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Hyperplane arrangements and Milnor fibrations

Alexander I. Suciu(1)

ABSTRACT. — There are several topological spaces associated to a com-
plex hyperplane arrangement: the complement and its boundary manifold,
as well as the Milnor fiber and its own boundary. All these spaces are re-
lated in various ways, primarily by a set of interlocking fibrations. We use
cohomology with coefficients in rank 1 local systems on the complement of
the arrangement to gain information on the homology of the other three
spaces, and on the monodromy operators of the various fibrations.

RÉSUMÉ. — Étant donné un arrangement d’hyperplans, il y a plusieurs
espaces topologiques qu’on peut lui associer : le complémentaire et sa
variété bord, ainsi que la fibre de Milnor et son bord. Tous ces espaces
sont reliés, en premier lieu par des fibrations. On utilise la cohomologie
avec coefficients dans les systèmes locaux de rang 1 sur le complémentaire
d’un arrangement d’hyperplans pour étudier l’homologie des trois autres
espaces, et les opérateurs de monodromie des fibrations associées.
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1. Introduction

1.1. Arrangements of hyperplanes

This paper is mostly an expository survey, centered on the topology of
complements of hyperplane arrangements, their Milnor fibrations, and their
boundary structures. The presentation is loosely based on a set of notes for
a mini-course given at the conference “Arrangements in Pyrénées”, held in
Pau, France in June 2012. Although we expanded the scope of those notes,
and provided many more details and explanations, we made every effort to
maintain the original spirit of the lectures, which was to give a brisk, self-
contained introduction to the subject, and provide motivation for further
study.

An arrangement is a finite collection of hyperplanes in a finite-dimensio-
nal, complex vector space. There are various ways to understand the topol-
ogy of such an object. In this paper, we describe several topological spaces
associated to a hyperplane arrangement, all connected to each other by
means of inclusions, bundle maps, or covering projections. Associated to
these spaces, there is a plethora of topological invariants of an algebraic
nature: fundamental group and lower central series, Betti numbers and tor-
sion coefficients, cohomology ring and Massey products, characteristic and
resonance varieties, and so on. One of the main goals of the subject is to de-
cide whether a given invariant is combinatorially determined, and, if so, to
express it explicitly in terms of the intersection lattice of the arrangement.

As the title indicates, the focus of the paper is on the Milnor fibration
of the complement of a hyperplane arrangement. We use cohomology with
coefficients in rank 1 local systems on the complement to compute the ho-
mology groups of the Milnor fiber, with coefficients in a field not dividing the
number of hyperplanes, and determine the characteristic polynomial of the
monodromy operator acting on these homology groups. In the process, we
also show how to compute various homological invariants of the boundary
of the complement and the boundary of the Milnor fiber.
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1.2. The complement

Given an arrangement A in Cd+1, the most direct approach is to study
the complement, M = Cd+1\⋃H∈AH. The fundamental group of this space
can be computed algorithmically, using the braid monodromy associated
to a generic plane section. The cohomology ring of the complement was
computed by Brieskorn in [3]. His result shows that M is a formal space; in
particular, all rational Massey products vanish. In [48], Orlik and Solomon
gave a simple combinatorial description of the algebra H∗(M,Z): it is the
quotient of the exterior algebra on classes dual to the meridians, modulo a
certain ideal determined by the intersection lattice, L(A). A comprehensive
treatment of this topic can be found in [49].

Starting in the mid-to-late 1990s, the subject underwent a considerable
shift of emphasis towards the study of the cohomology jump loci of the
complement. These loci come in two basic flavors: the characteristic vari-
eties, which are the jump loci for cohomology with coefficients in complex,
rank one local systems, and the resonance varieties, which are the jump loci
for the homology of the cochain complexes arising from multiplication by
cohomology classes in H1(M,C).

Since the complement of the arrangement is a smooth, quasi-projective
variety, its characteristic varieties are finite unions of torsion-translates of
algebraic subtori of the character group Hom(π1(M),C∗). Since the com-
plement is a formal space, the resonance varieties of M coincide with the
tangent cone at the origin to the corresponding characteristic varieties, and
thus are finite unions of rationally defined linear subspaces of H1(M,C).

For the degree-1 resonance varieties, these subspaces were described com-
binatorially by Libgober and Yuzvinsky [40], and later by Falk and Yuzvin-
sky [25], solely in terms of multinets on sub-arrangements of A. In general,
though, the degree-1 characteristic varieties of an arrangement may contain
components which do not pass through the origin, and it is still an open
problem whether such components are combinatorially determined.

The characteristic and resonance varieties of an arrangement comple-
ment may also be defined for (algebraically closed) fields of positive char-
acteristic. The nature of these varieties is less predictable, though. For in-
stance, as noted in [43, 58, 24], both the tangent cone formula and the
linearity of the resonance components fail in this setting. Furthermore, as
shown in [42], non-vanishing Massey triple products may appear in positive
characteristic.
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1.3. The Milnor fibration

A more refined topological invariant of an arrangement A is the Milnor
fibration of its complement. For each hyperplane H ∈ A, choose a linear
form fH whose kernel is H. The polynomial Q =

∏
H∈A fH , then, is ho-

mogeneous of degree n = |A|. As shown by Milnor [45] in a more general
context, the restriction Q:M → C∗ is a smooth fibration. The typical fiber,
F = Q−1(1), is called the Milnor fiber of the arrangement. We give a topo-
logical description of this fibration, building on previous joint work with
Cohen and Denham [8, 6, 14].

It turns out that F is a regular, cyclic n-fold cover of the projectivized
complement, U = P(M). The classifying homomorphism for this cover,
δ:π1(U) → Zn, takes each meridian generator to 1. Embedding Zn into
C∗ by sending 1 to a primitive n-th root of unity, we may view δ as a char-
acter on π1(U). The relative position of this character with respect to the
characteristic varieties of U determines the Betti numbers of the Milnor fiber
F , as well as the characteristic polynomial of the algebraic monodromy.

More generally, given multiplicities mH � 1 for each hyperplane H ∈ A,
we consider the Milnor fibration of the multi-arrangement (A,m), defined
by the homogeneous polynomial Q(A,m) =

∏
H∈A f

mH

H . The Milnor fiber
of this polynomial is now a regular, N -fold cyclic cover of the complement,
where N is the sum of the multiplicities. Not too surprisingly, the Betti
numbers and other topological invariants of the Milnor fiber F (A,m) vary
with the choice of m.

Although the complement of an arrangement and its Milnor fiber share
some common features (for instance, they are both smooth, quasi-projective
varieties), there are some striking differences between the two. For one, the
homology groups of the Milnor fiber need not be torsion-free, as recent exam-
ples from [14] show. For another, the Milnor fiber may have non-vanishing
Massey products over Q, and thus be non-formal, as examples from [68]
show. Finally, as noted in [19], the cohomology jump loci of the Milnor fiber
may differ from those of the complement. All these novel qualitative fea-
tures are related to the nature of multinets supported by the arrangement
in question, or one of its sub-arrangements.

1.4. Boundary structures

Both the projectivized complement and the Milnor fiber of an arrange-
ment are non-compact manifolds (without boundary). Replacing these spaces
by their compact versions allows us to study the behavior of the complement
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and the Milnor fibration as we approach the boundary, thereby revealing
otherwise hidden phenomena.

Cutting off a regular neighborhood of the arrangement A yields a com-
pact manifold with boundary, U , onto which U deform-retracts. The bound-
ary manifold of the arrangement, then, is the smooth, compact, orientable
(2d − 1)-dimensional manifold ∂U . The homology groups are torsion-free,
and the ring H∗(∂U,Z) is functorially determined by H∗(U,Z), via a “dou-
bling” construction.

Especially interesting is the case d = 2, when the manifold ∂U is a
graph-manifold, in the sense of Waldhausen. Following the approach from
[11, 12], we describe the fundamental group, the cohomology ring, and the
cohomology jump loci of ∂U in terms of the underlying graph structure,
which in turn can be read off the intersection lattice of A. Yet significant
differences with the complement exist. For one, the boundary manifold is
never formal, unlessA is a pencil or a near-pencil. For another, the resonance
varieties of ∂U may have non-linear components.

Intersecting now the Milnor fiber with a ball in Cd+1 centered at the
origin yields a compact manifold with boundary, F , onto which F deform-
retracts. The boundary of the Milnor fiber, then, is the smooth, compact,
orientable (2d− 1)-dimensional manifold ∂F . We observe here that ∂F is a
regular, cyclic n-fold cover of ∂U , where n = |A|, and identify a classifying
homomorphism for this cover.

When d = 2, the boundary of F is a 3-dimensional graph-manifold.
Using work of Némethi and Szilárd [46], we give a formula for the charac-
teristic polynomial of the monodromy operator acting on H1(∂F ,C), purely
in terms of the Möbius function of L�2(A). We also show that the manifold
∂F is never formal, unless A is a pencil or a near-pencil, and point out that
H1(∂F ,Z) typically has non-trivial n-torsion.

1.5. Organization of the paper

The paper is divided roughly into three parts, following the approach
outlined so far in this introduction.

The first part deals with the complement of a hyperplane arrangement
A. In §2, we discuss the combinatorics of A, as it relates to the cohomology
ring and resonance varieties of the complement, with special emphasis on
multinets. In §3, we study the topology of M(A), as reflected in the funda-
mental group and characteristic varieties, with special emphasis on orbifold
fibrations and translated subtori in those varieties.
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The second part covers the Milnor fibration defined by a multi-arrange-
ment. In §4 we set up in all detail the regular covers into which the corre-
sponding Milnor fiber fits. In §5, we study the homology of the Milnor fiber
and the monodromy action, and discuss the formality properties and the
cohomology jump loci of the Milnor fiber.

The third part deals with the boundary structures associated to an ar-
rangement. In §6 we discuss the boundary manifold of an arrangement, while
in §7 we discuss the boundary of the Milnor fiber.

Sprinkled throughout the text there are about two dozen open problems.
Most of these problems have been raised before; some are well-known, but
some appear here for the first time.

We collect the necessary background material in three appendices at the
end. Appendix A serves as a quick introduction to the cohomology jump
loci of a space, and some of their properties. Appendix B deals with the
homology groups and jump loci of finite, regular abelian covers of a space.
Finally, Appendix C discusses formality properties of spaces, especially as
they pertain to finite covers and jump loci.

1.6. Acknowledgements

I wish to thank the organizers of the Arrangements in Pyrénées confer-
ence for giving me the opportunity to lecture in such a wonderful setting,
and for their support and hospitality. I also wish to thank the University of
Sydney for its support and hospitality while most of this paper was written
up.

2. The complement of an arrangement. I

In this section we describe the cohomology ring and the resonance vari-
eties of the complement of a complex hyperplane arrangement.

2.1. Hyperplane arrangements

An arrangement of hyperplanes is a finite set A of codimension-1 linear
subspaces in a finite-dimensional, complex vector space Cd+1. Throughout,
we will assume that the arrangement is central, that is, all the hyperplanes
pass through the origin. The combinatorics of the arrangement is encoded
in its intersection lattice, L(A); this is the poset of all intersections of A,
ordered by reverse inclusion, and ranked by codimension. The arrangement
is said to be essential if the intersection of all flats in L(A) is {0}.
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For each hyperplane H ∈ A, let fH :Cd+1 → C be a linear form with
kernel H. The product

Q(A) =
∏

H∈A
fH , (2.1)

then, is a defining polynomial for the arrangement, unique up to a (non-
zero) constant factor. Notice that Q(A) is a homogeneous polynomial of
degree equal to |A|, the cardinality of the set A.

On occasion, we will allow multiplicities on the hyperplanes. A multi-
arrangement is a pair (A,m), where A is a hyperplane arrangement, and
m:A → Z is a function with mH � 1 for each H ∈ A. We may also assign
multiplicities to subspaces X ∈ L(A), by letting mX =

∑
H�X mH . A

defining polynomial for the multi-arrangement (A,m) is the homogeneous
polynomial

Qm(A) =
∏

H∈A
fmH

H . (2.2)

2.2. The complement

The main topological invariant associated to an arrangement A is its
complement, M(A) = Cd+1 \⋃

H∈AH. This is a smooth, quasi-projective
variety, with the homotopy type of a connected, finite CW-complex of di-
mension d+ 1.

Example 2.1. — The Boolean arrangement Bn consists of the coordinate
hyperplanes Hi = {zi = 0} in Cn. The intersection lattice is the Boolean
lattice of subsets of {0, 1}n, ordered by reverse inclusion, while the comple-
ment is the complex algebraic torus (C∗)n.

Example 2.2. — The reflection arrangement of type An−1, also known
as the braid arrangement, consists of the diagonal hyperplanes
Hij = {zi − zj = 0} in Cn. The intersection lattice is the lattice of par-
titions of [n] = {1, . . . , n}, ordered by refinement. The complement is the
configuration space F (C, n) of n ordered points in C. In the early 1960s,
Fox and Neuwirth showed that π1(F (C, n)) = Pn, the pure braid group on
n strings, while Neuwirth and Fadell showed that F (C, n) is aspherical.

The group C∗ acts freely on Cd+1\{0} via ζ ·(z0, . . . , zd) = (ζz0, . . . , ζzd).
The orbit space is the complex projective space of dimension d, while the
orbit map, π:Cd+1 \ {0} → CPd, z �→ [z], is the Hopf fibration. The
set P(A) = {π(H):H ∈ A} is an arrangement of codimension 1 projec-
tive subspaces in CPd; its complement, U(A), coincides with the quotient
P(M(A)) = M(A)/C∗.
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The Hopf map restricts to a bundle map, π(A):M(A) → U(A), with
fiber C∗. Fixing a hyperplane H ∈ A, we see that π(A) is also the restriction
of the bundle map π:Cd+1 \ H → CPd \ π(H) ∼= Cd. Clearly, this latter
bundle is trivial; hence, we have a diffeomorphism

M(A) ∼= U(A)× C∗. (2.3)

Example 2.3. — Let Pn be the arrangement of n+ 1 lines in C2 defined
by the polynomial Q = xn+1− yn+1. Then P(Pn) consists of n+1 points in
CP1. Thus, U(Pn) ∼= C \ {n points}, and so M(Pn) is homotopy equivalent
to S1 ×∨n

S1.

2.3. Cohomology ring

The (integral) cohomology ring of a hyperplane arrangement complement
was computed by Brieskorn in [3], building on pioneering work of Arnol’d
on the cohomology ring of the pure braid group. In [48], Orlik and Solomon
gave a simple description of this ring, solely in terms of the intersection
lattice of the arrangement.

Let A be an arrangement, with complement M = M(A). Fix a lin-
ear order on A, and let E be the exterior algebra over Z with generators
{eH | H ∈ A} in degree 1. Next, define a differential ∂:E → E of degree
−1, starting from ∂(1) = 0 and ∂(eH) = 1, and extending ∂ to a linear
operator on E, using the graded Leibniz rule ∂(ab) = ∂(a)b+(−1)deg aa∂(b)
for homogeneous elements a and b. Finally, let I be the ideal of E generated
by ∂eB, where B runs through all sub-arrangements of A which are not in
general position, and eB =

∏
H∈B eH . Then H∗(M,Z) is isomorphic, as a

graded Z-algebra, to the quotient ring A = E/I.

Under this isomorphism, the basis {eH} of A1 is dual to the basis of
H1(M,Z) given by the meridians {xH} around the hyperplanes, oriented
compatibly with the complex orientations on Cd+1 and the hyperplanes.
Furthermore, all the homology groups of M are torsion-free; the generating
function for their ranks is given by

Poin(M(A), t) =
∑

X∈L(A)

µ(X)(−t)rank(X), (2.4)

where µ:L(A) → Z is the Möbius function of the intersection lattice, given
inductively by µ(Cd+1) = 1 and µ(X) = −∑

Y �X µ(Y ). For details on all
this, we refer to [49].

Recall that a finite CW-complex is formal if its rational cohomology
ring is quasi-isomorphic to its Sullivan’s algebra of polynomial differen-
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tial forms (more details can be found in Appendix C). It follows from
Brieskorn’s work that the complement of a hyperplane arrangement A is
formal, in a very strong sense. Indeed, for each hyperplane H ∈ A, the 1-
form ωH = 1

2πid log fH on Cd+1 restricts to a 1-form on M(A). Let D be the
subalgebra of the de Rham algebra Ω∗dR(M(A)) generated over R by these
1-forms. Then, as shown in [3], the correspondence ωH �→ [ωH ] induces an
isomorphism D → H∗(M(A),R), and this readily implies the formality of
M(A).

