z-module M and a representation

λ : AΓ → Aut(M).

The ordering on the set S induces a natural decreasing filtration on the

complex C∗ defined in Section 2. We define the submodule

FkC∗ :=< eT | sN−k+1, · · · , sN ∈ T > .

It is clear from the description of the differential δ (see equation (2.2)) that

the submodule FkC∗ is a subcomplex of the complex (C∗, δ) and we have

the inclusions

0 = FN+1C∗ ⊂ · · · ⊂ Fk+1C∗ ⊂ FkC∗ ⊂ · · · ⊂ F0C∗ = C∗.

By standard methods (see for example [34]) we have a spectral sequence

associated to the complex (C∗, δ) and the filtration F :

Theorem 3.1. — There is a first-quadrant spectral sequence (Er, dr)

with E0-term

Ei,j
0 = F iCj/F i+1Cj =⇒ Hi+j(C∗).

The d0 differential is the map naturally induced by the differential δ on the

quotient complex F iCi+j/F i+1Ci+j . The E1-term of the spectral sequence is

given by

Ei,j
1 = Hi+j(F iC∗/F i+1C∗)

and the d1 differential corresponds to the boundary operator of the triple

(F i+2Cj ,F i+1Cj ,F iCj).

Example 3.2. — In the case of the complex (C∗, δ) of Example 2.15 (W =

WA2
) the filtration gives a very easy picture. The term F0C∗ is the com-

plex C∗ itself. The term F1C∗ is the Z[q±1]-submodule generated by e{s2}
and e{s1,s2}. The term F2C∗ is the submodule generated by e{s1,s2}. Finally

F3C∗ is the trivial submodule. It is easy to see that the quotient F0C∗/F1C∗
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is isomorphic to the complex (C∗A1
, δ) for W = WA1

= S2 (recall that the

corresponding Artin group is the braid group B2 = Z), with the correspon-

dence

ι : F0C∗/F1C∗ → C∗A1

given by ι : [e{s1}] �→ e{s1} and ι : [e∅] �→ e∅. It is easy to verify that the

isomorphism ι is compatible with the coboundary map δ. Moreover, note

that ι preserves the natural graduation. We assume that the ring of coeffi-

cients Z[q±1] is naturally graded with degree zero. The quotient F1C∗/F2C∗
(resp. F2C∗/F3C∗) is isomorphic, as a Z[q±1]-module, to Z[q±1] generated

by [e{s2}] (resp. [e{s1,s2}]) with graduation shifted by 1 (resp. 2). Let λ be

the representation defined in Example 2.13. Note that λ is compatible with

the natural inclusion Bm ↪→ Bm+1. Hence we can write the E1-term of the

spectral sequence associated to (C∗, δ) as follows

H1(B2;Z[q±1]λ)

H0(B2;Z[q±1]λ) Z[q±1]λ Z[q±1]λ

3.2. The differentials

The differentials of the spectral sequence given in Theorem 3.1 are in-

duced by the coboundary δ of the complex C∗. The differential d1 is explicitly

described in Theorem 3.1. In order to compute the higher differentials it is

useful to control the representatives in C∗ for the elements of the spectral

sequence.

Following the construction in [34] we define Zsr := {c ∈ FsC∗ | δc ∈
Fs+rC∗}. Given an element x ∈ Er, it is represented by a cochain

c ∈ Zsr/(Z
s+1
r−1 + δZs−r+1

r−1 ),

hence by a class c ∈ FsC∗ such that δc ∈ Fs+rC∗ modulo the subgroup

(δFs−r+1C∗ ∩ FsC∗) + Fs+1C∗.

The differential dr on the class x is the map induced by the coboundary

δ. Hence, given b ∈ Zs+rr /(Zs+r+1
r−1 + δZs+1

r−1) and b ∈ Fs+rC∗/Fs+r+1C∗
representatives of an element y ∈ Er, if drx = y we have that δc − b ∈
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(Zs+r+1
r−1 + δZs+1

r−1) and, if y = 0, c ∈ Zsr+1 + Zs+1
r−1 . In an equivalent way we

can say that drx = b if and only if δc− b ∈ (Fs+r+1C∗ + δFs+1C∗).

