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Toric and tropical compactifications
of hyperplane complements

Graham Denham(1)

ABSTRACT. — These lecture notes survey and compare various compacti-
fications of complex hyperplane arrangement complements. In particular,
we review the Gel′fand-MacPherson construction, Kapranov’s visible con-
tours compactification, and De Concini and Procesi’s wonderful compact-
ification. We explain how these constructions are unified by some ideas
from the modern origins of tropical geometry.

RÉSUMÉ. — Dans ces notes, nous passons en revue puis comparons di-
verses compactifications d’un complément d’un arrangement d’hyperplans
complexes. En particulier, nous examinons la construction de Gel′fand-
MacPherson, la compactification des contours visibles de Kapranov, et la
compactification merveilleuse de De Concini et Procesi. Nous expliquons
comment ces constructions sont unifiées par quelques idées provenant des
origines modernes de la géométrie tropicale.
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1. Introduction

The purpose of this paper is to give a gentle introduction to toric and
tropical compactifications of linear spaces. The material is based on lectures
given at the graduate student summer school “Arrangements in Pyrénées”
in June 2012. The presentation gives emphasis to explicit examples and
calculations, and we suggest some exercises for the reader. The material here
can be found in various sources, and we give a guide to the literature without
attempting to be comprehensive. Some proofs are included, particularly
when it is possible to make a short or self-contained argument.

We review some terminology of matroid theory in §2, and note the rela-
tionship between matroid realizations, hyperplane arrangements, and linear
subspaces of algebraic tori. In §3, we briefly recall those aspects of the the-
ory of toric varieties that play a key role in the constructions we consider.
After some discussion of some basics of tropical geometry (§4), arrangement
compactifications appear in §5. We single out two important developments
in the field. The first is Gel′fand, Goresky, MacPherson and Serganova’s
construction of the matroid stratification of the Grassmannian, [18, 20].
The second is De Concini and Procesi’s wonderful compactification [8]. We
outline in detail some discoveries that tie the two together, due to Feichtner
and Sturmfels [15], and Ardila and Klivans [2].

2. Hyperplane arrangements

2.1. Matroids

A matroid is a structure that abstracts the linear (in)dependence prop-
erties of a finite collection of vectors. Matroids have numerous equivalent
definitions, and we mention the book [37] as a detailed reference. As a brief
introduction, let us define a matroid M to be a nonempty collection of sub-
sets B of a finite set E that possesses the following property. That is, if
B,B′ ∈ B, and x ∈ B − B′, then there is an element y ∈ B′ − B for which
(B − {x}) ∪ {y} ∈ B.

Then B is called the set of bases of the matroid. One can prove that
all bases have the same cardinality. This number is called the rank of the
matroid, an integer d � 0. Let

In(M) = {I ⊆ E: I ⊆ B for some B ∈ B} ,

called the independent sets of M. The reader may notice that this exactly
to say that the In(M) forms a simplicial complex with vertices E in which
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the bases are the maximal simplices. This is called the matroid complex of
M.

Without loss, we will assume E = [n] := {1, 2, . . . , n}, for some n � 1.
The rank of a set S ⊆ [n] is defined to be the cardinality of its largest
independent subset, which we denote by r(S). We define the closure of a set
S to be

cl(S) =
⋃

T :S⊆T⊆[n],
r(T )=r(S)

T.

A set X ⊆ [n] for which cl(X) = X is called a flat of M. Let L(M) denote
the set of flats M, and Lp(M) the subset of flats of rank p, for 0 � p � d.
The set L(M) is partially ordered by inclusion. In fact, L(M) is a lattice,
with operations

X ∧ Y = X ∩ Y and

X ∨ Y = cl(X ∪ Y ).

It turns out that the lattice L(M) is geometric, and all geometric lattices
arise in this way (for which, see [37, §1.7]). L(M) has a minimal element,
0̂ := cl(∅).

If M is a matroid on E with bases B, the dual matroid M∗ is the ma-
troid with bases {E −B:B ∈ B}. In particular, rank(M) + rank(M∗) = n.
Clearly the construction of duals is an involution, and it abstracts the idea
of orthogonal complements: see Example 2.10 below.

Finally, an element x ∈ [n] for which r({x}) = 0 is a loop, and distinct
elements x, y ∈ [n] are parallel if r({x, y}) = 1. A matroid M is simple if it
has no loops or parallel edges.

2.2. Restrictions and sums

If X ⊆ [n], then the set {I ∩X: I ∈ In(M)} defines the independent sets
of a matroid on X. This is denoted M|X, the restriction of M to X. If X is
a flat of M, then flats of M|X are exactly those flats of M contained in X,
which is to say that L(M|X) = [0̂, X], an interval in L(M).

Dually, for X ⊆ [n], the contraction of M by X, written M/X, is the
matroid on the set [n] −X defined by the rank function

rM/X(S) := rM(S ∪X) − rM(X),

for S ⊆ [n]−X. The flats of M/X are in bijection with flats of M containing
X, so L(M/X) ∼= [cl(X), [n]]: see [37, Prop. 3.3.8]. If X is not a flat of M,
then any element e ∈ cl(X) −X is a loop in M/X.
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If M1 and M2 are matroids on E1 and E2, respectively, the sum M =
M1 ⊕ M2 is defined to have bases

B = {B1 ∪B2:B1 ∈ B(M1), B2 ∈ B(M2)} .

Alternatively, the independence complex of M is the simplicial join In(M1)∗
In(M2), and L(M) = L(M1) × L(M2). A matroid is connected if it cannot
be (nontrivially) decomposed as a sum of matroids. Both E1 and E2 are
flats of M1 ⊕ M2; conversely, M is connected provided that there are no
sets X ⊆ [n] for which X and [n] − X are both flats of M. The obvious
notion of connected components is well-defined, and we denote the number
of them by κ(M). A flat X is said to be irreducible if the restriction M|X is
connected. We let Lirr(M) denote the set of irreducible flats.

2.3. Polytopes

There is a remarkable relationship between matroids, convex geome-
try and toric varieties, discovered by Gel′fand, Goresky, MacPherson, and
Serganova [18]. In order to begin to describe it, let e1, . . . , en be the standard
basis for Zn, and for any subset S ⊆ [n], let eS =

∑
i∈S ei.

If M is a matroid on E = [n], let

PM = conv {eB :B ∈ B} ⊆ Rn,

the convex hull of the indicator vectors on the bases of M. This is the
matroid polytope of M. If M has rank d, then PM ⊆ d ·∆n−1, where ∆n−1 =
conv({e1, . . . , en}) ⊆ Rn, the standard (n− 1)-dimensional simplex.

If M is connected, then PM has dimension n − 1. If M decomposes as a
sum, then PM is a corresponding cartesian product, so the dimension of PM

is n−κ(M) (see [15]). Faces of the matroid polytope are themselves matroid
polytopes. Such matroids are obtained from M by deleting independent sets,
so are called degenerations of M. If F is a face of PM, let MF denote the
matroid whose bases are the vertices of the face F . For a linear functional
u ∈ Rn, let F be the face of PM on which u achieves its minimum, and let
Mu denote the matroid corresponding to the face: then F = PMu

.

The face structure of the matroid polytope was worked out as follows in
[2, 15]. We assume that M is connected. For u ∈ Rn, let

F(u) := (∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk = [n]) (2.1)

be the (unique) chain of subsets for which the coefficients {ui: i ∈ Fa − Fa−1}
are constant for all 1 � a � k, and ui � uj whenever i ∈ Fa and j ∈ Fb for
a < b.
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Then the face of PM that minimizes u depends only on F(u), and

Mu =

k⊕

i=1

(M |Fi)/Fi−1.

Theorem 2.1 ([2, 15]). — The following statement are equivalent for
a vector u ∈ Rn:

• The matroid Mu has no loops;

• The subsets in the chain F(u) are flats of M;

• The face F = PMu
is not contained in the boundary of the simplex

∂(d · ∆n−1).

If i is a loop in Mu, then ei is an (inner) normal vector for F .

Clearly the number of components κ(Mu) � k; if in fact this is an equal-
ity, then PMu is face of codimension k − 1 in PM. In the case where k = 2,
we obtain a description of facets. That is, if Mu contains no loop, then
F(u) = (∅ ⊂ X ⊂ [n]) for some proper flat X. We may shift u by a multiple
of the vector e[n] and rescale by a positive number without changing the
face PMu

, so we may assume that u = −eX .

Theorem 2.2 ([15]). — A facet F of PM which is not contained in ∂(d·
∆n−1) has an inner normal vector −eX for some flat X ∈ L(A). Such facets
are in bijection with the set

{X ∈ L(A):M|X and M/X are both connected.} (2.2)

For reasons which will be more evident later, it will be convenient to
think of outer normal vectors of matroid polytopes, instead of inner ones.

Definition 2.3. — For a matroid M, let ΣM denote the outer normal
fan of the matroid polytope PM. By definition, this is an equivalence re-
lation on vectors in Rn/R(1, 1, . . . , 1), where u ∼ v if and only if u and
v achieve their maximum value on the same face of PM. The equivalence
classes form the relative interiors of polyhedral cones: we refer to [52, §7.1]
for background.

