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ABSTRACT. — We survey some of the universality properties of the Rie-
mann zeta function ζ(s) and then explain how to obtain a natural quan-
tization of Voronin’s universality theorem (and of its various extensions).
Our work builds on the theory of complex fractal dimensions for fractal
strings developed by the second author and M. van Frankenhuijsen in [60].
It also makes an essential use of the functional analytic framework devel-
oped by the authors in [25] for rigorously studying the spectral operator a
(mapping the geometry onto the spectrum of generalized fractal strings),
and the associated infinitesimal shift ∂ of the real line: a = ζ(∂), in the
sense of the functional calculus. In the quantization (or operator-valued)
version of the universality theorem for the Riemann zeta function ζ(s)
proposed here, the role played by the complex variable s in the classical
universality theorem is now played by the family of ‘truncated infinites-
imal shifts’ introduced in [25] in order to study the invertibility of the
spectral operator in connection with a spectral reformulation of the Rie-
mann hypothesis as an inverse spectral problem for fractal strings. This
latter work provided an operator-theoretic version of the spectral refor-
mulation obtained by the second author and H. Maier in [50]. In the
long term, our work (along with [42, 43]), is aimed in part at providing
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a natural quantization of various aspects of analytic number theory and
arithmetic geometry.

RÉSUMÉ. — Nous rappelons quelques unes des principales propriétés
d’universalité de la fonction zêta de Riemann ζ(s). De plus, nous ex-
pliquons comment obtenir une quantification naturelle du théorème d’uni-
versalité de Voronin (et de ses généralisations). Notre travail est basé sur
la théorie des cordes fractales et de leurs dimensions complexes développée
par le deuxième auteur et M. van Frankenhuijsen dans [60]. Nous utilisons
également de façon essentielle la théorie développée dans [25] par les au-
teurs de cet article afin d’étudier de manière rigoureuse l’opérateur spec-
tral (qui relie la géométrie et le spectre des cordes fractales généralisées).
Cet opérateur spectral est representé (au sens du calcul fonctionnel) comme
la composée de la fonction zêta de Riemann et du ‘shift infinitesimal’ (ou
‘décalage infinitésimal’) ∂ : a = ζ(∂). Dans le processus de quantifica-
tion du théorème d’universalité de la fonction zêta de Riemann, le rôle
joué par la variable s (dans le théorème classique d’universalité) est joué
par la famille des ‘shifts infinitésimaux tronqués’ introduite dans [25] afin
d’étudier l’opérateur spectral en lien avec la reformulation spectrale de
l’hypothèse de Riemann, vue comme un problème spectral inverse pour
les cordes fractales. Ce dernier résultat fournit une version opératorielle
de la reformulation spectrale obtenue par le second auteur et H. Maier
dans [50]. Au long terme, notre présent travail (ainsi que [42, 43]), a en
partie pour but d’obtenir une quantification naturelle de divers aspects
de la théorie analytiques des nombres et de la géométrie arithmétique.
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1. Introduction

The universality property of the Riemann zeta function states that any
non-vanishing analytic function can be approximated uniformly by certain
purely imaginary shifts of the zeta function in the right half of the critical
strip [90]. It was discovered by S. M. Voronin in 1975. Several improvements
of Voronin’s theorem are given in [1, 62, 77, 78]. Further extensions of this
theorem to other classes of zeta functions can be found in [13, 63, 65, 66,
67, 68, 69, 85]. In the first part of the present paper, as well as in several
appendices, we survey some of these results and discuss their significance
for the Riemann zeta function ζ and other L-functions.

In the second part of the paper, we focus on the Riemann zeta function
ζ(s) and its operator (or ‘quantum’) analog, and propose a quantum (or
operator-valued) version of the universality theorem and some of its exten-
sions. More specifically, in their development of the theory of complex di-
mensions in fractal geometry and number theory, the spectral operator was
introduced heuristically by the second author and M. van Frankenhuijsen
as a map that sends the geometry of fractal strings to their spectra [59, 60].
A detailed, rigorous functional analytic study of this map was provided by
the authors in [25].

In this paper, we discuss the properties of the family of ‘truncated in-
finitesimal shifts’ of the real line and of the associated ‘truncated spectral
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operators’. (See also [26, 27, 28].) These truncated operators were intro-
duced in [25] to study the invertibility of the spectral operator and obtain
an operator-theoretic version of the spectral reformulation of the Riemann
hypothesis (obtained by the second author and H. Maier in [49, 50]) as
an inverse spectral problem for fractal strings. In particular, we show that
a = ζ(∂), where ∂ is the ‘infinitesimal shift’ (the generator of the trans-
lations on the real line), viewed as an unbounded normal operator acting
on a suitable scale of Hilbert spaces indexed by the (Minkowski) fractal
dimension of the underlying (generalized) fractal strings.

Moreover, using tools from the functional calculus and our detailed study
of the spectra of the operators involved, we show that any non-vanishing
holomorphic function of the truncated infinitesimal shifts can be approxi-
mated by imaginary translates of the truncated spectral operators. This lat-
ter result provides a ‘natural quantization’ of Voronin’s theorem (and its ex-
tensions) about the universality of the Riemann zeta function. We conclude
that, in some sense, arbitrarily small scaled copies of the spectral operator
are encoded within itself. Therefore, we deduce that the spectral operator
can emulate any type of complex behavior and that it is ‘chaotic’. In the
long term, the theory developed in the present paper and in [25, 26, 27, 28],
along with the work in [42, 43], is aimed in part at providing a natural
quantization of various aspects of analytic (and algebraic) number theory
and arithmetic geometry.

The rest of this paper is organized as follows: in §2, we discuss the
classical universality property of the Riemann zeta function and some of
its applications. In §3, we briefly review the theory of (generalized) frac-
tal strings and the associated complex dimensions and explicit formulas,
as developed in [60]. We also recall the heuristic definition of the spectral
operator introduced in [59, 60]. In §4, we develop the rigorous functional
analytic framework of [25]; we define and study, in particular, the infinites-
imal shift ∂ and the spectral operator a, along with their truncated ver-
sions, ∂(T ) and a(T ) (for T > 0). In §5, we provide our quantization (or
operator-valued version) of Voronin’s theorem for the universality of ζ(s),
along with its natural generalizations in this context. It is noteworthy that
in this ‘quantization process’, the complex variable s is replaced not by ∂
(the infinitesimal shift), as one might reasonably expect, but by the family
of truncated infinitesimal shifts {∂(T )}T>0. In §6, we propose several possi-
ble directions for future research in this area. Finally, in three appendices,
we provide some additional information and references about the origins of
universality, as well as about the extensions of Voronin’s universality theo-
rem to other arithmetic zeta functions (including the Dirichlet L-functions
and the L-functions associated with certain modular forms).
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2. Universality of the Riemann Zeta Function

In this section, we recall some of the basic properties of the Riemann
zeta function (in §2.1), and then focus (in §2.2) on the universality of ζ(s)
(among all non-vanishing holomorphic functions). We also briefly discuss
(in §2.3) some of the mathematical and physical applications of universality.

2.1. The Riemann zeta function ζ(s)

The Riemann zeta function is defined as the complex-valued function

ζ(s) =
∞∑

n=1

n−s, for Re(s) > 1. (2.1)

In 1737, Euler showed that this Dirichlet series1 can be expressed in
terms of an infinite product over the set P of all the prime numbers:

ζ(s) =

∞∑

n=1

n−s =
∏

p∈P

1

1− p−s , for Re(s) > 1. (2.2)

Note that Equation (2.2) shows that the Riemann zeta function carries
information about the primes, which are encoded in its Euler product.

In 1858, Riemann showed in [80] that this function has a meromorphic
continuation to all of C with a single (and simple) pole at s = 1, which
satisfies the functional equation

ξ(s) = ξ(1− s), s ∈ C, (2.3)

where
ξ(s) := π−

s
2 Γ(

s

2
)ζ(s) (2.4)

is the completed (or global) Riemann zeta function (Here, Γ denotes the
classic gamma function.) Note that the trivial zeros of ζ(s) at s = −2n for
n = 1, 2, 3, ..., correspond to the poles of the gamma function Γ( s2 ). Riemann
also conjectured that the nontrivial (or critical) zeros of ζ(s) (i.e., the zeros
of ζ(s) which are located in the critical strip 0 < Re(s) < 1) all lie on the
critical line Re(s) = 1

2 . This famous conjecture is known as the Riemann
hypothesis.

(1) In 1740, Euler initiated the study of the Dirichlet series given in Equation (2.1) for
the special case when the complex number s is a positive integer. Later on, his work was
extended by Chebychev to Re(s) > 1, where s ∈ C.
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It is well known that the Euler product in Equation (2.2) converges
absolutely to ζ(s) for Re(s) > 1 and also uniformly on any compact subset of
the half-plane Re(s) > 1. We note that the Euler product (or an appropriate
substitute thereof) can be useful even in the critical strip {0 < Re(s) <
1} where it does not converge. For example, it turns out that a suitable
truncated version of this Euler product, namely,

ζN (s) =
∏

p�N

(
1− p−s

)−1
(2.5)

(possibly suitably randomized), played a key role in Voronin’s proof of the
universality of the Riemann zeta function. This idea was due to Harald
Bohr’s earlier work on the density of the sets consisting of the ranges of
ζ(s) on the vertical lines Ls = {s ∈ C : Re(s) = c}, with 1

2 < c < 1.
Although it is a known fact that the Riemann zeta function’s Euler product
(see the right-hand side of Equation (2.2)) does not converge to ζ(s) inside
the critical strip (in particular, inside the right-hand side of the critical strip
1
2 < Re(s) < 1), Voronin showed that a ‘suitable’ truncated version of this
Euler product can be used to approximate ζ(s) on the right-hand side of
the critical strip, i.e., on the half-plane { 1

2 < Re(s) < 1} (see [90]).

The Riemann zeta function has a number of applications in the mathe-
matical and physical sciences (also, in biology and economics). For instance,
in analytic number theory, the identity given in Equation (2.2) can be used
to show that there are infinitely many primes among the integers. The
Riemann zeta function plays a key role in describing the distribution of the
prime numbers. It also appears in applied statistics (in the Zipf–Mandelbrot
law), as well as in quantum field theory (in the calculation of the Casimir
effect). In fractal geometry (for instance in the theory of complex dimen-
sions), the Riemann zeta function naturally occurs as a multiplicative factor
in the formula relating the geometry and spectra of fractal strings via their
geometric and spectral zeta functions (see [39, 40, 50, 60]). The Riemann
zeta function has several other interesting applications in physics. (See, e.g.,
[88, 11, 30, 31, 74, 34, 84, 60, 42] for a more detailed discussion of the theory
of the Riemann zeta function and some of its applications; see also Rie-
mann’s 1858 original paper [80].) It will be shown in the next section that
this function is also the first explicit universal2 object that was discovered
in the mathematical sciences.