Given an element x ∈ Er such that drx = 0 we need to lift x to an

element x′ ∈ Er+1. We begin taking a representative c ∈ Zsr+1 + Zs+1
r−1 for

x and we choose a lifting c′ ∈ Zsr+1 with c′ = c + ∆, where ∆ ∈ Zs+1
r−1 . This

means that we need to lift the class c to a class c′ ∈ FsC∗/((δFs−r+1C∗ ∩
FsC∗) +Fs+1C∗) taking as a representative for c′ the element c + ∆ where

∆ ∈ Fs+1C∗ and δ(c + ∆) ∈ Fs+r+1C∗.

Working out the spectral sequence we can use Theorem 3.1 and start at

page E1 choosing a class x ∈ H∗(FsC∗/Fs+1C∗) and a representative c1 ∈
FsC∗ for x. At the Er-step of the spectral sequence we have a representative

cr for x with δcr ∈ Fs+rC∗ and if drcr = 0 we can choose in Er+1 a new

representative cr+1 = cr+∆r with ∆r ∈ Fs+1C∗ and δ(cr+∆r) ∈ Fs+r+1C∗.

3.3. Recursion and order of vertices

Thanks to the simple structure of the complex C∗ and the filtration F∗,
Theorem 3.1 can provide a recursive description of the cohomology of the

complex C∗ and hence of the space N(W ). The Coxeter graph of the group

W as well as the choice of the ordering on the set S of vertices of Γ play an

important role in this.

Let Γk be the full subgraph of Γ with vertices s1, . . . , sN−k−1 and let Γ
k̃

be the full subgraph of Γ with vertices sN−k+1, . . . , sN .

Proposition 3.3. — Let AΓ be the Artin group associated to the Cox-

eter graph Γ. Suppose that the parabolic subgroups associated to the graphs

Γk and Γ
k̃

commute, i. e. for every vertex s ∈ s1, . . . , sN−k−1 and t ∈
sN−k+1, . . . , sN we have m(s, t)=2. Then the quotient complex FkC∗/Fk+1C∗
is isomorphic to the complex C∗(Γk)[k], that is the cochain complex that com-

putes the cohomology of the Artin group GΓ
k

with a graduation shifted by k.

The isomorphism

C∗(Γk)[k]
ρ−→ FkC∗/Fk+1C∗

is defined as follows: given a subset T ⊂ {s1, . . . , sN−k−1}, the gener-

ator eT maps to the equivalence class of the generator eT ′ , with T ′ =

T ∪ {sN−k+1, . . . , sN}.
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Remark 3.4. — In the special case when the Coxeter graph Γ is a sub-

graph of a linear graph we can sort the the vertices of Γ in linear order, in

such a way that for every index k the hypothesis of Proposition 3.3 hold.

Choose such an ordering for the vertices of Γ. Hence, according to Theo-

rem 3.1, the construction described above determines a spectral sequence

(Er, dr) converging to the cohomology of the Artin group AΓ. The recursion

given by Proposition 3.3 implies that for every i, the i-th column of the E1-

term of the spectral sequence is isomorphic to the cohomology of the Artin

group AΓ′ for Γ′ a subgraph of Γ.

Example 3.5. — We keep working with a generic Z-module M and a

representation λ : AΓ → Aut(M) as in Section 3.1, but we consider the

special case of the Coxeter group W of type A4, with diagram

and with the order on vertices given by the labelling. It is clear from the

diagram that the given order satisfies the hypothesis of Proposition 3.3.

Moreover we have the following isomorphisms:

F0C∗/F1C∗ = C∗(A3); F1C∗/F2C∗ = C∗(A2)[1]; F2C∗/F3C∗ = C∗(A1)[2];

F3C∗/F4C∗ = M [3]; F4C∗/F5C∗ = F4C∗ = M [4]

where the index [k] in square brackets means that the graduation of the

module is shifted by k. Note that in this example the Artin group AΓ is the

braid group on 5 strands. According to [29] we write Bi for the braid group

on i strands. We consider the natural identification of the groups Bi, i < 5

as subgroups of B5 through the diagram inclusion induced by the filtration.

Hence in this case we identify Bi with the subgroup generated by s1, . . . , si.

We keep using the notation λ for the representation of the subgroups of B5

induced by the inclusion. The cohomology H∗(N(WA4
);Lλ) - that is the

cohomology H∗(B5;Mλ) of the classical braid group B5 on 5 strands with

coefficients on the B5-module Mλ - can be computed by means of a spectral

sequence with the following E1-term:

H3(B4;Mλ)

H2(B4;Mλ) H2(B3;Mλ)

H1(B4;Mλ) H1(B3;Mλ) H1(B2;Mλ)

H0(B4;Mλ) H0(B3;Mλ) H0(B2;Mλ) M M
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The cohomology of the groups Bi for i < 5 (and actually for any i) can be

computed recursively by means of an analog spectral sequence.

