Sandro Manfredini, Simona Settepanella
On the Configuration Spaces of Grassmannian Manifolds
<http://afst.cedram.org/item?id=AFST_2014_6_23_2_353_0>

© Université Paul Sabatier, Toulouse, 2014, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
On the Configuration Spaces of Grassmannian Manifolds

SANDRO MANFREDINI(1), SIMONA SETTEPANELLA(2)

ABSTRACT. — Let $F^i_{h}(k, n)$ be the i-th ordered configuration space of all distinct points H_1, \ldots, H_h in the Grassmannian $Gr(k, n)$ of k-dimensional subspaces of C^n, whose sum is a subspace of dimension i. We prove that $F^i_{h}(k, n)$ is (when non empty) a complex submanifold of $Gr(k, n)^h$ of dimension $i(n - i) + hk(i - k)$ and its fundamental group is trivial if $i = \min(n, hk)$, $hk \neq n$ and $n > 2$ and equal to the braid group of the sphere CP^1 if $n = 2$. Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. $k = n - 1$.

RÉSUMÉ. — Soit $F^i_{h}(k, n)$ le i-ème espace de configuration ordonné de tous les points distincts H_1, \ldots, H_h dans la Grassmannienne $Gr(k, n)$ de sous-espaces de dimension k de C^n, dont la somme est un sous-espace de dimension i. Nous prouvons que $F^i_{h}(k, n)$ est (si non vide) une sous-variété complexe de $Gr(k, n)^h$ de dimension $i(n - i) + hk(i - k)$ et que son groupe fondamental est trivial si $i = \min(n, hk)$, $hk \neq n$ et $n > 2$ et égal au groupe de tresses de la sphère CP^1 si $n = 2$. Finalement, nous calculons le groupe fondamental dans le cas particulier des arrangements d’hyperplans, c’est-à-dire $k = n - 1$.

1. Introduction

Let M be a manifold. The ordered configuration space

$$F_h(M) = \{(x_1, \ldots, x_h) \in M^h | x_i \neq x_j, \ i \neq j\}$$

of h distinct points in M has been widely studied after it has been introduced by Fadell and Neuwirth [5] and Fadell [3] in the sixties. It is well known that

(1) Department of Mathematics, University of Pisa
manfredi@dm.unipi.it
(2) LEM, Scuola Superiore Sant’Anna, Pisa
s.settepanella@sssup.it.
for a simply connected manifold M of dimension greater or equal than 3, the pure braid group $\pi_1(F_h(M))$ on h strings of M is trivial. This is not the case when the dimension of M is lower than 3 as, for example, the pure braid group of the sphere $S^2 \cong \mathbb{CP}^1$ with presentation:

$$\pi_1(F_h(\mathbb{CP}^1)) \cong \langle \alpha_{ij}, 1 \leq i < j \leq h - 1 \mid (YB3)_{h - 1}, (YB4)_{h - 1}, D^2_{h - 1} = 1 \rangle$$

where $D_k = \alpha_{12}(\alpha_{13}\alpha_{23})\alpha_{14}\alpha_{24}\alpha_{34} \cdots (\alpha_{1k}\alpha_{2k} \cdots \alpha_{k-1}k)$ and $(YB3)_n$ and $(YB4)_n$ are the Yang-Baxter relations (see [2] and [4]):

$$(YB3)_n: \quad \alpha_{ij}\alpha_{ik}\alpha_{jk} = \alpha_{ik}\alpha_{jk}\alpha_{ij} = \alpha_{jk}\alpha_{ij}\alpha_{ik}, \quad 1 \leq i < j < k \leq n,$$

$$(YB4)_n: \quad [\alpha_{kl}, \alpha_{ij}] = [\alpha_{il}, \alpha_{jk}] = [\alpha_{jl}, \alpha_{ik}^{-1}\alpha_{ik}\alpha_{jk}] = [\alpha_{jl}, \alpha_{kl}\alpha_{ik}\alpha_{kl}^{-1}] = 1,$$

where $1 \leq i < j < k < l \leq n$.

In a recent paper ([1]) Berceanu and Parveen introduced new configuration spaces. They stratify the classical configuration spaces $F_h(\mathbb{CP}^n)$ with complex submanifolds $F^i_h(\mathbb{CP}^n)$ defined as the ordered configuration spaces of all h points in \mathbb{CP}^n generating a projective subspace of dimension i. They prove that the fundamental groups $\pi_1(F^i_h(\mathbb{CP}^n))$ of these submanifolds are trivial except when $i = 1$ providing, in this last case, a presentation similar to those of the pure braid group of the sphere.