(2) See §2.2 for an explanation of the notion of ‘universality’ of ζ(s) and see also
Appendix A about the origins of universality in the mathematical literature.
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2.2. Voronin’s original universality theorem for ζ(s)

The universality of the Riemann zeta function was established by S.
M. Voronin in 1975. This important property of the Riemann zeta function
states that any non-vanishing (i.e., nowhere vanishing) analytic function can
be uniformly approximated by certain purely imaginary shifts of the zeta
function in the right half of the critical strip [90]. The following is Voronin’s
original universality theorem:3

Theorem 2.1. — Let 0 < r < 1
4 . Suppose that g(s) is a non-vanishing

continous function on the disk D = {s ∈ C : |s| � r}, which is analytic
(i.e., holomorphic) in the interior D̊ = {s ∈ C : |s| < r} of this disk. Then,
for any ε > 0, there exists τ � 0 such that

J(τ) := sup
|s|�r
|g(s)− ζ(s+

3

4
+ iτ)| < ε. (2.6)

Moreover, the set of such τ ’s is infinite. In fact, it has a positive lower
density; i.e.,

lim inf
T→∞

1

T
vol1({τ ∈ [0, T ] : J(τ) < ε}) > 0, (2.7)

where vol1 denotes the Lebesgue measure on R.

The Riemann zeta function is said to be universal since suitable approxi-
mate translates (or imaginary shifts) of this function uniformly approximate
any analytic target function satisfying the hypothesis given above in Theo-
rem 2.1. The domain of the uniform approximation of the admissible target
function is called the strip of universality.

The strongest version of Voronin’s theorem (the extended Voronin the-
orem) is due to Reich and Bagchi (see [34, 62, 63, 85]); it is given in the
following result:

Theorem 2.2. — Let K be any compact subset of the right critical strip
{ 1

2 < Re(s) < 1}, with connected complement in C. Let g : K → C be a
non-vanishing continuous function that is holomorphic in the interior of K
(which may be empty).
Then, given any ε > 0, there exists τ � 0 (depending only on ε) such that

Jsc(τ) := sup
s∈K
|g(s)− ζ(s+ iτ)| � ε. (2.8)

(3) We refer to Appendix B for several extensions of Voronin’s universality theorem to
other elements of the Selberg class of zeta functions.

– 627 –



Hafedh Herichi, Michel L. Lapidus

Moreover, the set of such τ ’s is infinite. In fact, it has a positive lower
density (in the precise sense of Equation (2.7) above, but with Jsc(τ) instead
of J(τ)).

Remark 2.3. — The topological condition on the subset K cannot be sig-
nificantly refined. Furthermore, the condition according to which the target
function g(s) has to be non-vanishing in the disk D is crucial and cannot be
omitted. Indeed, an application of Rouché’s theorem shows that if such a
condition were violated, then one would obtain a contradiction to the den-
sity theorem for the zeros of the Riemann zeta function (a detailed proof
of this statement can be found in [85]). This latter result shows that the
universality of ζ(s) is intimately connected to the location of the critical
zeros of the Riemann zeta function which are conjectured (under the Rie-
mann hypothesis) to be located on the vertical line Re(s) = 1

2 . We will see
in the next subsection that this connection was strengthened in Bagchi’s
theorem, which relates the universality of ζ(s) to the Riemann hypothesis.
(See Theorem 2.7 below.)

Remark 2.4. — The proof of Voronin’s original theorem (Theorem 2.1)
about the universality of the Riemann zeta function, along with that of
its various extensions (including Theorem 2.2), is ineffective, in the sense
that it does not give any information about how fast a target function g(s)
can be approximated by imaginary translates of ζ(s) within a given range.
Moreover, the known proofs of universality neither provide a good estimate
for the ‘first’ approximating shift τ nor a specific bound for the positive
lower density of the admissible shifts. In this paper, we will not discuss these
issues any further. Several attempts at solving the effectivity problem for
the universality theorems were made by Montgomery, Good and Garunkštis
(see [85, 17, 21, 72]).

We refer the interested reader to the books [34, 62, 85] for additional
information concerning the universality properties of the Riemann zeta func-
tion and of other arithmetic zeta functions. (See also Appendix B below,
provided in §8.)

2.3. Some applications of the universality of ζ(s)

The universality theorem (Theorem 2.2) for the Riemann zeta function
has several interesting applications, which are related to functional indepen-
dence, the critical zeros of the Riemann zeta function and therefore, to the
Riemann hypothesis (this latter result was obtained in the work of Bagchi
[1, 2]), the approximation of certain target functions by Taylor polynomials
of zeta functions [19], and also to path integrals in quantum theory (see [4]).
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Extension of the Bohr–Courant density theorem

The universality theorem (Theorem 2.2) for the Riemann zeta function pro-
vides an extension (due to Voronin in [89]) of the Bohr–Courant classical
result [7] about the density of the range of ζ(s) on an arbitrary vertical
line contained in the right critical strip {s ∈ C : 1

2 < Re(s) < 1}. The
following result (also due to Voronin in [89]) can either be deduced from the
universality theorem or proved directly (as was done originally in [89]):

Theorem 2.5 Let x ∈ ( 1
2 , 1) be fixed. (Here, Re(s) = x and Im(s) = y.)

Then, for any integer n � 1, the sets

{(
(log ζ(x+ iy)), (log ζ(x+ iy))′, ..., (log ζ(x+ iy))(n−1)

)
: y ∈ R

}
(2.9)

and

{
ζ(x+ iy), (ζ(x+ iy))′, ..., (ζ(x+ iy))(n−1)

)
: y ∈ R

}
(2.10)

are dense in Cn.4

Functional independence and hypertranscendence of ζ(s)

Furthermore, the universality of ζ(s) implies functional independence. In
1887, Hölder proved the functional independence of the gamma function,
i.e., that the gamma function Γ(s) does not satisfy any algebraic differential
equation. In other words, for any integer n � 1, there exists no non-trivial
polynomial P such that

P (Γ(s),Γ′(s), ...,Γ(n−1)(s)) = 0. (2.11)

In 1900, and motivated by this fact, Hilbert suggested at the Interna-
tional Congress for Mathematicians (ICM) in Paris that the algebraic dif-
ferential independence of the Riemann zeta function 5 can be proved using
Hölder’s above result and also the functional equation for ζ(s). In 1973, and
using a ‘suitable’ version of the universality theorem for the Riemann zeta
function, S. M. Voronin [91, 92] has established the functional independence
of ζ(s), as we now explain:

(4) Here and in the sequel, we use the standard notation for the complex derivative
(and higher order derivatives) of an analytic function.

(5) We would like to attract the reader’s attention to the fact that the original proof of
the hypertranscendence of the Riemann zeta function was due to Stadigh. Later on, such
a proof was given in a more general setting by Ostrowski, using a different mathematical
approach (see [73]).
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Theorem 2.6. — Let z = (z0, z1, ..., zn−1) ∈ Cn and let N be the a
nonnegative integer. If F0(z), F1(z),..., FN (z) are continuous functions,
not all vanishing simultaneously, then there exists some s ∈ C such that

N∑

k=0

skFk(ζ(s), ζ
′(s), ..., ζ(n−1)(s)) 	= 0. (2.12)

Note that Theorem 2.6 implies that the Riemann zeta function does not
satisfy any algebraic differential equation. As a result, ζ(s) is hypertranscen-
dental.6

Universality of ζ(s) and the Riemann hypothesis

In [1, 2], Bagchi showed that there is a connection between the location
of the critical zeros of the Riemann zeta function and the universality of
this function. The corresponding result can be stated as follows:

Theorem 2.7. — Let K be a compact subset of the vertical strip { 1
2 <

x < 1} × R, with connected complement. Then, for any ε > 0, we have

lim inf
T→∞

1

T
vol1

({
τ ∈ [0, T ] : sup

s∈K
|ζ(s)− ζ(s+ iτ)| < ε

})
> 0 (2.13)

if and only if the Riemann hypothesis (RH) is true. Here, as before, vol1
denotes the Lebesgue measure on R.

As a result, the universality of ζ(s) can be used to reformulate RH.

Remark 2.8. — Note that if the Riemann hypothesis is true, then ζ(s) is
a non-vanishing analytic function in the right critical strip { 1

2 < Re(s) < 1}.
Hence, the fact that Equation (2.13) holds follows at once from Voronin’s
extended theorem (Theorem 2.2) applied to g(s) := ζ(s). The converse
direction can be established by reasoning by contradiction and applying
Rouché’s theorem (from complex analysis) about the number of zeros of the
perturbation of an analytic function.

Approximation by Taylor polynomials of ζ(s)

Another interesting application of the universality theorem for the Rie-
mann zeta function was given in the work of M. Gauthier and R. Clouatre

(6) Theorem 2.6 provides an alternative proof of the solution of one of Hilbert’s famous
problems proposed in 1900 at the International Congress of Mathematicians in Paris.
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[19]. Using Voronin’s universality theorem, these authors showed that ev-
ery holomorphic function on a compact subset K of the complex plane
having a connected complement Kc can be uniformly approximated by ver-
tical translates of Taylor polynomials of ζ(s).7 Denote by H(K) the set
of all complex-valued holomorphic functions in an open neighborhood ω of

K ⊂ C and by T f
n,a(z) :=

∑n
k=0

f(k)

k! (z− a)k, the n-th Taylor polynomial of
f centered at a, where z ∈ C. Then we have the following result:

Theorem 2.9. — Let K ⊂ C with Kc connected. Let g ∈ H(K) and
ε > 0. Then, for each z0 ∈ ω ∩Kc, there exists τ ∈ R and n ∈ N such that

sup
z∈K
|g(z)− T ζ

n,z0+iτ (z + iτ)| < ε. (2.14)

Path integrals, quantum theory and Voronin’s universality
theorem

A physical application of Voronin’s theorem about the universality of the
Riemann zeta function was obtained by K. M. Bitar, N. N. Khuri and H.
C. Ren. Within their framework, Voronin’s universality theorem was used
to explore a new numerical approach (via suitable discrete discretizations)
to path integrals in quantum mechanics (see [4]).

We will see in §5 that a ‘quantization’ of the universality of the Riemann
zeta function was obtained in [25]. It enables us to obtain an operator-
theoretic extension of Theorem 2.2 on the universality of the Riemann zeta
function. This quantization is obtained in terms of a ‘suitable’ truncated

version a
(T )
c of the spectral operator ac (see §4 for a detailed discussion of

the properties of a
(T )
c ), a map that relates the geometry of fractal strings

to their spectra. The study of the spectral operator was suggested by M.
L. Lapidus and M. van Frankenhuijsen in their development of the theory
of complex dimensions in fractal geometry [57, 58, 59, 60]. Later on, it was
thoroughly investigated (within a rigorous functional analytic framework)
in [25] and surveyed in the papers [26, 27]. In the next section, we start
by introducing the class of generalized fractal strings and then define the
spectral operator for fractal strings.