Remark 3.6. — In the homology complex C∗ the dual filtration is given

by

FkC∗ :=< eT | {sN−k+1, . . . , sN} � T > .

With the hypothesis of Proposition 3.3 we have that the quotient Fk+1C∗/FkC∗
is isomorphic to the complex C∗(Γk)[k].

If H is a finite central arrangement we can associate to every hyper-

plane H ∈ H a linear functional lH with ker lH = H. The homogeneous

polynomial fH =
∏
H∈H lH , which is unique up to multiplication by an in-

vertible element, is the defining polynomial of the arrangement and the set

f−1
H (1) is the Milnor fiber of the arrangement (see [25] for a general intro-

duction). If H = HW is the reflection arrangement of a Coxeter group W,

the polynomial f2
H =

∏
H∈H l2H is W -invariant and hence defines a weighted

homogeneous polynomial φ : V/W → C on the affine variety V/W with

non-isolated singularity φ−1(0) = (∪H∈HH)/W. The map φ restricts to a

fibration φ : N(W )→ C∗ with fiber FW = φ−1(1) that is called the Milnor

fiber of the singularity associated to W.

Let λ(q) be the representation on the Laurent polynomial ring L =

R[q±1] considered in Example 2.13. Let W be a finite Coxeter group, with

Coxeter graph Γ. The fibration φ : N(W ) → C∗ induces on fundamental

groups a map φ� : AΓ → Z sending each standard generator of the Artin

group to 1. Since the space N(W ) is aspherical, from Shapiro’s Lemma (see

[4]) we have that the cohomology of the Milnor fiber FW with constant

coefficients in the ring R is isomorphic to the cohomology of N(W ) with

coefficients in the AΓ-module of Laurent series R[[q±1]] where each standard

generator of AΓ maps to multiplication by q :

H∗(FW ;R) = H∗(AΓ;R[[q±1]]).

Using the recursive description of the spectral sequence for the Salvetti

complex, in [6] it is shown that the cohomology of the Artin group AΓ

with coefficients in the representation λ(q) is isomorphic, modulo an index

shifting, to the cohomology with constant coefficients of the Milnor fiber

FW . We can state the result as follows:
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Theorem 3.7 ([6]). — Let W be a finite Coxeter group and let A the

associated Artin group. We have:

H∗+1(A;Lq) = H∗(FW ;R).

Remark 3.8. — A recursive computation applies even if Γ is not a linear

graph or if the order on the set of vertices is not linear. For any subset T

of the set S of vertices of Γ we can define the following subcomplex of C∗ :

FTC∗ :=< eU | T ⊂ U ⊂ S > .

We can consider the poset

P := {(T, T ′) | T ⊂ T ′ ⊂ S}

with the order relation given by (T1, T
′
1) < (T2, T

′
2) if and only if T1 ⊂ T2,

T ′1 ⊂ T ′2. Given a couple (T, T ′) ∈ P the recursive method described in

this section allows one to compute the E1-term of the spectral sequence for

the cohomology of the quotient complex FTC∗/FT ′C∗ by recursion on the

poset P.

In the next section we present a few examples of the application of this

method and some results obtained with it.

4. Cohomology of Artin groups: some examples

In this section we recall some computations and examples where the

methods from the previous section apply. In some cases, like in Section 4.1

and Section 4.2, the use of the spectral sequence described in Section 3

makes computations and proof shorter.

In what follows we will use sometimes a compact notation for the gen-

erators eT , T ⊂ S of the L-module C∗ for the Coxeter system (W,S). If S

is the ordered set {s1, . . . , sn} we will write a string ε1ε2 · · · εn, εi ∈ {0, 1}
for a generator eT such that εi = 1 if and only if si ∈ T. We will write

also 0h and 1h instead of 0 · · · 0︸ ︷︷ ︸
h terms

and 1 · · · 1︸ ︷︷ ︸
h terms

, meaning respectively e∅ and

eS . As an example we write 1n for eS and 10n−1 for e{s1}; we can also use

notations like A012 to denote the terms eT such that sn−2 /∈ T, sn−1 ∈ T,

sn ∈ T.
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4.1. Homology of the braid group Bn mod 2

In the case of the classical braid group Bn with constant coefficients it

is simpler to compute the homology instead of the cohomology. We state

in this form the results obtained by Fuks in [20] and we give a somewhat

simpler proof.

