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Equidistribution in S-arithmetic and adelic spaces

Antonin Guilloux(1)

ABSTRACT. — We give an introduction to adelic mixing and its applica-
tions for mathematicians knowing about the mixing of the geodesic flow
on hyperbolic surfaces. We focus on the example of the Hecke trees in the
modular surface.

RÉSUMÉ. — Cet article présente une introduction au mélange adélique et
ses applications. La présentation faite est pensée pour les mathématiciens
connaissant le mélange du flot géodésique sur les surfaces hyperboliques.
L’accent est principalement mis sur l’exemple des arbres de Hecke dans
la surface modulaire.

This paper is based on a mini-course given at the conference “Cross-
views on hyperbolic geometry and arithmetic” held in Toulouse in November
2012. The purpose was to give an introduction to adelic mixing and its
applications for mathematicians who knew about the mixing of the geodesic
flow on hyperbolic surfaces; but who may also be intimidated by the p-
adic and adelic part of the topic. I tried to overcome this by sticking to
the simplest and fundamental example of the Hecke trees in the modular
surfaces and by spending some time on taming the concept of adeles. I
hope that the description of the solenoid associated to the adeles may help
those used to dynamics to get a first insight into the nature of adeles and
their dynamical property. I chose to avoid almost entirely the language
of algebraic groups, which may be another intimidating topic to go into.
Therefore I do not even state the theorem of adelic mixing in its generality.

(1) Sorbonne Universités, UPMC Univ Paris 06, Institut de Mathématiques de Jussieu-
Paris Rive Gauche, UMR 7586, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, F-75005,
Paris, France
antonin.guilloux@imj-prg.fr
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I hope that this introduction will convince geometers that adelic mixing
is indeed a natural and interesting tool; and that the description of an
example may guide their delving into a more conceptual and comprehensive
treatment.

Introduction

We will introduce some tools to understand the repartition of certain
orbits of an action onto a homogeneous space. The reader should keep in
mind throughout the paper — especially when (s)he does not feel comfort-
able with the algebraic setting — that everything begins with the action of
a Fuchsian group on the hyperbolic plane. Indeed, we will always deal with:

• A locally compact second countable group G. The canonical example
to keep in mind is SL(2,R). Note that G possesses a Haar measure.

• A lattice Γ of G, that is a discrete subgroup such that the Haar
measure of Γ\G is finite. We will say that Γ has finite covolume
and denote this volume by covol(Γ). The canonical examples are the
Fuchsian groups. If asked to pick one of them, say SL(2,Z).

• A homogeneous space under G: the canonical example is the hyper-
bolic plane H � SL(2,R)/SO(2). More generally, one choose a closed
subgroup H of G and consider the space G/H.

With these objects, we want to understand the dynamical properties of the
action of Γ on G/H. For example, how many points of an orbit are not to
far away from the initial point ? More precisely, in our canonical example,
we pick p ∈ H and wonder how many points of the orbit Γ.p lie in a ball
B(p,R) of radius R in H. We will denote by NR this number:

NR = Card (Γ.p ∪B(p,R)) .

A crucial tool to describe this action is the “duality phenomenon”. In-
deed, it turns out that the properties of both the actions

Γ acting on G/H and H acting on Γ\G

are deeply linked. An easy yet instructive exercise is to note that the orbit
of gH under Γ is dense in G/H if and only if the one of Γg under H is
dense in Γ\G. This observation is the starting point of a huge amount of
work. Let us sketch two examples, so that the reader may understand more
clearly what lies behind this “duality phenomenon” (and incidentally how
the mixing of the geodesic flow appears).
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Example 1: Counting and Mixing

This is the “canonical” example already described:

• G = SL(2,R).

• Γ is any lattice of G.

• The homogeneous space underG is H. The subgroupH is then SO(2).

A famous and seminal work of Margulis in his thesis [21] was to show a new
way of determining the number NR. Indeed he translated, via the “duality
phenomenon” the problem in terms of “equidistribution of spheres”, i.e.
long orbits of H = SO(2), in the space Γ\G. Recall that the latter is the
unitary tangent bundle to the hyperbolic surface Γ\H. These “spheres” are
the orbits:

Γ\ΓgHat,
where the beginning point p of the orbit is the point gH of H = G/H and

at =

(
e
t
2 0

0 e−
t
2

)

is the geodesic flow. These orbits carry a natural probability measure: the
image of the Haar measure of H = SO(2) on gHat.