Example 2.4. — For integers 1 � d � n, the uniform matroid Ud,n has
underlying set [n], and its bases consist of all subsets of [n] of size d. The
matroid polytope of U2,4 is a 3-dimensional polytope in R4. It is shown in
Figure 1 with the facets of the form (2.2) shaded.
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Figure 1. — The matroid polytope of U2,4

Remark 2.5. — Various other polytopes can be associated with a ma-
troid, and the reader should see [41, Ch. 40] for details. In particular, the
independent set polytope is the convex hull of indicator functions of all
independent sets, and PM is its facet with normal vector e[n].

Exercise 2.6. — Show that if M is a matroid on the set [n], then the
matroid polytopes for M and its dual are related by PM∗ = e[n]−PM, where
“−” denotes reflection through the origin. Conclude the outer normal fan
of PM is the inner normal fan of PM∗ .

2.4. Linear matroids

A hyperplane arrangement is, informally, a linear realization of a ma-
troid with no loops. (Our standard reference for hyperplane arrangements
is the book [36].) In order to make this informal notion precise, let kk be an
algebraically closed field, and let V be a d-dimensional linear subspace of
kkn, where d � 1 If we let f :V ↪→ kkn denote the inclusion, its ith coordinate
is a linear map, fi ∈ V ∗. The embedding of V determines a matroid M(V )
on the set of coordinates [n]: one declares a set I ⊆ [n] to be an independent
set of M(V ) if and only if the set {fi: i ∈ I} is linearly independent. Then
the remaining matroid-theoretic terms have straightforward linear-algebraic
counterparts. Such a matroid is said to be linear, or a linear realization of
its isomorphism type.

Let x1, . . . , xn be coordinate functions on kkn, and let Cn =
{
Ĥ1, . . . , Ĥn

}

denote the set of coordinate hyperplanes, Ĥi = kerxi for 1 � i � n. Note
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that V ⊆ Ĥi if and only if fi = 0, which is equivalent to i being a loop
of M(V ). Provided that M(V ) has no loops, Hi := Ĥi ∩ V is a hyperplane
of V for all i. Let A = A(V ) = {H1, . . . , Hn}. This is a (central, essential)
hyperplane arrangement in V . By construction, Hi = ker fi for 1 � i � n,
so {i, j} is dependent in M(V ) if and only if Hi = Hj . Thus a simple
matroid M(V ) gives an arrangement of distinct hyperplanes. Conversely, a
set of n hyperplanes in a d-dimensional linear space V is called essential if⋂n
i=1Hi = {0}, and in this case, any choice of defining equations for the

hyperplanes give a linear realization of a simple matroid with no loops.

Example 2.7. — Choose integers 1 � d � n, and let A = Ad,n be a d×n
matrix for which any d columns are linearly independent. Let V = row(A),
the span of the rows. The matroid M(V ) is a realization of the uniform
matroid Ud,n. The independent sets consist of all subsets of [n] of cardinality
at most d. The hyperplane arrangement A is called the generic arrangement
of n hyperplanes in kkn. If n = d, then V = kkn, and A = Cn, called the
Boolean arrangement of rank n. If d = 2, A consists of n lines in the plane
through the origin.

Example 2.8. — Let V = row(A), where

A =




1 0 0 1 1
0 1 0 −1 0
0 0 1 0 −1


 ;

where the matroid diagram encodes the flats as collinear subsets, and
the arrangement A(V ) is drawn in a suitable affine chart of P2. Here, n = 5,
d = 3, and the linear functionals are {u, v, w, u− v, u− w}.

Example 2.9. — For d � 2, let V = V (Ad) = Cd+1/Ce[d+1], where
e[d+1] = (1, 1, . . . , 1), and let fij = zi − zj for 1 � i < j � d + 1. Then

f :V → Cn is a linear inclusion, where n =
(
d
2

)
, and M(V ) is the matroid of

the complete graph, Kd+1. Moreover,

U(A) = {z ∈ V : zi �= zj for i �= j}
is the complement of the reflecting hyperplanes of the Ad root system,
also known as the (complex) braid arrangement. One also writes U(A) as
F (C, d+1), the configuration space of d+1 (distinct, labelled) points in C.
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The flats X of A are indexed by partitions πX of the set [d + 1], by
putting indices i and j in the same block of πX if and only if zi = zj on
X. Then X � Y if and only if πX refines πY , and the rank of X equals d
minus the number of blocks in πX . A flat is irreducible if and only if πX has
exactly one block of size greater than one.

Example 2.10. — If M = M(V ) is linear, then the dual matroid M∗ =
M(V ⊥), where V ⊥ denotes the orthogonal complement of V in the dual
vector space (kkn)∗.

Remark 2.11. — It can be useful to think of V as a point in the Grass-
mannian Grd,n, which embeds in P(

∧d
kkn) via the Plücker embedding. Ho-

mogeneous coordinates for the latter space are indexed by subsets I ⊆ [n]
of size d: let xI = xi1 ∧ · · · ∧ xid , where I = {i1, . . . , id} and i1 < . . . < id.
Translating our remarks above into this notation, we see the Ith coordinate
of V is nonzero if and only if I is independent in M(V ).

2.5. Linear restrictions and sums

A linear matroid decomposes as a matroid sum if and only if the vector
space V has a splitting which is compatible with the coordinates in kkn.
More precisely, for any subset S ⊆ [n], let

kkS = {x ∈ kkn:xi = 0 for i �∈ S}

denote the coordinate subspace. If the matroid M(V ) = M1⊕M2 where Mi is
a matroid on Ei, for i = 1, 2, it is not hard to check that Mi = M(Vi), where
V ∼= V1 ⊕ V2, and Vi = V ∩ kkEi . Conversely, suppose Vi ⊆ kkEi for i = 1, 2,
where [n] = E1∪̇E2 is a partition with nonempty parts. Let V = V1 ⊕ V2:
then M(V ) = M(V1) ⊕ M(V2).

Along the same lines, if X ⊆ [n] is a flat of M = M(V ), let VX denote
the image of V under the coordinate projection map kkn → kkX . Then VX is
a linear quotient of V , and a realization of M|X in kkX .

2.6. A torus action

It should be clear that multiplying each coordinate map fi by a nonzero
scalar does not change the matroid or set of hyperplanes A. That is, let
Tn = (kk×)n denote the algebraic torus of rank n, which acts on kkn by (left)
multiplication: then M(t · V ) = M(V ) for all t ∈ Tn.

Of course, if the coordinates of t ∈ Tn are all equal, t acts on kkn by
scalar multiplication, and t · V = V . So we should instead consider the
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quotient torus Tn−1
0 := Tn/kk× by the diagonal one-parameter subgroup. In

other words, Tn acts on the Grassmannian Grd,n via its action on kkn, and
the action factors through Tn−1

0 .

In this language, the matroid structure is constant on each torus orbit
Tn−1

0 · V ⊆ Grd,n. The hyperplane arrangements A(V ) at different points
in the orbit have different ambient spaces, but they are linearly isomorphic.
It remains to consider stabilizers of the torus action on Grd,n. It turns out
that Tn−1

0 acts freely on V when M(V ) is connected:

Proposition 2.12. — If M(V ) has κ connected components, then

stabTn(V ) ∼= (kk×)κ.

Proof. — Suppose that [n] = E1∪̇ · · · ∪̇Eκ is the decomposition into
connected components. We claim

stabTn(V ) = {t ∈ Tn: ti = tj provided i, j ∈ Ek for some k} . (2.3)

Since V = V1⊕· · ·⊕Vκ where Vi = V ∩kkEi for 1 � i � κ, scalar multiplica-
tion on each factor shows that the right-hand side of (2.3) is included in the
left. To show the other inclusion, suppose t ∈ stabTn(V ). The eigenspaces
of t as an endomorphism of kkn are simply coordinate subspaces, indexed by
the partition of [n] into subsets F1, . . . , Fl on which the coordinates of t are
constant (and pairwise distinct). By hypothesis, the action of t restricts to
V , so

V = (V ∩ kkF1) ⊕ · · · ⊕ (V ∩ kkFl).

It follows that the partition E1, . . . , Eκ refines this one, and t is contained
in the right-hand side of (2.3). �

In particular, if M(V ) is connected, then the orbit Tn · V ∼= Tn−1
0 . This

provides an example of a torus torsor in the Grassmannian.

2.7. Arrangement complements

For any hyperplane arrangement A in V , let U(A) = V −⋃
iHi. This is

both the complement of the hypersurface f−1(0) as well as an irreducible,
closed subvariety of the torus Tn, since U(A) = V ∩Tn. It is useful to keep
in mind both points of view. The torus is, itself, the complement of the
Boolean arrangement Cn. The space U(A) is a central object of study in
the theory of hyperplane arrangements, particularly when kk = C: we refer
to the forthcoming book [4].
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Let PU(A) := U(A)/kk×, where kk× is the diagonal subgroup again. This
is a subvariety of the projective space PV : as above, PU(A) = PV ∩ Tn−1

0 .
The quotient torus splits as a coordinate subtorus of Tn. For 1 � i � n, let
Tn−1
i = {t ∈ T : ti = 1}, and consider the isomorphism of groups ci:T

n−1
0 →

Tn−1
i , given by ci(t) = t−1

i ·t. By restricting ci to PU(A), we see that PU(A)
is isomorphic to the subvariety of U(A) on which fi = 1.