(7) Their result was suggested in 2006 by Walter Hayman as a possible step toward
attempting to prove the Riemann hypothesis (see [19]).
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3. Generalized Fractal Strings and the Spectral Operator
a = ζ(∂c)

In this section, we first recall (in §3.1) the notion of generalized fractal
string introduced and used extensively in [57, 58, 59, 60], for example, in
order to obtain general explicit formulas applicable to various aspects of
number theory, fractal geometry, dynamical systems and spectral geometry.
In §3.2, after having recalled the original heuristic definition of the spectral
operator a (as given in [59, 60]), we rigorously define a = ac as well as the
infinitesimal shift ∂ = ∂c as unbounded normal operators acting on a scale
of Hilbert spaces Hc parametrized by a nonnegative real number c, as was
done in [25, 26, 27]. Finally in §3.3, we briefly discuss some of the properties
of the infinitesimal shifts and of the associated translation semigroups.

3.1. Generalized fractal strings and explicit formulas

A generalized fractal string η is defined as a local positive or complex
measure on (0,+∞) satisfying |η|(0, x0) = 0,8 for some x0 > 0. For instance,
if we consider the ordinary fractal string9 L = {lj}∞j=1 with integral multi-
plicities wj , then the measure ηL associated to L is a standard example of
a generalized fractal string:

ηL :=

∞∑

j=1

wjδ{l−1
j
}, (3.1)

where δ{x} is the Dirac delta measure (or the unit point mass) concentrated
at x > 0 and lj are the scales associated to the connected components
(or open intervals) constituting the ordinary fractal string L. We refer the
reader to [57, 58, 59, 60] for more information about the theory of ordinary
fractal strings and many of its applications.

Remark 3.1. — In contrast to an ordinary fractal string, the multiplici-
ties wj of a generalized fractal string η may be non-integral. For example,
the prime string

η :=
∑

m�1,p

(log p)δ{pm} (3.2)

(8) Here, the positive (local) measure |η| is the variation measure of η. (For a review
of standard measure theory, see, e.g., [9, 16].)

(9) An ordinary fractal string L is a bounded open subset of the real line. Such a set
consists of countably many (bounded) open intervals {(aj , bj)}∞j , the lengths of which are

denoted by lj = bj − aj , for each j � 1. We simply write L = {lj}∞j=1. For instance, the

Cantor string, defined as the complement of the ternary Cantor set in the interval [0, 1], is
an example of an ordinary fractal string. It is explicitly defined as LCS = {lj}∞j=1, where

the corresponding lengths are lj = 3−j with the corresponding multiplicities wj = 2j−1,
for each j � 1.
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(where p runs over all prime numbers), is clearly a generalized (and not an
ordinary) fractal string. Furthermore, observe that the multiplicities need
not be positive numbers either. A simple example of this situation is the
Möbius string

ηµ :=

∞∑

j=1

µ(j)δ{j}, (3.3)

where µ(j) is the Möbius function.10 This string can be viewed as the mea-
sure associated to the fractal string Lµ = {j−1}∞j=1 with real multiplicities
wj = µ(j). Note that this string is not an ordinary fractal string. As a result,
the use of the word ‘generalized’ is well justified for this class of strings.

The dimension Dη of a generalized fractal string η is the abscissa of
convergence of the Dirichlet integral

∫∞
0
x−sη(dx):

Dη := inf{σ ∈ R :

∫ ∞

0

x−σ|η|(dx) <∞}. (3.4)

The geometric counting function of η is

Nη(x) :=

∫ x

0

η(dx) =
1

2
(η(0, x) + η(0, x]). (3.5)

The geometric zeta function associated to η is the Mellin transform of η:

ζη(s) :=

∫ ∞

0

x−sη(dx) for Re(s) > Dη. (3.6)

From now on, we will assume that ζη has a meromorphic extension to
a suitable open connected neighborhood W of the half-plane of absolute
convergence of ζη(s) (i.e., {Re(s) > Dη}). The set Dη(W) of visible complex
dimensions of η is defined by

Dη(W) := {ω ∈ W : ζη has a pole at ω}. (3.7)

For instance, the geometric zeta function of the Möbius string (see Equa-
tion (3.3)) is given by

ζµ(s) =

∞∑

j=1

µ(j)

js
=

1

ζ(s)
, (3.8)

the reciprocal of the Riemann zeta function.

(10) The Möbius function µ(j) equals 1 if j is a square-free positive integer with an
even number of prime factors, -1 if j is a square-free positive integer with an odd number
of prime factors, and 0 if j is not square-free.
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The spectral measure ν associated to η is defined by

ν(A) =

∞∑

k=1

η
(A
k

)
, (3.9)

for any bounded Borel set A ⊂ (0,+∞). Then Nν is called the spectral
counting function of η.

The spectral zeta function ζν associated to η is the geometric zeta func-
tion associated to ν. It turn out (as shown in [57, 58, 59, 60]) that the
spectral zeta function and the geometric zeta function of a generalized frac-
tal string η are related via the following formula:11

ζν(s) = ζη(s).ζ(s), (3.10)

where the factor ζ(s) is the Riemann zeta function.

Next, we introduce two generalized fractal strings which will play an
important role in the definition of the spectral operator, its operator-valued
prime factors and operator-valued Euler product, namely, the harmonic
generalized fractal string

h :=
∞∑

k=1

δ{k}, (3.11)

and for a fixed but arbitrary prime p ∈ P, the prime harmonic string

hp :=

∞∑

k=1

δ{pk}. (3.12)

These two generalized fractal strings are related via the multiplicative con-
volution of measures ∗ as follows (henceforth, P denotes the set of all prime
numbers):

h = ∗
p∈P

hp. (3.13)

As a result, we have

ζh(s) = ζ ∗hp
p∈P

(s) = ζ(s) =
∏

p∈P

1

1− p−s =
∏

p∈P
ζhp(s), (3.14)

for Re(s) > 1.

(11) In the special case of ordinary fractal strings, Equation (3.10) was first observed
in [39] and used in [40, 41, 53, 54, 49, 50, 57, 58, 59, 60, 87, 42, 36, 37, 25, 26, 27].
Furthermore, a formula analogous to the one given in Equation (3.10) exists for other
generalizations of ordinary fractal strings, including the class of fractal sprays (also called
higher-dimensional fractal strings); see [55, 39, 40, 57, 58, 59, 60].
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Given a generalized fractal string η, its spectral measure ν is related
to h and hp via the following formula (with ∗ denoting the multiplication
convolution on (0,+∞)):

ν = η ∗ h = η ∗
(
∗

p∈P
hp

)
= ∗

p∈P
νp, (3.15)

where νp = η ∗ hp is the spectral measure of hp for each p ∈ P. Note that
by applying the Mellin transform to the first equality of this identity, one
recovers Equation (3.10).

In their development of the theory of fractal strings in fractal geom-
etry, the second author and M. van Frankenhuijsen obtained explicit dis-
tributional formulas12 associated to a given generalized fractal string η.
These explicit formulas express the k-th distributional primitive (or anti-
derivative) of η (when viewed as a distribution) in terms of its complex
dimensions. For simplicity and given the needs of our functional analytic
framework, we will only present these formulas in a restricted setting and
for the case of a strongly languid generalized fractal string.13 We encourage
the curious reader to look at [60, §5.3 & §5.4] for more details about the
general statements of the explicit distributional formulas and a variety of
their applications.

Given a strongly languid generalized fractal string η, and applying the
explicit distributional formula at level k = 0, we obtain an explicit rep-
resentation of η, called the density of geometric states formula (see [61,
§6.3.1]):14

η =
∑

ω∈Dη(W)

res(ζη(s);ω)xω−1. (3.16)

Applying the explicit distributional formula (at the same level k = 0) to
the spectral measure ν = η ∗ h, we obtain the following representation of
ν, called the density of spectral states formula (or density of frequencies
formula) (see [61, §6.3.1]):

ν = ζη(1) +
∑

ω∈Dη(W )

res(ζη(s);ω)ζ(ω)xω−1. (3.17)

(12) Note that the original explicit formula was first obtained by Riemann in [80] as
an analytical tool aimed at understanding the distribution of the primes. We refer the
reader to [11, 30, 31, 74, 88] for more details about Riemann’s explicit formula and also
to Appendix A in [26] in which we provide a discussion of Riemann’s explicit original
formula and the explicit distributional formula obtained in [60, §5.3 & §5.4].
(13) Roughly speaking, a generalized fractal string η is said to be strongly languid if its

geometric zeta function ζη satisfies some suitable polynomial growth conditions; see [60,
§5.3].
(14) For simplicity, we assume here that all of the complex dimensions are simple poles

of ζη and are different from 1.
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Remark 3.2. — Many applications and extensions of fractal string the-
ory and/or of the corresponding theory of complex fractal dimensions can
be found throughout the books [58, 59, 60, 61, 42] and in [38, 39, 40, 41,
53, 54, 55, 49, 50, 24, 57, 23, 87, 51, 52, 44, 12, 45, 46, 47, 48, 36, 37,
56, 25, 26, 27, 28, 43]. These include, in particular, applications to vari-
ous aspects of number theory and arithmetic geometry, dynamical systems,
spectral geometry, geometric measure theory, noncommutative geometry,
mathematical physics and nonarchimedean analysis.

3.2. The spectral operator and the infinitesimal shifts ∂c of the
real line

The spectral operator was introduced by the second author and M. van
Frankenhuijsen in [59, §6.3.2] as a tool to investigate the relationship be-
tween the geometry and spectra of (generalized) fractal strings. While sev-
eral aspects of their theory of complex dimensions in fractal geometry were
in the process of being developed, they defined it ‘heuristically ’ as the map
that sends the geometry onto the spectrum of generalized fractal strings,
but without providing the proper functional analytic framework needed to
study it. (See [59, §6.3.2] and [60, §6.3.2].) A rigorous analytic framework
enabling us to study the spectral operator was provided for the first time
in [25]. It was also surveyed in the papers [26, 27]. We will start by first
defining the spectral operator and its operator-valued Euler product.