Theorem 4.1. — The homology ⊕nH∗(Bn;Z2) is isomorphic to the ring

R = Z2[x0, x1, x2, · · ·] considered as a Z2-module. The variable xi has ho-

mological dimension dimxi = 2i − 1 and degree deg xi = 2i so that the

monomial xh1
i1
· · ·xhlil belongs to the homology group Hm(Bn,Z2) with n =∑

j hj2
ij and m =

∑
j hj(2

ij − 1). The multiplication map Bn1
× Bn2

→
Bn1+n2 given by juxtaposing braids induces a multiplication on ⊕nH∗(Bn;Z2)

that corresponds to the standard multiplication in the ring R.

Proof. — We consider the constant local system L = Z2 where each

standard generator acts by multiplication by 1. Using the notation of Ex-

ample 2.13 we set q = −1. The coefficients in the boundary ∂ can be easily

computed since 1 + q + · · · + qn−1 = n mod 2. In particular we have that

the boundary for a simple element in the form c = 1n−1 is given (mod 2)

by

∂c =

n−1∑

i=1

(
n

i

)
1i−101n−i−1.

We recall that the binomial

(
n

i

)
is even if and only if the integers i and

n− i have no common non-zero coefficients in their expansion in base 2. As

a special case we have that if n is a power of 2 then the binomial

(
n

i

)
is

always even for i �= 0, n.

Given a monomial u = xh1
i1
· · ·xhlil we assume that the indexes of u are

ordered i1 > i2 > · · · > il and we associate to u the following generator in

the Salvetti complex C∗ for Bn:

12i1−10 · · · 012i1−1
︸ ︷︷ ︸

h1 terms

0 · · · 0 12il−10 · · · 012il−1
︸ ︷︷ ︸

hl terms

.

From the description of the boundary map ∂ it follows that for any generator

of C∗ in the form

c = 12a1−10 · · · 012al−1
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we have that ∂c = 0 and then in particular all the generators associated to

monomials in R are cycles.

Moreover given two generators

c1 = 12a1−10 · · · 012al−1012b−1012b
′−1012

a′
1−10 · · · 012

a′
l′−1

and

c2 = 12a1−10 · · · 012al−1012b
′−1012b−1012

a′
1−10 · · · 012

a′
l′−1

we can set

c = 12a1−10 · · · 012al−1012b+2b
′−1012

a′
1−10 · · · 012

a′
l′−1

and for b �= b′ we have ∂c = c1 + c2. Hence the two cycles c1 and c2 are

co-homologous.

We assume the inductive hypothesis that for any k < n the cycles cor-

responding to the monomials with total degree k generate the homology

group H∗(Bk;Z2). Using the filtration given in Remark 3.6 we can define

the spectral sequence for the homology of Bn analogous to the cohomology

spectral sequence constructed in Theorem 3.1.

The E1-term is given by E1
s,t = Ht(Bn−s−1;Z2). By induction the s-th

column of the E1-term of the spectral sequence is generated by the mono-

mials in R with degree n − s − 1. If the string c is the cycle associated to

the monomial u ∈ R, the representative in C∗ of a monomial u in the s-th

column of the E1-term is given by the string c01s.

The differential d1
s,t : E1

s,t → E1
s−1,t acts on c01s by mapping d1 : c01s →

s · c001s−1, that is the representative of the monomial s · ux0 mod 2. This

means that d1
s,t it is given by multiplication by sx0 and hence it is trivial

if and only if s is even, while it is injective for odd s. It follows from the

inductive hypothesis on the description of the groups H∗(Bk;Z2) for k < n

that for s even we have E2
s,t = 0 and for s odd E2

s,t is generated by all the

monomials with degree n − s − 1 and dimension s that are not divided by

x0.