Exercise 2.13. — Check that U(A) ∼= PU(A) × kk×.

Remark 2.14. — An irreducible, closed subvariety of an algebraic torus
is said to be very affine. Another very affine variety associated with a hy-
perplane arrangement is given as follows. Given a lattice vector m ∈ Zn
with gcd {mi: i ∈ [n]} = 1, form the subgroup

Tm = {t ∈ T : tm1
1 tm2

2 · · · tmnn = 1} ,

and let F (A,m) = V ∩Tm. In general, this is a level set of a master function

n∏

i=1

fmii :U(A) → kk×.

See, for example, [49], for more details. If mi > 0 for each 1 � i � n, the va-
riety F (A,m) is an (unreduced) Milnor fibre of A with given multiplicities.
If each mi = 1, it coincides with the usual, global Milnor fibre of the hyper-
surface. These varieties are qualitatively quite different from the hyperplane
complements, and their topology is more subtle: see the paper by Suciu in
this volume [47]. It would be interesting to know if there is anything special
about the topology of intersections of linear spaces V ⊆ kkn and general
subtori of Tn.

3. Toric varieties

For background on this subject, we recommend the excellent book by
Cox, Little and Schenck [7]. In order to keep these notes self-contained, we
will give a brief outline of the role of polyhedral combinatorics in the theory
of toric varieties. From now on, we will assume that kk = C.

We recall that a (normal) toric variety of dimension n to be an irre-
ducible, normal complex variety X for which

• X contains a dense, open subvariety isomorphic to a complex torus
Tn;

• the action of Tn on itself extends to X, giving an algebraic map
Tn ×X → X.
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3.1. Cones and orbits

One foundational part of the theory is that toric varieties are stratified
by closures of torus orbits, and that this stratification determines the toric
variety’s isomorphism type. The orbits are described combinatorially by
means of a polyhedral fan, denoted ΣX , and we recall briefly the nature of
this description.

The one-parameter subgroups of Tn form an integer lattice,
N := Hom(C×, Tn), which is isomorphic to Zn. Suppose a toric variety
X containing Tn is given. Then, for each u ∈ N , we check whether or not
the homomorphism u:C× → Tn ⊆ X can be extended continuously to a
map u:C→ X. That is, let

|ΣX,Z| =
{
u ∈ N : lim

t→0
u(t) exists.

}

Impose an equivalence relation by letting, for u, v ∈ |ΣX,Z|,
u ∼ v if and only if lim

t→0
u(t) = lim

t→0
v(t).

If S ⊆ N is an equivalence class, let NR = N ⊗Z R, a real Euclidean space,
and define σ ⊆ NR by

σ = R�0 S,

where · denotes closure in the usual topology. It turns out that each such
σ is a polyhedral cone.

Let ΣX denote the set of all cones, which is (by construction) in bijection
with the set of limit points of one-parameter subgroups. The set of cones ΣX
is closed under intersection. For each σ ∈ ΣX , let O(σ) = Tn · limt→0 u(t)
denote the torus orbit coming from any u ∈ |ΣX,Z| ∩ σ. All orbits arise this
way, and the cones keep track of their incidence data: that is,

O(σ) ⊆ O(τ) if and only if τ ⊆ σ.

Example 3.1. — Affine space Cn is a toric variety whose fan ΣCn consists
of cones σS , for all S ⊆ [n], where σS = R�0 {ei: i ∈ S}, and {e1, . . . , en}
are the standard basis for N = Zn. The cone σ∅ = {0} ⊆ N corresponds
to the maximal torus orbit Tn ⊆ Cn in the dictionary above, while the full
orthant σ[n] corresponds to the 0-dimensional orbit {0} ⊆ Cn.

Example 3.2. — The usual embedding Tn−1
0 ⊆ Pn−1 makes projective

space a toric variety with N = Zn/Ze[n]. The toric fan ΣPn−1 consists of
cones σS ⊆ Rn/Re[n], for all S � [n], where σS is defined as in Example 3.1.
In particular, the one-dimensional cones σ{i} correspond to orbits of points
[x1: · · · :xn] ∈ Pn−1 with xi = 0, for 1 � i � n.
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A cone σ of dimension d is simplicial if it is spanned by d rays. A nec-
essary condition for a toric variety X to be smooth is that each cone of the
fan ΣX is simplicial. A sufficient condition for X to be smooth is that ΣX
is simplicial, and that each cone σ is unimodular: that is, σ is generated by
lattice vectors that extend to a basis of the lattice N .

3.2. Projective toric varieties

An important family of toric varieties is constructed in the following way.
Let A be a n × r integer matrix, and consider the group homomorphism
between tori, pA:Tn → T r, given by

p(t) = (

n∏

i=1

tAi1i ,

n∏

i=1

tAi2i , . . . ,

n∏

i=1

tAiri ).

Then pA is injective provided that A is unimodular of full rank, and pA
induces a map of quotient tori p̄A:Tn−1

0 → T r−1
0 provided that the sum of

the entries in any two columns of A are equal. If both of these conditions
are satisfied, we have an embedding

p̄A:Tn−1
0 → T r−1

0 ⊆ Pr−1 :

let XA denote the toric variety given by taking the closure of the image of
p̄A.

If one translates each column of A by a fixed lattice vector to obtain a
matrix A′, then p̄A = p̄A′ , so XA = XA′ . Let PA denote the convex hull of
the columns of A, a polytope in Zn. Choose a translation of the columns of
A so that the column sums are zero, so that PA ⊆M := N∗ ∼= Zn−1.

In fact, any toric varietyX which is equivariantly embedded in projective
space can be written as X = XA for some A, so we will simply write PX
for (the translation equivalence class of) the polytope PA.

The toric fan of XA is easy to describe: provided that XA is normal, the
fan is the (inner) normal fan of PA. This is a complete fan: |ΣX,Z| = N ,
and for u, v ∈ N , we have u ∼ v if and only if u and v, regarded as linear
functionals on M , both achieve their minimum on the same subset of PA.

3.3. The toric variety of the matroid polytope

We now return to the Gel′fand-MacPherson construction from §2.6 that
embedded a torus in Grd,n. Assume the matroid M(V ) is connected, so
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that the map aV :Tn−1
0 → Grd,n defined by aV (t) = t · V is injective, by

Proposition 2.12. Then the closure of the image is a toric variety,

XM := aV (Tn−1
0 ) ⊆ Grd,n.

The Grassmannian is complete, so XM is too. In fact, using the Plücker
embedding, we can identify XM with the closure of the image Tn−1

0 in the

projective space P(
∧dCn), as in Remark 2.11, so XM is a projective toric

variety. It has a particularly nice description:

Theorem 3.3 ([18]). — The weight polytope of XM is the matroid poly-
tope, PM.

Proof. — We assume for simplicity that M(V ) is connected, the general
case being similar. Consider the composition of maps bV ,

where last rational map is projection onto those xI for which I is a base of
M(V ). Its restriction to the image of the torus is, in fact, an injective, equiv-
ariant regular map, and we want to calculate the weights of the embedding
of XM in P(CB).

Suppose V = row(A) for some d× n matrix A. For t ∈ Tn−1
0 , a basis for

t · V is obtained by multiplying column j of A by tj . For a set I ⊆ [n] of
size d, we write det(AI) for the minor on columns I, which is also the Ith
Plücker coordinate of V . Then for I ∈ B, the columns of A are independent,
so det(AI) �= 0, and the torus action on the Ith coordinate is given by

bV (t · V )I =
( ∏

j∈I
tj

)
· bV (V )I .

Reading the exponents of this monomial, we see that the weight vector for
coordinate I is the vector eI , and these are the vertices of the matroid
polytope. �

By a result of White [50], the toric variety XM is normal. So the clo-
sures of torus orbits in XM are in bijection with the faces of the matroid
polytope PM. Since a face F of PM is the matroid polytope of a matroid
MF , the closure of the corresponding orbit is another toric variety, XMF

.
We illustrate with an example.

Example 3.4. — Continuing Example 2.7, consider the arrangement of
four lines in the plane, M(V ) ∼= U2,4. If we choose f :C2 → C4, to be
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f = (z, w, z − w, z + w), then for t ∈ T 3
0 , we have

t · V = row

(
t1 0 t3 t4
0 t2 −t3 t4

)
,

whose image in P5 is

[t1t2:−t1t3:−t2t3: t1t4:−t2t4: 2t3t4].

Then the matrix of weights, with the columns ordered in this way, is

A =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1


 ,

and the convex hull of the columns is the octahedral matroid polytope of
Figure 1. The normal fan of an octahedron is the fan in N = Z4/Ze[4]
obtained by taking cones over each face of the polar polytope, the cube.
The fan is not simplicial, so the toric variety XM is not smooth.

The coordinate x1 takes its minimum on the facet F = conv {e23, e24, e34},
so the vector u = (1, 0, 0, 0) ∈ N spans a ray of the fan. We can work out the
corresponding codimension-1 torus orbit by computing limt→0 u(t), which
is

lim
t→0

row

(
t1 0 t0 t0

0 t0 −t0 t0

)
= row

(
0 1 −1 1
0 0 1 1

)
. (3.1)

The matroid of this limit subspace has a loop, the element 1. By Theo-
rem 2.1, the facet F must lie in the boundary of the simplex 2 · ∆3, which
it does. (See Figure 1).