Given a generalized fractal string η, and in light of the distributional
explicit formulas [60, Theorems 5.18 & 5.22] (see Equations (3.16) and (3.17)
above), the spectral operator a was heuristically defined as the operator
mapping the density of geometric states of η to its density of spectral states:

η �→ ν. (3.18)

Now, considering the level k = 1 (in the explicit distributional formula),15

the spectral operator a = ac will be defined on a suitable weighted Hilbert
space Hc

16 as the operator mapping the geometric counting function Nη onto
the spectral counting function Nν :

Nη(x) �−→ ν(Nη)(x) := Nν(x) =

∞∑

n=1

Nη

(x
n

)
. (3.19)

(15) That is, roughly speaking, take “the antiderivative”of the corresponding expres-
sions.
(16) The Hilbert space Hc will depend on a parameter c ∈ R which appears in the

weight µc(t) = e−ctdt defining Hc (see Equation (3.27) and the text surrounding it). As
a result, the spectral operator will be denoted in the rest of the paper by either a or ac.
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Using the change of variable x = et, where t ∈ R and x > 0, we obtain an
additive representation of the spectral operator a,

f(t) �→ a(f)(t) =

∞∑

n=1

f(t− log n). (3.20)

For each prime p ∈ P, the operator-valued Euler factors ap are given by

f(t) �→ ap(f)(t) =

∞∑

m=0

f(t−m log p). (3.21)

All of these operators are related by an Euler product as follows:

f(t) �→ a(f)(t) =


∏

p∈P
ap


 (f)(t), (3.22)

where the product is the composition of operators.

Using the Taylor series representation of the function f ,17

f(t+ h) = eh
d
dt (f)(t) = eh∂(f)(t), (3.23)

where ∂ = d
dt is the infinitesimal shift of the real line (or also the first order

differential operator), we obtain the following representations of the spectral
operator:

a(f)(t) =
∞∑

n=1

e−(log n)∂(f)(t) =

∞∑

n=1

(
1

n∂

)
(f)(t)

= ζ(∂)(f)(t) = ζh(∂)(f)(t). (3.24)

For all primes p, the operator-valued prime factors are given by

ap(f)(t) =

∞∑

m=0

f(t−m log p) =

∞∑

m=0

e−m(log p)∂(f)(t) =

∞∑

m=0

(
p−∂

)m
(f)(t)

=

(
1

1− p−∂
)

(f)(t) = (1− p−∂)−1(f)(t) = ζhp(∂)(t), (3.25)

(17) Here, we will assume for pedagogical reasons that the complex-valued function f
is infinitely differentiable. Of course, this is not always the case for an arbitrary general-
ized fractal string (since the atoms of η create discontinuities in the geometric counting
function f := Nη , for instance). This issue is addressed in [25] by carefully studying the
associated semigroup of operators; see Proposition 3.20 below.
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and hence, the operator-valued Euler product of the spectral operator a is
given by

a =
∏

p∈P
(1− p−∂)−1(f)(t). (3.26)

Remark 3.3. — Within our functional analytic framework, and in light
of the above new representation of the spectral operator ac, its operator-
valued prime factors and operator-valued Euler product, the function f will
not necessarily represent the (geometric or spectral) counting function of
some generalized fractal string η but will instead be viewed as an element
of the weighted Hilbert space Hc which was introduced in [25] in order
to study the spectral operator (following, but also suitably modifying, a
suggestion originally made in [59]).

Remark 3.4. — The above representation of the spectral operator given
in Equation (3.24) was justified in the functional analytic framework pro-
vided in [25]. Furthermore, the representation of the operator-valued Euler
product

∏
p∈P ap (see Equation (3.26)) and its operator-valued prime fac-

tors ap (see Equation (3.25)) were justified in [28]. In particular, for c > 1,
the Euler product converges in the operator norm (of the Hilbert space
Hc). We note that the operator-valued Euler product associated to ac (see
Equation (3.26)) is conjectured to converge (in an appropriate sense) to ac
in the critical strip; that is, for 0 < c < 1. (See [59, §6.3.3] or [60, §6.3.3].)
In [28], a ‘suitable mode of convergence’ will be considered in order to ad-
dress this conjecture. A full discussion of the operator-valued prime factors
and operator-valued Euler product will be omitted in this paper. Instead,
we will focus on studying some of the properties of the spectral operator

ac and of its truncations a
(T )
c , as well as of the infinitesimal shift ∂c and

its truncations ∂
(T )
c , which are the central characters of the present paper.

Indeed, they will play a key role in our quantization of the universality of
the Riemann zeta function, as will be discussed in §5. (See §4 for a detailed
discussion of these operators and some of their properties.)

The spectral operator ac was rigorously defined in [25] as an unbounded
linear operator acting on the weighted Hilbert space

Hc = L2(R, µc(dt)), (3.27)

where c � 0 and µc is the absolutely continuous measure on R given by
µc(dt) := e−2ctdt, with dt being the standard Lebesgue measure on R. More
precisely, ac is defined by

ac(f)(t) = ζ(∂c)(f)(t). (3.28)
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In view of Equation (3.28), the infinitesimal shift ∂c clearly plays an impor-
tant role in our proposed definition of the spectral operator. The domain of
∂c is given by

D(∂c) = {f ∈ Hc ∩AC(R) : f ′ ∈ Hc}, (3.29)

where AC(R) is the space of (locally) absolutely continuous functions on R
and f ′ denotes the derivative of f , viewed either as an almost everywhere
defined function or as a distribution.18 Furthermore, the domain of the
spectral operator is given by

D(ac) = {f ∈ D(∂c) : ac(f) = ζ(∂c)(f) ∈ Hc}. (3.30)

Moreover, for f ∈ D(∂c), we have that

∂c(f)(t) := f ′(t) =
df

dt
(t), (3.31)

almost everywhere (with respect to dt, or equivalently, with respect to
µc(dt)). In short, we write that ∂c(f) = f ′, where the equality holds in
Hc.

Finally, Equation (3.28) holds for all f ∈ D(ac), and ζ(∂c) is interpreted
in the sense of the functional calculus for unbounded normal operators (see,
e.g., [81]). Indeed, as is recalled in Theorem 3.14 below, we show in [25]
that the operator ac is normal (i.e., that it is a closed, possibly unbounded
operator, and that it commutes with its adjoint). (It is bounded for c > 1,
but unbounded for 0 < c � 1, as is also shown in [25, 26, 27].)

Remark 3.5. — The weighted Hilbert space Hc is the space of (C-valued)
Lebesgue square-integrable functions f (on R) with respect to the weight
function w(t) = e−2ct; namely, as was stated in Equation (3.27), Hc =
L2(R, e−2ctdt). It is equipped with the inner product

< f, g >c:=

∫

R
f(t)g(t)e−2ctdt, (3.32)

where g denotes the complex conjugate of g. Therefore, the norm of an
element of Hc is given by

||f ||c :=

( ∫

R
|f(t)|2e−2ctdt

) 1
2

. (3.33)

(18) For information about absolutely continuous functions and their use in Sobolev
theory, see, e.g., [16] and [8]; for the theory of distributions, see, e.g., [83], [81] and [8].
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It is shown in [25] that the functions which lie in the domain of ∂c (and

hence also those belonging to the domain of ac, ∂
(T )
c or a

(T )
c ) satisfy ‘natural

boundary conditions’. Namely, if f ∈ D(∂c), then

|f(t)|e−ct → 0 as t→ ±∞. (3.34)

Remark 3.6. — The boundary conditions given in Equation (3.34) are
satisfied by any function f in D(∂c) (see Equation (3.29)) or in the domain
of a function of ∂c such as the spectral operator ac = ζ(∂c) (see Equation

(3.30)), as well as the truncated infinitesimal shifts ∂
(T )
c (see Equation (4.1))

and the truncated spectral operators a
(T )
c (see Equation (4.5)). Furthermore,

clearly, if η represents an ordinary fractal string L, then NL vanishes iden-
tically to the left of zero, and if, in addition, the (Minkowski) dimension
of L is strictly less than c, then it follows from the results of [54] that
Nη(t) = o(ect) as t→ +∞ (i.e., Nη(x) = o(xc) as x→ +∞, in the original
variable x = et), so that f := Nη then satisfies the boundary conditions
given by (3.34).

Remark 3.7. — Note that it also follows from the results of [54] (see
also [60]) that for c in the ‘critical interval’ (0, 1), the parameter c can be
interpreted as the least upper bound for the (Minkowski) fractal dimensions
of the allowed underlying fractal strings.19

An intrinsic connection between the representations obtained in Equa-
tion (3.24) was given in [25]. Our next result justifies the representation
of the spectral operator ac as the composition map of the Riemann zeta
function and the infinitesimal shift ∂c (see Equation (3.24)):

Theorem 3.8. — Assume that c > 1. Then, a can be uniquely extended
to a bounded operator on Hc and, for any f ∈ Hc, we have

a(f)(t) =

∞∑

n=1

f(t− log n) = ζ(∂c)(f)(t) =

( ∞∑

n=1

n−∂c

)
(f)(t), (3.35)

where the equalities hold for almost all t ∈ R as well as in Hc.

Remark 3.9. — In other words, Theorem 3.8 justifies the ‘heuristic’ rep-
resentation of the spectral operator given above in Equation (3.24). Indeed,

(19) For the notion of Minkowski dimension, see, e.g., [70, 38, 15, 71, 60]. Recall that it
was observed in [39] (using a result of [3]) that for an ordinary fractal string L (represented
by a bounded open set Ω ⊂ R), the abscissa of convergence of ζL coincides with the
Minkowski dimension of L (i.e., of ∂Ω); for a direct proof of this result, see [60, Theorem
1.10].
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it states that for c > 1, we have

ac = ζ(∂c) =

∞∑

n=1

n−∂c , (3.36)

where the equality holds in B(Hc), the space of bounded linear operators
on Hc.

Remark 3.10. — In addition, it is shown in [25] that for any c > 0,
and for all f in a suitable dense subspace of D(ac) (and hence, of Hc),
an appropriate ‘analytic continuation’ of Equation (3.36) continues to hold
(when applied to f).

A detailed study of the invertibility (and also, of the quasi-invertibility20)
of the spectral operator ac is provided in [25]. It was also surveyed in the
papers [26, 27]. In particular, in that study, using the functional calculus
along with the spectral mapping theorem for unbounded normal operators
(the continuous version when c 	= 1 and the meromorphic version, when
c = 1), a precise description of the spectrum σ(ac) of the spectral operator
is obtained in [25]. More explicitly, we show that σ(ac) is equal to the closure
of the range of the Riemann zeta function on the vertical line Lc = {λ ∈
C : Re(λ) = c}:

Theorem 3.11 [25]. — Assume that c � 0. Then

σ(a) = ζ(σ(∂)) = cl
(
ζ({λ ∈ C : Re(λ) = c})

)
, (3.37)

where σ(a) is the spectrum of a = ac and N = cl(N) is the closure of N ⊂ C.