This is the point where mixing comes into play: using this property
of the geodesic flow (together with an important lemma called “wavefront
lemma”), one may prove the equidistribution of spheres. One exactly proves
that, for any starting point p = gH, the probability measure on the spheres
Γ\ΓgHat converge to the Haar measure on Γ\G. This, in turn, allows to
get the estimation:

NR �
Vol(B(p,R))

covol(Γ)
.

As the mixing of the geodesic flow is exponential one may get an error
term. A great quality of this method is that it is very robust: for arithmetic
lattices Γ (e.g. SL(2,Z)), number theoretic methods may lead to a very
precise estimation of NR. But here, the method works the same for any
lattice. Moreover Margulis was able to work in the case of non-constant
curvature. And one can adapt it to other G and H. The famous paper of
Eskin and McMullen [9] appears to be a very good entry point in this world.

Example 2: Equidistribution and unipotent flows

Here we take:
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• G = SL(2,R).

• Γ = SL(2,Z).

• The homogeneous space under G is R2 \ {0}. The subgroup H is the

group of unipotent matrices of the form

(
1 u
0 1

)
.

So we are looking at the orbits of SL(2,Z) on the euclidean plane, for the lin-

ear action. For any γ =

(
a b
c d

)
∈ Γ, we denote by ‖γ‖ =

√
a2 + b2 + c2 + d2

its euclidean norm and by ΓT = {γ ∈ Γ | ‖γ‖ � T} the ball in Γ of radius
T . For any point p of R2, let Dirp be the Dirac mass in p. Let Leb

r be the
measure on R2\{0} which in polar coordinates is given by drdθ. Ledrappier
[18] (see also Nogueira [25] for a different approach) showed the following
equidistribution result, for any v = (x, y) ∈ R2 \ {0} with x

y �∈ Q ∪ {∞}:

1

2T

∑

γ∈ΓT

Dirγv ⇀T→∞
Leb

r
.

For readers not used to these equidistribution statements, this mean that
for any continuous function ϕ on R2 \ {0} with compact support, we have:

1

2T

∑

γ∈ΓT

ϕ(γv)
T→∞−−−−→

∫ ∫

R2\{0}

ϕ(x, y)√
x2 + y2

dxdy.

In this work too, the key point is the study of the H-action on Γ\G. This
time, one may use an equidistribution result of Dani-Smillie [6]: the dynamic
of the unipotent groups in Γ\G is very rigid and has few invariant ergodic
measures. This last result was deeply generalized by Ratner [27], Margulis-
Tomanov [23] (in an S-arithmetic setting similar to the one I will introduce
afterwards) and eventually by Benoist-Quint [2]. Those generalizations in
turn lead to generalization of Ledrappier’s result by varying Γ, G and H.
We let the reader look at Gorodnik-Weiss [17] for the real case in a general
setting, Maucourant [22], Maucourant-Weiss [24] and Guilloux [14] for some
more precisions on Ledrappier’s result, and Guilloux [15] for an S-arithmetic
treatment.

As we saw in both example, those techniques are very robust and may be
adapted to various groups and even p-adic or adelic groups. Those are very
interesting for arithmetic or number-theoretic study. I would like to explain
here how it is sometimes possible to translate or reinterpret problems of
arithmetic flavor in such a way that they look very similar to dynamical or
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equidistribution problems. I shall concentrate on a problem related to the
first example and use mixing.

As a very simple to state example, let us mention that a direct adaptation
of the strategy of Margulis for example 1 together with a result on adelic
mixing gives an answer to the following question [16], which seems highly
arithmetic (d � 3 and n is an integer):
Decide the existence and estimate the number of elements of SO(3,Q) of
“denominator” n, i.e. which may be written as 1

n times a matrix with integer
entries:

SO(3,Q) ∩ M(3,Z)

n
as n→∞.

Here is the structure of the paper: in the following section, I will intro-
duce some beautiful objects of arithmetic origin which naturally interplay
with hyperbolic geometry. They are well-known at least in some areas of
mathematics: Hecke trees. At the end of this section, I will be able to state
the theorem we will be interested to: equidistribution of Hecke spheres.

In the second section, I will introduce the algebraic tools needed to
reinterpret the problem of equidistribution of Hecke spheres as a dynamical
problem related to some “geodesic” flow. I will introduce p-adic fields. I
include a description of a nice dynamical system, the “solenoid”, which
helps to build an intuition of these fields. Then I will move on to the adeles,
which are nearly a product of all the p-adic fields. For an algebraic group
defined with equations with rational coefficients, we consider the group of
its point over the adeles. We explain briefly the link this last group and the
group of real points, thanks to Borel- Harish-Chandra theorem. Then we
focus on the group PGL(2) and describe briefly the tree attached to it and
its links with the Hecke tree defined in the previous section.