Example 3.5. — Recall the hyperplane arrangement from Example 2.8
with d = 3 and n = 5. Its matroid polytope PM is 4-dimensional, and |B| =
8. Calculating by hand (or with help from Macaulay 2 [21, Polyhedra pack-
age]), one finds PM has 18 edges, 17 3-faces, and 7 facets: see Figure 2(b).
One facet F is contained in ∂(3 ·∆4) and has vertices {e234, e235, e245, e345}.
Again, 1 is a loop in MF , and −e1 is an outer normal vector. Four facets,
normal to ei for i = 2, 3, 4, 5 are square-based pyramids. The two facets nor-
mal to e124 and e135 are triangular prisms. The vector e1 takes its maximum
on their intersection, which is a square (2-dimensional) face, reflecting the
fact that the contraction M/ {1} is not connected: see Theorem 2.1.

Remark 3.6. — The coordinate ring of the toric variety XM is the sub-
algebra of the polynomial ring generated by monomials

∏
i∈B ti indexed by
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bases B of M. White introduced this in [50] as the basis monomial ring of
M and conjectured in [51] that the defining ideal of this semigroup algebra
is generated by quadratic binomials: see [45] for a summary. White’s con-
jecture is known to hold for certain classes of matroids: in particular, for
graphic matroids [3], and for rank-3 matroids [30].

We conclude the section with another example of how constructions
in convex geometry are reflected by toric varieties. Let X1 and X2 be n-
dimensional projective toric varieties, and ij :T

n → Xj the inclusion of their
maximal torus, for j = 1, 2. Consider the diagonal map d:Tn → X1 × X2

given by d(t) = (d1(t), d2(t)), and let X = d(Tn) ⊆ X1 ×X2.

Proposition 3.7 (Prop. 8.1.4, [19]). — The space X is also a projec-
tive toric variety, and PX = PX1

+ PX2
, where “+” denotes the Minkowski

sum of polytopes.

Exercise 3.8. — Define a map Tn0 → Pn × Pn by t �→ (t, t−1), and let
Xn ⊆ Pn×Pn denote the closure of its image. Check thatXn is a toric variety
with PXn = ∆n + (−∆n), where ∆n ⊆ Zn+1 denotes the standard simplex,
and −∆n its reflection through the origin. Show that X2 is isomorphic to a
blowup of P2 at three points, so X2 is smooth, but that Xn is not smooth
for n � 3.

4. Tropical aspects

Our third ingredient is a bit of tropical geometry. The reader should see
[35] or [40] for an overview, and [31] for an advanced introduction to the
subject. The first “tropical aspect” here involves term orders for subvarieties
of the torus.

4.1. Initial ideals

Let I be an ideal either in the polynomial ring S := C[x1, . . . , xn]. Sup-
pose u is a linear functional (regarded as an element of Rn). Then u in-
duces an order on monomials. For a ∈ Zn, write xa := xa1

1 · · ·xann , and put
xa ≺u xb if and only if u(a) < u(b). Then the initial ideal Inu(I) is obtained
from I by taking the ≺u-maximal summand of each element of I (allowing
ties.) If I is a homogeneous ideal, then we may take u ∈ NR := Rn/Re[n].
Impose an equivalence relation on N by putting u ∼ v if and only if
Inu(I) = Inv(I). This is in fact a polyhedral fan, called the Gröbner fan
of I: see, for example, [44] for details.

The special case that interests us here is when I = I(V ), the defining
ideal of a linear variety V . Then I is generated in degree 1 by V ⊥ and the
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linear elements: i.e., I is the defining ideal of a linear subvariety V ⊆ Cn
(or, rather, its restriction to Tn.) In that case, I = (V ⊥), and Sturmfels
notes in [46] that the Gröbner fan is simply the (outer) normal fan to the
matroid polytope.

To see why this should be the case, the key observation is that we can
compute initial ideals using limits of one-parameter subgroups. Based on
the explicit calculation in Example 3.4, suppose that I = (V ⊥), and u ∈ N
is some lattice direction, which again we regard as a one-parameter sub-
group of the torus by letting u(t) = (tu1 , . . . , tun). Then, for any vector
v =

∑n
i=1 cixi ∈ V ⊥, we have

u(t−1) · v =

n∑

i=1

cit
−uixi.

Since u is only defined up to a multiple of the vector e[n], we may choose
our representative so that −ui � 0 for all i, and the largest coordinate(s)
are equal to zero. Then computing the limit as t → 0 leaves us with only
the ≺u-initial terms of v, so limt→0 u(t

−1) ·V ⊥ = (Vu)
⊥, denoting the linear

space defined by Inu(V ) by Vu. Since (t · V )⊥ = t−1 · V ⊥ (see Exercise 5.2),
we see also that limt→0 u(t) · V = Vu.

Using Theorem 3.3, then, u ∼ v in the inner normal fan of PM if and
only if

lim
t→0

u(t) · V = lim
t→0

v(t) · V ⇐⇒ Vu = Vv,

if and only if u ∼ v in the Gröbner fan of I.

Since the cones of a normal fan are in bijection with polytope faces, the
set of all the initial ideals is indexed by the faces of the matroid polytope.

Proposition 4.1. — If M = M(V ) and PMu
is any face of the polytope

PM, then the degeneration matroid Mu equals M(Vu), where Vu is the linear
space defined by Inu(I(V )).

4.2. Bergman fans

Now let us repeat the construction above where, this time, I is an ideal
in the coordinate ring of the torus, C[Tn] = C[x±1

1 , . . . , x±1
n ]. Assume I

is a proper ideal generated in degree 1. Then, from §2.7, the zero locus
of such an ideal is a hyperplane complement U(A) in a linear space V ,
where the matroid M(V ) contains no loops. (Conversely, if i is a loop in a
linear matroid M(V ), then I(V ) contains a unit, the variable xi, which is
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to say V ∩Tn = ∅.) So by Proposition 4.1, the faces of the matroid polytope
corresponding loop-free degenerations are in bijection with those initial ideals
Inu(I(V )) that define (nonempty) hyperplane complements. This motivates
the following definition.

Definition 4.2. — For a subvariety X ⊆ Tn defined by an ideal I, its
Bergman fan B̃(X) is the set of cones σu in the Gröbner fan for which
Inu(I) does not contain a monomial.

In the special case where X = V ∩ Tn, we saw above that the Bergman
fan depends only on the matroid M = M(V ), and accordingly we will denote

it by B̃(M). This is the set of cones σu of ΣM for which the degeneration
matroid Mu does not contain a loop. Theorem 2.1 gives another characteri-
zation, as well. Recall Mu contains a loop if and only if the face u lies in the
boundary of the standard simplex, so B̃(M) consists of (outer) normal cones
to the faces of ∂(d · ∆n−1) − ∂PM. In order to visualize it conveniently, we
recall that the (outer) normal fan of a polytope consists of cones over the

faces of the polar polytope P ∗M. That is, B̃(M) is a cone over a polyhedral
subcomplex of P ∗M, which we denote BM. This is the Bergman complex of
M.

Example 4.3. — Continuing Example 3.4, the defining ideal of V is

I = I(V ) = (V ⊥) = (−x1 + x2 + x3,−x1 − x2 + x4).

Taking u = (1, 0, 0, 0), for example, and rewriting the subspaces in (3.1) as
kernels, we find Inu(I) = (x1, 2x2+x3−x4). By inspection the only vectors u
for which Inu(I) does not contain a variable are the nonnegative multiples
of (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0), and the Bergman fan
consists of the bold rays in Figure 1(b).

Example 4.4. — For the matroid of Examples 2.8 and 3.5, the subcom-
plex of ∂PM consisting of faces in ∂(3 ·∆4) is shown in Figure 2(b). On the
other hand, the polar polytope P ∗M has seven vertices, which lie in the di-

rections {−e1, e2, e3, e4, e5, e124, e135}. The Bergman complex BM consists
of the edges shown in bold in Figure 2(a).

Remark 4.5. — Ardila and Klivans [2] show that the Bergman complex
BM is homeomorphic to the order complex of the open interval (0̂, [n]) in
L(M). The latter is known to be homeomorphic to a wedge of µmany (d−2)-
spheres, where the number µ is, up to sign, the value of the Möbius function
over the lattice: µ = (−1)dµL(M)(0̂, [n]). Hacking finds an interesting gene-
ralization of this in [24]. The number µ is also the top Betti number of
PU(A), if M is the matroid of a complex arrangement A.
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By Alexander duality, the subcomplex of PM consisting of faces indexed
by matroids with loops also has the homology of a wedge of µ spheres of
dimension n − d − 1. In the examples shown in Figures 1, 2(b), it can be
seen that this “loopy subcomplex” is homotopic to a wedge of spheres. It
would be interesting to know a direct proof.