The differential d2
s,t : E2

s,t → E2
s−2,t+1 is given by multiplication by x1 if

s − 1 ≡ 0 mod 4 and is trivial otherwise. The s-th column of the E3-term

of the spectral sequence is trivial if s− 1 ≡ 0 mod 4, s > 1 and is generated

by monomials that are not divided by x0 and x1 if s− 1 ≡ 2 mod 4.
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In general the description of the differential, and as a consequence the

description of the spectral sequence, is the following. The differential d2i

s,t :

E2i

s,t → E2i

s−2i,t+2i−1 is given by multiplication by xi if s−1 ≡ 0 mod 2i and

is trivial otherwise. The s-th column E2i+1-term of the spectral sequence is

trivial if s−1 ≡ 0 mod 2i, s > 2i and is generated by monomials that are not

divided by x0, x1, . . . , xi if s − 1 ≡ 2i−1 mod 2i. All the other differentials

are trivial.

In the E∞-term of the spectral sequence we have, in the 0-th column, the

monomials u with degree n−1. Those lift to monomials ux0 in the homology

of Bn. In general in the (2i−1)-th column we have the monomials with degree

n− 2i that are not divided by the terms x0, . . . , xi−1. A monomial u in the

(2i − 1)-th column lifts to the monomial uxi in the homology of Bn.

The multiplication map Bn1
×Bn2

→ Bn1+n2
given by juxtaposing braids

is induced by the inclusion of the Coxeter graph ΓAn1−1
for WAn1−1

and

ΓAn2−1 for WAn2−1 in the graph ΓAn1+n2−1 for WAn1+n2−1 as graphs of com-

muting parabolic subgroups. The map sends the vertices of ΓAn1−1 to the

first n1−1 vertices of ΓAn1+n2−1
and the vertices of ΓAn2−1

to the last n2−1

preserving the ordering. The induced map on the Salvetti complex is given

by mapping the couple of strings (A,B) to the string A0B and hence the

induced multiplication in homology maps the couple of monomials (u, v) to

the product uv. �

4.2. Rational cohomology of the Milnor fiber

In this example we show how to compute the rational cohomology of the

classical braid group Bn with coefficients in the representation λ(q) already

described in Example 2.13. The result presented here has been computed in

[19] and [23] and independently in [13].

Let R := Q be the field of rational numbers and let Lq be the local

system constructed in Example 2.13. The local system is induced by the

action of the braid group on the Laurent polynomial ring L := Q[q±1].

Each standard generator maps to multiplication by (−q). The choice of this

action is clearly equivalent to the action given by each standard generator

mapping to multiplication by q, as in Example 2.13. Although we prefer

the choice of (−q), in coherence with [13, 6, 7] and others, in order to get

slightly simpler formulas, as the reader can see in the following paragraphs.
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As showed in Section 3.3, this local system has an interesting geometric

interpretation in terms of the cohomology of the Milnor fiber of the discrim-

inant singularity of type An−1 (see also [6, 7] for the analog computation

for homology with integer coefficients). From an algebraic point of view, the

computation gives, modulo an index shifting, the rational cohomology of the

kernel of the abelianization map Bn → Z, that is the commutator subgroup

B′n of the braid group on n strands. In fact it is easy to see that the Milnor

fiber of type An−1 is a classifying space for B′n and using Theorem 3.7 we

get:

H∗+1(Bn;Lq) = H∗(B′n;Q).

Let ϕn(q) be the n-th cyclotomic polynomial. We introduce the notation

n := Q[q]/(ϕn(q)). In the following paragraphs we will also use the notation

[n] := 1 + q + · · ·+ qn−1 = qn−1
q−1 .

For any positive integer n we linearly order the vertices of the graph

Γn of type An, that is the graph for the Artin group Bn+1. Let C∗n be the

complex associate to Γn. Recall that the Coxeter group WAn has exponents

1, . . . , n and hence WAn(q) = [n + 1]! :=
∏n+1
i=1 [i]. From Example 2.13 we

can describe more explicitly the coboundary δ in C∗n. Let eT be a generator

of C∗n in the form A01a01b0B and let eT ′ be the generator A01a+b+10B. We

need the following simple remark: if WS is a Coxeter group generated by a

set of generator S that is the disjoint union S = T1 ∪ T2 of two commuting

set of generators, then we can decompose WS = WT1 ×WT2 and we have

a factorization WS(q) = WT1
(q) × WT2

(q) for the Poincaré series for W.

Applying this to the computation of δeT we have that the coefficient for

eT ′ in the coboundary is given by the sign coefficient (−1)a+|A| times the

q-analog binomial

WAa+b+1
(q)

WAa(q)WAb(q)
=

[a + b + 2]!

[a + 1]![b + 1]!
:=

[
a + b + 2

a + 1

]
.