Eventually, the last section consists in the statement of adelic mixing for
PGL(2) and a sketch of proof of the equidistribution of Hecke spheres.

1. Hecke trees and Hecke correspondance

The Hecke trees are the main object of this paper. We will see them
appear in several ways. The first one is the more concrete one and we will
gradually move to the adelic version of it (in subsection 2.5).

1.1. Construction of the Hecke trees in the modular surface

We want to consider X(1) = PSL(2,Z)\H as the space of similarity
classes of lattices in C � R2. Let us quickly review how it is done. First of
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all the identification C � R2 is realized through the choice of the canonical
basis (1, i) of C. A lattice in C is a discrete subgroup of rank 2, i.e. of the
form Ze1 + Ze2, where (e1, e2) is a R-basis of C. A marked lattice in C is
a lattice with a chosen basis (e1, e2). The space of marked lattices may be
identified to GL(2,R)1, as a marked lattice is uniquely defined by the basis
(e1, e2). In order to keep coherency in the notations, the action of GL(2,R)
on lattices is a right one, induced by the action on C:

(
x y
z t

)
· (a+ ib) = ax+ by + i(az + bt).

Now the space of marked lattices up to homothety is identified to PGL(2,R);
and the space of marked lattices up to similarity is then naturally identified
with

PGL(2,R)/O(2) � H.

And if you want to forget the marking, you still have to mod out by the
stabilizer of the lattice Z + Zi, that is PGL(2,Z). Up to an easy reduction
from PGL to PSL, we are done. Indeed, the space of lattices up to similarity
is:

PGL(2,Z)\PGL(2,R)/O(2) � PSL(2,Z)\H = X(1).

Now choose a prime number p and pick a point [Λ] ∈ X(1) (of course
[Λ] denotes the class of the lattice Λ). Consider the set:

{lattice Λ′ |Λ′ < Λ has index p}.
We may describe this set:

Lemma 1.1. — An element Λ′ of the above set is given by the choice of
the line:

Λ′/pΛ in Λ/pΛ � (Z/pZ)2.

Proof. — Indeed, pΛ is included in Λ′ (because Λ′ has index p in Λ),
so Λ′ projects to Λ/pΛ. The projection is a subgroup and we compute its
cardinal: the cardinal of Λ′/pΛ is

1

p
× Card (Λ′/pΛ) = p.

The projection is indeed a line in Λ/pΛ.

(1) The space of marked lattices is more precisely a principal homogeneous space under
GL(2,R): it is homogeneous and the stabilizer of any point is trivial. So we have to choose
a base point to fix the identification between the space of marked lattices and GL(2,R).
Here we take the lattice Z + Zi associated to the canonical basis (1, i).
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Conversely, given a line L in Λ/pΛ, there is a unique subgroup Λ′ of
Λ of index p which projects to this line: as we have seen, we must have
pΛ ⊂ Λ′. So Λ′ is exactly the preimage of the line L in Λ under the projection
Λ→ Λ/pΛ. �

Hence the number of lattices Λ′ in the above defined set is p + 1, as
the cardinal of the projective line P((Z/pZ)2). Their classes [Λ′] are called
the (p-Hecke)-neighbors of [Λ] in X(1). A straightforward verification shows
that the set of neighbors of some [Λ] in X(1) does not depend on the choice
of the representative Λ. Seeing X(1) as PSL(2,Z)\H, we may write this
relation explicitly: the neighbors of the class of z ∈ H are the classes of pz
and the k+z

p , 0 � k � p− 1, see figure 1.

Figure 1. — Hecke-neighbors for p = 3
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Remark 1.2. — The neighbors are not automatically distinct: if Λ = Z+
Zi, the two lattices

Λ′1 = Zp+ Zi and Λ′2 = Z + Zpi

are both of index p in Λ but are in the same similarity class. They project to
the same point in X(1). We will sometimes add multiplicities to deal with
that.

Moreover the “neighbor” relation is a reflexive one. Indeed, if the class
[Λ′] is a neighbor of [Λ], then we may choose the representatives so that Λ′

is a sublattice of index p in Λ. But, then, pΛ is a sublattice of index p in Λ′.
And the class [pΛ] = [Λ] is a neighbor of [Λ′]. At this point, the neighbor
relation constructs a graph.