Figure 2. — A Bergman complex and its dual, Example 2.8

4.3. Amoebas

For a subset X ⊆ Tn, its (classical) amoeba is defined to be the set

At(X) := {(logt |x1|, logt |x2|, . . . , logt |xn|):x ∈ X} ⊆ Rn,

where t > 1 is the base of the logarithm. If X is closed under the diagonal
action of C∗, then At(X) is invariant under translation by the vector e[n],
so At(X) can be taken to be a subset of Rn/Re[n].

The logarithmic limit set, denoted Log(X), is the limit (in the Hausdorff
metric) of the amoebas At(X) as t → ∞. If X is an algebraic subvariety
of the torus, then a foundational result in tropical geometry from [46, §9]
says that points in Log(X) are indexed by initial ideals defining nonempty
varieties.

Theorem 4.6 ([46]). — For a subvariety X of Tn−1
0 , the set −Log(X)

equals the support of the Bergman fan, |B̃(X)|. In particular, for a hyper-

plane complement PU ⊆ Tn−1
0 , we have −Log(PU) = |B̃M(V )|.

The tropicalization of X consists of the set |B̃(X)|, together with some
additional (integer) data which we will ignore here. In the case where X is
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linear, it is clear what information about X is preserved in passing to its
tropicalization: while an amoeba At(X) depends on the equations defining
X, the logarithmic limit set depends only on the underlying matroid.

Example 4.7. — Consider a plane V with M(V ) = U2,3. Then

At(PU) = {(logt |z|, logt |w|, logt |z − w|): [z : w] ∈ PU(A)} ⊆ R3/R(1, 1, 1)

An amoeba and logarithmic limit set for PU are shown in Figure 3.

Figure 3. — Amoeba and logarithmic limit set for V with M(V ) = U2,3

5. Compactifications

If A is an arrangement, we will say Y is a compactification of A if Y is
a complete complex variety and PU(A) is a dense open subset of Y . Recall
that a Zariski open subset is dense if and only if it is dense in the complex
topology, and complete varieties are compact in the complex topology. Of
course, one way to produce a compactification is to take the closure of
the embedding of PU(A) in some complete variety, and we will do this
here. Since arrangement complements sit naturally as subvarieties of tori,
it makes sense to consider their closures in various toric varieties. We will
give some examples before considering discussing the general theory in the
next section.

5.1. The reciprocal plane

Of course, PV is a compactification of A, obtained from embedding the
complement in Pn−1. A more interesting example with the same ambient
space can be obtained by letting i:Tn0 → Tn0 denote the inverse map in the
torus, and letting

Y (A) = i(PU(A)) ⊆ Pn−1. (5.1)

(Regarded as a rational map, i:Pn−1 −−→ Pn−1 is called the standard Cre-
mona transformation.) This construction has been studied in a number of
papers: see, for example, [39, 43, 34, 25, 42]. Recently it appeared in the
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work of Huh and Katz on the log-concavity of the coefficients of the char-
acteristic polynomial (in arbitrary characteristic): see [26] and [33].

In particular, the homogeneous coordinate ring of Y (A) equals C[1/fi: 1 �
i � n]. To describe this as a quotient of a polynomial ring, continue to let
S := C[x1, . . . , xn] denote the homogeneous coordinate ring of Pn−1. The
inclusion Y (A) ⊆ Pn−1 induces a surjective homomorphism

S → C[1/fi: 1 � i � n] (5.2)

sending xi to 1/fi, for 1 � i � n. Let I(A) denote the kernel of the map
(5.2).

To describe generators of I(A), let supp(c) = {i ∈ [n]: ci �= 0} for c ∈ Cn,
and let

rc :=
∑

i∈supp(c)

ci
∏

j∈supp(c)−{i}
xj . (5.3)

If c ∈ V ⊥, then
∑n
i=1 cifi = 0, so rc ∈ I(A). A set of generators for I(A)

is given by selecting those rc for which c ∈ V ⊥ and supp(c) is minimal
(the circuits of A). It is known that S/I(A) is Cohen-Macaulay, and that it
has a Gröbner basis indexed by the broken circuit complex [39]. Questions
about syzygies of I(A), such as degrees of minimal sets of generators and
Castelnuovo-Mumford regularity, seem to be difficult in general: see [43].
Sanyal, Sturmfels and Vinzant give a matroidal condition that characterizes
those subsets of the equations (5.3) determine Y (A) set-theoretically in [42,
Prop. 21].

Example 5.1. — If d = dim(V ) = 2 and any two coordinates of f :V →
Cn are linearly independent, then M(V ) ∼= U2,n (Example 2.7). The circuits
of the matroid consist of all three-element subsets of [n], and the ideal I(A)
is generated by quadrics. By general theory (or just hands-on linear algebra),(
n−1

2

)
quadrics are required. Since PV has codimension n − 2 in Pn−1, so

does Y (A). Hence the depth (and projective dimension) of I(A) are equal
to n− 2.

More generally, if M(V ) ∼= Ud,n, a uniform matroid with arbitrary pa-
rameters, then again the syzygies of I(A) can be understood completely.
I(A) is generated by

(
n−1
k

)
generators of degree d, and I(A) has a linear

resolution which is an Eagon-Northcott complex: see [11, §4.4].

5.2. Visible contours

The reciprocal plane lacks some features that one normally expects from
a compactification: in particular, Y (A) is not smooth, in general. (The sin-
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gular locus is described in [42].) The following construction is an improve-
ment.

Recall that, provided the matroid M(V ) is connected, the torus orbit of
V in Grd,n given by aV (t) = t · V was isomorphic to Tn−1

0 , and we saw in
the previous section that the orbit closure was a toric variety XM given,
abstractly, by the matroid M = M(V ) (Theorem 3.3).

Since the arrangement complement PU(A) is given as a subspace of
Tn−1

0 , it makes sense to consider its closure inside Grd,n. Instead of doing
this directly, though, we want to use the reciprocal embedding instead, and
define

Yvc(A) = aV ◦ i(PU(A)) ⊆ Grd,n. (5.4)

This is the visible contours compactification from [29]. It is also called the
tropical compactification in [15]; however, we will avoid the term here, since
there are various tropical compactifications in the sense of Tevelev [48]. We
leave it as an exercise to the reader to find the appropriate modifications in
the case where M(V ) has more than one connected component.

To see why the inverse map should appear here, consider replacing V
by another subspace in the same orbit, V ′ := t · V , for some t ∈ Tn−1

0 . The
hyperplane complements are related by PU ′ := t · PU . Then

aV ′ ◦ i(PU ′) = atV ◦ i(t · PU)

= aV ◦ ti(t · PU)

= aV ◦ i(PU),

so the construction of Yvc(A), as a subvariety of the Grassmanian, is inde-
pendent of our choice of subspace from the orbit Tn−1

0 · V .

We leave some straightforward assertions about the inverse map as an
exercise:

Exercise 5.2. —

• For t ∈ Tn−1
0 and V ∈ Grd,n, we have (i(t) · V )⊥ = t · V ⊥.

• If X is a toric variety with torus T , define a toric variety X−1 whose
underlying variety is also X, but the action of T on X−1 is con-
structed from the action on X by letting t · x = i(t)x. Show that
ΣX−1 = −ΣX . If X is projective, show that PX−1 = −PX . Decide
when X and X−1 are isomorphic as toric varieties.

• For any matroid M, check the weight polytope of X−1
M is PM∗ (see

Exercise 2.6.)
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Of course we could also define Yvc(A) as the closure of the hyperplane
complement in the toric variety X−1

M , since

PU(A) ↪→ X−1
M ⊆ Grd,n.

The hyperplane complement has codimension n− d in X−1
M , and its closure

only intersects some of the torus orbits. Those orbits have a nice description.

Theorem 5.3 ([15]). — For all σ ∈ ΣM, we have O(σ) ∩ Yvc(A) �= ∅
if and only if σ ∈ B̃(M). That is, the smallest toric variety in X−1

M that
contains Yvc(A) is X

B̃(M)
.

We note that B̃(M) is not a complete fan, so our minimal compactifying
toric variety X

B̃(M)
is not, itself, compact. In [48, Thm. 1.5], Tevelev shows

that linear spaces are schön, which means in particular that the restriction
of the multiplication map Tn−1

0 ×Yvc(A) → X
B̃(M)

is smooth. It follows that

Yvc(A) is smooth if and only if X
B̃(M)

is smooth, and in general, Yvc(A) has

at most toroidal singularities. Examples show that the Bergman fan need
not be simplicial, so the visible contours compactification is not, in general,
smooth: for a family of examples, see [9]. Here is one from the literature.

Example 5.4. — Let A be a hyperplane arrangement consisting of the
six face planes of a cube in P3: for example, let V be the image in C4 of

f(z, u, v, w) = (z + u, z − u, z + v, z − v, z + w, z − w).

Then BM(A) is a nonsimplicial 2-complex, described explicitly in [15, Ex. 2.8].

Exercise 5.5. — Note that Gr1,n = Pn−1, and find a family of compacti-
fications that interpolates between the reciprocal plane (5.1) and the visible
contours compactification (5.4).