Similar considerations apply to the homology and cohomology of the
projectivized complement, U(A). In particular, if we let n = |A| be the
number of hyperplanes, then H1(M(A),Z) = Zn, with canonical basis the
set {xH : H ∈ A}, and

H1(U(A),Z) = Zn/
( ∑

H∈A
xH

) ∼= Zn−1. (2.5)

We will denote by xH the image of xH in H1(U(A),Z).

2.4. Resonance varieties

Let kk be an algebraically closed field. The above-mentioned isomor-
phisms allow us to identify H1(M(A), kk) with the affine space kkn, and
H1(U(A), kk) with the affine space

Akk(A) = {x ∈ kkn | x1 + · · ·+ xn = 0} ∼= kkn−1. (2.6)

Let Rq
s(M(A), kk) be the resonance varieties of the arrangement com-

plement. From the general theory reviewed in §A.2, we know that each of
these sets is a homogeneous subvariety of kkn, and that Rq

s(M(A), kk) ⊆
Rq

1(M(A), kk), for all s � 1. The diffeomorphism (2.3), together with the
product formula (A.6) yields an identification

Rq
1(M(A), kk) ∼= Rq

1(U(A), kk) ∪Rq−1
1 (U(A), kk). (2.7)

Thus, we may view the resonance varieties of A as lying in the affine space
Akk(A).

If B ⊂ A is a proper sub-arrangement, the inclusion M(A) ↪→M(B) in-
duces an epimorphism on fundamental groups. By Proposition A.1, the in-
duced homomorphism in cohomology restricts to an embeddingR1

s(B, kk) ↪→
R1

s(A, kk). The irreducible components of R1
s(A, kk) that lie in the image of

such an embedding are called non-essential; the remaining components are
called essential.
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The description of the Orlik–Solomon algebra given in §2.3 makes it clear
that the resonance varieties Rq

s(M(A), kk) depend only on the intersection
lattice, L(A), and on the characteristic of the field kk. A basic problem in
the subject is to find concrete formulas making this dependence explicit.
We will briefly discuss the positive characteristic case in §2.8, but for now
we will concentrate on the case when char(kk) = 0 and q = 1.

The complex resonance varieties Rq
1(M(A),C) were first defined and

studied by Falk in [23]. Soon after, Cohen–Suciu [10], Libgober [35], and
Libgober–Yuzvinsky [40] showed that the varieties Rs(A) = R1

s(M(A),C)
consist of linear subspaces of the vector space A(A) = AC(A), and analyzed
the nature of these subspaces. Let us summarize those results.

Theorem 2.4. — For a hyperplane arrangement A, the following hold.

1. Each irreducible component of R1(A) is either {0}, or a linear sub-
space of A(A) of dimension at least 2.

2. Two distinct components of R1(A) meet only at 0.

3. Rs(A) is either {0}, or the union of all components of R1(A) of
dimension greater than s.

2.5. Multinets

An elegant method, due to Falk and Yuzvinsky [25], describes explicitly
the linear subspaces comprising R1(A). Before proceeding, we need to intro-
duce the relevant combinatorial notion, following the treatment from [25].

Definition 2.5. — A multinet M on an arrangement A consists of the
following data:

i. An integer k � 3, and a partition of A into k subsets, say, A1, . . . ,Ak.

ii. An assignment of multiplicities on the hyperplanes, m:A → N.

iii. A subset X ⊆ L2(A), called the base locus.

Moreover, the following conditions must be satisfied:

1. There is an integer ' such that
∑

H∈Ai mH = ', for all i ∈ [k].

2. For any two hyperplanes H and H ′ in different classes, the flat H∩H ′
belongs to X .

3. For each X ∈ X , the sum nX :=
∑

H∈Ai:H⊃X mH is independent
of i.
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4. For each i ∈ [k], the space
( ⋃

H∈Ai H
)
\ X is connected.

We say that a multinet as above has k classes and weight ', and refer to it
as a (k, ')-multinet. Without essential loss of generality, we may assume that
gcd{mH | H ∈ A} = 1. If all the multiplicities are equal to 1, the multinet is
said to be reduced. If, furthermore, every flat in X is contained in precisely
one hyperplane from each class, the multinet is called a (k, ')-net.

For any multinet on A, the base locus X is determined by the partition
(A1, . . . ,Ak). Indeed, for each i �= j, we have that

X = {H ∩H ′ | H ∈ Ai, H
′ ∈ Aj}. (2.8)

The next lemma (also from [25]) is an easy consequence of this observation,
and Definition 2.5. For completeness, we include a proof.

Lemma 2.6 ([25]). — For any (k, ')-multinet, the following identities
hold:

1.
∑

H∈AmH = k'.

2.
∑

X∈X :H⊃X nX = ', for any H ∈ A.

3.
∑

X∈X n
2
X = '2.

Proof. — Clearly,

∑

H∈A
mH =

k∑

i=1

∑

H∈Ai
mH = k'. (2.9)

To verify the second identity, let i ∈ [k] be such that H ∈ Ai; then, for
any j �= i, we have

' =
∑

H′∈Aj
mH′ =

∑

X∈X :H⊃X

∑

H′∈Aj :H′⊃X
mH′ =

∑

X∈X :H⊃X
nX . (2.10)

Finally, for any i �= j,

'2 =
∑

H∈Ai
mH

∑

H′∈Aj
mH′ =

∑

H∈Ai,H′∈Aj
mHmH′ (2.11)

=
∑

H∈Ai,H′∈Aj

∑

X∈X :H⊃X,H′⊃X
mHmH′

=
∑

H∈Ai

∑

X∈X :H⊃X
mHnX =

∑

X∈X
n2
X ,

and this completes the proof. �
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Example 2.7. — Let X ∈ L2(A), and assume that the sub-arrangement
AX = {H ∈ A | H ⊃ X} has size at least 3. We may then form a net on AX

by assigning to each hyperplane the multiplicity 1, putting one hyperplane
in each class, and setting X = {X}.

Figure 1. — A (3, 2)-net on the A3 arrangement

Example 2.8. — Let A be a generic 3-section of the reflection arrange-
ment of type A3, defined by the polynomial Q(A) = (x + y)(x − y)(x +
z)(x−z)(y+z)(y−z). Figure 1 shows a plane section of A, with the hyper-
planes labeled by their defining linear forms. Ordering the hyperplanes as
the factors of Q(A), the flats in L2(A) may be labeled as 136, 145, 235, and
246. The (3, 2)-net on A depicted in the picture corresponds to the partition
(12|34|56); the base locus X consists of the triple points indicated by dark
circles.

Example 2.9. — Let A be the reflection arrangement of type B3, defined
by the polynomial Q(A) = xyz(x2 − y2)(x2 − z2)(y2 − z2). Figure 2 shows
a plane section of A, together with a (3, 4)-multinet on it.

The next theorem, which combines results of Pereira–Yuzvinsky [55] and
Yuzvinsky [66], summarizes what is known about the existence of non-trivial
multinets on arrangements.

Theorem 2.10 Let (A1, . . . ,Ak) be a multinet on A, with multiplicity
vector m and base locus X .

1. If |X | > 1, then k = 3 or 4.

2. If there is a hyperplane H ∈ A such that mH > 1, then k = 3.
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Figure 2. — A (3, 4)-multinet on the B3 arrangement

Although infinite families of multinets with k = 3 are known, only one
multinet with k = 4 is known to exist: the (4, 3)-net on the Hessian arrange-
ment, which we will discuss in Example 2.15. In fact, it is a conjecture of
Yuzvinsky [67] that the only (4, ')-multinet is the Hessian (4, 3)-net.

2.6. Resonance and multinets

We now return to the (degree 1) complex resonance varieties of a hyper-
plane arrangement A. Recall that R1(A) = R1

1(M(A),C) is a subvariety of
the affine space A(A) = {x ∈ C|A| | ∑

H∈A xH = 0}, consisting of linear
subspaces meeting only at the origin. Let us describe these subspaces in a
concrete way.

Given a multinet M on A, with parts (A1, . . . ,Ak) and multiplicity
vector m, set ui =

∑
H∈Ai mHeH for each 1 � i � k, and put

PM = span{u2 − u1, . . . , uk − u1}. (2.12)

By construction, PM is a linear subspace of A(A). As shown in [25, Theorem
2.4], this subspace lies inside R1(A) and has dimension k − 1.

Now suppose there is a sub-arrangement B ⊂ A which supports a multi-
net M with k parts. By the above, the linear space PM lies inside R1(B).
By the discussion from §2.4, the inclusion M(A) ↪→ M(B) induces an em-
bedding R1(B) ↪→ R1(A). Thus, PM is a linear subspace of R1(A), of
dimension k− 1. Conversely, it is shown in [25, Theorem 2.5] that all (non-
zero) irreducible components of R1(A) arise in this fashion.
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Summarizing the above discussion, we have the following description of
the first resonance variety of an arrangement.

Theorem 2.11 ([25]). — The positive-dimensional, irreducible compo-
nents of R1(A) are in one-to-one correspondence with the multinets on sub-
arrangements of A, and so

R1(A) = {0} ∪
⋃

B⊂A

⋃

M a multinet on B
PM.

Using now Theorem 2.4, part 3., we find that

Rs(A) = {0} ∪
⋃

B⊂A

⋃

M a multinet on B
with at least s+2 parts

PM. (2.13)

2.7. Local and non-local components

The simplest components of R1(A) arise in the following fashion. Let X
be a rank 2 flat lying at the intersection of at least 3 hyperplanes. Recall
from Example 2.7 that X determines a net on the sub-arrangement AX

consisting of those hyperplanes in A that contain X. The corresponding
component of R1(A),

PX =
{
x ∈ A(A)

∣∣ ∑

H⊃X
xH = 0 and xH = 0 if H �⊃ X

}
, (2.14)

has dimension |AX | − 1, and is called a local component.

If |A| � 5, then all components of R1(A) are local. For |A| � 6, though,
the resonance variety R1(A) may have non-local components. It follows
from Theorems 2.10 and 2.11 that any such component must have dimension
either 2 or 3.

Example 2.12. — Let A be the braid arrangement from Example 2.8.
The variety R1(A) ⊂ C6 has 4 local components, corresponding to the flats
136, 145, 235, 246, and one non-local component, corresponding to the net
M indicated in Figure 1:

P136 = {x1 + x3 + x6 = x2 = x4 = x5 = 0},
P145 = {x1 + x4 + x5 = x2 = x3 = x6 = 0},
P235 = {x2 + x3 + x5 = x1 = x4 = x6 = 0},
P246 = {x2 + x4 + x6 = x1 = x3 = x5 = 0},
PM = {x1 + x3 + x6 = x1 − x2 = x3 − x4 = x5 − x6 = 0}.

Since all these components are 2-dimensional, R2(A) = {0}.

– 430 –



Hyperplane arrangements and Milnor fibrations

Example 2.13. — Let A be the B3-arrangement from Example 2.9. Or-
dering the hyperplanes as the factors of the defining polynomial, the multi-
net M indicated in Figure 2 has associated partition (167|289|345).

The variety R1(A) ⊂ C9 has 7 local components, corresponding to 4
triple points and 3 quadruple points, 11 components corresponding to braid
sub-arrangements, and one essential, 2-dimensional component, correspond-
ing to the above multinet,

PM = {x1 = x6 = x7, x2 = x8 = x9, x3 = x4 = x5, x1 + x2 + x3 = 0}.

Figure 3. — The Ceva(3) matroid, together with a (3, 3)-net

Example 2.14. — Let A be the Ceva(3) arrangement, also known as the
monomial arrangement of type A(3, 3, 3), associated to the complex reflec-
tion group G(3, 3, 3), and defined by the polynomial Q(A) = (x3− y3)(y3−
z3)(x3 − z3). Figure 3 shows the corresponding matroid, denoted AG(2, 3)
in [50].

The resonance variety R1(A) ⊂ C9 has 12 local components, corre-
sponding to the triple points, and 4 essential components corresponding
to the (3, 3)-nets defined by the partitions (123|456|789), (147|258|369),
(159|267|348), and (168|249|357). The first of these nets is depicted in
Figure 3.

The next example describes the only arrangement for which non-local
components of dimension 3 are known to occur.

Example 2.15. — Let A be the Hessian arrangement in C3, also known
as the monomial arrangement of type A(3, 1, 3) associated to the complex
reflexion group of type G(3, 1, 3), and defined by the polynomial Q(A) =
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xyx(x3 − y3)(x3 − z3)(y3 − z3). The projective configuration consists of 12
projective lines meeting at 9 quadruple points and 12 double points; each
line contains 3 quadruple points and 2 double points. Figure 4 shows the
corresponding matroid, which is obtained from the projective plane over
Z3 (also known as the PG(2, 3) matroid, cf. [50]) by deleting a point. The
resonance varietyR1(A) has 9 local components and a single, 3-dimensional,
essential component, corresponding to the (4, 3)-net depicted in Figure 4.

Figure 4. — The Hessian matroid, together with a (4, 3)-net

2.8. Resonance in positive characteristic

The varieties R1
s(M(A), kk) over fields kk of characteristic p > 0 were first

defined and studied by Matei and Suciu in [43], and further investigated by
Falk in [24]. As illustrated in the next few examples, all three properties
from Theorem 2.4, which hold over kk = C, fail in this setting.

Example 2.16. — Let A be the realization of the non-Fano plane, ob-
tained from the B3 arrangement from Figure 2 by deleting the planes
x = 0 and y = 0, and order the hyperplanes as the factors of Q(A) =
z(x+ y)(x− y)(x+ z)(x− z)(y + z)(y − z). The variety R1(A) has 6 local
components corresponding to triple points, and 3 components arising from
braid sub-arrangements, but no essential components.

Now let kk = F2. Then, as noted in [43], the variety R1
1(M(A), kk) ⊂

Akk(A) has a single non-local component, defined by the equations x1 +x4 +
x5 = x1 + x6 + x7 = x2 + x5 + x6 = x3 + x5 + x7 = 0, while R1

2(M(A), kk)
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has a single, 1-dimensional component, defined by the equations x4 = x5 =
x6 = x7 and x1 = x2 = x3 = 0. Thus, property 3. fails.

It should be noted that the analogue of the tangent cone formula (C.3)
also fails in this case. Indeed, a computation from [58] shows that
V1

2 (M(A), kk) = {1}; thus, the tangent cone to this variety is {0}, which
is is strictly included in R1

2(M(A), kk).

Example 2.17. — Let A be the arrangement obtained by deleting the
plane z = 0 from the B3 arrangement, and let kk = F2. Then, as shown in
[24], the variety R1

1(M(A), kk) has two distinct components which intersect
outside 0. Thus, property 2. fails.

Example 2.18. — Let A be the Hessian arrangement from Example 2.15,
and let kk = F3. Then, as shown in [24], the variety R1

1(M(A), kk) has a
component which is isomorphic to an irreducible cubic hypersurface in kk5.
Thus, property 1. fails.

Remark 2.19. — In [42], Matei uses the resonance varietiesR1
1(M(A), kk)

over a field kk of characteristic an odd prime p to detect non-vanishing
Massey products in the cohomology ring H∗(M(A), kk) of certain arrange-
ments A. The simplest such example is the Hessian arrangement from Ex-
ample 2.15, for which p = 3.

These examples and the above remark raise a natural question.

Problem 2.20. — Given an arrangement A, find the primes p (if any)
for which M(A) is not kk-formal, over a field kk of characteristic p.

3. The complement of an arrangement. II

In this section we describe the fundamental group and the characteristic
varieties of the complement of a complex hyperplane arrangement.

3.1. Fundamental group

As usual, let A be a hyperplane arrangement in Cd+1. The complement
M(A) is a path-connected space. Thus, we may fix a basepoint x0 ∈M(A),
and consider the fundamental group π1(M(A), x0).

For each hyperplane H ∈ A, pick a meridian curve about H, oriented
compatibly with the complex orientations on Cd+1 andH, and let xH denote
the based homotopy class of this curve, joined to the basepoint by a path
in M(A). By the van Kampen theorem, then, the group π1(M(A), x0) is
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generated by the set {xH : H ∈ A}. An explicit presentation for this group
can be obtained via the braid monodromy algorithm from [9]. Let us briefly
describe this algorithm.

Let A′ be a generic two-dimensional section of A. By the Lefschetz-
type theorem of Hamm and Lê, the inclusion M(A′) →M(A) between the
respective complements induces an isomorphism on fundamental groups.
Thus, for the purpose of computing fundamental groups, we may as well
replace A by A′.