Eventually, one may prove that this relation has no cycle. The idea is
that, if

Λ0 < Λ1 < . . . < Λk

is a sequence of lattices such that each time Λi < Λi+1 has index p, then
either there exists i such that p2Λi = Λi+2 (we are backtracking in the
graph) or there are two vectors e1 and e2 in Λ0 such that:

For all i, Λi = Ze1 + Zp−ie2.

In the second case, Λ0 and Λk are not similar. This is not obvious but rather
elementary (see [30]).

Consider τp the set of vertices of the complete tree of valence p + 1,

rooted at some vertex t0p. The above construction defines a map h
[Λ]
p from

τp to X(1), sending t0p to [Λ] and neighbors in the tree to neighbors2 in X(1)
without backtracking. Note eventually that the relation “to be a sublattice
of index p” commutes to the action of O(2). Hence we might as well work
in the unit tangent bundle PSL(2,Z)\PSL(2,R) of X(1). And we get a
mapping of the tree τp in PSL(2,Z)\PSL(2,R).

Let us now briefly describe another point of view, which makes clearer

how one may vary the group G and the lattice Γ. The matrix gp =

(
p 0
0 1

)

belongs to the commensurator of PSL(2,Z): the group gpPSL(2,Z)g−1
p ∩

PSL(2,Z) is a subgroup of finite index in both PSL(2,Z) and gpPSL(2,Z)g−1
p .

(2) This map is really only defined up to isometries of the tree fixing the root t0p. This
subtlety will not interfere and we will not be more precise at this point. This map will
be formally defined in section 2.5. Beware that it may be non-injective as in the example
of Z[i].
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More precisely, the elements of gpPSL(2,Z) fall into p + 1 different classes
modulo PSL(2,Z). One easily check that:

PSL(2,Z)gpPSL(2,Z) = PSL(2,Z){gp;
(

1 k
0 p

)
for 0 � k � p− 1}.

The p+1 lattices gp.(Z+iZ) and

(
1 k
0 p

)
.(Z+iZ) are exactly the neighbors

of Z+iZ: check they are all distinct and of index p in Z+iZ. In other terms,
the neighbors of [Z + Zi] are exactly the elements of

PSL(2,Z)\PSL(2,Z)gpPSL(2,Z).

For another lattice Γ of PSL(2,R), or of another group G, a notion of
neighbors may still be defined for any element g of the commensurator of
Γ: the commensurator of Γ is the group of elements g such that gΓg−1 ∩
Γ has finite index in G and γΓg−1. It is exactly the property needed for
the above construction. And the whole construction described above makes
sense. It is especially interesting for groups Γ with big commensurator, that
is arithmetic lattices in G (such as PGL(2,Z)).

1.2. Product of trees and spheres

Fix a point [Λ] ∈ X(1). For each prime number p, we have constructed
a mapping:

h[Λ]
p : τp → X(1).

Recall that the tree τp is rooted at t0p. And we denote by d the distance
in these trees given by the number of edges between two points. We would
like to consider as a whole the set of prime numbers. Indeed, keep in mind
that we are interested in arithmetics. And we will use and abuse of the
prime factorization of integers. Let us make a seemingly silly remark: in the
factorization of each integer into primes, only a finite set of prime numbers
appears; Of course not a bounded one, but still finite. So, we will not exactly
consider the set of prime numbers but work with its finite subsets.

We consider the restricted product of the trees τp:

τ :=



(tp)p ∈

∏

p prime

τp |
∑

p

d(tp, t
0
p) <∞



 .

A point in τ has all its entries equal to t0p but a finite set. Then we construct
a mapping

h[Λ] : τ → X(1)
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in the following way. Consider a point (tp)p in τ . Let x0 = [Λ], x2 = hx0
2 (t2).

And, recursively, for a prime number p, with q the greatest prime number
less than p, xp = h

xq
p (tp). This sequence indexed by the prime numbers

becomes eventually stationary: as (tp) belongs to the restricted product, for
q large enough, tq always equals t0q and the point xq does not move anymore:

with the above notation, the next point in this sequence is xp = h
xq
p (t0p) =

xq. We define h[Λ] to be this limit xp. One may prove that the order in
which we construct the sequence does not change the limit point.