Example 5.6. — For M = U2,4, we saw that B̃(M) consists of the four
rays shown in bold in Figure 1(b), and Theorem 5.3 can be verified directly.
For any t ∈ T 3

0 , the plane i(t) · V is the row space of

(
t−1
1 0 t−1

3 t−1
4

0 t−1
2 −t−1

3 t−1
4

)
. (5.5)

On the other hand, a point [z : w] ∈ P1 is in PU provided that z, w �= 0 and
z �= ±w. Its image under aV ◦ i, using (5.5), is the set of solutions to

−zx1 + wx2 + (z − w)x3 = 0

−zx1 − wx2 + (z + w)x4 = 0.
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In this case, we simply have Yvc(A) ∼= P1, since the boundary points are
obtained by letting z = 0, w = 0, z = w, or z = −w. In each case, the
linear space of solutions is not contained in a coordinate hyperplane, so its
matroid has no loop, and it lies in a torus orbit indexed by a shaded face of
PM in Figure 1.

5.3. Maximum likelihood, master functions and critical points

Before moving to the next construction, we digress slightly in order to
mention another, closely related variety. For a subspace V , define

ΓV =
{
(x, y) ∈ Tn−1

0 × Cn: y ∈ x · V ⊥
}
, (5.6)

noting again that x ·V ⊥ = (i(x) ·V )⊥. Pulling back the projection onto the
first factor along the inclusion of the hyperplane complement gives a new
variety S(A), the variety of critical points:

To justify the name, we should restrict our attention to lattice points m ∈
Zn. Then (x,m) ∈ S(A) if and only if x is a critical point of the master
function

∏n
i=1 f

mi
i (see Remark 2.14). The second factor of (5.6) is stable

under the diagonal action of C×: let X(A) denote the closure of the quotient
of S(A) in Pn−1 × Pn−1: this is compact, but not smooth. It is known
to be Cohen-Macaulay for all arrangements A. (However, it is not always
arithmetically Cohen-Macaulay with respect to a natural scheme structure
coming from logarithmic forms: see [5] for details.)

If we let PU⊥ = PV ⊥∩ Tn−1
0 , the complement of the dual arrangement,

then S(A)/C× contains a simple-looking dense, open subset:

(S(A)/C×) ∩ T =
{
(x, xy) ∈ T :x ∈ PU, y ∈ PU⊥

}
,

∼= PU × PU⊥,
where T := Tn−1

0 × Tn−1
0 . With this in mind, we see that the compacti-

fication X(A) is the closure of PU × PU⊥ in a toric variety isomorphic to
Pn−1 × Pn−1 with a nonstandard torus action. The automorphism T → T
given by (x, y) �→ (x, xy) induces a linear automorphism of the character
lattice M = Zn−1 × Zn−1, and the weight polytope of the toric variety is
just the image of ∆n−1 ×∆n−1 under this map. We leave the details to the
reader.
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The critical points of a master function are interesting from various
points of view, including algebraic statistics, mathematical physics, and the
theory of hyperplane arrangements: see, in particular, [6, 10, 27]. Some
remarkable results for critical point varieties of more general very affine
varieties appear in [28].

By regarding the critical point variety as a compactification of a product
of projective linear spaces, we see some symmetry between the underlying
matroid and its dual that is not immediately apparent from the perspective
of critical points of master functions. In particular, X(A(V )) and X(A(V ⊥))
are both compactifications of PU×PU⊥, while their respective ambient toric
varieties differ by the involution exchanging the factors.

5.4. Wonderful models

In 1995, De Concini and Procesi [8] studied a family of compactifications
obtained by iteratively blowing up the projective space PV along (proper
transforms of) linear subspaces, in increasing order of dimension. Their
compactification can be obtained in several different ways, and it has some
very desirable properties. In particular, the boundary of PU(A) is well-
behaved: it is a union of hypersurface components, each one isomorphic
to Pd−1. These components intersect with normal crossings, which is to say
that the neighbourhood of a boundary point looks locally like an intersection
of coordinate hyperplanes.

The number of boundary components and the way in which they inter-
sect depends on some interesting combinatorics, which we will now describe.
A good expository resource is provided by [12]. A detailed analysis and ab-
straction of the relevant combinatorics appears in [13].

Definition 5.7. — Let L be a partially ordered set with unique minimal
element 0̂. A subset G ⊆ L−

{
0̂
}

is a building set if, for every X ∈ L, we
have an order-isomorphism

[0̂, X] ∼=
∏

Y ∈max(G∩[0̂,X])

[0̂, Y ], (5.7)

where, for a set S ⊆ L, the notation “max S” denotes the subset of maximal
elements.

Lemma 5.8 (Prop. 2.5(1), [13]). — Suppose that G is a building set,
Y ∈ L, and X ∈ G. If X � Y , then X � Yi for a unique element Yi ∈
max(G ∩ [0̂, Y ]).
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The wonderful models are parameterized by building sets in the lattice
of flats, L(M).

Example 5.9. — Tautologically, G = L�1(M) is a building set for L(M).
On the other hand, it is not hard to see that if G is a building set, then it
must be the case that G ⊇ Lirr(M). By the discussion in §2.2, if X is not
irreducible, then L(M|X) = [0̂, X] decomposes as a product of lower inter-
vals in L(M), from which it follows that Lirr(M) is, itself, a building set. So
we see that Gmin := Lirr(M) and Gmax := L�1(M) are the unique maximal
and minimal building sets, respectively, and building sets themselves form
a poset under inclusion. See, for example, [23], where the authors consider
families of building sets.

Let A be a hyperplane arrangement in V ⊆ Cn, and let G ⊆ L(M(V ))
be a building set. For each X ∈ G, the coordinate projection Cn → CX
from §2.2 induces a rational map pX :Pn−1 −−→ P|X|−1 which is regular
(i.e., defined) on the torus Tn−1

0 . Let

p:Pn−1−−→
∏

X∈G
P|X|−1 (5.8)

be the map whose Xth coordinate is pX . Again, this is regular on Tn−1
0 ,

so its restriction to PU(A) is as well. By definition, the image of V under
coordinate projection is VX , so we may factor the restriction of p as follows:

(5.9)

Since M is connected, the maximal flat [n] is in G, so Pn−1 and PV are
factors in the top and bottom products, respectively. Then the maps in
(5.9) are all injective, so the next definition makes sense.

Definition 5.10. — The De Concini-Procesi wonderful compactifica-
tion of A with building set G is

Ywnd(A, G) = p(PU(A)) ⊆
∏

X∈G
PVX . (5.10)

The boundary components in Ywnd(A, G) are indexed by the building
set G. It remains to say which boundary components intersect, and we will
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see that this depends only on the matroid of A and the choice of building
set.

Note that a building set G ⊆ L(M) necessarily contains all singleton
flats {i}, since one-element matroids are connected.

Definition 5.11. — Let G ⊆ L be a building set in a lattice L. A sub-
set S ⊆ G is a nested set for G provided that, if X1, . . . , Xk are pairwise
incomparable elements of S, and k � 2, then the join X1 ∨ · · · ∨ Xk �∈ G.
Let N (G) denote the set of all nested sets for G.

Example 5.12. — Certainly if S ⊆ G is a chain, it is nested. If G =
Gmax, the maximal building set, then a nested set cannot have incomparable
elements, so in this case N (G) is simply the set of chains in L(M). On the
other hand, if G = Gmin, then a nested set S can contain incomparable
elements, provided that their join is not irreducible.

Exercise 5.13. — For the Boolean arrangement Cn, the maximal building
set consists of all nonempty subsets of [n]. Check that maximal nested sets
for Gmax are indexed by permutations of [n]. On the other hand, Gmin

consists of just the rank-1 flats (hyperplanes). Describe the nested sets in
this case.

Exercise 5.14. — If M is connected, the maximal flat [n] is in every build-
ing set. Let N0(G) denote the nested sets that do not contain [n]. Check
that N (G) and N0(G) are simplicial complexes on the building set G and
G − {[n]}, respectively. Show that [n] is in every maximal nested set, so
N (G) is a cone over N0(G) at the vertex [n].

These definitions were made to keep track of the incidence structure in
the boundary of the compactification.

Theorem 5.15 (§4.2, [8]). — The boundary Ywnd(A, G)−p(PU(A)) is
a union of divisors {DX :X ∈ G− {[n]}}. For a subset S ⊆ G − {[n]}, the
intersection

⋂
X∈S DX is nonempty if and only if S is a nested set for G,

in which case the intersection is transversal and irreducible.

It should be mentioned that De Concini and Procesi’s construction is
more general, allowing an arbitrary union of linear subspaces (over any
infinite field) in place of an arrangement of hyperplanes; however, it is worth
singling out this special case, since it arises most often, and the theory is
somewhat simpler. Here we give the projective version of their construction:
an affine variation gives a closure of U(A) with an additional divisor indexed
by the maximal flat.
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Example 5.16. — Consider the matroid of Example 2.8 again. In this
case, we have Gmin = {1, 2, . . . , 5, 124, 135, 12345}. A realization of the com-
plex N0(Gmin) is given by the bold edges shown in Figure 4(b).

Here are some facts about nested sets which we will use in the next
section. Although nested sets need not be chains, in general, they behave
like chains in the following ways.

Lemma 5.17 (Prop. 2.8(2), [13]). — Suppose Y1, . . . , Yk are pairwise
incomparable elements in a nested set for a building set G, and Y = Y1 ∨
· · · ∨ Yk. Then the elements of max(G ∩ [0̂, Y ]) are precisely {Y1, . . . , Yk}.