In a subsequent paper ([6]), authors apply similar techniques to the affine case, that is to the ordered configuration space $F^{i,n}_h = F^i_h(\mathbb{C}^n)$ of all h points in \mathbb{C}^n generating an affine subspace of dimension i. They prove that the spaces $F^{i,n}_h$ are simply connected except for $i = 1$ or $i = n = h - 1$ and, in the last cases, they provide a presentation of the fundamental groups $\pi_1(F^{i,n}_h)$.

In this paper we generalize the result in [1] to the Grassmannian manifold $Gr(k, n)$ parametrizing k-dimensional subspaces of \mathbb{C}^n. We define the i-th ordered configuration space $F^i_h(k, n)$ as the ordered configuration space of all distinct points H_1, \ldots, H_h in the Grassmannian $Gr(k, n)$ such that the sum $(H_1 + \cdots + H_h)$ is an i-dimensional space.

We prove that the i-th ordered configuration space $F^i_h(k, n)$ is (when non empty) a complex submanifold of $Gr(k, n)^h$ and we compute its dimension.

As a corollary, we prove that if $n \neq hk$ and $i = \min(n, hk)$ then the i-th ordered configuration space $F^i_h(k, n)$ has trivial fundamental group except when $n = 2$, that is:

$$\begin{align*}
\pi_1(F^\min(n,hk)_h(k, n)) &= 0 \quad \text{if } (k, n) \neq (1, 2) \quad (1.1) \\
\pi_1(F^1_1(1, 2)) &= \pi_1(F_2(\mathbb{CP}^1)).
\end{align*}$$
On the Configuration Spaces of Grassmannian Manifolds

As a consequence, the fundamental group of the i-th ordered configuration space $\mathcal{F}_h^i(n-1, n)$ of hyperplane arrangements of cardinality h vanishes except when $n = 2$.

Using a dual argument, we also get that the fundamental group of the ordered configuration space of all distinct k-dimensional subspaces H_1, \ldots, H_h in \mathbb{C}^n such that the intersection $(H_1 \cap \cdots \cap H_h)$ is an i-dimensional subspace is a simply connected manifold when $i = \max(0, n - hk)$, except when $n = 2$.

We conjecture that similar results to that obtained in [1] for projective spaces holds also for Grassmannian manifolds and the fundamental group of the i-th ordered configuration space $\mathcal{F}_h^i(k, n)$ vanishes except for low values of i. This will be the object of forthcoming publications.

2. Main Section

Let $Gr(k, n)$ be the Grassmannian manifold parametrizing k-dimensional subspaces of the n-dimensional complex space \mathbb{C}^n, $0 < k < n$, and $\mathcal{F}_h(Gr(k, n))$ be its ordered configuration spaces.

2.1. The spaces $\mathcal{F}_h^i(k, n)$

Let’s define the i-th ordered configuration space $\mathcal{F}_h^i(k, n)$ as the space of all distinct points H_1, \ldots, H_h in the Grassmannian $Gr(k, n)$ whose sum is an i-dimensional subspace of \mathbb{C}^n, i.e.

$$\mathcal{F}_h^i(k, n) = \{(H_1, \ldots, H_h) \in \mathcal{F}_h(Gr(k, n)) \mid \dim(H_1 + \cdots + H_h) = i\}.$$

It is easy to see that the following results hold:

1. if $h = 1$ then $\mathcal{F}_h^1(k, n)$ is empty unless $i = k$, in which case $\mathcal{F}_1^k(k, n) = Gr(k, n)$;

2. if $i = 1$ then $\mathcal{F}_h^1(k, n)$ is empty unless $k = h = 1$ and we get $\mathcal{F}_1^1(1, n) = \mathbb{C}P^{n-1}$;

3. for $h \geq 2$, $\mathcal{F}_h^i(k, n) \neq \emptyset$ if and only if $i \geq k + 1$ and $i \leq \min(hk, n)$;

4. for $i = hk \leq n$, then the h subspaces giving a point of $\mathcal{F}_h^{hk}(k, n)$ form a direct sum;

5. for $h \geq 2$, $\mathcal{F}_h(Gr(k, n)) = \prod_{i=2}^{n} \mathcal{F}_h^i(k, n)$;
6. for $h \geq 2$, the adjacency of the strata is given by

$$
\overline{F_i^h(k,n)} = F_i^h(k,n) \prod F_{i-1}^h(k,n) \prod \ldots \prod F_2^h(k,n).
$$

By above remarks, it follows that the case $h = 1$ is trivial, hence from now on, we will consider $h > 1$ (and hence $i > k$).

We want to show that $F_i^h(k,n)$ is (when non empty) a complex submanifold of $Gr(k,n)^h$ and compute its dimension. We need to briefly recall few easy facts and introduce some notations.