As in [13] we define the following elements:

wh := 01h−20

zr := 1h−10 + (−1)h01h−1

bh := 01h−2

ch := 1h−1
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zh(i) :=

j=i−1∑

j=0

(−1)hjwjhzhw
i−j−1
h

vh(i) :=

j=i−2∑

j=0

(−1)hjwjhzhw
i−j−2
h bh + (−1)h(i−1)wi−1

h ch.

We remark that the elements zh(i) and vh(i) are cocycles.

Our aim is to prove the following result:

Theorem 4.2 ([13]). —

Hn−2i+1(Bn+1;Lq) =

{
0 if h := n

i is not an integer

h generated by [zh(i)] if h := n
i is an integer

Hn−2(i−1)(Bn+1;Lq) =

{
0 if h := n+1

i is not an integer

h generated by [vh(i)] if h := n+1
i is an integer.

Proof. — We can prove the Theorem by induction on n. We consider

the natural graph inclusion Γn ↪→ Γn+1 and group inclusion Bn ↪→ Bn+1

induced by the filtration F . As in Example 3.5 we recall that the E1−term

of the spectral sequence for Bn+1 is given by

Es,t
1 := Hs+t(FsC∗n/Fs+1C∗n) = Ht(Cn−s−1)

where we can define the complexes C∗0 = C∗−1 := L concentrated in dimension

0 and hence H∗(C∗0 ) = H0(C0) = H∗(C−1) = H0(C−1) = L.

The statement of the theorem is trivially true for n = 1. Assume n > 1

and suppose that the theorem holds for any integer m, m < n. Each non-

trivial entry Es,t
1 of the E1 term of the spectral sequence for C∗n is isomorphic

either to a L-module of the form h, for a suitable h, or to the ring L itself.

The second case holds only for the entries E0,n−1
1 and E0,n

1 .

The cyclotomic polynomials ϕh(q) are prime polynomials in the ring

L. As a consequence any map d : h → k induced by a differential dk of

the spectral sequence can be non-zero if and only if h = k and the map

is an isomorphism. In a similar way any map d : h → L/([n + 1]) can be

non-zero only if h | n + 1 and hence if h 	 n + 1 any map from h to any

quotient of L/([n + 1]) is trivial. This follows since [n + 1] is the product

of the cyclotomic polynomials ϕh(q) for h | n + 1 and hence the L-module
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L/([n + 1]) decomposes as a direct sum of modules

L/([n + 1]) =
⊕

h|n+1

h.

Since the L-module En−1,0
1 = L is generated by 01n−1 and En,0

1 = L

is generated by 1n, from Example 2.13 we can see that the differential

d1 : En−1,0
1 → En,0

1 is given by multiplication by [n + 1] and hence we

have En−1,0
2 = 0 and En,0

2 = R/([n + 1]).

As a consequence if we fix a certain integer h we can study the spectral

sequence considering only the terms isomorphic to h and, if h | n + 1, the

summand of R/([n + 1]) isomorphic to h, while we can ignore all the other

summand in the spectral sequence. We have three different cases:

i) h | n
By induction we know that Es,t

1 = Ht(C∗n−s−1) = h only in two cases:

i.a) h | n− s− 1 and t = n− s− 1− 2nh + 1;

i.b) h | n− s and t = n− s− 1− 2(nh − 1).

If we set i := n
h , in case i.a) we have

λ = 1, . . . , i− 1 E
λh−1,n−λ(h−2)−2i+1
1 generated by zh(i− λ)01λh−1

and in case i.b) we have

λ = 0, . . . , i− 1 E
λh,n−λ(h−2)−2i+1
1 generated by vh(i− λ)01λh.

We note that zh(i)01l = vh(i)001l − (−1)h(i−1)wh(i − 1)1h−101l, hence we

get that the map d1 : E
λh−1,n−λ(h−2)−2i+1
1 → E

λh,n−λ(h−2)−2i+1
1 is given

by multiplication by [λh+1], so it is an isomorphism. It follows (see diagram

below) that the L-module E0,n−21+1
1 is the only one that survives in the term

E∞ and hence E0,n−21+1
1 will give, as we will see next, the only contribution

from E∞ to the cohomology group Hn−2i+1(C∗n).
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In order to consider the case ii) we need the following lemma:

Lemma 4.3 ([15]). — Let 1 = d1 < ... < dn be the divisors of n, in the

ring L we have the following equality of ideals:

([
n

d1

]
, ...,

[
n

dk

])
= (ϕdk+1

· · ·ϕn).

ii) h | n + 1

Now we set i := n+1
h . The two possible cases for Es,t

1 = h are the following

ones:

λ = 1, . . . , i− 1 E
λh−2,n−λ(h−2)−2i+2
1 generated by zh(i− λ)01λh−2

λ = 1, . . . , i− 1 E
λh−1,n−λ(h−2)−2i+2
1 generated by vh(i− λ)01λh−1.