Lemma 5.18. — Let G ⊆ L(M) be a building set, and S ∈ N (G) a
nested set for G. For each i ∈ [n], let Si = {X ∈ S: i ∈ X}. Then, for any
X ∈ L(M), the collection of nested sets {Si: i ∈ X} has a unique minimal
element under inclusion; i.e., there exists some i0 ∈ X for which Si0 ⊆ Si,
for all i ∈ X.

Proof. — We can assume X �= 0̂, for which the result is trivial. Suppose
the claim is false: that is, for each i ∈ X, there is a flat Yi ∈ Si −

⋂
j∈X Sj .

Consider the set {Yi: i ∈ X} ⊆ L(M), and let {Yi1 , Yi2 , . . . , Yik} denote its
subset of maximal elements (a pairwise incomparable set). We must have
k � 2, since otherwise the flats {Yi} would form a chain, in which case the
maximal element Yi1 ∈ Sj for all j, a contradiction.

By the nested set property, the join

Y := Yi1 ∨ · · · ∨ Yik
is not an element of G. Since Y =

∨
i∈X Yi as well, and i ∈ Yi for each

i ∈ X, we see X � Y . Since G is a building set, and X ∈ G, it must be the
case that X � Yij for some j, by Lemma 5.17. But then Yij ∈ Si for all i,
a contradiction. �

Lemma 5.19. — The nonempty sets Si are chains. For every X ∈ S,
there is some i for which X = minSi.

Proof. — SupposeX and Y are incomparable elements of S, andX ∈ Si
for some i. The flat {i} is irreducible, hence in G. Since {i} � X, we must
have {i} �� Y , by Lemma 5.8. That is, which is to say Y �∈ Si.

To check the second claim, suppose some X ∈ S is not minimal in any
chain Si. That is, for all i ∈ X, there exists some Yi ∈ Si for which Yi < X.
Then X �

∧
i∈X Yi, so X � Yi for some i by Lemma 5.17, a contradiction.

�
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Clearly if X ∈ Si, then Y ∈ Si too, for all Y ∈ S with Y � X. So we
see, in particular, that, if we draw edges between comparable elements of a
nested set S, the graph we obtain is a forest, with the leaves at the bottom.

For any nested set S, define an equivalence relation on the set
∨
X∈S X ⊆

[n] by letting i ∼S j if and only if Si = Sj �= ∅. The corresponding partition
has |S| blocks.

Lemma 5.20. — Let S ∈ N (G) be a nested set. Let S = {X1, . . . , Xr}
be any linear extension. The sets

Ek :=

k∨

i=1

Xi −
k−1∨

i=1

Xi ⊆ [n] (5.11)

for 1 � k � r are all nonempty, and they are the blocks of the partition ∼S.

Proof. — First, we check that Ek is nonempty for all k. If not, then∨k
i=1Xi =

∨k−1
i=1 Xi, which means Xk �

∨k−1
i=1 Xi. By Lemma 5.17, then

Xk � Xi for some i � k− 1, which would contradict having chosen a linear
extension.

Our linear extension gives a total order to each subset Sj of S. With
respect to this order, j ∈ Ek if and only if minSj = k. Clearly if i ∼S j,
the sets Si = Sj have the same minimum, so each Ek is a union of one or
more blocks of ∼S . Since there are only r = |S| blocks, though, it follows
each Ek is equal to exactly one of them. �

In the other direction,

Lemma 5.21 (Prop. 2.8(3), [13]). — For any chain of flats F1 < F2 <
· · · < Fd = [n] in an intersection lattice L(M), for any building set, there
exists a nested set S ∈ N (G) and a linear extension S = {X1, . . . , Xd} for

which Fk =
∨k
i=1Xi, for all 1 � k � d.

5.5. Wonderful models II

Once again, our compactification took place in a projective toric variety.
Let Xwnd(M, G) denote the closure of Tn−1

0 , embedded diagonally in the
product of projective spaces in (5.8). (Our notation reflects the fact that
the toric variety depends only on the matroid of A.)

For each flat X ∈ L(A), let

∆X = conv {ei: i ∈ X} (5.12)
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denote the weight polytope of P|X|−1. The weight polytope of Xwnd(M, G)
is the Minkowski sum

∑
X∈G ∆X , by Proposition 3.7 (see [15, §6]). It should

also be mentioned that Ardila, Benedetti and Doker [1] have found some
remarkable results relating matroid polytopes and Minkowski sums of sim-
plices, building on Postnikov’s work on generalized permutohedra [38]. In
particular, they obtain a combinatorial formula for the degree of the toric
variety XM.

In Section §5.2, we saw that we could replace our ambient, complete toric
variety by a minimal one, indexed by the Bergman fan. Similarly, we can
describe the minimal toric varieties that give the wonderful models, using a
construction that first appeared in [16].

We continue to assume that M is connected. Let G ⊆ L(M) be a building

set. We construct a rational, polyhedral fan Ñ (M, G) in NR by taking the
cone over the geometric realization of the complex N0(G). That is, for each
nested set S ⊆ G, define a cone

σS = R�0 conv {eX :X ∈ S} , (5.13)

and let Ñ (M, G) = {σS :S ∈ N (G)}. Since N (G) is a simplicial complex,

Ñ (M, G) is a simplicial fan. (From Exercise 5.14, we would have constructed
the same fan by taking the cone over N (G) instead, since e[n] = 0 in the
lattice N .)

Proposition 5.22. — For any arrangement A and building set G, the
toric variety XÑ (M,G)

is a subvariety of Xwnd(M, G).

Proof. — An inclusion of normal toric varieties is given by an inclusion
of toric fans, so let Σ(G) denote the normal fan of

∑
X∈G ∆X . A straightfor-

ward argument with the weight polytope shows that Xwnd(M, G) is normal,
so Σ(G) is its toric fan. It is enough to check that each cone in the fan

Ñ (M, G) is contained in some cone of Σ(G).

The normal fan of a Minkowski sum of polytopes is the coarsest common
refinement of their respective normal fans: that is, two functionals u, v ∈ NR
lie in the same open cone of Σ(G) if and only if they achieve their minimum
on the same faces of ∆X , for each X ∈ G. Faces of a standard simplex are
indexed by subsets of coordinates, so for a given u ∈ NR and subset I ⊆ [n],
let

minI(u) =
{
i ∈ I:ui = m, where m = min {uj}j∈I

}
.

Then, translating the above, u ∼ v in Σ(G) if and only if minX(u) =
minX(v) for all X ∈ G.
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Now suppose that u lies in the interior of a cone of Ñ (M, G) indexed by
a nested set S ∈ N (G), so u =

∑
X∈S cXeX for some coefficients cX > 0.

We need to show that the set minX(u) is independent of the coefficients,
for each X ∈ G. For this, let Si = {X ∈ S: i ∈ X}, for each i ∈ [n]. Since
ui =

∑
X∈Si cX , we have ui = uj if Si = Sj , and ui < uj if Si ⊂ Sj , for all

i, j.

By Lemma 5.18, the set {Si: i ∈ X} has a minimal element Si0 , for some
i0 ∈ X. But then minX(u) = {i ∈ X:Si = Si0}, which depends only on the
nested set S, so we are done. �

Theorem 5.23. — For any arrangement A and building set G,

Ywnd(A, G) = PU(A) ⊆ XÑ (M,G)
.

Moreover, the toric variety XÑ (M,G)
is minimal, in the sense that PU(A)

intersects every open torus orbit.

Once again, the compactifying ambient space depends only on the ma-
troid. The situation is parallel to the one with Yvc(A), since our small toric
variety is not complete. However, Feichtner and Yuzvinsky [16] show that

the cones of Ñ (M, G) are unimodular, so the toric variety XÑ (M,G)
is always

smooth, in contrast to X
B̃(M)

.

This construction also relates nicely to De Concini and Procesi’s de-
scription of Ywnd(A, G) as an iterated blowup, as shown in [16, §6]. Roughly

speaking, one builds the fan Ñ (M, G) by starting with the fan for Pn−1 (Ex-

ample 3.2), noting that Ñ (M, G) always contains the rays through ei, for
1 � i � n. Then one adds rays eS and subdivides cones, for the remaining
elements S ∈ G, in non-increasing order with respect to L(M). Stellar sub-
division in a fan corresponds to blowing up closed orbits in toric varieties:
see, e.g., [7, §3.3]. By blowing up Pn−1 along proper transforms of coordi-
nate subspaces, one obtains a complete toric variety; then XÑ (M,G)

is the

subvariety obtained by deleting the orbits not indexed by nested sets.