It is maybe clearer to look at the spheres in the product of trees τ . Let N
be an integer and N =

∏
p p

νp its factorization into prime factors. Remark
that

∑
p νp <∞. So the set

SN :=

{
(tp)p ∈

∏

p

τp | ∀p, d(tp, t0p) = νp

}

is a subset of τ . We call it the “sphere of radius N”. Remark that we may
give a more concrete interpretation: h[Λ](SN ) is the set of classes [Λ′], where
Λ′ is a sublattice of index3 N in Λ: indeed, pick a point (tp) in SN . Let us
follow the sequence defining h[Λ]((tp)):

• x0 = [Λ]

• if q, p are two successive prime numbers, xp = hxq (tp) is a sublattice
of index4 pνp in xq: recall that tp is at distance νp from the root, so
in order to construct xp = hxq (tp) you take νp times a neighbor, i.e.
νp times a sublattice of index p without backtracking.

At the end, h[Λ]((tp)) is a sublattice of index5
∏
p p

ν
p = N in [Λ]. And by

letting (tp) vary in the sphere of radius N , you get every such sublattice.

The Hecke correspondence TN on X(1) is the operation which associates
to [Λ] the set h[Λ](SN )6.

1.3. Dynamical problems

1.3.1. Distribution of spheres

The question is: if N →∞, how do the sets TN ([Λ]) look like ?

(3) And I mean really of index N : that is Λ′ is a sublattice of index N in Λ and no
lattice 1

k
Λ′, k ∈ N, is a sublattice of Λ.

(4) Same remark as above.
(5) Same remark as above.
(6) This last set is weighted whenever h[Λ] is not injective. Later on, any sum on the

elements of TN ([Λ]) is to be understood as weighted.
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This question has been answered in many ways and is known to be di-
rectly related to “Ramanujan conjecture” [28]. In the case explained above,
it should be attributed to Linnik-Skubenko [19, 31].

Theorem 1.3. — These sets equidistribute toward the hyperbolic area µ
on X(1):

1

Card(SN )

∑

t∈SN
Dirach[Λ](t) ⇀ µ.

In other terms, for any continuous and compactly supported function ϕ
on X(1), we have:

1

Card(SN )

∑

t∈SN
ϕ(h[Λ](t))→

∫

X(1)

ϕdµ.

This theorem has many generalizations (varying G, Γ and H) and also
many proofs. The main proofs follow:

• harmonic analysis (cf. Sarnak [28]),

• use of adelic mixing (cf. Clozel-Oh-Ullmo [4]...)

• use of Ratner theorem for unipotent flows (Eskin-Oh [11], Duke-
Rudnick-Sarnak [5], Eskin-Mozes-Shah [10]...)

We will try to explain here the second approach.

1.3.2. Distribution of closed geodesics

Less fundamental in a number-theoretic point of view but still natural
for geometers is the second question. This one takes place at the level of the
unit tangent bundle PSL(2,Z)\PSL(2,R) of X(1).

Suppose x ∈ PSL(2,Z)\PSL(2,R) induces a closed geodesic. We will see
later on that any y in the image hx(τ) of the restricted product of trees τ
still induces a closed geodesic. So one may wonder:
What can said be about these geodesics when y drift apart x in hx(τ).

We will not go into this question, but with the present introduction the
reader may study the paper of Aka-Shapira [1].

At this point, it is not clear how these objects and questions are related
to the examples of the introduction: we see that PSL(2,Z) and PSL(2,R)
keep appearing but who is H? Which dynamical system is mixing? Under-
standing this requires the introduction of p-adic fields and adeles. We do
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this in the next section, trying to keep the most dynamical point of view on
these notions. Once we are acquainted with those algebraic objects, both
questions may naturally be reinterpreted as evolution of sets under some
kind of geodesic flow. We will state a mixing property for it; it will lead us
to the answer to the first question.

2. p-adic and adelic groups

2.1. p-adic fields

I will not develop here the theory of p-adic fields (see [29] for an intro-
duction). We begin, of course, by fixing a prime number p.

Let us define the p-adic field Qp:

Definition 2.1. — Qp is the completion of Q for the p-adic absolute
value | · |p.

In this form, it may be abstract but it shows a fundamental feature of
p-adic fields: they are counterparts of the real numbers R. As R, they are
completion of Q for some absolute value. And Ostrowski’s theorem states
that the usual one and the | · |p for p prime are the only absolute values on
R. So, in order to reflect in a proper way properties of Q – that is arithmetic
– in complete fields, you have to consider at once R and all the Qp. That is
why the adeles were introduced. But before going on, let us present p-adic
fields in a more concrete way, in order to get a bit of intuition.

First of all, the p-adic absolute value on Q is so defined: for a rational
number r ∈ Q, write it in the form r = pk ab , with a and b coprime with p.
Then:

|r|p = |pk a
b
|p = p−k.