2.2. The determinantal variety

Let’s recall that the determinantal variety $D_r(m,m')$ is the variety of $m \times m'$ matrices with complex entries of rank less than or equal to $r \leq \min(m,m')$. It is an analytic (algebraic, in fact) variety of dimension $r(m + m' - r)$ whose set of singular points is given by those matrices of rank less than r. From now on, $D_r(m,m')^*$ will denote the set of non-singular points of the determinantal variety $D_r(m,m')$, that is the set of $m \times m'$ matrices of rank equal to r.

2.3. A system of local coordinates for $Gr(k,n)^h$

Let $V_0 \subset \mathbb{C}^n$ be a subspace of dimension $\dim V_0 = n - k$, then the set

$$
U_{V_0} = \{H \in Gr(k,n) \mid H \oplus V_0 = \mathbb{C}^n\}
$$

is an open dense subset of $Gr(k,n)$.

Let $B = \{w_1, \ldots, w_k, v_1, \ldots, v_{n-k}\}$ be a basis of \mathbb{C}^n such that $\{v_1, \ldots, v_{n-k}\}$ is a basis of V_0. We get a (complex) coordinate system on U_{V_0} as follows.

Let H be an element in U_{V_0}, then the affine subspace $V_0 + w_j$ intersects H in one point u_j for any $j = 1, \ldots, k$ and $\{u_1, \ldots, u_k\}$ form a basis of H. Hence H is uniquely determined by a $n \times k$ matrix of the form $\left(\begin{array}{c} I \\ A \end{array} \right)$, where I is the $k \times k$ identity matrix and A is the $(n-k) \times k$ matrix of the coordinates of $u_1 - w_1, \ldots, u_k - w_k$ with respect to vectors $\{v_1, \ldots, v_{n-k}\}$. The coefficients of A give complex coordinates in $U_{V_0} \cong \mathbb{C}^{k(n-k)}$.

Let (H_1, \ldots, H_h) be a point in $Gr(k,n)^h$, the open sets U_{H_1}, \ldots, U_{H_h} in the Grassmannian manifold $Gr(n-k,n)$ have non empty intersection, that is there exists an element $V_0 \in Gr(n-k,n)$ such that $V_0 \oplus H_j = \mathbb{C}^n$ for all
On the Configuration Spaces of Grassmannian Manifolds

$j = 1, \ldots, h$. Thus, $Gr(k, n)^{h}$ is covered by the open sets $U_{V_0}^h$ as V_0 varies in $Gr(n - k, n)$. Taking a basis as defined above, each element in $U_{V_0}^h$ is uniquely determined by a $n \times h k$ matrix of the form

$$
\begin{pmatrix}
I & I & \cdots & I \\
A_1 & A_2 & \cdots & A_h
\end{pmatrix}
$$

and the coefficients of (A_1, A_2, \ldots, A_h) give complex coordinates in $U_{V_0}^h \cong \mathbb{C}^{hk(n-k)}$.

2.4. A system of local coordinates for $F_i^h(k, n)$

In terms of the above coordinates, $(H_1, \ldots, H_h) \in U_{V_0}^h$ belongs to $F_i^h(k, n)$ if and only if $A_j \neq A_l$ when $j \neq l$ and rank

$$
\begin{pmatrix}
I & I & \cdots & I \\
A_1 & A_2 & \cdots & A_h
\end{pmatrix}
$$

$= i$. Let us remark that

\[
\text{rank}
\begin{pmatrix}
I & I & \cdots & I \\
A_1 & A_2 & \cdots & A_h
\end{pmatrix}
= \text{rank}
\begin{pmatrix}
I & I & \cdots & I \\
0 & A_2 - A_1 & \cdots & A_h - A_1
\end{pmatrix}
= k + \text{rank} (A_2 - A_1 \cdots A_h - A_1).
\]

Then the coefficients of $B_j = A_j - A_1$ are new coordinates, in which the intersection $U_{V_0} \cap F_i^h(k, n)$ corresponds, in $\mathbb{C}^{hk(n-k)}$, to the product $\mathbb{C}^{k(n-k)} \times D_{1-k}(n - k, hk - k)^*$ minus the closed sets given by $B_j = 0$ for $2 \leq j \leq h$ and by $B_j = B_l$ for $2 \leq j, l \leq h, j \neq l$. We get the following theorem.

Theorem 2.1. — The i-th ordered configuration space $F_i^h(k, n)$ is a complex submanifold of the Grassmannian manifold $Gr(k, n)$ of dimension

$$
d_i^h(k, n) = i(n - i) + hk(i - k). \quad (2.2)
$$

Equation (2.2) is an easy consequence of the equality:

$$
k(n - k) + (i - k)(n - k + hk - k - (i - k)) = i(n - i) + hk(i - k).
$$

Let us remark that the dimension $d_i^h(k, n)$ attains its maximum $hk(n - k)$ if and only if $i = n$ or $i = hk$. Hence $d_i^h(k, n)$ is a strictly increasing function of i when $i \leq \min(n, hk)$.