Our constructions so far are summarized in Table 1, where V is a linear
space, A = A(V ), and M = M(V ).
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Table 1. — Arrangement compactifications in §5

Compactification complete toric variety weight reference
polytope

PV tautological Pn−1 ∆n−1

Y (A) reciprocal plane Pn−1 −∆n−1 (5.1)
Yvc(A) visible contours X−1

M ⊆ Grd,n −PM(∼= PM∗) (5.4)
Ywnd(A, G) wonderful model Xwnd(M, G) ⊆ ∏

X∈G
P|X|−1

∑
X∈G ∆X (5.10)

Compactification minimal toric variety toric fan reference

Yvc(A) X
B̃(M)

⊆ X−1
M Bergman fan Theorem 5.3

Ywnd(A, G) XÑ (M,G)
⊆ Xwnd(M, G) nested set fan Theorem 5.23

5.6. Comparisons

For a fixed arrangement, we now have a number of compactifications. In
particular, if G1 ⊆ G2 are two building sets for an intersection lattice L(M),
then the obvious projection map

∏

X∈G2

PVX �
∏

X∈G1

PVX

induces a map of wonderful compactifications Ywnd(A, G2) → Ywnd(A, G1).
From De Concini and Procesi’s original point of view, this map blows down
the boundary divisor components indexed by G2 −G1.

From the toric point of view, Feichtner and Müller prove in [14, Thm. 4.2]

that the fan Ñ (M, G2) is a refinement of the fan Ñ (M, G1). More precisely,
the former fan is obtained by stellar subdivisions of that latter. Geometri-
cally, the map of toric varieties

XÑ (M,G2)
� XÑ (M,G1)

blows down the codimension-1 torus orbits indexed by G2 − G1. It follows
that the support of the fan Ñ (M, G) is independent of G: that is,

|Ñ (M, Gmin)| = |Ñ (M, G)| = |Ñ (M, Gmax)| (5.14)

for any building set G.

A key discovery in [15] is the following (and we outline a proof below).
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Theorem 5.24. — For any matroid M, the nested set fan Ñ (M, Gmin)

refines the Bergman fan B̃(M).

This means that there is a natural map of toric varieties,

XÑ (M,Gmin)
� X

B̃(M)
,

and a corresponding map of compactifications Ywnd(A, G)� Yvc(A) for any
building set G (by factoring through Gmin = Lirr(M)).

It turns out that, if for every flat X ∈ Lirr(M) it happens that M/X is
also connected, then this subdivision can be accomplished without adding
new vertices. If an even stronger condition holds, the two fans are actually
equal:

Theorem 5.25 (Thm. 5.3, [15]). — The fans Ñ (M, Gmin) and B̃(M)
are equal if and only if the matroid (M|Y )/X is connected for all pairs of
flats X � Y , where Y ∈ Gmin.

Accordingly, if this matroid condition is satisfied, then the visible con-
tours compactification Yvc(A) is equal to the wonderful compactification
given by the minimal building set. Before continuing with examples, we
give another argument that makes use of nested set combinatorics.

Proof of Theorem 5.24. — For any matroid M, we first show that each
cone of Ñ (M, Gmin) is contained in a cone of B̃(M). It is enough to verify
this for a cone σS (defined in (5.13)) for a maximal nested set S, so suppose
u =

∑
X∈S cXeX , where each coefficient cX > 0. Then ui = uj if i ∼S j,

using the equivalence relation from §5.4. Let F(−u) = (F0, . . . , Fk) be the
chain of subsets (2.1): then each set Fi − Fi−1 is a union of ∼S-blocks. Let
us temporarily assume that

ui = uj if and only if i ∼S j : (∗)

i.e., each Fi−Fi−1 is a single block, and impose a total order on the nested
set S as follows. For flats X,Y ∈ S, recall X = minSi and Y = minSj for
some i, j, by Lemma 5.19. In that case, put X ≺ Y if ui > uj . This is a
linear extension of S, since if we had X � Y in L(M), then Y ∈ Si as well,
whence Sj ⊆ Si, and uj � ui. Write S = {X1, . . . , Xd}, numbering the flats
in ≺-order. By our assumption that each set Fi−Fi−1 is a block of ∼S , for
1 � i � k, by Lemma 5.20, we see Fi =

∨i
j=1Xi, for each i.

This is a chain of flats of M, so by Theorem 2.1, −u achieves its minimum
on a face F = M−u indexed by a matroid without loops, so u ∈ |B̃(M)|.
Moreover, the chain F(−u) and face F depended only on the set S and not
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on the choice of u, provided (*) was satisfied. By convexity, the same is true

for all u in the interior of σS , so this cone lies in a cone of B̃(M).

It follows that |Ñ (M, G)| ⊆ |B̃(M)|. To show that the supports are equal,

consider a vector u ∈ |B̃(M)|. By Theorem 2.1, elements of the chain F(−u)
are flats of M. By Lemma 5.21, there exists a linear extension of a nested

set S = {X1, . . . , Xd} for the flats in the chain are
{∨k

i=1Xi

}
1�k�d

. By

Lemma 5.20 and the first part of this proof, u ∈ σS . �

Example 5.26. — Continuing our usual Example 5.16, we see the nested
set complex has one more vertex than the Bergman complex. Figure 4 com-
pares the Bergman fan with the nested set complexes for the minimal and
maximal building sets, Gmin = Lirr(M) and Gmax = L�1(M).

The toric variety for 4(b) is obtained by blowing up P4 along two co-
ordinate lines, then deleting the torus orbits of dimension � 1, as well as
the 2-dimensional orbits indexed by non-nested pairs of rays. The closure
of PU(A) inside is the blowup of P2 at the two triple intersections.

Then Yvc(A) is obtained from Ywnd(A, Gmin) by blowing down the bound-
ary component corresponding to the line through the two triple points, giv-
ing P1 × P1.

Figure 4. — Refinements of BM, Example 5.26

Example 5.27. — The braid arrangements, Example 2.9, are particularly
interesting. The original construction of Ywnd(A, Gmin) is the case X = C
of a configuration space compactification of F (X, d+ 1) due to Fulton and
MacPherson [17]. Points in the arrangement complement for V (Ad) are
also in bijection with genus zero curves with d + 2 marked points, and
Ywnd(A, Gmin) agrees with the Deligne-Knudsen-Mumford compactification.

The visible contours and wonderful compactifications agree (for G =
Lirr), which we can check as follows. If πX is a partition of the set [d + 1],
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refinements πY of πX are in bijection with partitions of the set of blocks of
πX . With this in mind, suppose we have flats X < Y and Y is irreducible.
As a partition of the blocks of πX , we see πY still has only one block of size
greater than one, so the interval [X,Y ] is order-isomorphic to the intersec-
tion lattice of another braid arrangement (of rank r(Y )−r(X)). Accordingly,
(M|Y )/X is connected, and the claim follows by applying Theorem 5.25.

Example 5.28. — If M(V ) = Ud,n, the uniform matroid, the situation is
straightforward. Assume d < n; then G := Lirr(Ud,n) = {{i} : 1 � i � n} ∪
{[n]}. The nested sets are the subsets of size at most d, so the maximal cones

in Ñ (Ud,n, G) are just the coordinate cones spanned by d−1-element subsets
of {ei: 1 � i � n}. This refines the Bergman fan, but no strictly coarser fan

with the same support is possible, so B̃(Ud,n) = Ñ (Ud,n, G), as we see for
U2,4 in Figure 1(b). Our ambient toric variety is Pn−1, minus all coordinate
subspaces of codimension d and higher, and Yvc(A) = Ywnd(A, G) = Pd−1.

6. Concluding remarks

By limiting our discussion to linear spaces in tori (that is, hyperplane
complements), this tutorial stops short of “modern” tropical geometry. In
particular, Tevelev’s paper [48] broadly generalizes the relationship we saw
here between the Gel′fand-MacPherson construction, the Bergman fan, and
the visible contours compactification.

We have also neglected any discussion of intersection theory here, due
to the constraints of time and space, although this is an interesting part of
the story above. We leave the last exercise as a possible starting point for
further reading in this direction.

Exercise 6.1. — We noted in Remark 4.5 that the support of the Bergman
fan is a cone over a wedge of µ spheres of dimension d − 2. From the dis-
cussion in §5.6, the same is true of the nested set fans Ñ (M, G).

It is also known that the number µ is the degree of the reciprocal plane
Y (A), from [39, Lemma 2]: that is, µ is the number of points at which Y (A)
intersects a generic projective linear subspace W in Pn−1 of dimension n−d.

A basic idea of tropical intersection theory is that, under suitable condi-
tions, one can compute an intersection number by intersecting tropicaliza-
tions: see, e.g., [32] for details. Using Theorem 4.6, we know the tropical-

izations of Y (A) and W are given by |B̃M(V )| and −|B̃M(W )|, respectively.
The linear space W realizes the uniform matroid, so its Bergman fan was
computed in Example 5.28.
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Use the tropical intersection product (also known as the fan displacement
rule) to give a “tropical” proof that µ is the degree of Y (A).
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Eur. Math. Soc., Zürich, p. 827-852 (2006).

[36] Orlik (P.), Terao (H.). — Arrangements of hyperplanes, Grundlehren der Math-
ematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin (1992).

[37] Oxley (J.). — Matroid theory, second ed., Oxford Graduate Texts in Mathematics,
vol. 21, Oxford University Press, Oxford (2011).

[38] Postnikov (A.). — Permutohedra, associahedra, and beyond, Int. Math. Res. Not.
IMRN, no. 6, p. 1026-1106 (2009).

[39] Proudfoot (N. J.), Speyer (D.). — A broken circuit ring, Beiträge Algebra Geom.
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