Note that if r is an integer, then |r|p � 1: Z becomes bounded with this
absolute value. Its completion Zp will then be compact. Let us define it
before Qp: let

Zp = {(xn)n�0 | xn ∈ Z/pnZ and xn+1 = xn (mod pn)}.

We may define the absolute value | · |p in Zp:

|(xn)n|p = p−k,

where k is the greatest integer such that xj = 0 for all j � k. For this
absolute value, it is not hard to check that Zp is a complete and compact
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set. We have a natural injection

{
Z → Zp
k �→ (k (mod pn))

and one checks that

this is an isometry and the image is dense. This prove that Zp is indeed the
completion of Z. Topologically, Zp is a Cantor set.

As follows from the definition, Zp is a ring. Its fraction will be a complete
field in which Q embeds isometrically for the absolute value | · |p with dense
image. Hence this fraction field is the completion Qp. One can also write:

Qp =
⋃

n�0

p−nZp.

With this last presentation, one sees that Zp ∩ Z[ 1p ] = Z. Let us insist on

the fact that, from the p-adic point of view, p−n is bigger and bigger as n
grows.

Remark 2.2. — For simplicity of notation, we will sometimes denotes R
by Q∞ and its usual absolute value by | · |∞.

We will denote by V the set of “places” of Q, i.e. of different completions.
We will write

V = {∞} ∪ {prime numbers p}.
Given the convention in the above remark and Ostrowski’s theorem, the
Qν ’s for ν ∈ V are the only completions of Q. There is a very elegant and
simple formula that relates these different completions, called the product
formula:

For any x ∈ Q \ {0} we have
∏

ν∈V
|x|ν = 1.

2.2. S-arithmetic rings and solenoids

Let us take a finite subset S containing ∞. We define:

QS :=
∏

ν∈S
Qν and ZS = Z

[
{1
p
, p ∈ S \ {∞}}

]
.

We have the diagonal injection of Q in these QS . As ZS ⊂ Q, it naturally
embeds in QS (and even any QS′ for any other S′ regardless to the relation
between S and S′). Those objects, called S-arithmetic, allow to keep track
of properties of rational numbers regarding the powers of the prime numbers
p ∈ S appearing. For example QS , S = {∞, 2, 3} is the right place to study
the rational solutions to an equation with denominator highly divisible by
2 or 3. The following theorem holds:
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Theorem 2.3. —

• QS is a locally compact ring,

• ZS ⊂ QS is a discrete cocompact subgroup. A fundamental domain
is [0; 1[×∏

p∈S\{∞} Zp.

• If S is a proper subset of a finite subset S′ ∈ V, ZS′ is dense in ZS.

Let us take some time to describe a dynamical system attached to this
object, which will be a solenoid in the dynamical sense: a fibration over a
circle by a Cantor set, whose monodromy has dense orbits in any fiber. For
this description we take S = {∞, p}, but it works the same with different

choices. Recall that with the above definition, Z
[

1
p

]
is embedded in R×Qp

diagonally. Consider the space

Y = Z

[
1

p

]
\ (R×Qp).

We want to define a projection Π : Y → Z\R from Y to the circle. The
following lemma is the key point:

Lemma 2.4. — Consider a point (x∞, xp) ∈ R×Qp. Then there exists

z ∈ Z
[

1
p

]
such that

{
z′ ∈ Z

[
1

p

]
| z′ + xp ∈ Zp

}
= z + Z.

Proof. — The last point in previous theorem implies that Z
[

1
p

]
is dense

in Qp. So there is some z such that z + xp lies in the open subset Zp.
Moreover, if some z′ also verifies z′ + xp ∈ Zp, then we have (Zp is a ring):

z − z′ = (z + xp)− (z′ + xp) ∈ Z

[
1

p

]
∩ Zp = Z.

�

We may define the image under Π of Z
[

1
p

]
+ (x∞, xp): it is the class

Z + (x∞ + z) for any z given by the lemma. We may check that Π is a
fibration over the cercle, with fibers isomorphic to Zp.

There is a natural flow on Y : lift to Y the flow x→ x+ t on the circle.

Let us describe it precisely. Choose a point p = Z
[

1
p

]
+ (x∞, xp) in Y ,

– 1036 –



Equidistribution in S-arithmetic and adelic spaces

and for sake of simplicity, suppose we have chosen (with the lemma above)
xp ∈ Zp. So Π(p) = Z + x∞. Then for all t ∈ R define

pt := Z

[
1

p

]
+ (x∞ + t, xp).

Remark the projection Π(pt) is Z + (x∞+ t). Moreover, using the action of
Z, we may write ({t} and �t� are the fractional and integral parts of t):

pt = Z

[
1

p

]
+ (x∞ + {t}, xp − �t�).