The differential d1 : E
λh−2,n−λ(h−2)−2i+2
1 → E

λh−1,n−λ(h−2)−2i+2
1 is mul-

tiplication by the q-analog [λh] and hence it is the trivial map. The next

differential that we need to consider is

dh−1 : E
λh−1,n−λ(h−2)−2i+2
h−1 → E

(λ+1)h−2,n−(λ+1)(h−2)−2i+2
h−1 .

The equality vh(i)01l = zh(i− 1)01h−201l + (−1)h(i−1)wi−1
h 1h−101l implies

that the map above corresponds to multiplication by [λh+1] . . . [λh+h−1]

and hence it is an isomorphism, since all the factors are invertible in h.

Finally the map dh−1 : En−h,h−1
h−1 → En,0

h−1 corresponds to multiplication by

αh =

[
n + 1

h

]
and hence from Lemma 4.3 it is injective. Below we have

a picture of the spectral sequence, with differentials d1 and dh−1. We can

see that there is only one nontrivial h-module that survives in E∞, that is
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E
h−2,n−h+2−2(i−1)
h−1 , that gives a contribution (actually the only one) to the

cohomology group Hn−2(i−1)(Cn).

iii) h 	 n(n + 1)

Let c, 1 < c < h be an integer such that h | n + c, if we set i := n+c
h , we

have again two cases for Es,t
1 = h:

λ = 1, . . . , i− 1 E
λh−c−1,n+c−λ(h−2)−2i+1
1 generated by zh(i− λ)01λh−c−1

λ = 1, . . . , i− 1 E
λh−c,n+c−λ(h−2)−2i+1
1 generated by vh(i− λ)01λh−c.

The differential d1 : E
λh−c−1,n+c−λ(h−2)−2i+1
1 → E

λh−c,n+c−λ(h−2)−2i+1
1

corresponds to multiplication by [λh− c + 1] that is co-prime with [h] and

hence the map is an isomorphism. It follows that none of the modules sur-

vives in E2 and hence the contribution to E∞ is trivial.

From Lemma 4.3 and from the previous observations in case ii) we get

that En,0
∞ = n + 1, generated by 1n. From the description of the spectral

sequence it follows that the cohomology group H∗(C∗n) is the one described

in the statement of the theorem. In order to complete the proof we need to

check that the generators are correct. In case i) the L-module E0,n−21+1
1

is generated by vh(i)0 that differs from zh(i) by a term of the form A1

and hence we can lift vh(i)0 to zh(i). The case ii) is analog: the L-module

E
h−2,n−h+2−2(i−1)
h−1 is generated by zh(i− 1)01h−2 that differs from vh(i) by

a term of the form A1h−1 and hence we can lift zh(i− 1)01h−2 to vh(i). �

4.3. Artin group of affine type and non-linear Coxeter graphs:

some remarks

We deal now with the case of an affine reflection group. Let (W,S) be

an affine reflection group with Coxeter graph Γ and suppose | S |= n + 1.

Let λ be an abelian representation of the Artin group AΓ over a ring R that
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is an unique factorization domain. The generators of the Salvetti complex

(C∗, δ) are in 1 to 1 correspondence with the proper subsets of S. It can be

somewhat convenient to complete the complex C∗ to an augmented Salvetti

Complex Ĉ∗ as follows:

Ĉ∗ := C∗ ⊕R.eS .

We can define the coboundary δ̂ on the complex Ĉ∗ setting δ̂(eT ) = δ(eT ) if

|T |< n and re-defining the coboundary on the top-dimensional generators

of C∗. We formally define a suitable quasi -Poincaré polynomial for W by:

(ŴS)λ := lcm{(WS\{s})λ | s ∈ S}.

and for every s ∈ S we set the coboundary for Ĉ∗:

δ(eS\{s}) := (−1)σ(s,S\{s})+1 (ŴS)λ
(WS\{s})λ

eS .

and it is straightforward to verify that Ĉ∗ is still a chain complex. Moreover,

we have the following relations between the cohomology of C∗ and Ĉ∗:

Hi(C∗) = Hi(Ĉ∗)

for i �= n, n + 1 and we have the short exact sequence

0→ Hn(Ĉ∗)→ Hn(C∗)→ R→ 0.