2.5. The fundamental group of $F_{h}^{\min(n,hk)}(k, n)$

The space $F_{h}^{\min(n,hk)}(k, n)$ is an open subset of the ordered configuration space $F_{h}(Gr(k, n))$ and all other (non void) $F_{h}^{j}(k, n)$ have strictly lower dimension. Moreover, if $i = n$ the difference of dimensions $d_i^h(k, n) - d_{i-1}^h(k, n)$
equals $1 + hk - n$ and if $i = hk$ it equals $1 + n - hk$. Then if $n \neq hk$, all (non void) $F_h^j(k,n)$ with $j < \min(n,hk)$ have real codimension at least 4 in $F_h(Gr(k,n))$. Then, if $n \neq hk$ and $i = \min(n,hk)$, the fundamental group of $F_h^j(k,n) = F_h(Gr(k,n)) \setminus F_h^{j-1}(k,n)$ is the same as the fundamental group of $F_h(Gr(k,n))$ (since, by the adjacency of the strata, the closure $F_h^{j-1}(k,n)$ is the finite union of complex subvarieties of $F_h(Gr(k,n))$ of real codimension at least 4).

Let us recall that the complex Grassmannian manifolds $Gr(k,n)$ are simply connected and have real dimension at least 4 except $Gr(1,2) = \mathbb{CP}^1$ and that for a simply connected manifold of real dimension at least 3 the pure braid groups vanish, i.e. $\pi_1(F_h(Gr(k,n))) = 0$ if (k,n) $\neq (1,2)$. We get the following corollary.

Corollary 2.2. — The fundamental group of the i-th ordered configuration space $F_i^h(k,n)$ vanishes if $n \neq hk$ and $i = \min(n,hk)$ except when $n = 2$ in which it is the pure braid group of the sphere.

2.6. The dual case

Let $Gr(k,n)^*$ be the Grassmannian manifold parametrizing k-dimensional subspaces in the dual space \mathbb{C}^n^*. Then we can define the i-th dual ordered configuration space $F_i^h(k,n)^*$ as

$$F_i^h(k,n)^* = \{(H_1, \ldots, H_h) \in F_h(Gr(k,n)^*) \mid \dim(H_1 \cap \cdots \cap H_h) = i\}.$$

The spaces $F_i^h(k,n)^*$ stratify the ordered configuration space $F_h(Gr(k,n)^*)$ of the Grassmannian manifold $Gr(k,n)^*$.

The annihilators define homeomorphisms $Ann: Gr(n-k,n) \to Gr(k,n)^*$ which induce homeomorphisms between the $(n-i)$th ordered configuration space $F_{h-i}^{n-i}(n-k,n)$ and the i-th dual ordered configuration space $F_i^h(k,n)^*$. As a consequence the spaces $F_{h}^{\max(0,n-hk)}(n-k,n)^*$ are simply connected manifolds except when $n = 2$. In this case the fundamental group is the pure braid group of the sphere.

2.7. i-th ordered configuration spaces of hyperplane arrangements

If $k = n - 1$ points in the ordered configuration space $F_h(Gr(n-1,n))$ are h-uple of hyperplanes in \mathbb{C}^n, i.e. ordered arrangements of hyperplanes. In this case, $h = 1$ implies $i = n - 1$ and the i-th ordered configuration space is the Grassmannian manifold, i.e. $F_1^{n-1}(n-1,n) = Gr(n-1,n)$. While $h > 1$ implies $i = n$, since the sum of two (different) hyperplanes is
the whole space \mathbb{C}^n, and the following equalities hold

$$F_{n}^{h}(n - 1, n) = F_{h}(Gr(n − 1, n)) = F_{h}(\mathbb{C}P^{n-1}).$$

Hence, the fundamental group of the i-th ordered configuration space of hyperplane arrangements $F_{h}^i(n - 1, n)$ vanishes except when $n = 2$. In this case it is the fundamental group of the sphere $\mathbb{C}P^1$.

In the dual case there are homeomorphisms $F_{h}^i(n - 1, n)^* \cong F_{h}^{n-i}(1, n)$ and fundamental groups of $F_{h}^{n-i}(1, n)$ are zero except if $i = n - 1$ (see [1]). Hence the space of h-uples of distinct hyperplanes in \mathbb{C}^n whose intersection has dimension equal to i is simply connected except if $i = n - 1$.

Acknowledges. — The second author gratefully acknowledge the support given to this research by the European Commission, within the 6th FP Network of Excellence “DIME - Dynamics of Institutions and Markets in Europe” and the Specific Targeted Research Project “CO3 - Common Complex Collective Phenomena in Statistical Mechanics, Society, Economics and Biology”

Bibliography