In [25] (see also [27]), a spectral reformulation of the Riemann hypothesis
is obtained, further extending from an operator-theoretic point of view the
earlier reformulation of RH obtained by the second author and H. Maier in
their study of the inverse spectral problem for fractal strings (see [49, 50]),
in relation to answering the question (à la Mark Kac [33], but interpreted
in a very different sense)

“Can one hear the shape of a fractal string?”.

Theorem 3.12 [25]. — The spectral operator a = ac is quasi-invertible
for all c ∈ (0, 1) − 1

2 (or equivalently, for all c ∈ ( 1
2 , 1)) if and only if the

Riemann hypothesis is true.

(20) The spectral operator ac is said to be quasi-invertible if its truncation a(T ) is
invertible for every T > 0. See [25, 26] for a more detailed discussion of the quasi-
invertibility of ac, along with §4.2 for an explanation of how the truncated spectral
operators a(T ), where T � 0, are defined.
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Remark 3.13. — The above theorem also enables us to give a proper
formulation of [60, Corollary 9.6] in terms of the quasi-invertibility of the
spectral operator ac, as interpreted in [25, 26, 27].

In the next subsection, we will discuss some of the fundamental proper-
ties (obtained in [25, 26]) of the infinitesimal shift ∂ = ∂c and the associated
strongly continuous group {e−t∂}t�0.

3.3. Properties of the infinitesimal shifts ∂c

The infinitesimal shift ∂ = ∂c, with c � 0 (along with their truncations

∂(T ) = ∂
(T )
c , T � 0, to be discussed in §4.1) are the basic building blocks of

the theory developed in [25, 26, 27, 28] as well as in the present paper, as
we shall see, in particular, in §5.

Theorem 3.14 [25] The infinitesimal shift ∂ = ∂c is an unbounded nor-
mal linear operator on Hc. Moreover, its adjoint A∗ is given by

∂∗ = 2c− ∂, with D(∂∗) = D(∂). (3.38)

Remark 3.15. — The residual spectrum, σr(A), of a normal (possibly
unbounded) linear operator A : D(A) ⊂ H → H, where D(A) is the domain
of A and H is some complex Hilbert space, is empty. Hence, the essential
spectrum of A, σe(A), which consists of all the approximate eigenvalues of
A,21 is equal to the entire spectrum of A, denoted by σ(A).

Remark 3.16. — References on the spectral theory (and the associated
functional calculus) of unbounded linear operators, with various degrees of
generality and emphasis on the applications of the theory, include [10, 35,
81, 79, 82, 32, 22]. In particular, the case of unbounded normal operators
(which is of most direct interest here) is treated in Rudin’s book [81].

Theorem 3.17 [25]. — The spectrum, σ(∂), of the differentiation op-
erator (or infinitesimal shift) ∂ = ∂c is equal to the closed vertical line of
the complex plane passing through c � 0; furthermore, it coincides with the
essential spectrum of ∂:

σ(∂) = σe(∂) = {λ ∈ C : Re(λ) = c}, (3.39)

where σe(∂) consists of all the approximate eigenvalues of ∂. Moreover, the
point spectrum of ∂ is empty (i.e., ∂ does not have any eigenvalues), so that
the spectrum of ∂ is purely continuous.

(21) Recall that λ ∈ C is called an approximate eigenvalue of A if there exists a sequence
of unit vectors {ψn}∞n=1 of H such that (A− λ)ψn → 0 as n→∞. (See, e.g., [82].)
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Corollary 3.18. — For any c � 0, we have σ(∂∗) = σ(∂) = c+ iR.

In light of Corollary 3.18, the following result is really a consequence of
Theorem 3.14 and will be very useful to us in the sequel (see §4 and §5):

Corollary 3.19. — For any c � 0, we can write

∂ = c+ iV and ∂∗ = c− iV, (3.40)

where c = cI = Re(∂) (a constant multiple of the identity operator on
D(∂) ⊂ Hc) and V = Im(∂), an unbounded self-adjoint operator on Hc,
with domain D(V ) = D(∂) = D(∂∗). Moreover, the spectrum of V is given
by σ(V ) = R.

The next result (also from [25]) enables us to justify the use of the term
“infinitesimal shift”(when referring to the operator ∂ = ∂c) as well as some
of the formal manipulations occurring in Equations (3.23), (3.24), (3.25)
and (3.26) of §3.2 above.22

Proposition 3.20. — Fix c � 0 and write ∂ = ∂c. Then, the following
two properties hold :

(i) {e−t∂}t�0 is a strongly continuous contraction semigroup of bounded
linear operators on Hc and ||e−t∂ || = e−tc for any t � 0. Hence, its in-
finitesimal generator ∂ is an m-accretive operator on Hc (in the sense of
[35, 32, 75]).

(ii){e−t∂}t�0 is a translation (or shift) semigroup. That is, for every
t � 0, (e−t∂)(f)(u) = f(u− t), for all f ∈ Hc and u ∈ R. (For a fixed t � 0,
this equality holds between elements of Hc and hence, for a.e. u ∈ R.)

Remark 3.21. — An entirely analogous result holds for the semigroup
{et∂}t�0, except that it is then an expanding (rather than a contraction)
semigroup. Similarly, for any c ∈ R such that c � 0, all of the results stated
in §3.3 are still valid without changes except for the fact that in Proposition
3.20, the adjectives “contractive”and “expanding”must be interchanged.

4. The Truncated Spectral Operators a
(T )
c = ζ(∂

(T )
c )

As was alluded to above (at the beginning of §3.3), a quantum analog of
the universality of the Riemann zeta function (to be provided in §5 below)
will be expressed (in our context) in terms of the truncated infinitesimal
shifts (to be defined in §4.1 below) and also, in some sense, in terms of the
truncated spectral operators (to be defined in §4.2 below).

(22) Detailed information about the theory of semigroups of bounded linear operators
can be found, e.g., in the books [29, 14, 75, 35, 79, 32].
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4.1. The truncated infinitesimal shifts ∂
(T )
c and their properties

Recall from Corollary 3.19 that for any c � 0, the infinitesimal shift
∂ = ∂c is given by

∂ = c+ iV,

where V := Im(∂) (the imaginary part of ∂) is an unbounded self-adjoint
operator such that σ(V ) = R.

Given T � 0, we define the T -truncated infinitesimal shift as follows:

∂(T ) := c+ iV (T ), (4.1)

where
V (T ) := φ(T )(V ) (4.2)

(in the sense of the functional calculus), and φ(T ) is a suitable (i.e., T -
admissible) continuous (if c 	= 1) or meromorphic (if c = 1) cut-off function

chosen so that φ(T )(R) = c+ i[−T, T ]).

The next result states that the spectrum σ(∂
(T )
c ) of the truncated in-

finitesimal shift is equal to the vertical line segment of height T and abscissa
c, symetrically located with respect to c.

Theorem 4.1 [25]. — For any T > 0 (and c � 0), the spectrum σ(∂(T ))

of the truncated infinitesimal shift ∂(T ) = ∂
(T )
c is given by

σ(∂(T )) = {c+ iτ : |τ | � T, τ ∈ R} = c+ i[−T, T ]. (4.3)

Moreover, the spectrum σ(V (T )) of the imaginary part V (T ) of the in-
finitesimal shift is given by

σ(V (T )) = [−T, T ]. (4.4)

4.2. The truncated spectral operators and their spectra

Next, we define our other main objects of study, the truncated spectral
operators (denoted by a(T )) which, along with the truncated infinitesimal

shifts ∂
(T )
c introduced in §4.1 just above, will play a crucial role in our

proposed operator-theoretic extension of the universality theorem for the
Riemann zeta function (see Theorems 5.1 and 5.4). Let c � 0. Then, given
T � 0, the T -truncated spectral operator is defined as follows:

a(T ) := ζ
(
∂(T )

)
. (4.5)
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More precisely, in the definition of ∂(T ) = c + iV (T ), with V (T ) =
φ(T )(V ), as given in Equation (4.1) and Equation (4.2), the T -admissible
function φ(T ) is chosen as follows:

(i) If c 	= 1, φ(T ) is any continuous function such that φ(T )(R) = [−T, T ].
(For example, φ(T )(τ) = τ for 0 � τ � T and φ(T )(τ) = T for τ � T ; also,
φ(T ) is odd.)

(ii) If c = 1 (which corresponds to the pole of ζ(s) at s = 1), then φ(T ) is
a suitable meromorphic analog of (i). (For example, φ(T )(s) = 2T

π tan−1(s),

so that φ(T )(R) = [−T, T ].)

One then uses the measurable functional calculus and an appropriate
(continuous or meromorphic, for c 	= 1 or c = 1, respectively) version of
the spectral mapping theorem (SMT) for unbounded normal operators (as
provided in [25, Appendix E]) in order to define both ∂(T ) and a(T ) =
ζ(∂(T )), as well as to determine their spectra (see §4.1 above for the case of
∂(T )):

SMT : σ(ψ(L)) = ψ(σ(L))

if ψ is a continuous (resp., meromorphic) function on σ(L) (resp., on a con-
nected open neighborhood of σ(L)) and L is an unbounded normal operator.

Remark 4.2. — More precisely, in the meromorphic case, in the above
equality (in the statement of SMT ), one should exclude the poles of ψ
which belong to σ(L). Alternatively, one can view the meromorphic function

ψ as a continuous function with values in the Riemann sphere C̃ := C∪{∞}
and then write SMT in the following simpler form:

σ(ψ(L)) = ψ(σ(L)).

(See [ 25, Appendix E], along with the relevant references therein, including
[22].)

Note that for c 	= 1 (resp., c = 1), ∂(T ) and a(T ) are then continuous
(resp., meromorphic) functions of the normal (and sectorial, see [22]) op-
erator ∂. An entirely analogous statement is true for the spectral operator
a = ζ(∂).

Theorem 4.3 [25]. — (i) Assume that c � 0, with c 	= 1. Then, for all
T � 0, a(T ) is a bounded normal linear operator. Furthermore, its spectrum
σ(a(T )) is given by the following compact (and hence, bounded) subset of C :

σ(a(T )) = {ζ(c+ iτ) : |τ | � T, τ ∈ R, τ 	= 0}. (4.6)
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(ii) When c = 1, a similar statement holds for all T > 0 except that
now, a(T ) is an unbounded (i.e., not bounded) normal operator with spectrum
given by (with cl denoting the closure of a set)

σ(a(T )) = cl{ζ(1 + iτ) : |τ | � T, τ ∈ R}, (4.7)

a non-compact (and in fact, unbounded) set in C. Alternately, one could
write

σ̃(a(T )) = {ζ(1 + iτ) : |τ | � T, τ ∈ R}, (4.8)

a compact subset on the Riemann sphere C̃ = C∪{∞}, where ζ is viewed as

a (continous) C̃-valued function and the extended spectrum σ̃(a(T )) of a(T )

is given by σ̃(a(T )) := σ(a(T )) ∪ {∞} (still when c = 1).23

Proof. — We include this particular proof in order to illustrate the use
of the spectral mapping theorem SMT discussed in Remark 4.2 and the
text preceding it.