An example of this construction can be found in the computation of the

cohomology of the affine Artin group of type B̃n in [12].

4.4. A non-abelian case: three strands braid group and a geome-

tric representation

The third braid group B3 and the special linear group SL2(Z) have a

classical geometric representation given by symmetric power of the natural

symplectic representation. The cohomology of this representation is studied

in detail in [8]. The aim of this section is to show how the Salvetti complex

can be used for finite computations, even with non-abelian representation.

In general we can consider an orientable surface Mg,n of genus g with

n connected components in its boundary and the isotopy classes of Dehn

twists around simple loops c1, . . . , c2g such that |ci∩ci+1| = 1 and |ci∩cj| = 0

if j �= i ± 1. We give a representation of the braid group in the symplectic
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group Aut(H∗(Mg,n;Z);<>) of all automorphisms preserving the intersec-

tion form as follows: the i-th generator of the braid group B2g+1 maps to the

Dehn twist with respect to the simple loop ci. In the case g = 1, n = 1 the

symplectic group equals SL2(Z). We extend this representation to a repre-

sentation λ on the symmetric algebra M = Z[x, y]. This representation splits

into irreducible SL2(Z)-modules M = ⊕n�0Mn according to the polynomial

degree. In [8] the cohomology groups H∗(B3;M) and H∗(SL2(Z);M) are

computed. The main ingredients for the achievement of this result are the

computation of the spectral sequence associated to the central extension

1→ Z→ B3 → SL2(Z)→ 1

(see [26, Th. 10.5]), the amalgamated free product decomposition

SL2(Z) = Z4 ∗Z2
Z6

(see [27]) and a generalization of a classical result of Dickson (see [17, 35])

on the characterization of SL2(F�)-invariants polynomials.

The methods described in this survey don’t seem very useful to compute

explicitly the cohomology group H∗(B3;M), but they can be used to get

finite computations with the help of a computer. In particular, for a fixed

degree n the computation of the cohomology group H∗(B3;Mn) is a very

simple problem.

Let σ1 and σ2 be the standard generators of the braid group B3. The

action of the representation λ on degree-one polynomials is given by

σ1 :

{
x→ x− y

y → y
, σ2 :

{
x→ x

y → x + y

and hence, with respect to the basis {x, y} of M1, the representation is given

by the matrices

σ1
λ�→

[
1 0

−1 1

]
, σ2

λ�→
[

1 1

0 1

]
.

The action extends to the n-th symmetric algebra of the space < x, y >,
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with basis {xn, xn−1y, . . . , yn}, by the matrices

σ1
λ�→




(
n

0

)
0 0 · · · 0

−
(
n

1

) (
n−1

0

)
0

. . . 0

(
n

2

)
−

(
n−1

1

) (
n−2

0

)
. . . 0

...
...

. . .
. . . 0

(−1)n
(
n

n

)
(−1)n−1

(
n−1

n−1

)
· · · −

(
1

1

) (
0

0

)




,

σ2
λ�→




(
0

0

) (
1

0

)
· · ·

(
n−1

0

) (
n

0

)

0

(
1

1

)
. . .

(
n−1

1

) (
n

1

)

0 0
. . .

. . .
...

...
. . .

. . .

(
n−1

n−1

) (
n

n−1

)

0 0 · · · 0

(
n

n

)




that is, (λ(σ1))ij = (−1)i−j
(
n+1−j
i−j

)
and (λ(σ2))ij =

(
j−1

i−1

)
, where

(
h

k

)
=

0 if k < 0. Hence we have to compute the cohomology for the complex C∗
given by:

Similar computations for large n can provide an evidence for general

results like in [8].

The reader familiar with computing local system (co)homology using

resolutions will see that the cochain complex obtained here coincides with

that obtained from the standard presentation of B3 by these other methods.

The cochain complex above can be easily generalized to the case g > 1,

that is the computation of the cohomology of the group B2g+1 with coeffi-

cients in the representation on the ring of polynomials Z[x1, y1, · · · , xg, yg].
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