So let A = {'1, . . . , 'n} be an arrangement of affine lines in C2. Let
v1, . . . , vs be the intersection points of the lines. If v = 'i1 ∩ . . . ∩ 'ir is
one such intersection point, write I = (i1, . . . , ir) for the corresponding
increasingly ordered tuple, and let AI be the braid in the pure braid group
Pn which performs a full twist on the strands corresponding to I, leaving
the other strands fixed. There are then braids δ1, . . . , δs in the full braid
group Bn such that the arrangement group has presentation

π1(M(A)) = 〈x1, . . . , xn | δ−1
q AIsδq(xi) = xi for i ∈ Iq\max(Iq) and q ∈ [s]〉.

(3.1)

Clearly, this is a commutator-relators presentation. Furthermore, the
presentation is minimal, in that the number of generators equals b1(M(A)),
and the number of relators equals b2(M(A)).

If A is the complexification of a real arrangement, the conjugating braids
δq may be obtained by a procedure that goes back to [28]. Each vertex set
Iq gives rise to a partition [n] = I ′q ∪ Iq ∪ I ′′q into lower, middle, and upper
indices. Let Jq = {i ∈ I ′′q | min Iq < i < max Iq}. Then δq is the subword of
the full twist A[n] given by

δq =
∏

i∈Iq

∏

j∈Jq
Aji. (3.2)

In the general case, the braids δq can be read off a “braided wiring
diagram” associated to the arrangement, see [9] for further details and ref-
erences.

Remark 3.1. — In work from the early 1990s that appeared in [56], Ryb-
nikov constructed a pair of arrangements, A+ and A−, both realizations of
the same matroid, for which π1(M(A+)) �∼= π1(M(A−)). Thus, the fun-
damental group of an arrangement complement is not determined by the
intersection lattice, in general.
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Remark 3.2. — Nevertheless, if G = π1(M(A)) is an arrangement group,
the ranks of the associated graded Lie algebra, φk = rank(grk(G)), are
combinatorially determined, due to the formality of M(A). Moreover, as
shown in [51], the ranks of the Chen Lie algebra, θk = rank(grk(G/G

′′)), are
also combinatorially determined. As observed in [58], there are interesting
connections between the Chen ranks of the group G and the dimensions of
the components of the resonance variety R1(A). For a recent survey of these
topics, we refer to [13].

3.2. The universal abelian cover

Returning to the general situation, let A be an essential arrangement
in Cd+1. Fix an ordering of the hyperplanes, say, A = {H1, . . . , Hn}, and
choose linear forms fi:Cd+1 → C with ker(fi) = Hi. Assembling these forms
together, we obtain an injective linear map

ι(A):Cd+1 → Cn, z �→ (f1(z), . . . , fn(z)). (3.3)

Now let Bn be the Boolean arrangement in Cn, and identify M(Bn)
with (C∗)n. Recall that z ∈ Hi if and only if fi(z) = 0; thus, the map ι(A)
restricts to an inclusion ι(A):M(A) ↪→M(Bn). Consequently, we may view
the complement M(A) as a linear slice of the complex n-torus:

M(A) = ι(A)(Cd+1) ∩ (C∗)n. (3.4)

Clearly, the map ι(A):M(A) → (C∗)n is equivariant with respect to the
diagonal action of C∗ on both source and target. Thus, ι(A) descends to a
map ι(A):M(A)/C∗ ↪→ (C∗)n/C∗, which defines an embedding ι(A):U(A)
↪→ (C∗)n−1.

Lemma 3.3 ([14]). — Let A = {H1, . . . , Hn} be a hyperplane arrange-
ment. Then,

1. The inclusion ι(A):M(A) ↪→ (C∗)n is a classifying map for the uni-
versal abelian cover M(A)ab →M(A).

2. The inclusion ι(A):U(A) ↪→ (C∗)n−1 is a classifying map for the
universal abelian cover U(A)ab → U(A).

Proof. — We start with the first statement. Set ι = ι(A). Since (C∗)n
is a classifying space for the group π1(M(A))ab = Zn, it is enough to to
check that the induced homomorphism, ι�:π1(M(A)) → Zn, coincides with
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the abelianization map ab:π1(M(A)) → π1(M(A))ab. By naturality of the
Hurewicz homomorphism, we have a commuting diagram

(3.5)

Plainly, the homomorphism ι∗ takes each meridian xH inH1(M(A),Z) =
Zn to the corresponding meridian in H1(M(Bn),Z) = Zn. Hence, in these
meridian bases, the map ι∗:Zn → Zn is the identity map, and we are done.

For the second statement, recall from (2.5) that H1(U(A),Z) = Zn/( ∑
H∈A xH

)
. An argument as above shows that ι�(A):π1(U(A)) →

Zn/(1, . . . , 1) is the abelianization map, and this ends the proof. �

3.3. Characteristic varieties

Let G = π1(M(A)) and G = π1(U(A)) be the fundamental groups of
the complement and the projectivized complement, respectively. Let kk be
an algebraically closed field. The isomorphism H1(M(A),Z) ∼= Zn allows
us to identify the character group Hom(G, kk∗) with the algebraic torus
(kk∗)n. Similarly, the isomorphism H1(U(A),Z) ∼= Zn/(1, . . . , 1) allows us
to identify the character group Hom(G, kk∗) with the algebraic torus

Tkk(A) = {t ∈ (kk∗)n | t1 · · · tn = 1} ∼= (kk∗)n−1. (3.6)

Let Vq
s (M(A), kk) be the characteristic varieties of the arrangement com-

plement. From the general theory reviewed in §A.1, we know that each set
Vq
s (M(A), kk) is a Zariski closed subset of the algebraic torus (kk∗)n. The

diffeomorphism (2.3), together with the product formula (A.3) yields an
identification Vq

1 (M(A), kk) ∼= Vq
1 (U(A), kk) ∪ Vq−1

1 (U(A), kk). In particular,
we may view the characteristic varieties of A as lying in the torus (3.6).

Example 3.4. — Let A be the arrangement in C consisting of the single
point 0. Then M(A) = C∗ is homotopy equivalent to a circle S1. Under
the identifications π1(S

1, 1) = Z and ZZ = Z[t±1], the equivariant chain

complex of the universal cover S̃1 = R takes the form 0 → C1
∂1→C0 → 0,

where C1 = C0 = ZZ and ∂1(1) = t− 1.

Given a character ρ ∈ Hom(Z, kk∗) = kk∗, we tensor this chain complex

with the local system kkρ, and obtain a new chain complex, 0→ kk
ρ−1→ kk → 0.
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This chain complex is exact, except for ρ = 1, when H0 = H1 = kk. The
upshot is that V0

1 (S1, kk) = V1
1 (S1, kk) = {1} and Vi

s(S
1, kk) = ∅, otherwise.

Example 3.5. — More generally, let Bn be the Boolean arrangement in
Cn, with complement M(Bn) = (C∗)n. Proceeding as in the previous exam-
ple, we see that

Vq
s (M(Bn), kk) =

{
{1} if s �

(
n
q

)
,

∅ otherwise.
(3.7)

Example 3.6. — Let Pn be a pencil of n + 1 � 2 lines in C2 as in Ex-
ample 2.3. Recall that U(Pn) ∼= C \ {n points}, and thus π1(U(Pn)) ∼= Fn.
Identifying Tkk(Pn) with (kk∗)n, we find that

Vq
s (M(Pn), kk) =

{
(kk∗)n if q = 1 and s < n,
{1} if q = 1 and s = n or q = 0 and s = 1,
∅ otherwise.

(3.8)

Although an explicit formula for the characteristic varieties Vq
s (M(A), kk)

is far from known in general, a structural result is known in the case when
kk = C. A theorem of Arapura [1], as strengthened by Dimca [17], Lib-
gober [38], Artal-Bartolo, Cogolludo and Matei [2], Budur and Wang [5],
and others, states the following.

Theorem 3.7. — The characteristic varieties Vq
s (M(A),C) of an ar-

rangement complement are finite unions of torsion-translates of algebraic
subtori in TC(A).

3.4. Orbifold fibrations

We now describe in more detail the characteristic varieties of M(A) in
degree q = 1. Since these varieties depend only on π1(M(A)), we may as
well assume A is a (central) arrangement in C3.

A key point here is the naturality property enjoyed by these varieties.
Suppose f :U(A) → U(B) is a map between (projectivized) arrangement
complements, and that the induced homomorphism, f�:π1(U(A))→π1(U(B)),
is surjective. Then, by Proposition A.1, the corresponding monomorphism
between character groups restricts to an embedding V1

s (B, kk) ↪→ V1
s (A, kk).

In particular, if B ⊂ A is a sub-arrangement, the inclusion U(A) ↪→ U(B)
induces an epimorphism on fundamental groups, and thus defines an em-
bedding V1

s (B, kk) ↪→ V1
s (A, kk).

Building on Arapura’s work, Dimca [17] and Artal Bartolo, Cogolludo
and Matei [2] showed that the varieties Vs(A) = V1

s (M(A),C) are unions of
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torsion-translated subtori inside the algebraic torus T(A) = TC(A). The iso-
lated (torsion) points in these characteristic varieties are still poorly under-
stood, but the positive-dimensional components in V1(A) can be described
in very concrete terms.

A (genus 0) orbifold fibration is a surjective holomorphic map f :U(A) →
U(Pr), for some r � 1, that has connected generic fiber, and extends to a
map between the respective compactifications, f :CP2 → CP1, which is also
a surjective, holomorphic map with connected generic fibers.

The map f is a locally trivial bundle map, away from a finite (possibly
empty) set of points {q1, . . . , qs} inside U(Pr); let µ1, . . . , µs (µi � 2) denote
the multiplicities of the respective fibers. Let f�:π1(U(A)) → π1(U(Pr)) be
the induced homomorphism on fundamental groups. Since the generic fiber
of f is connected, this homomorphism is surjective. Moreover, f� lifts to a
(surjective) homomorphism f�:π1(U(A))� π, where

π := πorb
1 (U(Pr), µ) = Fr ∗ Zµ1 ∗ · · · ∗ Zµs (3.9)

is the orbifold fundamental group of the base. Thus, f� induces an injective

morphism, f̂�: π̂ ↪→ ̂π1(U(A)), between character groups. Note that π̂ = π̂◦×
Â where π̂◦ ∼= (C∗)r is the identity component and Â ∼= A := Zµ1⊕· · ·⊕Zµs .

By Proposition A.1, the above morphism restricts to an inclusion f̂�:V1(π)
↪→ V1(A). A computation as in Example 3.4 shows that

V1(π) =

{
π̂ if r > 1,(
π̂ \ π̂◦

)
∪ {1} if r = 1 and s � 1.

(3.10)

Note that each irreducible component of V1(π) has dimension r (or 0).

The next theorem says that all positive-dimensional components of V1(A)
arise by pullback along such orbifold fibrations, which we call large in the
first case, and small in the second case.

Theorem 3.8 ([1, 17, 2]). — The first characteristic variety of an ar-
rangement A is given by

V1(A) =
⋃

f large

im(f̂�) ∪
⋃

f small

(
im(f̂�) \ im(f̂�)

◦) ∪ Z,

where the unions are over the equivalence classes of pencils f :U(A) →
U(Pr) of the types indicated, and Z is a finite set of torsion characters.
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3.5. Multinets and pencils

As shown by Falk and Yuzvinsky in [25], the irreducible components of
V1(A) passing through the origin can be described in terms of multinets on
the intersection lattice of A. Indeed, let Q(A) =

∏
H∈A fH be a defining

polynomial for A. Given a multinet M on A, with parts (A1, . . . ,Ak) and
multiplicity vector m, write

gi =
∏

H∈Ai
fmH

H , (3.11)

for 1 � i � k, so that the defining polynomial for (A,m) factors as Qm(A) =
g1 · · · gk. Next, define a rational map fm:C3 → P1 by

fm(x) = [g1(x) : g2(x)]. (3.12)

By definition of multinets, the degrees of the polynomials gi are inde-
pendent of i; hence, the map fm factors through a rational map CP2 −−→
CP1. As shown in [25], there is a set S = {[a1 :b1], . . . , [ak :bk]} ⊂ CP1 such
that each of the polynomials (3.11) can be written as gi = aig2 − big1, and,
furthermore, the image of fm:U(A) → CP1 misses S. Identify CP1 \ S =
U(Pk−1). The restriction

fm:U(A) → U(Pk−1), (3.13)

then, is a large pencil which gives rise by pullback to a (k− 1)-dimensional
component of V1(A) which passes through the origin of T(A).

Example 3.9. — Let A be the braid arrangement from Examples 2.8
and 2.12. The characteristic variety V1(A) has 4 local components of di-
mension 2, corresponding to the 4 triple points. Additionally, the (3, 2)-net
(A,m) depicted in Figure 1 defines a rational map, fm:CP2 −−→ CP1,
(x, y, z) �→ (x2 − y2, x2 − z2). This map restricts to a pencil fm:U(A) →
CP1 \ {(1, 0), (0, 1), (1, 1)}, which yields another 2-dimensional component,
T = {t ∈ (C∗)6 | t1t3t6 = t1t

−1
2 = t3t

−1
4 = t5t

−1
6 = 1}.

3.6. Translated tori

In general, the characteristic variety V1(A) also has irreducible compo-
nents not passing through the origin. Following [14], we describe a combina-
torial construction which, under certain assumptions, produces 1-dimensio-
nal translated subtori in V1(A).

Fix a hyperplane H ∈ A, and let A′ = A\{H} be the deletion of A with
respect toH. A pointed multinet onA is a multinetM=((A1, . . . ,Ak),m,X ),
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together with a distinguished hyperplane H ∈ A for which mH > 1, and
mH | nX for each flat X ∈ X such that X � H.

Proposition 3.10 ([14]). — Suppose A admits a pointed multinet, and
A′ is obtained from A by deleting the distinguished hyperplane H. Then
V1(A′) has a component which is a 1-dimensional subtorus of T(A′), trans-
lated by a character of order mH .

Proof. — Without loss of generality, we may assume that H ∈ A1. Con-
sider the regular map given by (3.12), fm:M(A) → CP1. Since fH does not
divide g2, we may extend fm to a regular map fm:M(A′) → CP1. By con-
struction, fH | g1, and so im(fm) \ im(fm) = {[0 :1]}. Furthermore, im(fm)
equals U(P1) = CP1\{[1 :0], [a3 :b3]}. Passing to the projective complement,
and taking the corestriction of fm to its image yields an orbifold fibration,
fm:U(A′) → U(P1).

By hypothesis, the degrees of the restrictions of g1 and g2 to the hyper-
plane H are both divisible by mH . Thus, the fiber of fm over [0 : 1] has
multiplicity mH , and so fm is a small pencil. The desired conclusion now
follows from Theorem 3.8. �

Example 3.11. — Let A be the B3 arrangement from Examples 2.9 and
2.13, and let A′ be the arrangement obtained by deleting the hyperplane z =
0, as in Example 2.17. As noted in [59], the characteristic variety V1(A′) ⊂
(C∗)8 has 7 local components, corresponding to 6 triple points and one
quadruple point, 5 components corresponding to braid sub-arrangements,
and a component of the form ρT , where ρ = (1, 1,−1,−1,−1,−1, 1, 1) and
T = {(t2, t−2, 1, 1, t−1, t−1, t, t) | t ∈ C∗}.

To explain where this translated torus comes from, let m be the multinet
on A depicted in Figure 2, and let Qm(A) = g1g2g3 be the corresponding
factorization of the defining polynomial of (A,m). We then obtain a (large)
pencil fm:U(A) → CP1 \ {[1 : 0], [0 : 1], [1 : 1]}, given by [x, y, z] �→ [z2(x2 −
y2) : y2(x2 − z2)].

Extending fm to the complement of A′ by allowing z = 0 yields an
orbifold fibration, fm:U(A′) → P1 \ {[1 :0], [1 :1]}. Note that fm([x, y, 0]) =
[0 :y2x2], and so the fiber over [0 : 1] has multiplicity 2; thus, fm is a small
pencil. The orbifold fundamental group of the base of the pencil is Z ∗ Z2,
and the pullback of V1(Z ∗ Z2) = C∗ × {−1} along fm yields the translated
torus ρT ⊂ V1(A′).

Problem 3.12. — Do all positive-dimensional translated tori in the first
characteristic variety of an arrangement arise in the manner described in
Proposition 3.10?
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Finally, there are also arrangements A with isolated torsion points in
the characteristic variety V1(A). Here is an example, also from [59].

Example 3.13. — Let A be the arrangement in C3 defined by the polyno-
mial Q(A) = xyz(y−x)(y+x)(2y−z)(y−x−z)(y−x+z)(y+x+z)(y+x−z).
Then V1(A) has 10 local components, corresponding to 7 triple and 3
quadruple points, 17 components corresponding to braid sub-arrangements,
1 component corresponding to a B3 sub-arrangement, 3 translated compo-
nents corresponding to deleted B3 sub-arrangements, and 2 isolated points
of order 6.