In light of Equation (4.5), this follows immediately from the continuous
(c 	= 1) or meromorphic (c = 1) version of the spectral mapping theorem,24

according to which

σ(a(T )) = σ(ζ(∂(T ))) = cl{ζ(σ(∂(T )))}. (4.9)

Now, it follows from the results of §4.1 (see Theorem 4.1) that

σ(∂(T )) = {c+ iτ : |τ | � T, τ ∈ R}. (4.10)

Therefore, combining Equations (4.9) and (4.10), we obtain

σ(a(T )) = cl(ζ(c+ iτ : |τ | � T, τ ∈ R}). (4.11)

Note that if c 	= 1, then ζ is continuous on the vertical line Re(s) = c and
hence, on the compact vertical segment given by Equation (4.10). Hence,
its range along this segment is compact and therefore closed in C. This
explains why we do not need to include the closure in Equation (4.6) giving
the expression of the spectrum σ(a(T )) of a(T ) when c 	= 1. Moreover, since
σ(a(T )) is compact and hence, bounded, the truncated infinitesimal shift
a(T ) is a bounded operator.

(23) When c �= 1 (i.e., in case (i)), we have that σ̃(a(T )) = σ(a(T )) since a(T ) is then

bounded; see, e.g., [22] for the notion of extended spectrum. In short, σ̃(L) := σ(L) if the

linear operator L is bounded, and σ̃(L) := σ(L) ∪ {∞} if L is unbounded; so that σ̃(L)

is always a compact subset of C̃.
(24) This theorem is applied to the function ζ and the bounded normal operator ∂(T )

studied in §4.1.
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On the other hand, when c = 1, ζ is meromorphic in an open neighbor-
hood of the vertical line {Re(s) = c = 1}, and has a (simple) pole at s = 1.
It follows that its range is unbounded along the vertical segment

σ(∂(T )) = {1 + iτ : |τ | � T, τ ∈ R, τ 	= 0}. (4.12)

Therefore, still when c = 1, we must keep the closure in the expression for
σ(a(T )) given by Equation (4.11). In addition, as stated in part (ii) of the
theorem, a(T ) is an unbounded normal operator when c = 1 because its
spectrum is unbounded (and thus, non-compact).25

�

5. Truncated Infinitesimal Shifts
and Quantum Universality of ζ(s)

In the present section, we provide a ‘quantum’ analog of the universality
of the Riemann zeta function ζ = ζ(s). Somewhat surprisingly at first,
in our context, the proper formulation of Voronin’s universality theorem
(and its various generalizations) does not simply consists in replacing the
complex variable s with the infinitesimal shift ∂ = ∂c. In fact, as we shall
see, one must replace the complex variable s with the family of truncated

infinitesimal shifts ∂(T ) = ∂
(T )
c (with T � 0 and c � 0). Therefore, strictly

speaking, it would not be correct to say that the spectral operator a =
ζ(∂) is universal (and since ζ is a highly nonlinear function, we could not
say either that the family of truncated spectral operators a(T ) = ζ(∂(T ))
is universal). Instead, the proper statement of ‘quantum universality’ is
directly expressed in terms of the truncated infinitesimal shifts ∂(T ) and
their imaginary translates.

5.1. An operator-valued extension of Voronin’s theorem

The “universality”of the spectral operator a = ζ(∂) roughly means that
any non-vanishing holomorphic function of ∂ on a suitable compact subset
of the right critical strip { 1

2 < Re(s) < 1} can be approximated (in the
operator norm) arbitrarily closely by imaginary translates of ζ(∂). More
accurately, any such non-vanishing function of the truncated infinitesimal

(25) Note that since the spectrum is always a closed subset of C, it is non-compact if
and only if the operator is unbounded. On the other hand, when c = 1, the extended
spectrum of a(T ) is defined by σ̃(a(T )) = σ(a(T )) ∪ {∞} (since the operator a(T ) is
unbounded, see, e.g., [22]) and is a closed (and hence, compact) subset of the Riemann

sphere C̃. It is therefore still given by the right-hand side of Equation (4.8), but with ζ

viewed as a continuous function with values in C̃, as is explained in Remark 4.2.
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shifts ∂(T ) = ∂
(T )
c can be uniformly (in the parameters c and T ) approxi-

mated (in the operator norm on Hc) by the composition of ζ and suitable

imaginary translates of ∂(T ) = ∂
(T )
c .

Indeed, we have the following operator-theoretic generalization of the ex-
tended Voronin universality theorem, expressed in terms of the imaginary

translates of the T -truncated infinitesimal shifts ∂(T ) = ∂
(T )
c (with param-

eter c).

We begin by providing an operator-theoretic generalization of the uni-
versality theorem which is in the spirit of Voronin’s original universality
theorem (Theorem 2.1) and its extension (Theorem 2.2).

Theorem 5.1 [25]. — (Quantized universality of ζ(s); first version).
Let K be a compact subset of the right critical strip { 1

2 < Re(s) < 1}
of the following form. Assume, for simplicity, that K = K × [−T0, T0], for
some T0 � 0, where K is a compact subset of the open interval (1

2 , 1).
Let g : K → C be a non-vanishing (i.e., nowhere vanishing) continuous

function that is holomorphic in
◦
K, the interior of K (which may be empty).

Then, given any ε > 0, there exists τ � 0 (depending only on ε) such that

Hop(τ) := sup
c∈K,0<T�T0

∣∣∣
∣∣∣g(∂(T )

c )− ζ(∂(T )
c + iτ)

∣∣∣
∣∣∣ � ε, (5.1)

where ∂(T ) = ∂
(T )
c is the T -truncated infinitesimal shift (with parameter c)

and ||.|| is the norm in B(Hc) (the space of bounded linear operators on Hc).

Moreover, the set of all such τ ’s has a positive lower density and, in
particular, is infinite. More precisely, we have

lim inf
ρ→+∞

1

ρ
vol1 ({τ ∈ [0, ρ] : Hop(τ) � ε}) > 0. (5.2)

Proof. — For τ > 0, let K = K× [−T, T ]. Then, we consider the follow-
ing two cases:

(i) If T0 = 0, then
◦
K = ∅ (interior in C). Also, if

◦
K = ∅ (interior in

R), then
◦
K = ∅ (interior in C). In either case, we only need to know that

g is continuous on K × [−T0, T0] ⊆ K × R. The remainder of the proof,
however, proceeds exactly as in part (ii) below, by applying Theorem 2.2
to the continuous function g and the compact set K = K × [−T0, T0] with
empty interior in C (as well as to the restriction of g to KT := K× [−T, T ],
with T such that 0 < T � T0).
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(ii) If T0 > 0 and
◦
K 	= ∅, then

◦
K 	= ∅. Then, we need to require that

g is holomorphic in the interior of K = K × [−T0, T0], in addition to being
continuous on K. Now, by the universality of the Riemann zeta function
applied to the nowhere vanishing function g : K → C (or, more specifically,
by applying Theorem 2.2 to g : K → C, where K = K × [−T0, T0]),

26 we
conclude that given ε > 0 there exists τ = τ(T0, ε) � 0 such that

|g(s)− ζ(s+ iτ)| � ε, for all s ∈ K. (5.3)

In addition, the set of such numbers τ has positive lower density.

Next, given T such that 0 < T � T0, let us set KT = K × [−T, T ], so
that K = KT0

. Clearly, for any such T , we have KT ⊆ KT0
. Hence, since it

follows from Theorem 4.1 in §4.1 (where the spectrum of ∂(T ) is precisely
determined), that for every c ∈ K, we have27

σ(∂(T )) = [c− iT, c+ iT ] = {c} × [−T, T ]

⊆ σ(∂(T0)) = [c− iT0, c+ iT0] = {c} × [−T0, T0]

⊆ K = KT0
= K × [−T0, T0]. (5.4)

We conclude that g is continuous (and thus certainly measurable) on σ(∂(T )).

We can therefore apply to ∂(T ) = ∂
(T )
c the continuous version of the

functional calculus (for unbounded normal operators) to deduce that

φ(∂(T )
c ) = g(∂(T )

c )− ζ(∂(T )
c + iτ), (5.5)

where φ(s) := g(s)− ζ(s+ iτ), for s ∈ K; so that, in light of Equation (5.3),

|φ(s)| � ε, for all s ∈ K. (5.6)

(Recall that each operator ∂(T ) = ∂
(T )
c is bounded on Hc since it has a

bounded spectrum.) This same functional calculus (or, equivalently, the cor-
responding version of the spectral theorem for possibly unbounded normal

operators, see [81]) implies that each of the operators g(∂
(T )
c ), ζ(∂

(T )
c + iτ)

(26) Note that the complement of K in C is connected (since the complement of K in
R, being an open subset of R, is an at most countable disjoint union of intervals).
(27) Recall that K ⊂ ( 1

2
, 1) and that ∂(T ) = ∂

(T )
c , so that ζ(∂

(T )
c + iτ) is a bounded

(normal) operator. Similarly, φ is continuous on the compact set σ(∂
(T )
c ) = [c − iT, c +

iT ], and hence φ(∂
(T )
c ) is a bounded (normal) operator. In any case, for every c ∈ K,

g is continuous and is therefore bounded on the compact set σ(∂
(T )
c ), in agreement

with Equation (5.6). Furthermore, g(∂
(T )
c ) is a bounded (normal) operator and its norm

satisfies an inequality implied by (5.7).
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and φ(∂
(T )
c ) belongs to B(Hc),

28 and

||φ(∂(T )
c )|| = sup

s∈σ(∂
(T )
c )

|φ(s)| � sup
s∈K
|φ(s)| � ε. (5.7)

Note that the first inequality follows from the fact that σ(∂
(T )
c ) ⊆ K while

the second inequality follows from Equation (5.6). Since Equation (5.7) holds
for every c ∈ K and for every T such that 0 < T � T0, and recalling that

φ(∂
(T )
c ) is given by the identity (5.5) (which holds in B(Hc)), we conclude

that given any ε > 0 (and for a fixed T0 � 0), there exists τ = τ(ε) � 0 such
that

sup
c∈K,0<T�T0

||g(∂(T )
c )− ζ(∂c + iτ)|| � ε,

as desired. Furthermore, the set of such τ ’s has positive lower density; i.e.,
inequality (5.2) holds. �

Remark 5.2. — A remarkable feature of the above generalization is the
uniformity in the parameter c ∈ K and in T ∈ [0, T0] of the stated approxi-

mation of g(∂
(T )
c ).