Figure 2. — A solenoid
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So we return in the fiber of p at each integer time, but we move in this
fiber. This motion is the monodromy of the fibration and is given by:

pn = Z

[
1

p

]
+ (x∞, xp − n).

As Z is dense in Zp, the orbit pn is dense in the fiber of p.

All this may be summarized in a double quotient:

Z

[
1

p

]
\R×Qp/Zp = Z\R.

By varying the compact Zp, one may vary the circle. For example, if we had
taken pZp instead, we would have got pZ\R.

2.3. Adeles

Until now, we were only able to consider a finite number of prime num-
bers. This is not natural or very interesting from an arithmetical point of
view. One would like to consider all primes at once. But considering the
mere product of all the Qν ’s is not a good solution: as ZS was a discrete
cocompact subgroup of QS , we would like Q to be a discrete cocompact
subgroup of the ring constructed. However the product would give a non
locally compact ring.

So, as for the trees, we will do a restricted product: considering the di-
agonal embedding of Q in

∏
ν Qν , we may remark that the image of any

rational number is always in Zp for p large enough (any p not appearing in
the prime factorization of the denominator of the rational number). So we
will restrict the product to such elements: their components should eventu-
ally be in Zp. This is how the adeles A are defined:

A :=

{
(xν) ∈

∏

ν∈V
Qν | all but finitely many xν belong to Zν

}
.

The topology on A is generated by open sets of the form:

∏

ν∈S
Oν ×

∏

ν 
∈S
Zν ,

where S ⊂ V is finite, and each Oν is an open subset of Qν .

With this definition, we may extend the theorem given in the S-arithmetic
case:
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Theorem 2.5. —

• A is a locally compact ring,

• Q ⊂ A is a discrete cocompact subgroup. A fundamental domain is

[0; 1[×
∏

p∈V\{∞}
Zp.

• For every prime number p, Q is dense in A(p) = Qp\A.

A crucial consequence of the first point is that A has a Haar measure. It
is defined (up to normalizations) as the product of Lebesgue measure and
the Haar measures of the Qp.

It will be helpful to understand what does “going to ∞” mean for a
sequence in A. Formally, it means that we are leaving any compact set. But
let us have a look at two sequences which go to ∞ in a very different way:

• Going to ∞ “vertically”: for example the sequence uk = 2−k. Here
we see that a projection on Q2 is going to ∞.

• Going to ∞ “horizontally”: for example the sequence (vk)k�0 where
vk is the k-th prime number. Then, for all prime p, as soon as vk > p,
the projection of vk to Qp is inside Zp. But this sequence is going to
∞ because the greatest prime number q for which it does not project
inside Zq goes to ∞ with k.

Now the simple sequence vk = 1
k presents a mixed behavior: it sure goes to

∞, but sometimes (at big powers of a fixed prime number p) in the vertical
direction: 1

pn is big in Qp, but in Zq for q �= p; and sometimes (when k = q

is a prime number) in the horizontal direction : 1
q is not so big in Qq, but

as q = k goes to ∞, it becomes big in A. From now on, we will use the
notation x→∞ to denote the property “x leaves any compact set”.

It is also worth noting that these construction extends without difficulty
to the case of number fields instead of Q.

2.4. Groups

Having constructed several ring, we may consider the groups of points of
an algebraic groups over them. I do not want to go into any formal definition
of algebraic groups here. See [26] for a reference on algebraic groups and
their S-arithmetic or adelic points. For us it will be a subgroup of GL(n)
defined by actual equations with coefficients in Z; and also PGL(2), even
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if it does not belong to the previous class. Other examples are the classical
groups SL(2), SO(2)...

Given such a group G, we will denote by GZ, GQ ... (more generally GR
for a ring R) the set of elements of GL(n,Z), GL(n,Q), GL(n,R) verifying
the equations. All our rings are topological and locally compact; that imply
in turn that GR is topological and locally compact. We will be interested
in the relationship between GZ and GR, GZS and GQS

(S finite) and GQ

and GA. We have the following theorem, due to Borel and Harish-Chandra.
Recall first that a lattice in a locally compact is a discrete subgroup such
that the quotient has finite volume for the Haar measure. It is cocompact
if the quotient is compact.