Problem 3.14. — Find a concrete description of the 0-dimensional com-
ponents of the first characteristic variety V1(A) of an arrangement A. Are
all such components determined by the intersection lattice L(A)?

Answering in the affirmative Problems 3.12 and 3.14 would lead to a
solution (at least for q = s = 1) of the following well-known problem, which
is central to the theory of hyperplane arrangements.

Problem 3.15. — Given a hyperplane arrangement A, are the charac-
teristic varieties Vq

s (M(A),C) determined by the intersection lattice L(A)?

4. The Milnor fibration of an arrangement. I.

In this section, we introduce our main object of study: the Milnor fibra-
tion attached to a multi-arrangement. In the process, we describe several
covering spaces related to the Milnor fiber.

4.1. The Milnor fibration

Let A be an arrangement of hyperplanes in Cd+1. Recall we associated
to each multiplicity vector m ∈ N|A| a homogeneous polynomial

Qm(A) =
∏

H∈A
fmH

H (4.1)

of degree N =
∑

H∈AmH . Note that Qm(A) is a proper power if and only
if gcd(m) > 1, where gcd(m) = gcd(mH :H ∈ A).

As before, let M(A) be the complement of the arrangement. The poly-
nomial map Qm(A):Cd+1 → C restricts to a map Qm(A):M(A) → C∗.
As shown by J. Milnor [45] in a much more general context, Qm(A) is the
projection map of a smooth, locally trivial bundle, known as the (global)
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Milnor fibration of the multi-arrangement (A,m). The typical fiber of this
fibration,

Fm(A) = Qm(A)
−1

(1) (4.2)

is called the Milnor fiber of the multi-arrangement, while the Milnor fibra-
tion itself is written as

Fm(A) −→M(A)
Qm(A)−→ C∗. (4.3)

Clearly, the Milnor fiber is a smooth manifold of dimension 2d. In fact,
Fm(A) is a Stein domain of complex dimension d, and thus has the homotopy
type of a finite CW-complex of dimension d.

In the case when all the multiplicities mH are equal to 1, the polynomial
Q(A) = Qm(A) is the usual defining polynomial for the arrangement, and
has degree n = |A|. Moreover, F (A) = Fm(A) is the usual Milnor fiber of
A.

Remark 4.1. — Although the polynomials Qm(A) depend on the choice
of multiplicities, they all have the same zero set; thus, they all share the
same complement, namely, M(A). On the other hand, the Milnor fibers
Fm(A) do depend on the various choices of m, and not just on A. The next
example illustrates this point.

Example 4.2. — Let A be the arrangement in C consisting of the single
subspace H = {0}, and assign a multiplicity m ∈ N to that point. Then
Qm(A) = zm, and so Fm(A) is the set of m-roots of unity.

Of course, the Milnor fibers in the previous example are connected only
when m = 1. For an arbitrary arrangement A, the number of connected
components of Fm(A) equals gcd(m).

Figure 5. — Milnor fiber and monodromy for Q(A) = y(y2 − 4x2)
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4.2. The geometric monodromy

Consider the Milnor fibration M(A) → C∗ defined by the polynomial
Q = Qm(A). For each θ ∈ [0, 1], let Fθ be the fiber over the point e2πiθ ∈ C∗,
so that F0 = F1 = Fm(A).

For each z ∈ M(A), the path γθ: [0, 1] → C∗, t �→ e2πitθ lifts to a
path γ̃θ,z: [0, 1] → M(A), t �→ e2πitθ/Nz, satisfying γ̃θ,z(0) = z. Notice that
Q(γ̃θ,z(1)) = e2πiθQ(z); thus, if z ∈ F0, then γ̃θ,z(1) ∈ Fθ.

By definition, the monodromy of the Milnor fibration is the diffeomor-
phism h:F0 → F1 given by h(z) = γ̃1,z(1). In view of the above discussion,
this diffeomorphism can be written as

h:Fm(A) → Fm(A), z �→ e2πi/Nz. (4.4)

Clearly, the map h has order N . Furthermore, note that the complement
M(A) is homotopy equivalent to the mapping torus of h:

M(A)  Fm(A)× [0, 1]/(z, 0) ∼ (h(z), 1). (4.5)

Example 4.3. — Let Bn be the Boolean arrangement in Cn, and identify
the complement M(Bn) with the algebraic torus (C∗)n. Given a multiplicity
vector m, the map Qm(Bn): (C∗)n → C∗, z �→ zm1

1 · · · zmn
n is a morphism of

algebraic groups. Hence, the Milnor fiber

Fm(Bn) = ker(Qm(Bn)) (4.6)

is an algebraic subgroup, realized as the disjoint union of gcd(m) copies of
(C∗)n−1. The monodromy automorphism, h:Fm(Bn) → Fm(Bn), permutes
those copies in a circular fashion.

If gcd(m) = 1, the algebraic subgroup Fm(Bn) is, in fact, an algebraic
torus isomorphic to (C∗)n−1. Moreover, the monodromy automorphism is
isotopic to the identity, through the isotopy ht(z) = e2πit/Nz. Thus, the
bundle Fm(Bn) →M(Bn) → C∗ is trivial in this case.

4.3. Comparing two Milnor fibrations

The previous example is, in some sense, a classifying object for Milnor
fibrations of arrangements.

To make this statement more precise, let A = {H1, . . . , Hn} be an (or-
dered) essential arrangement of hyperplanes in Cd+1, with defining linear
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forms f1, . . . , fn. Recall we defined in §3.2 a linear map ι(A):Cd+1 → Cn by
ι(A)(z) = (f1(z), . . . , fn(z)). Restricting this map to the complement yields
an embedding of M(A) into M(Bn) = (C∗)n.

Since A and Bn have the same number of hyperplanes, a multiplicity
vector for one of them yields a multiplicity vector for the other. The next
lemma shows that the corresponding Milnor fibrations are compatible.

Lemma 4.4. — For each m ∈ Nn, the map ι(A):M(A) ↪→ M(Bn) is
compatible with the Milnor fibrations Qm(A):M(A) → C∗ and Qm(Bn):
M(Bn) → C∗.

Proof. — Write Qm(A) =
∏n

i=1 f
mi
i and Qm(Bn) =

∏n
i=1 w

mi
i . Clearly,

then, the following equality holds:

Qm(A) = Qm(Bn) ◦ ι(A). (4.7)

Thus, the map ι(A) restricts to an inclusion ιm(A):Fm(A) ↪→ Fm(Bn),
which fits into the commuting diagram

(4.8)

In other words, ι(A) is a bundle map, as claimed. �

As a consequence of this lemma, we may expresses the Milnor fiber of
(A,m) as the intersection of two familiar objects.

Corollary 4.5. — The Milnor fiber Fm(A) is obtained by intersect-
ing the complement M(A), viewed as a subvariety of the algebraic torus
M(Bn) = (C∗)n via the inclusion ι(A), with Fm(Bn) ∼=

∐
gcd(m)(C∗)n−1,

viewed as an algebraic subgroup of (C∗)n:

Fm(A) = M(A) ∩ Fm(Bn).

4.4. Induced homomorphisms on π1

Using the above comparison between the two Milnor fibrations, we iden-
tify now the homomorphism induced on fundamental groups by the pro-
jection map Qm(A):M(A) → C∗. As usual, denote by {xH | H ∈ A} the
standard generating set for π1(M(A)).
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Proposition 4.6. — The induced homomorphism Qm(A)�:π1(M(A)) →
π1(C∗) = Z is given by xH �→ mH .

Proof. — From (4.7), we know that Qm(A) = Qm(Bn)◦ι(A). By Lemma
3.3, the homomorphism ι(A)�:π1(M(A)) → π1((C∗)n) may be identified
with the abelianization map, ab:π1(M(A)) → Zn.

On the other hand, the homomorphism induced in π1 by the algebraic
morphism Qm(Bn): (C∗)n → C∗, w �→ wm1

1 · · ·wmn
n may be identified with

the linear map m:Zn → Z, v �→ ∑n
i=1mivi. The conclusion follows. �

Using this proposition, we can derive in a novel way a well-known lower-
bound on the first Betti number of the Milnor fiber of a (multi-) arrange-
ment.

Corollary 4.7. — Suppose gcd(m) = 1. Then b1(Fm(A)) � n − 1,
where n = |A|.

Proof. — From the assumption, we know that the Milnor fibers Fm(A)
and Fm(Bn) are connected. Applying the π1 functor to diagram (4.8), and
using the homotopy long exact sequences associated to the respective Milnor
fibrations, as well as Lemma 3.3 and Proposition 4.6, we obtain the following
commuting diagram with exact rows:

(4.9)

This diagram yields an epimorphism π1(Fm(A)) � Zn−1, indicated by
a dotted arrow in (4.9). This completes the proof. �

We will come back to this topic in §5, where we will use a different
approach to provide improved estimates on the Betti numbers of the Milnor
fiber.

4.5. The Milnor fiber as an infinite cyclic cover

A standard construction turns any continuous map into a fibration, at
least up to homotopy, see e.g. [27, §4.3]. In the case of an inclusion F ↪→ E,
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the construction is particularly simple: let Y be the space of paths in E
starting in F . Then the inclusion F ↪→ Y , a �→ consta is a homotopy
equivalence, while the map g:Y → E, γ �→ γ(1) is a fibration.

Now suppose F → E
p→B is a fibration, and all three spaces are path-

connected CW-complexes. Pick a basepoint e0 ∈ E, and let Z := g−1(e0) be
the homotopy fiber of the inclusion F ↪→ E. Let ΩB be the space of loops in
B, based at b0 = p(e0). Then ΩB has the homotopy type of a CW-complex,
and we have a map f : ΩB → Z, which sends a loop at b0 to its lift at e0,
traversed in the opposite direction. Comparing the long exact sequences of
homotopy groups of the two fibrations, F → E → B and Z → Y → E, we
conclude that f is a homotopy equivalence.

In our situation, consider the Milnor fibration (4.2) associated to (A,m).
The homotopy fiber of the inclusion Fm(A) → M(A), then, is homotopic
to ΩC∗  Z.

Proposition 4.8. — The homotopy fibration defined by the inclusion
Fm(A) ↪→ M(A) is equivalent to the regular, infinite cyclic cover classified
by the homomorphism π1(M(A))� Z, xH �→ mH .

Proof. — The exponential map exp:C → C∗, ζ �→ e2πiζ is a regular
Z-cover. Pulling back this cover along the map Q = Qm(A):M(A) → C∗,
we obtain the diagram

(4.10)

where F is the homotopy fiber of q, the homotopy equivalence F → Fm(A)
is the restriction of p to (homotopy) fibers, and ΩC∗  Z is the homotopy
fiber of j.

By construction, the pullback cover, E → M(A), is a regular Z-cover,
classified by the homomorphism Q�:π1(M(A)) → Z. Furthermore, the ho-

motopy equivalence φ:E
�−→Fm(A) defined by diagram (4.10) satisfies j ◦

φ  p. Thus, the cover E →M(A) may be identified with the homotopy fi-
bration associated to the inclusion Fm(A) →M(A). The desired conclusion
now follows from Proposition 4.6. �

– 446 –



Hyperplane arrangements and Milnor fibrations

Remark 4.9. — In general, an infinite cyclic cover of a finite CW-complex
need not have finite Betti numbers, let alone have the homotopy type of a
finite CW-complex. For instance, if X = S1 ∨ S1 is a wedge of two circles,
and Y → X is an arbitrary Z-cover, then b1(Y ) = ∞. In our situation,
though, the geometry of the situation conspires to insure that all the Z-
covers corresponding to Milnor fibrations of arrangements have finite cell
decompositions. For more on the geometric and homological finiteness prop-
erties of (infinite) abelian covers, we refer to [61, 62, 63].

4.6. The Milnor fiber as a finite cyclic cover

As before, fix a multiplicity vector m on A with gcd(m) = 1, and set N =∑
H∈AmH . The monodromy automorphism h:Fm(A) → Fm(A), given by

h(z) = e2πi/Nz, generates a cyclic group ZN . As noted in [47], this group
acts freely on Fm(A), and the quotient space may be identified with the
projective complement, U(A). We thus have a regular, N -fold cyclic cover,
Fm(A) → U(A). As shown in [8, 6], this cover can be described in purely
group-theoretic terms.

We give here a self-contained, full-detail proof of this basic result. The
proof uses a somewhat different approach, which draws in part from [60, 14].
To start with, recall from §2.2 that the Hopf fibration π:Cd+1 \ {0} → CPd
restricts to a (trivializable) bundle map, π(A):M(A) → U(A), with fiber
C∗.

Theorem 4.10. — The map π(A):M(A) → U(A) restricts to a regular,
ZN -cover πm(A):Fm(A) → U(A). Furthermore, this cover is classified by
the homomorphism

δm:π1(U(A))� ZN , xH �→ mH mod N.

Proof. — For simplicity, we will drop the arrangement A from the no-
tation. By homogeneity of the polynomial Qm, we have that Qm(wz) =
wNQm(z), for every z ∈ M and w ∈ C∗. Thus, the restriction of Qm to
a fiber of π may be identified with the covering projection q:C∗ → C∗,
q(w) = wN .

Now, if both z and wz belong to Fm, then Qm(z) = Qm(wz) = 1, and
so wN = 1. Thus, the restriction πm = π|Fm :Fm → U is the orbit map of
the free action of the geometric monodromy on Fm. Hence, πm is a regular
ZN -cover, as claimed.
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To determine the classifying homomorphism δm:π1(U) → ZN for this
cover, we will make some auxiliary constructions. We refer to diagram (4.11)
for the various spaces and maps introduced along the way.

(4.11)

Let Ym = {(z, w) ∈M × C∗ | Qm(z) = wN}, and denote by p1:Ym →M
and p2:Ym → C∗ the restrictions of the coordinate projections. Clearly,

Qm ◦ p1 = q ◦ p2. (4.12)

Thus, p1 is a regular ZN -cover, obtained as the pullback of q along Qm.
Of course, the cover q is classified by the canonical projection π1(C∗) =
Z→ ZN . Hence, by Proposition 4.6, the cover p1 is classified by the homo-
morphism

π1(M) → ZN , xH �→ mH mod N. (4.13)

We now proceed to the other side of diagram (4.11). Given an element
(z, w) ∈ Ym, note that Qm(w−1z) = w−NQm(z) = 1. Hence, we may define
a map ψ:Ym → Fm by ψ(z, w) = w−1z. Plainly,

πm ◦ ψ = π ◦ p1. (4.14)

Therefore, the pullback of πm along π coincides with the cover p1. Now,
by Lemma 3.3, the homomorphism π�:π1(M) → π1(U) is given by xH �→
xH . Thus, the cover p1 is classified by the homomorphism

π1(M) → ZN , xH �→ δm(xH). (4.15)

Comparing the answers obtained in (4.13) and (4.15), we find that
δm(xH) = mH mod N , and we are done. �

5. The Milnor fibration of an arrangement. II

We continue our discussion of the Milnor fibration with a study of its
homology groups and monodromy operators.
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5.1. Homology of the Milnor fiber

Using the interpretation of the Milnor fiber of a multi-arrangement as
a finite cyclic cover of the projectivized complement, we may compute the
homology groups of the Milnor fiber and the characteristic polynomial of the
algebraic monodromy in each degree, at least over a field of characteristic
not dividing the order of the cover.

Theorem 5.1. — Let (A,m) be a multi-arrangement. Set N =
∑

H∈A
mH ,

and let δm:π1(U(A))→ ZN be the homomorphism given by xH �→ mH mod
N . If kk is a coefficient field of characteristic not dividing N , then

1. The homology groups of the Milnor fiber Fm(A) are given by

dimkkHq(Fm(A), kk) =
∑

s�1

∣∣∣Vq
s (U(A), kk) ∩ im(δ̂m)

∣∣∣ . (5.1)

2. The characteristic polynomial of the algebraic monodromy of the Mil-
nor fibration, h∗:Hq(Fm(A), kk)→ Hq(Fm(A), kk), is given by

∆kk
h,q(t) =

∏

s�1

∏

ζ∈kk∗:ζN=1,
ζm∈Vqs (U(A),kk)

(t− ζ). (5.2)

Proof. — By Theorem 4.10, the restriction of the Hopf fibration to the
Milnor fiber, πm(A):Fm(A)→U(A), is a regular, ZN -cover classified by the
homomorphism δm. The desired conclusions follow from Theorem B.1. �

Remark 5.2. — The 1-eigenspace of the linear transformation h∗ acting
on the kk-vector space Hq(Fm(A), kk) is isomorphic to Hq(U(A), kk), which
has dimension bq(U(A)), independent of kk. In particular, h∗ is the identity
on Hq(Fm(A), kk) if and only if ∆kk

h,q(t) = (t − 1)bq(U(A)). The other eigen-
values of h∗, and the dimensions of their eigenspaces, depend in principle
on both the multiplicity vector m and the characteristic of kk.