5.2. A more general operator-valued extension of Voronin’s theo-
rem

We will next state a further generalization of the operator-theoretic extended
Voronin universality theorem. For pedagogical reasons, we will choose as-
sumptions (on the compact set K) that simplify its formulation. We begin
by introducing the notion of ‘vertical convexity’ of a given set, which will
be used in Theorem 5.4 below.

Definition 5.3. — To say that K is vertically convex means that if
c − iT ′ and c + iT belong to K for some c ∈ K and T ′ � 0 � T , then the
entire vertical line segment [c− iT ′, c+ iT ] is contained in K.

Theorem 5.4 [25]. — (Quantized universality of ζ(s); second, more gen-
eral, version). Let K be any compact, vertically convex subset of the right
critical strip { 1

2 < Re(s) < 1}, with connected complement in C. Assume,
for simplicity, that K is symmetric with respect to the real axis. Denote by
K the projection of K onto the real axis, and for c ∈ K, let

T (c) := sup ({T � 0 : [c− iT, c+ iT ] ⊂ K}) , (5.8)

(28) We use here, in particular, the fact that ζ is continuous on the compact vertical

segment σ(∂
(T )
c + iτ) = σ(∂

(T )
c )+ iτ = [c+ i(τ −T ), c+ i(τ +T )] because c �= 1 for c ∈ K.
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and T (c) = −∞ if there is no such T . (By construction, K is a compact
subset of ( 1

2 , 1) and 0 � T (c) < ∞, for every c ∈ K.) Further assume that
c �→ T (c) is continuous on K.

Let g : K → C be a non-vanishing (i.e., nowhere vanishing) continuous
function that is holomorphic in the interior of K (which may be empty).
Then, given any ε > 0, there exists τ � 0 (depending only on ε) such that

Jop(τ) := sup
c∈K,0�T�T (c)

∣∣∣
∣∣∣g(∂(T )

c )− ζ(∂(T )
c + iτ)

∣∣∣
∣∣∣ � ε, (5.9)

where ∂(T ) = ∂
(T )
c is the T -truncated infinitesimal shift (with parameter

c) and ||.|| denotes the usual norm in B(Hc) (the space of bounded linear
operators on Hc).

In fact, the set of such τ ′s has a positive lower density and, in par-
ticular, is infinite. More precisely, we have

lim inf
ρ→+∞

1

ρ
vol1({τ ∈ [0, ρ] : Jop(τ) � ε}) > 0. (5.10)

Proof. — Let N := {c + iT : T ∈ R, |T | � T (c), c ∈ K}. Assume that
T �→ T (c) is continuous on K. Then, we claim that N is a compact subset
of C (and in fact, of {s ∈ C : 1

2 < Re(s) < 1}).

In order to justify this claim, we proceed as follows. Since N is clearly
bounded, then it suffices to show that N is closed. Let (cn, Tn) = cn + iTn
be an infinite sequence of elements of N such that

(cn, Tn)→ (c, T ) = c+ iT.

Thus,
cn ∈ K, cn → c and Tn → T.

As a result, c ∈ K (since K is compact, and hence is closed in R). Also, since

Tn → T as n→∞ and |Tn| � T (cn), for all n � 1,

we have
lim
n→∞

|Tn| = |T | � lim sup
n→∞

T (cn).

But since cn → c and the map u �→ T (u) is continuous on K, we have
that T (cn) → T (c) as n → ∞. Hence, |T | � T (c) for any c ∈ K and so
(c, T ) = c+ iT ∈ N .
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The remainder of the proof of Theorem 5.4 proceeds much as in the
proof of Theorem 5.1, by applying the extended Voronin theorem (Theorem
2.2), combined with the functional calculus for bounded normal operators,

and using the fact that σ(∂
(T )
c ) = [c− iT, c+ iT ] is contained in σ(∂

(T0)
c ) =

[c− iT0, c+ iT0] for any T such that 0 < T � T0 and any c ∈ K. �

Remark 5.5. — Instead of assuming that K is symmetric with respect to
the real axis, it would suffice to suppose that c + iT ∈ K (for some c ∈ K
and T > 0) implies that c− iT ∈ K, and vice versa.

Remark 5.6. — As in the scalar case (and takingK to be a line segment),

we see that any continuous curve
(
of ∂

(T )
c

)
can be approximated by imag-

inary translates of a(T ) = ζ(∂
(T )
c ).29 Hence, roughly speaking, the spectral

operator a
(
or its T -truncations a(T )

)
can emulate any type of complex be-

havior: it is chaotic.30

Note that conditionally (i.e., under the Riemann hypothesis), and ap-
plying the above operator-theoretic version of the universality theorem to
g(s) := ζ(s), we see that, roughly speaking, arbitrarily small scaled copies
of the spectral operator are encoded within a itself. In other words, a (or
its T -truncation) is both chaotic and fractal.

6. Concluding Comments

The universality of the Riemann zeta function ζ(s) in the right critical
strip { 1

2 < Re(s) < 1} and its consequences play an important role in other
parts of our work in [25] (see also [26, 27]). In particular, the density of
ζ(s) along the vertical lines Re(s) = c (with 1

2 < c < 1), combined with
Theorem 3.11 above (from [25]), implies that for 1

2 < c < 1, the spectrum
of the spectral operator ac = ζ(∂c) is equal to the whole complex plane:
σ(ac) = C. By contrast, σ(ac) is a compact subset of C for c > 1 and
conditionally (i.e., under the Riemann hypothesis), it follows from Theorem
3.11 (combined with a result of Garunkštis and Steuding, see [18]) that
σ(ac) is an unbounded, strict subset of C for 0 < c < 1

2 . The latter result
is a consequence of the “non-universality”of ζ(s) on the left critical strip
{0 < Re(s) < 1

2}; see [18] and the relevant references therein.

(29) More precisely, the approximants are not imaginary translates of the truncated

spectral operator ζ(∂
(T )
c ) but instead, they are the results of the Riemann zeta function

applied (in the sense of the functional calculus) to imaginary translates of the truncated

infinitesimal shifts ∂
(T )
c ; namely, ζ(∂

(T )
c + iτ), for some τ ∈ R.

(30) The same cautionary comment as in the previous footnote applies here as well.
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Our study of the truncated infinitesimal shifts ∂
(T )
c and their spectra

(see Theorem 4.1) has played a crucial role in our proposed quantization of
the universality of the Riemann zeta function obtained in Theorems 5.1 and
5.4. Note that, in light of our functional analytic framework, one should be
able to obtain in a similar manner further operator-theoretic versions (or
‘quantizations’) of the known extensions of Voronin’s theorem about the
universality of ζ(s) and other L-functions (see, for example, Appendix B,
Theorems 8.3, 8.6 and 8.7 below). In this broader setting, we expect that
the complex variable s should still be replaced by the truncated infinitesimal

shifts ∂(T ) = ∂
(T )
c , as is the case in §5 of the present paper.

7. Appendix A: On the Origins of Universality

In 1885, Karl Weierstrass proved that the set of polynomials is dense
(for the topology of uniform convergence) in the space of continuous func-
tions on a compact interval of the real line. He also proved that the set of
trigonometric polynomials is dense (in the above sense) in the class of 2π-
periodic continuous functions on R. Several improvements of Weierstrass’
approximation theorem were obtained by Bernstein (1912), Müntz (1914),
Wiener (1933), Akhiezer–Krein and Paley–Wiener (1934), as well as Stone
(1947); (see [76] and [85] for an interesting survey.)

The first ‘universal’ object in mathematical analysis was discovered in
1914 by Feteke. He showed the existence of a real-valued power series

∞∑

n=1

anx
n (7.1)

which is divergent for all real numbers x 	= 0. Moreover, this divergence is so
extreme that, for every continuous function f on [−1, 1] such that f(0) = 0,
there exists an increasing sequence {Nk}∞K=1 ⊂ N such that

lim
k→∞

Nk∑

n=1

anx
n = f(x), (7.2)

uniformly on [−1, 1].

In 1929, another universal object was discovered by G. D. Birkoff. He
proved that there exists an entire function f(z) such that, for every entire
function g(z), there exists a sequence of complex numbers {an}∞n=1 such
that

lim
n→∞

f(z + an) = g(z), (7.3)

uniformly on all compact subsets of the complex plane.
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The term of ‘universality’ was used for the first time by J. Marcinkiewicz,
who obtained the following result:

Let {hn}∞n=1 be a sequence of real numbers such that limn→∞ hn = 0.
Then, there exists a continuous function f ∈ C[0, 1] such that, for every
continuous function g ∈ C[0, 1], there exists an increasing sequence {nk} ⊂
N such that

lim
k→∞

f(x+ hnk)− f(x)

hnk
= g(x), (7.4)

almost everywhere on [0, 1]. Marcinkiewicz called the function f a universal
primitive.

It is in 1975 that S. M. Voronin discovered the first explicitly universal
object in mathematics, which is the Riemann zeta function ζ(s). His original
universality theorem (Theorem 2.1) states that any non-vanishing analytic
function on the disk (of center 3

4 and radius less than 1
4 ) can be uniformly

approximated by imaginary shifts of the Riemann zeta function. In the next
appendix, we discuss various extensions of this theorem.

8. Appendix B: On some Extensions of Voronin’s Theorem

This appendix is dedicated to a discussion of some of the extensions of
Voronin’s theorem on the universality of the Riemann zeta function; (see
[1, 2, 13, 18, 20, 62, 63, 64, 65, 66, 67, 68, 69, 34, 88, 93, 77, 78, 85, 86].)
We begin by mentioning the first improvement of this theorem, which was
obtained by Bagchi and Reich in [1, 77], and then discuss further extensions
to some other elements of the Selberg class of zeta functions. We refer the
interested reader to J. Steuding’s monograph [85] for a detailed discussion
of the historical developments of the notion of universality in mathemat-
ics along with various extensions of Voronin’s theorem to a large class of
L-functions.