Remark 5.3. — In the case when all multiplicities mH are equal to 1, we
can say more: in the product (5.2), only non-primitive roots of 1 appear,
provided kk = C and q < d, see [8, Corollary 2.2]. For more refined versions
of this result, we refer to [37, Proposition 2.1] and [41, Theorem 3.13].

Example 5.4. — Let Pn be the pencil of n + 1 lines through the origin
of C2 from Examples 2.3 and 3.6. We know that the Milnor fiber Fm(Pn)
is an N -fold cover of U(Pn) = C \ {n points}, where N is the sum of the
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multiplicities. We also know that Fm(Pn) is a Riemann surface with N
punctures. A standard Euler characteristic argument now shows that the

genus of this surface is g = N(n−2)
2 + 1; thus,

dimkkH1(Fm(Pn), kk) = N(n− 1) + 1, (5.3)

for all fields kk.

Alternatively, we know from (3.8) that V1
1 (U(Pn), kk) = · · · =

V1
n−1(U(Pn), kk) = (kk∗)n and V1

n(U(Pn), kk) = {1}. Thus, we may recover
the calculation from (5.3) by means of formula (5.1), at least in the case
when char(kk) � N .

In view of Theorem 3.8, the above result yields a rather explicit formula
for the first Betti number of the Milnor fiber F (A), and for the character-
istic polynomial ∆ = ∆Ch,1 of its algebraic monodromy, h∗:H1(F (A),C) →
H1(F (A),C). Let Φr be the r-th cyclotomic polynomial, and let ϕ(r) be its
degree.

Corollary 5.5. — Let A be an arrangement of n hyperplanes, and let
F (A) be its Milnor fiber. Then,

∆(t) = (t− 1)n−1 ·
∏

1 �=r|n
Φr(t)

depth(δn/r), (5.4)

where δ:π1(U(A)) → C∗ is the “diagonal” character, given by δ(xH) =
e2πi/n, for all H ∈ A, and depth(ρ) := max{s | ρ ∈ V1

s (U(A))}. In particu-
lar,

b1(F (A)) = n− 1 +
∑

1 �=r|n
ϕ(r) depth

(
δn/r

)
. (5.5)

Remark 5.6. — In formula (5.5), only the essential components of V1(A)
may contribute to the sum. Indeed, if a component lies on a (proper) co-
ordinate subtorus C ⊂ T(A), then the diagonal subtorus, D = {(t, . . . , t) |
t ∈ C∗}, intersects C only at the origin. In particular, local components,
or, more generally, components arising from multinets supported on proper
sub-arrangements of A, do not produce jumps in the first Betti number of
F (A).

On the other hand, if (A,m) is a multi-arrangement with some mH > 1,
then even the non-essential components in the characteristic varieties of
U(A) may produce jumps in the Betti numbers of Fm(A), according to
formula (5.1).
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Remark 5.7. — In [7, Theorem 13], Cohen, Dimca, and Orlik give some
nice combinatorial upper bounds on the exponents of the cyclotomic poly-
nomials appearing in formula (5.4). For more on this, we refer to [16, §6.4].

5.2. Discussion an examples

We now illustrate with a few examples the range of applicability of Theo-
rem 5.1 (see [8] for more computations of this sort.)

Example 5.8. — Let A be the braid arrangement from Examples 2.8,
2.12, and 3.9. We know that V1(A) has a single essential component, namely,
the subtorus T = {t ∈ (C∗)6 | t1t3t6 = t1t

−1
2 = t3t

−1
4 = t5t

−1
6 = 1}. Clearly,

δ2 ∈ T , yet δ /∈ T ; hence, ∆(t) = (t− 1)5(t2 + t+ 1).

Example 5.9. — Let A be the reflection arrangement of type B3 from
Examples 2.9 and 2.13. We know that V1(A) has an essential component,
corresponding to the (3, 4)-multinet depicted in Figure 2. It is readily ver-
ified that this is the only such component, and that the diagonal subtorus
intersects this component only at the origin. Hence, ∆(t) = (t− 1)8.

Example 5.10. — Let A be the Ceva(3) arrangement from Example 2.14.
The (3, 3)-net depicted in Figure 3 defines a rational map, CP2 −−→ CP1,
(x, y, z) �→ (x3 − y3, y3 − z3), which restricts to a pencil U(A) → CP1 \
{(1, 0), (0, 1), (1,−1)}. Let T be the essential 2-dimensional component of
V1(A) obtained by pullback along this pencil. It is readily verified that the
subgroup generated by the diagonal character δ intersects V2(A) in two
points, both lying on T , and both of order 3. Hence, ∆(t) = (1− t)8(1+ t+
t2)2.

As the next example shows, the first Betti number of the Milnor fiber
of an arrangement in C3 does not only depend on the number and type of
multiple points of P(A), but also on their relative position.

Example 5.11. — Consider the arrangements A1 and A2 defined by the
polynomials

Q(A1)=xyz(x− y)(y − z)(x− y − z)(2x+ y + z)(2x+ y − z)(2x− 5y + z),

Q(A2)=xyz(x+ y)(y + z)(x+ 3z)(x+ 2y + z)(x+ 2y + 3z)(2x+ 3y + 3z).

The arrangement A1 is a realization of the Pappus configuration (93)1, while
A2 is a realization of the configuration (93)2. Each projective configurations
has 9 double points and 9 triple points; additionally, the first configuration
supports a (3, 3)-net, but the second one supports no essential multinet.
Applying formula (5.4), we find that ∆1(t) = (t−1)8(t2+t+1) and ∆2(t) =
(t− 1)8, as in [8].
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Such examples, and many others from the literature (see for instance [41,
4, 39, 18, 65] for some recent progress in this direction) raise the following
well-known question, dating from the 1980s.

Problem 5.12. — Given an arrangement A, are the Betti numbers of
the Milnor fiber F (A) and the characteristic polynomial of the algebraic
monodromy determined by the intersection lattice L(A)?

5.3. Torsion in the homology of the Milnor fiber

A long-standing question, raised by Randell and Dimca–Némethi among
others, asks whether the Milnor fiber of an arrangement can have non-trivial
torsion in homology. Examples from [6] first showed that H1(Fm(A),Z)
may have torsion, for suitable multi-arrangements (A,m). In [14], these
examples were recast in a more general framework, leading to examples of
high-dimensional hyperplane arrangements A for which Hq(F (A),Z) has
torsion, for some q > 1. Let us sketch here this circle of ideas.

Theorem 5.13 ([14]). — Suppose A admits a pointed multinet, with
distinguished hyperplane H and multiplicity m. Let p be a prime dividing
mH . There is then a choice of multiplicities m′ on the deletion A′ = A\{H}
such that H1(Fm′(A′),Z) has non-zero p-torsion.

Proof. — (Sketch) By Proposition 3.10, the variety V1(A′) has a com-
ponent of the form ρT , where T is a 1-dimensional subtorus, and ρ is a
torsion character, of order divisible by p. Using this fact, and some further
machinery, it is shown in [14, Theorem 6.1], that, for all sufficiently large
integers r > 1 not divisible by p, there exists a regular, r-fold cyclic cover
Y → U(A′) such that H1(Y,Z) has p-torsion.

On the other hand, it is also shown in [14, Proposition 6.7] that any
finite cyclic cover of an arrangement complement is dominated by a Milnor
fiber corresponding to a suitable choice of multiplicities. Hence, there exists
a choice of multiplicities m′ for which the cover πm′(A′):Fm′(A′) → U(A′)
factors through Y , and p does not divide N ′ :=

∑
H∈A′ m

′
H . A standard

transfer argument then shows that H1(Fm′(A′),Z) also has p-torsion. �

Example 5.14. — Let A′ be the deletion of the B3 arrangement from
Example 3.11. Proceeding as above, let r = 3 and consider the 3-fold cover
Y → U(A′) classified by the vector χ = (2, 1, 0, 0, 2, 2, 1, 1) ∈ (Z3)

8. Choose
m′ = (2, 1, 3, 3, 2, 2, 1, 1) as a positive integer lift of χ. Then N ′ = 15, and
Fm′(A′) factors through Y ; thus, there is 2-torsion in the first homology of
Fm′(A′). Explicit calculation shows that, in fact, H1(Fm′(A′),Z) = Z7 ⊕
Z2 ⊕ Z2 and ∆F2

1 (t) = (t− 1)7(t2 + t+ 1).
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This leads to a couple of natural questions (see also [6, 14]).

Problem 5.15. — Is there a hyperplane arrangement A (without mul-
tiplicities) such that H1(F (A),Z) has non-trivial torsion?

Problem 5.16. — Given a hyperplane arrangement A, is the torsion in
H∗(F (A),Z) determined by the intersection lattice L(A)?

5.4. A polarization construction

Given a multi-arrangement (A,m), we define in [14] a new hyperplane
arrangement, B = A‖m, called the polarization of the multi-arrangement.
The rank of B equals rankA + |{H ∈ A:mH � 2}|, while the number of
hyperplanes in B equals N =

∑
H∈AmH .

A crucial point of this construction is the connection between the Mil-
nor fiber of the (simple) arrangement B and the Milnor fiber of the multi-
arrangement (A,m): the pullback of the cover F (B) → U(B) along the
canonical inclusion U(A) → U(B) is equivalent to the cover Fm(A) → U(A).
Using this fact, together with Theorem 5.13, the following result is proved
in [14].

Theorem 5.17 ([14]). — Suppose A admits a pointed multinet, with
distinguished hyperplane H and multiplicity m. Let p be a prime divid-
ing mH . There is then a choice of multiplicities m′ on the deletion A′ =
A \ {H} such that Hq(F (B),Z) has p-torsion, where B = A′‖m′ and q =
1 + |{K ∈ A′ : m′K � 3}|.

Example 5.18. — Let A′ be the deleted B3 arrangement from Examples
3.11 and 5.14. Then the choice of multiplicities m′ = (8, 1, 3, 3, 5, 5, 1, 1)
produces an arrangement B = A′‖m′ of 27 hyperplanes in C8, such that
H6(F (B),Z) has 2-torsion of rank 108.

5.5. Characteristic varieties of the Milnor fiber

Very little is known about the homology with coefficients in rank 1 local
systems of the Milnor fiber of a (multi-) arrangement (A,m). Since Fm(A)
is a smooth, quasi-projective variety, deep theorems of Arapura [1] and
Budur–Wang [5] guarantee that the characteristic varieties Vq

s (Fm(A),C)
are unions of torsion-translated subtori. Let us analyze in more detail these
varieties, following the approach of Dimca and Papadima from [19].

As in §4.6, let π = πm(A):Fm(A) → U(A) be the restriction of the Hopf
fibration to the Milnor fiber, and let h:Fm(A) → Fm(A) be the monodromy
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of the Milnor fibration. Since π is a finite, regular cover, Proposition B.3
guarantees that π∗(Vq

s (U(A), kk)) ⊆ Vq
s (Fm(A), kk) and π∗(Rq

s(U(A), kk)) ⊆
Rq

s(Fm(A), kk), for all q � 0 and s � 1.

If h∗ acts as the identity on H1(Fm(A), kk), more can be said. Indeed,
Corollary B.4 implies that π∗:R1

s(U(A), kk) → R1
s(Fm(A), kk) is an isomor-

phism, for all s � 1. Furthermore, by Theorem C.4, the map π∗:H1(U(A),C∗)
→ H1(Fm(A),C∗) restricts to an isomorphism between the components
through the identity of Vs(A) and V1

s (Fm(A),C).

Let us restrict now our attention to the usual Milnor fiber, F (A), and its
degree 1 characteristic varieties, Vs(F (A)) = V1

s (F (A),C). In general, the
inclusion π∗:Vs(A) ↪→ Vs(F (A)) is strict. For instance, suppose A admits
a non-trivial, reduced multinet M, and let TM be the corresponding com-
ponent of V1(A). It is then shown in [19] that V1(F (A)) has a component
passing through the identity and containing π∗(TM) as a proper subset.

Example 5.19. — Let A be the braid arrangement from Figure 1. Recall
from Examples 3.9 and 5.8 that V1(A) has four local components, T1, . . . , T4,
corresponding to the triple points, and an essential component T , corre-
sponding to a (3, 2)-net. By the above discussion, the characteristic variety
V1(F (A)) ⊂ (C∗)7 has 2-dimensional components π∗(T1), . . . , π

∗(T4), as
well as a component W strictly containing π∗(T ). As noted in [19], W is a
4-dimensional algebraic subtorus. Direct computation shows that V1(F (A))
has no other irreducible components.

Example 5.20. — Let A be the Hessian arrangement from Example 2.15.
We know that V1(A) has 10 components passing through the origin, all
3-dimensional: 9 of those are local components, while the last one, T , cor-
responds to the (4, 3)-net from Figure 4. As noted in [19], the component
W of V1(F (A)) containing π∗(T ) has dimension 9. In particular, this shows
that b1(F (A)) � 15.

Problem 5.21. — Find a more precise description of the characteristic
varieties Vs(F (A)), and, more generally, V1

s (Fm(A), kk).

5.6. The formality problem

The following question was raised in [53], in a more general context: Is
the Milnor fiber of a hyperplane arrangement always formal? Of course, if
rank(A) = 2, then F (A) has the homotopy type of a wedge of circles, and
so it is formal. In general, though, the answer is no, as illustrated by the
following example from [68].
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Example 5.22. — Let A be the Ceva(3) arrangement from Example 2.14,
and let T be the 2-dimensional, essential component of V1(A) described in
Example 5.10. The pullback π∗(T ) is a 4-dimensional subtorus of
H1(F (A),C∗) = (C∗)12, of the form exp(L), for some linear subspace
L ⊂ H1(F (A),C). Using the mixed Hodge structure on the cohomology
of the Milnor fiber, Zuber [68] shows that L cannot possibly be a compo-
nent of the resonance variety R1(F (A)). Hence, the tangent cone formula
from Theorem C.4 is violated, and thus, the space F (A) cannot be 1-formal.

This example raises several questions, all interrelated.

Problem 5.23. — Find a concrete description of the resonance vari-
eties Rs(F (A)), and, more generally, R1

s(Fm(A), kk). For which arrange-
ments A does the tangent cone formula TC1(V1(F (A))) = R1(F (A)) hold?

Problem 5.24. — Give a purely topological explanation for the non-
formality of the Milnor fibers of arrangements such as the Ceva(3) arrange-
ment.

Such an explanation could involve either an explicit computation of the
resonance varieties of Milnor fibers (as in Problem 5.23), or the study of
triple Massey products in the cohomology of the Milnor fiber, or perhaps
some completely new method.

Problem 5.25. — Given a multi-arrangement (A,m), determine whether
the Milnor fiber Fm(A) is formal or not. Does this formality property depend
only on the underlying arrangement A, or also on the multiplicity vector m?

6. The boundary manifold of an arrangement

The boundary manifold of a hyperplane arrangement A in Cd+1 is the
boundary of a regular neighborhood in CPd of the union of the projective
hyperplanes comprising P(A). In this section, we survey a number of known
results (primarily from [11, 12]) regarding the cohomology ring, fundamen-
tal group, jump loci, and formality properties of boundary manifolds of
arrangements.

6.1. The boundary manifold

Let A be a (central) arrangement of hyperplanes in Cd+1 (d � 1) with
union V =

⋃
H∈AH and complement M = Cd+1 \ V . Likewise, let P(A) =

{P(H) | H ∈ A} be the corresponding arrangement in CPd, with union W =
P(V ) and complement U = P(M). A regular neighborhood ν(W ) of the
algebraic hypersurface W ⊂ CPd may be constructed as follows.
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Let φ:CPd → R be the smooth function defined by φ([z])= |Q(z)|2/||z||2n,
where Q is a defining polynomial for the arrangement, and n = |A|. Then,
for sufficiently small δ > 0, the preimage φ−1([0, δ]) is a closed, regular
neighborhood of W . (Since Q is homogeneous, we may simply take δ = 1.)
Alternatively, one may triangulate CPd with W as a subcomplex, and take
ν(W ) to be the closed star of W in the second barycentric subdivision.

As shown by Durfee [22], these constructions yield isotopic neighbor-
hoods, independent of the choices made. Evidently, ν(W ) is a compact, ori-
entable, smooth manifold with boundary, of dimension 2d; moreover, ν(W )
deform-retracts onto W .

The exterior of the projectivized arrangement, denoted U , is the com-

plement in CPd of the open regular neighborhood
◦
ν(W ). Clearly, U is a

compact, connected, orientable, smooth 2d-manifold with boundary. More-
over, U deform-retracts onto U , and thus U  U .

Definition 6.1. — The boundary manifold of a hyperplane arrange-
ment A in Cd+1 is the common boundary

∂U = ∂ν(W )

of the exterior U and the regular neighborhood ν(W ) defined above.

Note that ∂U is a compact, orientable, smooth manifold (without bound-
ary), of dimension 2d − 1. The inclusion map j: ∂U → U is a (d − 1)-
equivalence, see [15, Proposition 2.31]; in particular, πi(∂U) ∼= πi(U) for
i < d− 1.

If d = 1, then P(A) consists of n distinct points in CP1; thus, the bound-
ary manifold ∂U consists of n disjoint small circles around those points, and
there is not much else to say. Consequently, we will assume from now on
that d � 2, in which case ∂U is connected.

Let us illustrate these definitions with a couple of examples, extracted
from [11].

Example 6.2. — Let A be a pencil of n hyperplanes in Cd+1, defined
by the polynomial Q = zn1 − zn2 . If n = 1, then U = D2d and ∂U =
S2d−1. Otherwise, U may be realized as the complement of n − 1 parallel
hyperplanes in Cd. In this case,

U = (D2 \ {n disjoint open disks})×D2(n−1),

and thus ∂U is diffeomorphic to the connected sum Fn−1S1 × S2(d−1).
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Example 6.3. — Let A be a near-pencil of n planes in C3, defined by
the polynomial Q = z1(z

n−1
2 − zn−1

3 ). In this case, ∂U = S1 ×Σn−2, where
Σg = FgS1×S1 denotes the orientable surface of genus g (see also Example
7.4).

6.2. Homology groups and cup products

As shown in [11], the long exact sequence of the pair (U, ∂U) breaks into
split, short exact sequences,

0 −→ Hq+1(U, ∂U,Z) −→ Hq(∂U,Z)
j∗−→Hq(U,Z) −→ 0. (6.1)

By Lefschetz duality, Hq+1(U, ∂U,Z) ∼= H2d−q−1(U,Z). Since U  U ,
and since the homology groups of U are torsion-free, we obtain a direct sum
decomposition

Hq(∂U,Z) ∼= Hq(U,Z)⊕H2d−q−1(U,Z). (6.2)

Hence, Poin(∂U, t) = Poin(U, t) + t2d−1 · Poin(U, t−1).

The cohomology groups of ∂U admit a decomposition similar to the one
from (6.2). To describe the cup-product structure in H∗(∂U,Z), we first
need to review some notions. Let A be a graded, finite-dimensional algebra
over Z. Assume that A is graded-commutative, of finite type (i.e., each
graded piece Aq is a finitely generated Z-module), and connected (i.e., A0 =
Z). Then, the Z-dual Ǎ = HomZ(A,Z) is an A-bimodule, with left and right
multiplication given by (a ·f)(b) = f(ba) and (f ·a)(b) = f(ab), respectively.
Moreover, this bimodule structure is compatible with the gradings: if a ∈ Aq

and f ∈ Ǎp, then both af and fa belong to Ǎp−q.

Theorem 6.4 ([11]). — Let A be an arrangement in Cd+1, let A =
H∗(U,Z) be the cohomology ring of the projectivized complement, and let

Â = H∗(∂U,Z) be the cohomology ring of the boundary manifold. Then

Â = A ⊕ Ǎ, with multiplication given by (a, f) · (b, g) = (ab, ag + fb), and

grading Âq = Aq ⊕ Ǎ2d−q−1.

Consequently, the cohomology ring of the boundary manifold depends
only on the intersection lattice of the arrangement. In the case when d = 2,
the structure of this ring can be described in more concrete terms, as follows.

Write A = A0 ⊕ A1 ⊕ A2, and fix ordered bases, {α1, . . . , αn} for A1

and {β1, . . . , βm} for A2. The multiplication map, µ:A1⊗A1 → A2, is then
given by µ(αi, αj) =

∑m
k=1 µijk βk, for some integer coefficients satisfying
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µjik = −µijk. Now write Â = A0 ⊕ (A1 ⊕ Ǎ2) ⊕ (A2 ⊕ Ǎ1) ⊕ Ǎ0, and pick
dual bases {α′1, . . . , α′n} for Ǎ1 and {β′1, . . . , β′m} for Ǎ2. The multiplication

map µ̂: Â1⊗ Â1 → Â2 restricts to µ on A1⊗A1, vanishes on Ǎ2⊗ Ǎ2, while
on A1 ⊗ Ǎ2, it is given by µ̂(αj , β

′
k) =

∑n
i=1 µijk α

′
i. Finally, µ̂(αi, α

′
j) =

µ̂(βi, β
′
j) = δijω, where ω is the generator of Ǎ0 dual to 1 ∈ A0.

6.3. Resonance varieties

The resonance varieties of the boundary manifold of an arrangementA in
Cd+1 were studied in detail in [11, 12]. If d � 3, then H1(∂U,C) = H1(U,C),
and the resonance varieties of ∂U can be expressed solely in terms of the
resonance varieties of U :

Rq
s(∂U) =





Rq
s(U) if q � d− 2,⋃
i+j=s

(
Rd−1

i (U) ∩Rd
j (U)

)
if q = d− 1 or q = d,

R2d−k−1
s (U) if q � d+ 1.

(6.3)

Now suppose A is an arrangement of n planes in C3, and let us consider
the resonance varieties R1

s(∂U) of its boundary manifold. For depth s = 1,
these varieties admit a particularly simple description:

R1
1(∂U) =




Cn−1 if A is a pencil,
C2(n−2) if A is a near-pencil,
H1(∂U,C) otherwise.

(6.4)

The higher-depth resonance varieties, though, can be much more com-
plicated, as the following example from [11, Corollary 6.11] illustrates.

Example 6.5. — LetA be an arrangement of n+1 planes in C3, in general
position. If n � 4 and

(
n
2

)
< s <

(
n
2

)
+ n − 2, then the resonance variety

R1
s(∂U) is the zero locus of the Pfaffians (of appropriate size) of a generic

n×n skew-symmetric matrix. In particular,R1
s(∂U) is a singular, irreducible

variety.

6.4. Graph manifold structure

As noted in §6.1, if A is an arrangement in Cd+1, with d > 3, then
π1(∂U) = π1(U). Thus, from the point of view of the fundamental group of
the boundary manifold, the most interesting dimension to study is d = 3.
So assume for the rest of this section that A is an arrangement of planes in
C3. In this case, the boundary manifold admits another interpretation, that
arises in the work of Jiang and Yau [32, 33], Hironaka [30], and Westlund
[64].
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Let P(A) = {'1, . . . , 'n} be the projectivized line arrangement in CP2.
Suppose P(A) has r non-transverse intersection points, i.e., points pJ =⋂

j∈J 'j , of multiplicity |J | � 3. Blowing up CP2 at each of these points, we

obtain an arrangement Ã = {L1, . . . , Ln+r} in the rational surface C̃P
2 ∼=

CP2#rCP2
, consisting of the proper transforms of the lines of P(A), together

with the exceptional lines arising from the blow-ups.

This construction realizes the boundary manifold ∂U as a graph mani-
fold, in the sense of Waldhausen. The underlying graph Γ has vertex set V,
with vertices in one-to-one correspondence with the lines of Ã: the vertex
corresponding to 'i is labeled vi, while the vertex corresponding to pJ is
labeled vJ . The edge set E consists of an edge ei,j from vi to vj if i < j
and the corresponding lines 'i and 'j are transverse, and an edge eJ,i from
vJ to vi if pJ ∈ 'i. Each vertex gets assigned a weight, equal to the self-
intersection number of the corresponding line in the blow-up: vi has weight
wi = 1− |{J | pJ ∈ 'i}|, and vJ has weight wJ = −1.

6.5. Fundamental group

Applying a method due to Hirzebruch [31] to the graph manifold structure
described above, Westlund [64] obtained a presentation for the fundamental
group of the boundary manifold of an arrangement in C3, as follows.

Let Γ be the weighted graph associated to P(A), and choose an orien-
tation on this graph. Pick a maximal tree T ⊂ E, and list the remaining
edges as e1, . . . , es, where s is the number of linearly independent cycles in
Γ. With these choices, the fundamental group of ∂U(A) has presentation

π1(∂U) =

〈
x1, . . . , xn+r

y1, . . . , ys

∣∣∣∣∣
[xi, x

uij
j ], (i, j) ∈ E∏n+r

j=1 x
uij
j , 1 � i � n

〉
, (6.5)

where

uij =





wi if i = j,
yk if (i, j) is the k-th element of E \ T,
y−1
k if (j, i) is the k-th element of E \ T,

1 if (i, j) or (j, i) belongs to T,
0 otherwise.

Here [a, b] = aba−1b−1, a0 = 1 is the identity element, and ab = b−1ab for
b �= 0. Note that if i �= j and uij �= 0, then uji = u−1

ij .

Proposition 6.6 ([12]). — The presentation (6.5) may be simplified to
a commutator-relators presentation for π1(∂U), with generators x1, . . . , xn−1

and y1, . . . , ys as above.
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Instead of reproducing the precise set of relations here, let us first make
a remark, and then illustrate with a simple example.

Remark 6.7. — Recall from (6.1) that the inclusion map j: ∂U → U
induces a split surjection in first homology, leading to the direct sum de-
composition H1(∂U,Z) ∼= H1(U,Z)⊕H2(U, ∂U,Z). The group H1(U,Z) =
H1(U,Z) is freely generated by homology classes x1, . . . , xn−1 corresponding
to the meridians around the first n− 1 lines. On the other hand, the group
H2(U, ∂U,Z) is isomorphic to H1(Γ,Z), and thus admits a basis y1, . . . , ys
corresponding to disks in the exterior whose boundaries are the chosen cycles
in the graph. With respect to these generating sets, then, the abelianization
map ab:π1(∂U) → H1(∂U,Z) takes xi to xi and yi to yi, while the induced
homomorphism j∗:H1(∂U,Z) → H1(U,Z) takes xi to xi and yi to 0.

Figure 6. — A general position arrangement and its associated graph

Example 6.8. — Let A be an arrangement of 4 planes in C3 in general
position. In this case, Γ is the complete graph K4. Using the maximal tree
indicated by dashed edges in Figure 6, we obtain the following presentation
for the fundamental group of the boundary manifold of A:

π1(∂U) =

〈
x1, x2, x3

y1, y2, y3

∣∣∣∣∣
x1x2x3 = x1x

y1
2 x

y2
3 = x2x

y−1
3

1 x
y1
3 = x3x

y−1
2

1 x
y−1
1

2

[x1, x
y3

2 ] = [x1, x
y2

3 ] = [x2, x
y1

3 ] = 1

〉
.

6.6. Alexander polynomial and characteristic varieties

The next result expresses the Alexander polynomial of the boundary
manifold in terms of the underlying graph structure.

Theorem 6.9 ([12]). — Let A be an essential arrangement of planes in
C3, and let Γ be the associated graph. Then the Alexander polynomial of the
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boundary manifold ∂U is given by

∆∂U =
∏

v∈V(Γ)

(tv − 1)dv−2,

where dv denotes the degree of the vertex v, and tv =
∏

i∈v ti.

Note that ∆∂U (1) = 0. In view of Proposition A.2, we obtain the follow-

ing decomposition of the first characteristic variety of ∂U into irreducible
components:

V1
1 (∂U) =

⋃

v∈V(Γ) : dv�3

{tv − 1 = 0}. (6.6)

In particular, every component of V1
1 (∂U) is a codimension 1 algebraic

subtorus of the character torus of ∂U .

6.7. Formality

As we saw in Examples 6.2 and 6.3, for simple arrangements such as
pencils or near-pencils, the boundary manifold is built out of spheres by
successive product and connected sum operations, and thus is formal. On
the other hand, consider the following, equally simple, example.

Example 6.10. — Let A be an arrangement of 5 planes in C3, in general
position. From the discussion in Example 6.5, it follows that R1

7(∂U) is
isomorphic to {z ∈ C6 | z1z6− z2z5 + z3z4 = 0}, an irreducible quadric with
an isolated singular point at 0. By Theorem C.4, then, the manifold ∂U is
not 1-formal.

Alternatively, formula (6.6) implies that V1
s (∂U) ⊆ {1}, for all s � 1.

Thus, TC1(V1
7 (∂U)) �= R1

7(∂U), showing again that ∂U is not 1-formal.

The general situation was elucidated in [12, Theorem 9.7].

Theorem 6.11 ([12]). — Let A be an arrangement of planes in C3, and
let ∂U be the corresponding boundary manifold. The following are equivalent:

1. The manifold ∂U is formal.

2. The group π1(∂U) is 1-formal.

3. TC1(V1
1 (∂U)) = R1

1(∂U).

4. A is either a pencil or a near-pencil.

5. ∂U is either FnS1 × S2 or S1 × Σn−1, where n = |A| − 1.
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Proof. — Implications (1.) ⇒ (2.) ⇒ (3.) are true in general (see Ap-
pendix C), implication (4.) ⇒ (5.) was discussed in Examples 6.2 and 6.3,
while (5.) ⇒ (1.) is obvious.

To prove (3.) ⇒ (4.), suppose A is neither a pencil, nor a near-pencil.
Then, by formula (6.4), R1

1(∂U) = H1(∂U,C). On the other hand, formula
(6.6) shows that V1

1 (∂U) is a union of codimension 1 subtori in H1(∂U,C∗).
Thus, TC1(V1

1 (∂U)) �= R1
1(∂U), and we are done. �

7. The boundary of the Milnor fiber of an arrangement

In this section, we study the boundary of the closed Milnor fiber of a
hyperplane arrangement, and the way it relates to the boundary manifold
of the arrangement.

7.1. The closed Milnor fiber

As usual, let A be a (central) arrangement of hyperplanes in Cd+1 (d �
1), with defining polynomial Q(A) =

∏
H∈A fH . Let V = V (A) be the union

of the hyperplanes in A, and let M = M(A) be its complement.

Now let m be a (primitive) multiplicity vector for A, and let Qm(A) =∏
H∈A f

mH

H . As mentioned in §4, the polynomial mapQm = Qm(A):Cd+1 →
C restricts to a smooth fibration, Qm:M → C∗, with fiber Fm(A).

Intersecting the global Milnor fiber with a ball in Cd+1 of large enough
radius, we obtain a compact, smooth, orientable 2d-dimensional manifold
with boundary,

Fm(A) = Fm(A) ∩D2(d+1), (7.2)

which we call the closed Milnor fiber of the multi-arrangement. Clearly,
Fm(A) deform-retracts onto Fm(A); hence, Fm(A)  Fm(A).

The boundary of the Milnor fiber of (A,m) is the compact, smooth,
orientable, (2d− 1)-dimensional manifold

∂Fm(A) = Fm(A) ∩ S2d+1. (7.3)

As usual, we will abbreviate F (A) and ∂F (A) when all multiplicities mH

are equal to 1, and will drop A from the notation when the arrangement
is understood. As noted in [15, Proposition 2.4], the pair (Fm, ∂Fm) is
(d−1)-connected. In particular, if d � 2, the boundary of the Milnor fiber is
connected, and the inclusion-induced homomorphism π1(∂Fm) → π1(Fm)
is surjective.
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7.2. The local Milnor fibration

Returning to the general situation, let Fm = Fm(A) be the global Milnor
fiber of a multi-arrangement. Recall that the monodromy of the fibration
Fm →M → C∗ is the diffeomorphism h:Fm → Fm given by h(z) = e2πi/Nz,
where N =

∑
H∈AmH .

Clearly, the map h restricts to a diffeomorphism h:Fm → Fm. Let
Ym(A) be the mapping torus of this diffeomorphism; we then have a smooth
fibration

Fm −→ Ym(A) −→ S1. (7.4)

Now let K = V ∩ S2d+1 be the link of the singularity, and let ν(K) be
a closed, regular neighborhood of K inside the sphere. Then, as shown by
Milnor in [45], there is a smooth fibration

Fm −→ S2d+1 \ ◦ν(K)
Qm/|Qm|−−−−−→S1. (7.5)

Furthermore, the local Milnor fibration (7.5) is equivalent, through a fiber-
preserving diffeomorphism, to the fibration (7.4).