8.1. A first extension of Voronin’s original theorem

The first improvement of Voronin’s universality theorem was given inde-
pendently by Bagchi and Reich in [1, 77]. These authors improved Voronin’s
theorem by replacing the disk D (see Theorem 2.1) by any (suitable) com-
pact subset of the right half of the critical strip (i.e., of { 1

2 < Re(s) < 1}).
Their result, often referred to as the extended Voronin (or universality) the-
orem, has already been stated in §2.2 above; see Theorem 2.2. By necessity
of concision, we will not repeat it here, but will instead make additional
(or complementary) comments about some of its consequences and further
extensions.
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Remark 8.1. — As was already mentioned in Remark 2.3, the condition
according to which g(s) is non-vanishing is crucial and cannot be dropped.
Indeed, it can be shown that if a function g(s) (satisfying the conditions
of Theorem 2.2) were to have at least one zero (i.e., if g(s) were to vanish
somewhere in the compact subset K), then a contradiction to the Riemann
hypothesis would be obtained; namely, this would imply the existence of a
zero of ζ(s) which is not lying on the critical line (see, e.g., [34, 62, 85]).
Moreover, if we take g(s) = ζ(s), then the strip of universality is the open
right half of the critical strip; namely, { 1

2 < Re(s) < 1}. In other words, it is
impossible to extend the universality property of the Riemann zeta function
further inside the critical strip. Indeed, if such an extension existed on some
region U , then U would have to intersect the critical line {Re(s) = 1

2}, which
(by Hardy’s theorem, see [88]) contains infinitely many zeros of ζ(s). This
would contradict the assumption according to which the target function
(i.e., ζ(s)) does not have any zeros (in the given compact set K).

Remark 8.2. — In the statement of the extended Voronin theorem
(Theorem 2.2), the compact set K is allowed to have empty interior. In
that case, the function g(s) is allowed to be an arbitrary non-vanishing con-
tinuous function on K. Hence, taking K to be a compact subinterval of the
real axis (and taking into account some of the comments in Remark 8.1), we
conclude that any continuous curve can be approximated by the Riemann
zeta function (and its imaginary translates). Further refinements (and an
application of the extended universality theorem to ζ(s) itself) enable one to
see that the graph of ζ(s) contains arbitrary small “scaled copies”of itself,
a property characteristic of “fractality”. (See [93].)

A variant of Voronin’s extended theorem (Theorem 2.2) about the uni-
versality of ζ(s) was obtained by Reich [77, 78]. He restricted the approx-
imating shifts of a given target function to arithmetic progressions and
obtained a ‘discrete’ universality version of Voronin’s theorem. His result
can be stated as follows:

Theorem 8.3. — Let K be a compact subset of the right critical strip
{ 1

2 < Re(s) < 1}, with connected complement in C. Let g be a non-vanishing
continuous function on K which is analytic (i.e., holomorphic) in the inte-
rior of K. Then, for any δ 	= 0 and any ε > 0,

lim inf
N→∞

1

N
#

({
1 � n � N : max

s∈K
|g(s)− ζ(s+ inδ)| < ε

})
> 0, (8.1)

where #{.} denotes the cardinality of {.}.

Remark 8.4. — To our knowledge, there is no direct relationship between
the extended Voronin theorem for the universality of ζ(s) (Theorem 2.2)
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and Reich’s discrete universality theorem (Theorem 8.3), in the sense that
neither one of them implies the other.

Remark 8.5. — We refer the reader to [85, §5.7] for a brief exposition of
this subject and several additional references.

8.2. Further extensions to L-functions

In this appendix, we briefly discuss some of the extensions of the univer-
sality of the Riemann zeta function to other elements of the Selberg class
of zeta functions as well as to other types of zeta functions not belonging
to the Selberg class.31

Eminyan obtained an extension of Voronin’s original theorem (Theorem
2.1) to a class of Dirichlet-type L-functions whose Euler product are defined
in terms of a finite number of primes; see [13].

Later on, an extension to the class of L-functions associated to cusp
forms was obtained by Laurincikas and Matsumoto in [66]. They obtained
a universality theorem for L-functions attached to normalized eigenforms of
the full modular group.

A further extension to new forms (or elliptic curves associated to mod-
ular forms) was obtained by Laurincikas, Matsumoto and Steuding in [67].
We next briefly state their result:32

Theorem 8.6. — Suppose that f is a new form of weight k and level
N . Let K be a compact subset of the strip {k2 < Re(s) < k+1

2 } with con-
nected complement, and let g(s) be a continuous non-vanishing function on
K which is analytic (i.e., holomorphic) in the interior of K. Then, given
any ε > 0, there exists τ > 0 such that

sup
s∈K
|g(s)− L(s+ iτ, f)| < ε. (8.2)

Moreover, the set of admissible τ ’s is infinite and, in fact,

lim inf
T→∞

vol1
(
{τ ∈ [0, T ] : sup

s∈K
|L(s+ iτ, f)− g(s)| < ε}

)
> 0. (8.3)

An extension to Dirichlet series with multiplicative coefficients was ob-
tained by Laurincikas and Slezeviciene in [68].

(31) A survey of some of the key definitions and properties of the Selberg class can be
found in [42, Appendix E], where many relevant references are also provided.
(32) See, e.g., [42, Appendix C] and the many relevant references therein for the termi-

nology and definitions about modular forms which are used here.
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A number of additional results concerning the extensions and applica-
tions of the universality theorem to L-functions can be found in Steuding’s
monograph [85].

Finally, we point out the fact that extensions to other families of zeta
functions not necessarily belonging to the Selberg class of zeta functions
(such as the family of Hurwitz zeta functions) were also obtained. Given
α ∈ (0, 1] and for Re(s) > 1, the Hurwitz zeta function is defined by

ζ(s, α) =
∞∑

m=0

1

(m+ α)s
. (8.4)

This function has a meromorphic continuation to the whole complex
plane. It has a simple pole at s = 1 with residue equal to 1. Note that for
α = 1, we have ζ(s, 1) = ζ(s), the Riemann zeta function, and that for
α = 1

2 , ζ(s, 1
2 ) is given (for all s ∈ C) by

ζ(s,
1

2
) = (2s − 1)ζ(s). (8.5)

Clearly, for α = 1 and α = 1
2 , ζ(s, α) has an Euler product expansion. This

is not the case, however, for α ∈ (0, 1] − { 1
2 , 1}. As a result, except for

α ∈ { 1
2 , 1}, the Hurwitz zeta function, defined by Equation (8.4), is not an

element of the Selberg class of zeta functions.

An extension of Theorem 2.2 to the class of Hurwitz zeta functions for
the case α ∈ (0, 1] − { 1

2 , 1}, where α is rational or transcendental, was
obtained independently by Gonek in [20] and Bagchi in [1]. Their result can
be stated as follows:

Theorem 8.7. — Suppose α ∈ (0, 1]−{ 1
2 , 1} is either rational or tran-

scendental. Let K ⊂ { 1
2 < Re(s) < 1} be a compact subset with connected

complement. Let g(s) be a continuous function on K which is analytic (i.e.,
holomorphic) in the interior of K. Then, for every ε > 0, we have

lim inf
T→+∞

vol1
(
{τ ∈ [0, T ] : sup

s∈K
|g(s)− ζ(s+ iτ, α)| < ε}

)
> 0. (8.6)

Remark 8.8. — Note that in the statement of Theorem 8.7 and in con-
trast to the case of the Riemann zeta function (and other L-functions), the
function g is allowed to have zeros inside the compact set K.33

(33) This is not all that surprising since except for α ∈ { 1
2
, 1}, the Hurwitz zeta function

is not expected to satisfy the Riemann hypothesis.

– 657 –



Hafedh Herichi, Michel L. Lapidus

In view of Equation (8.6), the Hurwitz zeta function ζ(s, α) can uni-
formly approximate target functions which may have zeros inside the com-
pact subset K. Hence, the Hurwitz zeta function is an example of a math-
ematical object which is ‘strongly universal ’. The theory of strong univer-
sality has been developed in several directions. We note that the results
obtained within our functional analytic framework about the truncated in-

finitesimal shifts ∂
(T )
c and the truncated spectral operators a

(T )
c = ζ(∂

(T )
c )

can also be used to provide an operator-theoretic extension of the notion of
strong universality.

9. Appendix C: Almost Periodicity and the Riemann Hypothesis

Let f be a holomorphic complex-valued function on some vertical strip
Sa,b = {s ∈ C : a < Re(s) < b}. Then, f is said to be almost periodic
if for every ε > 0 and any α, β such that a < α < β < b, there exists
@(f, α, β, ε) > 0 such that in every interval (t1, t2) of length @, there exists a
number τ ∈ (t1, t2) such that for any α � x � β and any y ∈ R, we have

|f(x+ iy + iτ)− f(x+ iy)| < ε. (9.1)

The notion of almost periodicity was introduced by H. Bohr in [5]. He
proved that any Dirichlet series is almost periodic in its half-plane of abso-
lute convergence. Moreover, he showed in [6] that the almost periodicity of
the class of Dirichlet L-functions L(s, χ) with non-trivial character χ (i.e.,
χ 	= 1) is intimately connected with the location of the critical zeros of the
Riemann zeta function:34

Theorem 9.1. — Given any character χ 	= 1, then L(s, χ) is almost
periodic in the half-plane {Re(s) > 1

2} if and only if the Riemann hypothesis
is true.

Remark 9.2. — The notion of almost periodicity was introduced by H.
Bohr as an analytic tool for proving the Riemann hypothesis. We note that
his approach failed for the case of the Riemann zeta function but led to a re-
formulation of the Riemann hypothesis for the class of Dirichlet L-functions
associated to a non-trivial character. (See Theorem 9.1 just above.) In con-
trast to the Riemann zeta function, which has a pole at s = 1 and whose
Dirichlet series and Euler product converge only for Re(s) > 1, the Dirichlet
L-functions with non-trivial characters are holomorphic for Re(s) > 0 (even

(34) Recall that the Dirichlet L-function (or Dirichlet L-series) is initially defined by

L(s, χ) :=
∑∞

n=1

χ(n)
ns

for Re(s) > 1; see, e.g., [74], [84].
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in all of C if the Dirichlet character χ is primitive) and have a Dirichlet se-
ries and an Euler product which converge for Re(s) > 0 and in particular,
inside the critical strip:

L(s, χ) =

∞∑

n=1

χ(n)

ns
=

∏

p∈P
(1− χ(p)p−s)−1, for Re(s) > 0. (9.2)

A key fact, also established by Bohr (and central to his reformulation
of RH) is that (still for a nontrivial character) L(s, χ) is almost periodic in
the critical strip (and actually, for Re(s) > 0) because its Euler product is
convergent there.35

Remark 9.3. — The concept of almost periodicity is key to the proof and
understanding of the universality of ζ and of other L-functions. In fact, to-
ward the beginning of the 20th century, Bohr’s theory of almost periodicity
was already used by Harald Bohr and his collaborators in order to obtain
several interesting results concerning the Riemann zeta function (and other
Dirichlet L-functions), such as the density of the range of ζ(s) along the
vertical lines {Re(s) = c}, with 1

2 < c < 1 (see Theorem 2.5 and the discus-
sion preceding it in §2.3). These results and their extensions, which eventu-
ally led to Voronin’s universality theorem (and its various generalizations),
make use of finite Euler products (for ζ(s), say) within the critical strip
{0 < Re(s) < 1}. (See, e.g., [85] for a detailed exposition.)
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