Figure 7. — Local Milnor fibration and closed Milnor fiber for Q(A) = xy

Example 7.1. — Let A be the arrangement in C2 defined by the polyno-
mial Q(A) = zn1 − zn2 . Then F (A) is a Seifert surface for the n-component
Hopf link. This is a compact, connected, orientable surface of genus

(
n−1

2

)
,

with n open disks removed; its boundary, ∂F (A), consists of n disjoint cir-
cles.

For n = 2, the surface is the twisted cylinder depicted in Figure 7, and
the monodromy is a Dehn twist about the core of the cylinder. (Although
this diffeomorphism is isotopic to the identity, no such isotopy can be the
identity on the two boundary circles.)
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7.3. The double of the Milnor fiber

There are several ways in which the closed Milnor fiber and its boundary
are related to the boundary manifold of an arrangement. The next propo-
sition (whose proof is adapted from the discussion in [11, §2.8]) details one
such relationship, in the special case when the defining polynomial splits off
a linear factor not involving the other variables.

First recall a basic notion: the double of a manifold W with non-empty
boundary ∂W is the (closed) manifold ∂(W × [0, 1]) = W ∪∂W W .

Proposition 7.2. — Let A be a hyperplane arrangement in Cd+1, de-
fined by a polynomial of the form Q(z0, . . . , zd) = z0Q0(z1, . . . , zd). Let A0

be the arrangement in Cd defined by Q0, and let F 0 → Y0 → S1 be the
corresponding Milnor fibration. Then, the boundary manifold of A is diffeo-
morphic to the double of Y0; moreover, ∂U(A) fibers over the circle, with
fiber the double of F 0.

Proof. — Let V0 be the subvariety of Cd defined by Q0. Its projective
closure, V 0, is the zero-set of Q; moreover, CPd \ V 0 = Cd \ V0. Forming
the union of a regular neighborhood ν(V0) with a tubular neighborhood of
the hyperplane at infinity, and rounding off corners, we obtain a regular

neighborhood ν(V 0). Clearly, CPd \ ◦ν(V 0) is diffeomorphic to D2d \ (D2d ∩
◦
ν(V0)). Hence,

∂U =
(
S2d−1 \ (S2d−1 ∩ ν(V0))

)
∪

(
D2d ∩ ∂ν(V0)

)
. (7.6)

By the discussion from §7.2, each of the two sides in the above decom-
position is diffeomorphic to Y0, and the gluing is done along their common
boundary, ∂Y0. Thus, ∂U is the double of Y0. The last assertion follows at
once. �

Example 7.3. — Let Bn be the Boolean arrangement in Cn. From Ex-
ample 4.3, we know that F (Bn) = (C∗)n−1. Hence, F = (S1 × [0, 1])n−1 ∼=
Tn−1 ×Dn−1, and so ∂F = Tn−1 × Sn−2 (compare with [15, §3, Exercise
1.15]).

Now note that Q(Bn) = z0Q(Bn−1). We also know from Example 4.3
that the bundle F (Bn−1) → Y (Bn−1) → S1 is trivial. Applying Proposition
7.2, then, shows that ∂U = Tn−1 × Sn−2.

Example 7.4. — Let A be a near-pencil of n planes in C3, defined by the
polynomial Q = z0Q0, where Q0 = zn−1

1 −zn−1
2 . Then Y0 admits a fibration
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over the circle (different from the Milnor fibration), whose fiber is D2 with
n − 1 open disks removed, and whose monodromy is a Dehn twist about
the boundary of D2. Hence, ∂U = S1 × Σn−2. As noted in [46, Example
19.10.7], we also have that ∂F = S1 × Σn−2.

7.4. The boundary of the Milnor fiber as a cyclic cover

We now describe a construction that realizes the boundary of the Milnor
fiber associated to a hyperplane arrangement A as a regular, finite cyclic
cover of the boundary manifold of the arrangement A. As usual, set n = |A|.

Recall that the Hopf fibration π:Cd+1 \ {0} → CPd restricts to a (triv-
ializable) bundle map, π:M → U , with fiber C∗, which in turn restricts to
a regular Zn-cover, π:F → U .

Lemma 7.5. — The map π:Cd+1 \{0} → CPd restricts to regular, cyclic
n-fold covers, π:F → U and π: ∂F → ∂U .

Proof. — Let Q = Q(A). Recall that

F = {z ∈ Cd+1 | ||z|| � 1 and Q(z) = 1}, and (7.7)

U = {[z] ∈ CP2d | |Q(z)|2 /||z||2n � 1}.

Thus, the map π restricts to a map of pairs, π: (F , ∂F ) → (U, ∂U).
Hence, the cover π:F → U restricts to covers π:F → U and π: ∂F → ∂U ,
and we are done. �

Note that the inclusion F → F is a fiber-preserving homotopy equiva-
lence. Summarizing, we have a commuting ladder

(7.8)

where the horizontal arrows are inclusions, and the maps denoted by π are
principal bundles with fiber either C∗ or Zn.

Assume now that d = 2, and let P(A) = {'1, . . . , 'n} be the associated
arrangement of lines in CP2. By Proposition 6.6, the group π1(∂U) has
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generators x1, . . . , xn−1 corresponding to the meridians around the first n−1
lines, and generators y1, . . . , ys corresponding to the cycles in the associated
graph Γ.

Proposition 7.6. — The Zn-cover π: ∂F → ∂U is classified by the ho-
momorphism π1(∂U)� Zn given by xi �→ 1 and yi �→ 0.

Proof. — By Lemma 7.5, the cover π: ∂F → ∂U is the pullback along
the inclusion j: ∂U → U of the cover π:F → U . By Theorem 4.10, this latter
cover is classified by the homomorphism π1(U) � Zn, xi �→ 1. By Remark
6.7, the homomorphism j∗:H1(∂U,Z) → H1(U,Z) is given by xi �→ xi and
yi �→ 0. The desired conclusion follows. �

Example 7.7. — Let A be a pencil of n+ 1 planes in C3. From Example
6.2, we know that ∂U = FnS1 × S2. Since ∂F → ∂U is a cover with n + 1
sheets, we find that π1(∂F ) = Fn2 . Hence, by standard 3-manifold topology,

∂F = Fn
2

S1 × S2. (See also [46, Example 19.10.6].)

7.5. The characteristic polynomial of the monodromy

A detailed study of the boundary of the Milnor fiber of a non-isolated
surface singularity was done by Némethi and Szilárd in [46]. When applied
to arrangements in C3, their work yields the following result.

Theorem 7.8 ([46]). — Let A be an arrangement of n planes in C3.
The characteristic polynomial of the algebraic monodromy acting on
H1(∂F ,C) is given by

∆(t) =
∏

X∈L2(A)

(t− 1)(tgcd(µ(X)+1,n) − 1)µ(X)−1.

In particular, the first Betti number of ∂F is determined solely by the
Möbius function of L(A):

b1(∂F ) =
∑

X∈L2(A)

(1 + (µ(X)− 1) gcd(µ(X) + 1, n)). (7.9)

This shows that the first Betti number of the boundary of the Milnor
fiber is a much less subtle invariant than b1(F ), in that b1(∂F ) depends
only on the number and type of multiple points of P(A), but not on their
relative position. The next example illustrates this phenomenon.
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Example 7.9. — Let A1 and A2 be the two arrangements from Example
5.11. Recall that the characteristic polynomials of the monodromy operators
acting on the first homology of the Milnor fibers of these arrangements
are ∆1(t) = (t − 1)8(t2 + t + 1) and ∆2(t) = (t − 1)8, respectively. On
the other hand, the monodromy operators acting on the first homology of
the boundaries of the respective Milnor fibers share the same characteristic
polynomial, namely, ∆(t) = (t− 1)27(t2 + t+ 1)9.

Nevertheless, there are pairs of arrangements for which the Milnor fibers
have the same first Betti number, but the boundaries of the Milnor fibers
have different first Betti numbers. Let us illustrate this claim with a simple
example.

Example 7.10. — Let A1 be an arrangement of 4 planes in general posi-
tion and let A2 be a near-pencil of 4 planes. Let F 1 and F 2 be the respec-
tive closed Milnor fibers. The monodromy operators acting on H1(F 1,C)
and H1(F 2,C) have characteristic polynomial ∆(t) = (t−1)3, yet the mon-
odromy operators acting on H1(∂F 1,C) and H1(∂F 2,C) have characteristic
polynomials equal to ∆1(t) = (t− 1)6 and ∆2(t) = (t− 1)5, respectively.

7.6. The formality question

Next, we determine which Milnor fibers of plane arrangements have for-
mal boundaries.

Proposition 7.11. — Let A be an arrangement of planes in C3, and
let ∂F be the boundary of its Milnor fiber. The following are equivalent:

1. The manifold ∂F is formal.

2. A is either a pencil or a near-pencil.

3. ∂F is either Fn
2

S1 × S2 or S1 × Σn−1, where n = |A| − 1.

Proof. — Implication (2.) ⇒ (3.) was discussed in Examples 7.7 and
7.4, while implication (3.) ⇒ (1.) is obvious.

To prove (1.) ⇒ (2.), suppose A is neither a pencil, nor a near-pencil.
By Theorem 6.11, then, the boundary manifold ∂U is not formal. On the
other hand, we know from Lemma 7.5 that ∂F is a regular, cyclic n-fold
cover of ∂U . Hence, by Lemma C.1, the manifold ∂F is not formal. �
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7.7. Further considerations

In [46, §24], Némethi and A. Szilárd list a number of open problems
regarding the boundary of the Milnor fiber of a non-isolated surface singu-
larity. Problem 24.4.19 on the list reads as follows.

Problem 7.12. — Find a nice formula for the torsion of H1(∂F ,Z).

The next example shows that torsion can indeed occur in the first ho-
mology of ∂F (compare with [46, Example 19.10.9]).

Example 7.13. — Let A be a general position arrangement of 4 planes
in C3. As noted above, the characteristic polynomial of the algebraic mon-
odromy acting on H1(∂F ,C) is given by ∆(t) = (t−1)6. Direct computation
shows that, in fact, H1(∂F ,Z) = Z6 ⊕ Z4.

For a generic arrangement of n planes in C3, we expect that

H1(∂F ,Z) = Zn(n−1)/2 ⊕ Z(n−2)(n−3)/2
n . (7.10)

For an arbitrary arrangement A, it would be interesting to see whether all
the torsion in H1(∂F (A),Z) consists of Zn-summands, where n = |A|.

The next problem summarizes Problems 24.2.1 and 24.2.2 from [46].

Problem 7.14. — Determine the cohomology ring and the resonance
varieties of the boundary of the Milnor fiber of an arrangement.

Let A be an arrangement. From Lemma 7.5, we know that the Hopf
fibration restricts to a a regular, finite cover, π: ∂F → ∂U . Proposition
B.3, then, insures that π∗(Vq

s (∂U, kk)) ⊆ Vq
s (∂F , kk) and π∗(Rq

s(∂U, kk)) ⊆
Rq

s(∂F , kk), for all q � 0 and s � 1.

If A is a near-pencil of planes in C3, then all these inclusions are, in fact,
equalities. In general, though, these inclusions are strict. For instance, if A is
a pencil of n+1 planes in C3, and n � 2, thenR1

1(∂U, kk) = H1(∂U, kk) = kkn,

whereas R1
1(∂F , kk) = H1(∂F , kk) = kkn

2

.
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A. Cohomology jumping loci

A.1. Characteristic varieties

Let X be a connected CW-complex. Without loss of generality, we may
assume X has a single 0-cell. Let G = π1(X,x0) be the fundamental group
of X, based at this 0-cell. We will assume throughout that X has finitely
many 1-cells. Of course, these cells must be attached at the unique 0-cell
x0. By cellular approximation, the based homotopy classes of the 1-cells
generate the fundamental group; hence, G is a finitely generated group.

Now let kk be an algebraically closed field, and let Ĝ = Hom(G, kk∗) =
H1(X, kk∗) be the affine algebraic group of kk-valued, multiplicative charac-
ters on G. The characteristic varieties of X over kk are the jumping loci for
homology with coefficients in kk-valued, rank-1 local systems on X:

Vq
s (X, kk) = {ρ ∈ Hom(G, kk∗) | dimkkHq(X, kkρ) � s}. (A.1)

As long as X has finite q-skeleton, these loci are Zariski closed subsets
of Ĝ; moreover, we have a descending filtration

Ĝ = Vq
0 (X, kk) ⊇ Vq

1 (X, kk) ⊇ · · · ⊇ Vq
s (X, kk) ⊇ · · · . (A.2)

As shown in [54], the depth-1 characteristic varieties Vq(X, kk) = Vq
1 (X, kk)

behave well under direct products. More precisely, suppose X1 and X2 are
two connected, finite-type CW-complexes, with fundamental groups G1 and
G2. Identify the character group of π1(X1 × X2) with Ĝ1 × Ĝ2. Then, for
all q � 0,

Vq(X1 ×X2, kk) =

q⋃

i=0

Vi(X1, kk)× Vq−i(X2, kk). (A.3)

A.2. Resonance varieties

Let A = H∗(X, kk) be the cohomology algebra of X. If H1(X,Z) has
2-torsion, assume that char(kk) �= 2. Then, for each a ∈ A1, we have a2 = 0,
by graded-commutativity of the cup product. Thus, left-multiplication by a
defines a cochain complex,

(A, ·a): A0 a−→A1 a−→A2 −→ · · ·, (A.4)

The jump loci for the cohomology of this complex define a natural fil-
tration of the affine space A1 = H1(X, kk). The resonance varieties of X are
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the sets

Rq
s(X, kk) = {a ∈ A1 | dimkkH

q(A, a) � s}. (A.5)

If X has finite q-skeleton, the sets Rq
s(X, kk) form a descending filtration

of A1 by homogeneous, Zariski closed subsets of A1. Note that, if Aq = 0,
then Rq

s(X, kk) = ∅, for all s > 0. In degree 0, we have R0
1(X, kk) = {0}, and

R0
s(X, kk) = ∅, for s > 1.

The resonance varieties respect field extensions: if kk ⊆ K, then Rq
s(X, kk)

= Rq
s(X,K)∩H1(X, kk). Furthermore, as noted in [54], the depth-1 resonance

varieties Rq(X, kk) = Rq
1(X, kk) behave well under direct products:

Rq(X1 ×X2, kk) =

q⋃

i=0

Ri(X1, kk)×Rq−i(X2, kk). (A.6)

A.3. Jump loci in degree 1

Given a finitely generated group G, we may define its degree 1 charac-
teristic and resonance varieties as those of a presentation 2-complex for the
group. It is readily checked that this definition does not depend on a choice
of presentation for G.

If the group admits a finite presentation, G = 〈x1, . . . , xn | r1, . . . , rm〉,
we may compute the sets V1

s (G, kk) and R1
s(G, kk) directly from the presen-

tation, by means of the Fox calculus. The algorithm goes as follows.

Let Fn be the free group with generators x1, . . . , xn, and let ε: kkFn →
kk be the augmentation map, given by ε(xi) = 1. For each 1 � j � n,
there is a linear operator ∂j = ∂/∂xj : kkFn → kkFn, known as the j-th Fox
derivative, uniquely defined by the following rules: ∂j(1) = 0, ∂j(xi) = δij ,
and ∂j(uv) = ∂j(u)ε(v) + u∂j(v).

Now let α: kkFn → kkGab be the ring morphism obtained by compos-
ing the abelianization map ab:G → Gab with the presentation homomor-
phism φ:Fn → G, and extending linearly to group rings. We then define the
Alexander matrix of the given presentation as the m by n matrix Φ = ΦG

with entries

Φij = α(∂jri) (A.7)

in the group algebra kkGab. Note that kkGab is the coordinate ring of the al-
gebraic group Ĝ = Hom(G, kk∗). The variety V1

s (G, kk), then, is the zero locus
of the codimension s minors of Φ, at least away from the trivial character,
see [29, 54].
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A somewhat similar interpretation of the resonance varieties R1
s(G, kk)

was given in [43], at least in the case when G admits a commutator-relators
presentation. More precisely, if all the relators ri belong to [Fn, Fn], we may
define the linearized Alexander matrix, Φlin = Φlin

G , as the m by n matrix
with entries

Φlin
ij =

n∑

k=1

ε(∂k∂jri)yk (A.8)

in the polynomial ring S = kk[y1, . . . , yn]. Of course, S may be viewed as the
coordinate ring of the affine space H1(G, kk) = kkn. The variety R1

s(G, kk),
then, is the zero locus of the codimension s minors of Φlin. For instance, if
n > 1, then R1

s(Fn, kk) = kkn, for all s < n.

A.4. A naturality property

Every group homomorphism ϕ:G → Q induces a morphism between
character groups, ϕ̂: Q̂ → Ĝ, given by ϕ̂(ρ)(g) = ϕ(ρ(g)). Likewise, ϕ in-
duces a homomorphism in cohomology, ϕ∗:H∗(Q, kk)→ H∗(G,Q). Clearly,
if ϕ is surjective, then both ϕ̂ and ϕ1 are injective.

The next proposition describes a nice functoriality property enjoyed by
the characteristic and resonance varieties of groups. The proposition extends
results from [52, 62]; the first part of the proof is modeled on the proof of
[62, Lemma 2.13], while the second part of the proof is modeled on the proof
of [52, Lemma 5.1].

Proposition A.1. — Let G be a finitely generated group, and let ϕ:G�
Q be a surjective homomorphism. Then, for each ground field kk, and each
s � 1, the following hold.

1. The induced morphism between character groups, ϕ̂: Q̂ ↪→ Ĝ, restricts
to an embedding V1

s (Q, kk) ↪→ V1
s (G, kk).

2. The induced morphism between cohomology groups, ϕ∗:H1(Q, kk) ↪→
H1(G, kk), restricts to an embedding R1

s(Q, kk) ↪→ R1
s(G, kk).

Proof. — For the first part, let ρ:Q → kk∗ be a character. The 5-term
exact sequence associated to the extension 1 → K → G → Q → 1 and
the kkG-module M = kkρ◦ϕ ends in H1(G,M) → H1(Q,MK) → 0, where
MK = M/{gm − m | m ∈ M, g ∈ K} is the module of coinvariants un-
der the action of K. Clearly, MK is isomorphic as a kkQ-module to kkρ.
Hence, dimkkH1(G, kkρ◦ϕ) is bounded below by dimkkH1(Q, kkρ). Thus, if
ρ ∈ V1

s (Q, kk), then ϕ̂(ρ) ∈ V1
s (G, kk), and we are done.
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For the second part, consider the commuting diagram

(A.9)

where µQ and µG are the respective cup-product maps. Let a be a nonzero
element in A1 = H1(Q, kk). By definition, a belongs toR1

s(Q, kk) if there exist
linearly independent elements b1, . . . , bs ∈ A1 such that a∧bi �= 0 in A1∧A1,
yet µQ(a, bi) = 0. Clearly, ϕ1(b1), . . . , ϕ

1(bs) are linearly independent in
H1(G, kk) and ϕ1(a)∧ϕ1(bi) �= 0, by injectivity of ϕ1. Moreover, µG(ϕ1(a)∧
ϕ1(bi)) = 0, by commutativity of the diagram. Hence, ϕ1(a) belongs to
R1

s(G, kk). �

A.5. Alexander polynomial

As before, let G = 〈x1, . . . , xn | r1, . . . , rm〉 be a finitely presented group.
For simplicity, we will assume Gab is torsion-free (otherwise, we need to mod
out its torsion subgroup), and will fix the coefficient field kk = C.

The Alexander polynomial of the group G, denoted ∆G, is the greatest
common divisor of the minors of size n− 1 of the Alexander matrix ΦG. As
such, it is an element in the ring of Laurent polynomials CGab, well-defined
up to units.

The Alexander polynomial defines a hypersurface, V (∆G), in the com-

plex algebraic torus Ĝ. As shown in [20, Corollary 3.2], this hypersurface
can be recovered from the characteristic variety V1(G) = V1

1 (G,C). More
precisely, either ∆G = 0, or

V̌1(G) \ {1} = V (∆G) \ {1}, (A.10)

where V̌1(G) denotes the union of all codimension-one irreducible compo-
nents of V1(G). If G is a 3-manifold group, more can be said.

Proposition A.2 ([20]). — Let M be a compact, connected, orientable
3-manifold without boundary. Let G = π1(M), and suppose Gab is torsion-
free. Then

V1(G) \ {1} = V (∆G) \ {1}. (A.11)

In other words, at least away from the origin, the characteristic variety
V1(M) is the hypersurface defined by the Alexander polynomial ∆M = ∆G.
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B. Finite, regular abelian covers

B.1. Regular covers

As before, let X be a connected CW-complex with finite 1-skeleton, and
basepoint at the unique 0-cell, x0. Consider a covering map, p:Y → X, with
connected total space Y . The cell structure on X lifts to a cell structure on
Y , in such a way that p is a cellular map. Fix a basepoint y0 ∈ p−1(x0);
the induced homomorphism, p�:π1(Y, y0) → π1(X,x0), is injective. The
assignment p � im(p�), then, establishes a one-to-one to correspondence
between basepoint-preserving equivalence classes of connected covers of X
and subgroups of π1(X,x0).

In this context, a special role is played by the regular covers of our
space X, that is, those covers p: (Y, y0) → (X,x0) for which im(p�) is a
normal subgroup of G = π1(X,x0). For such a cover, let A = G/im(p�)
be the quotient group, and let χ:G → A be the canonical projection. We
say that A is the group of deck transformations, and χ is a classifying
homomorphism for the cover p. Conversely, if χ:G� A is an epimorphism to
a (necessarily finitely generated) group A, there is a regular cover Xχ → X,
whose classifying homomorphism is χ.

Now let f :X ′ → X be a map, and let Y ′ → X ′ be the cover obtained
by pulling back the cover Xχ → X along f . Then Y ′ → X ′ is a regular
A-cover, classified by the homomorphism χ′ = χ ◦ f�.

B.2. Homology of finite abelian covers

The next theorem records a formula for the homology groups Hq(X
χ, kk),

in the case when the group of deck-transformations A is finite, and kk is an
algebraically closed field of characteristic not dividing the order of A. In the
case q = 1, this formula is well-known, and due to Libgober [34], Sakuma
[57] and E. Hironaka [29] for kk = C, and to Matei–Suciu [44] for other fields
kk. We provide a self-contained proof, following [14, Theorem 2.5].

Let χ:G � A be an epimorphism to a finite abelian group A, and let
χ̂: Â → Ĝ be the induced morphism between character groups. Then χ̂ is
injective, and its image is (non-canonically) isomorphic to A. Furthermore,
if ρ:G → kk∗ is a character belonging to im(χ̂), there is a unique character
ιρ:A→ kk∗ such that ρ = ιρ ◦ χ.

Theorem B.1. — Let Xχ → X be the regular cover defined by an epi-
morphism χ from G = π1(X,x0) to a finite abelian group A. Let kk be an
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algebraically closed field of characteristic not dividing the order of A. Then,
for each q � 0,

dimkkHq(X
χ, kk) =

∑

s�1

|im(χ̂) ∩ Vq
s (X, kk)| . (B.1)

Proof. — The epimorphism χ puts a left kk[G]-module structure on the
group algebra kk[A]. By Shapiro’s Lemma, Hq(X

χ, kk) is isomorphic, as a
right kk[A]-module, to Hq(X, kk[A]). By our assumption on kk, the algebra
kk[A] is completely reducible, with one-dimensional, irreducible representa-

tions parametrized by Â. As a left kk[G]-module, each such representation

is isomorphic to the image of χ̂: Â→ Ĝ. Thus,

Hq(X, kk[A]) ∼=
⊕

ρ∈im(χ̂)

Hq(X, kkρ). (B.2)

By the remark above, Hq(X, kkρ) is isomorphic, as a kk[A]-module, to
(kkιρ)

⊕b where b = dimkkHq(X, kkρ). By definition, ρ ∈ Vq
s (X, kk) if and only

if dimkkHq(X, kkρ) � s. Putting things together, we obtain an isomorphism
of kk[A]-modules,

Hq(X
χ, kk) ∼=

⊕

s�1

⊕

ρ∈im(χ̂)∩Vqs (X,kk)

kkιρ . (B.3)

Taking dimensions on both sides completes the proof. �

B.3. The characteristic polynomial of the algebraic monodromy

We now specialize to the case when Xχ → X is a regular cover, classified
by an epimorphism χ:π1(X,x0) → A to a finite cyclic group A. Choose a
generator α of A. Let h = hα:Xχ → Xχ be the corresponding monodromy
automorphism, and let h∗:Hq(X

χ, kk) → Hq(X
χ, kk) be the induced map

in homology. As in [14, §2.4], then, we obtain the following application of
Theorem B.1.

Theorem B.2. — Assume char(kk) � |A|. Then, the characteristic poly-
nomial of the algebraic monodromy, ∆kk

χ,q(t) = det(t · id− h∗), is given by

∆kk
χ,q(t) =

∏

s�1

∏

ρ∈im(χ̂)∩Vqs (X,kk)

(t− ιρ(α)). (B.4)
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Proof. — From the hypothesis, the kk[A]-moduleHq(X
χ,kk)=Hq(X,kk[A])

is completely reducible. Therefore, the automorphism h∗ is diagonalizable.
Furthermore, the eigenvalues of h∗, counted with multiplicity, are indexed
by the irreducible kk[A]-modules appearing in decomposition (B.3), and we
are done. �

In degree q = 1, and for kk = C, the polynomial ∆χ(t) = ∆Cχ,1(t) can be
related to the Alexander polynomial of the group G = π1(X), as follows:

∆χ(t) = (t− 1)c∆G(tχ1 , . . . , tχn), (B.5)

where c is an integer depending only on G.

B.4. Jump loci of finite covers

The next proposition and its corollary were proved in [19] in the case
when kk has characteristic 0. For completeness, we include a proof, valid in
a slightly more general context.

Proposition B.3. — Let A be a finite group, and let p:Y → X be a
regular A-cover. Suppose that char(kk) � |A|, and char(kk) �= 2 if H1(X,Z)
has 2-torsion. Then p∗(Vq

s (X, kk)) ⊆ Vq
s (Y, kk) and p∗(Rq

s(X, kk)) ⊆ Rq
s(Y, kk),

for all q � 0 and s � 1.

Proof. — For the first claim, let L be a kk-valued, rank-1 local system
on X, and consider the Hochschild-Serre spectral sequence of the cover,
E2
ij = Hi(A,Hj(Y, p

∗L)) ⇒ Hi+j(X,L). Since A is finite and char(kk) �
|A|, we have that E2

ij = 0, for all i > 0 and j � 0; thus, the spectral
sequence collapses to an isomorphism, H∗(X,L) ∼= H∗(Y, p∗L)A. By duality,
we obtain an injection, p∗:H∗(X,L) ↪→ H∗(Y, p∗L), and we are done.

For the second claim, a standard transfer argument, using again the
hypothesis on char(kk), allows us to identify the induced algebra map in
cohomology, p∗:H∗(X, kk)→ H∗(Y, kk), with the inclusion p∗:H∗(Y, kk)A ↪→
H∗(Y, kk). For a class a ∈ H1(Y, kk)A, the monodromy action ofA onH∗(Y, kk)
gives rise to an action on the chain complex (H∗(Y, kk), ·a), with fixed sub-
complex (H∗(X, kk), ·a). We thus obtain an inclusion H∗(H∗(X, kk), ·a) ↪→
H∗(H∗(Y, kk), ·a), and we are done. �

The proof of the second part of the proposition has an immediate corol-
lary.

Corollary B.4. — With notation as above, suppose A acts trivially on
H1(Y, kk). Then p∗:R1

s(X, kk)→ R1
s(Y, kk) is an isomorphism, for all s � 1.
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The assumption of the corollary is really necessary. For instance, if X
is a wedge of n > 1 circles, then Y is a wedge of m = (n − 1) |A| + 1
circles; thus, if |A| > 1, then the map p∗:R1

1(X, kk) → R1
1(Y, kk) is a proper

inclusion, sending kkn into kkm.

C. Formality

C.1. Formal spaces

Let X be connected CW-complex with finite 1-skeleton. To such a space,
Sullivan associated the commutative differential graded algebra (cdga) of
polynomial differential forms onX with coefficients inQ, denotedAPL(X,Q).

Let H∗(X,Q) be the rational cohomology algebra of X, endowed with
the zero differential. The space X is said to be formal if there is a zig-
zag of cdga morphisms connecting APL(X,Q) to H∗(X,Q), with each such
morphism inducing an isomorphism in cohomology. The spaceX is merely k-
formal (for some k � 1) if each of these morphisms induces an isomorphism
in degrees up to k, and a monomorphism in degree k+1. If X is a k-formal
and dimX � k + 1, then X is formal.

If X is a smooth manifold, Sullivan’s algebra may be replaced by the
de Rham algebra Ω∗dR(X) of smooth, differential forms on X. Examples
of formal spaces include suspensions, rational cohomology tori, surfaces,
compact connected Lie groups, as well as their classifying spaces. On the
other hand, the only nilmanifolds which are formal are tori. Formality is
preserved under wedges and products of spaces, and connected sums of
manifolds.

The 1-minimality property of a space X depends only on its fundamental
group, G = π1(X,x0). Alternatively, a finitely generated group G is 1-
formal if and only if its Malcev Lie algebra (defined as the Lie algebra
of primitive elements in the I-adic completion of the group-algebra Q[G])
admits a quadratic presentation. Examples of 1-formal groups include free
groups and free abelian groups of finite rank, surface groups, and groups
with first Betti number equal to 0 or 1. The 1-formality property is preserved
under free products and direct products.

A classical obstruction to formality is provided by the higher-order Massey
products. In particular, if X is 1-formal, and α1, α2, α3 are elements in
H1(X,Q) such that α1α2 = α2α3 = 0, then the Massey triple product
〈α1, α2, α3〉 must vanish, modulo indeterminacy.
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One can make an analogous definition of kk-formality over an arbitrary
field kk. Again, an obstruction for kk-formality is provided by the Massey
products in H∗(X, kk).

C.2. Formality in finite covers

Suppose f :X → Y is a map such that f∗:H∗(Y,Q) → H∗(X,Q) is an
isomorphism up to degree k, and a monomorphism in degree k + 1. Then
X is k-formal if and only if Y is k-formal.

Lemma C.1. — Let p:Y → X be a finite, regular cover. If Y is k-formal,
then X is also k-formal.

Proof. — Let Γ be the group of deck-transformations, so that X = Y/Γ.
As shown in [26, Remark 3.30(2)], if Y is formal, then X is also formal. The
same argument applies to k-formality. �

A particular case is worth mentioning. Suppose G is a finitely generated
group, and H KG is a finite-index, normal subgroup. If H is 1-formal, then
G is also 1-formal. As the next example shows, the converse does not hold.

Example C.2. — As is well-known, the Heisenberg group H = 〈x, y |
[x, y] central〉 admits non-trivial triple Massey products in H1(H,Q); thus,
H is not 1-formal. On the other hand, the semi-direct product G = H Z2

defined by the involution x �→ x−1, y �→ y−1 has b1(G) = 0, and so G is
1-formal.

Nevertheless, the converse to Lemma C.1 holds under an additional,
rather restrictive condition.

Lemma C.3 ([19]). — Let p:Y → X be a finite, regular cover, and sup-
pose the group of deck-transformations acts trivially on Hi(Y,Q), for all
i � k. Then Y is k-formal if and only if X is k-formal.

C.3. The tangent cone formula

Let G = π1(X,x0). The homomorphism C → C∗, z �→ ez induces a

homomorphism exp: Hom(G,C) → Hom(G,C∗) = Ĝ. Given a subvariety of

W ⊆ Ĝ, define its exponential tangent cone at the origin to be the set

τ1(W ) = {z ∈ Hom(G,C) | exp(λz) ∈W, for all λ ∈ C}. (C.1)

It turns out that τ1(W ) is a finite union of rationally defined linear sub-
spaces (see [21], and also [62] for more details). Moreover, τ1(W ) is included
in TC1(W ), the usual tangent cone to W at the origin.
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Now fix an integer s > 0, and consider the varieties V1
s (X) ⊆ Ĝ and

R1
s(X) ⊆ H1(X,C) = Hom(G,C). By work of Libgober [36], the tangent

cone to V1
s (X) at 1 is included in R1

s(X). Thus, we get a chain of inclusions,

τ1(V1
s (X)) ⊆ TC1(V1

s (X)) ⊆ R1
s(X), (C.2)

each of which is a proper inclusion, in general. The main connection between
the formality property of a space and its cohomology jump loci is provided
by the following theorem.

Theorem C.4 ([21]). — Let X be a 1-formal space. For each s > 0,
the following “tangent cone formula” holds:

τ1(V1
s (X)) = TC1(V1

s (X)) = R1
s(X). (C.3)

As a consequence, the irreducible components ofR1
s(X) are all rationally

defined subspaces, while the components of V1
s (X) passing through the ori-

gin are all algebraic subtori of the form exp(L), with L running through the
irreducible components of R1

s(X).
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