Theorem 2.6 (Borel and Harish-Chandra). — Fix any finite subset S ⊂
V containing ∞. We have equivalence between the statements:

1. GZ is a lattice GR (resp. cocompact),

2. GZS is a lattice GQS
(resp. cocompact),

3. GQ is a lattice GA (resp. cocompact).

Let us mention that the theorem gives a criterion for both case, and
that if G is a semisimple group, then GQ is a lattice in GA. Our main
interest will be in the group PGL(2) which is indeed semisimple. So the
three statements are true (but the lattices are not cocompact, as seen for
PGL(2,Z) ⊂ PGL(2,R)).

Moreover, when GZ is a lattice in GR, one may understand the double
quotients:

GZ\GR � GZ[ 1
p ]
\GR ×GQp/GZp � GQ\GA/

∏

p

GZp .

In this form, we may describe GQ\GA as a solenoid over the base GZ\GR

(i.e. a fibration over GZ\GR with fiber Cantor sets and a dense monodromy
of GZ).

2.5. Adelic interpretation of Hecke trees

Here we link the previous section with the technology we have just briefly
presented: we interpret moving in the Hecke trees as a generalization of the
geodesic flow, i.e. as the action of a diagonal matrix of PGL(2,A). The first
step is to see that, in some sense, the tree τp is an analogue to the hyperbolic
disc: it identifies with the quotient of PGL(2,Qp) by the maximal compact
subgroup PGL(2,Zp).
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Proposition 2.7. — The quotient PGL(2,Qp)/PGL(2,Zp) has a nat-
ural structure of a (p+ 1)-complete tree.

We refer to Serre [30] for a comprehensive presentation of these trees.
We will just give a very sketchy idea of the proof. The main idea is that it
is very much similar to the construction of the Hecke tree.

First of all, PGL(2,Zp) is open and closed in PGL(2,Qp). So the quotient
is a discrete set. Moreover, PGL(2,Zp) is the stabilizer of (the homothety
class of) the “maximal order” Z2

p of Q2
p (a maximal order is a free Zp-

module of rank 2). If [Λ] and [Λ′] are two such orders, we say that they are
“neighbors” if (up to the choice of suitable representatives), we have:

pΛ ⊂ Λ′ ⊂ Λ,

with each inclusion being of index p.

As for the Hecke tree, once fixed Λ, such a Λ′ is determined by the choice
of a line in

pΛ\Λ � (pZ\Z)2.

So [Λ] has p + 1 neighbors. The relation is symmetric and has no cycle,
giving to the quotient the structure of a tree.

One may say that PGL(2,Qp) is the unitary tangent bundle to this tree
in the sense that each element of PGL(2,Qp) corresponds bijectively to
an oriented marked geodesic: let g = (v1 v2) be an element of GL(2,Qp)
(v1 and v2 are two non-colinear elements of Q2

p). Then to g is naturally
associated the order Zpv1 + Zpv2, that is a point of the tree. Moreover, one
attach to g the following geodesic:

{[Zppnv1 + Zpv2], n ∈ Z} .
This geodesic is marked at [Zpv1+Zpv2] and oriented “toward v2”: as n→∞
the first component becomes more and more negligible and asymptotically
vanishes.

The geodesic flow is given by going one-step forward in this geodesic.
From the previous description of the geodesic, it appears that this flow is
given by the right action of the diagonal matrix

hp :=

(
p 0
0 1

)
.

And the sphere of radius n around some point gPGL(2,Zp) is the subset7:

gPGL(2,Zp)h
n
pPGL(2,Zp) of PGL(2,Qp)/PGL(2,Zp).

(7) Compare with the alternative point of view on the Hecke correspondence at the
end of subsection 1.1. – 1041 –
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The similarity between the two constructions of the tree is not fortuitous.
Indeed, the Hecke tree really is the projection of the tree of PGL(2,Qp)
through the double quotient of previous section. Let us describe this projec-
tion. From now on we fix an identification of τp with PGL(2,Qp)/PGL(2,Zp)
sending the root of τp to the class of Id.

Choose a point x = PGL(2,Z)g in the unit tangent bundle PGL(2,Z)\
PGL(2,R) to X(1). Then we may identify τp with {g} × PGL(2,Qp)/
PGL(2,Zp); and thus consider it as a subset of PGL(2,R) × PGL(2,Qp)/
PGL(2,Zp). The map hxp : τp → PGL(2,Z)\PGL(2,R) is given by the
following diagram:

τp ↪→ PGL(2,R)× PGL(2,Qp)/PGL(2,Zp)
↓

PGL(2,Z
[

1
p

]
)\PGL(2,R)× PGL(2,Qp)/PGL(2,Zp)

The last space is, as stated in the previous subsection, identified with the
unit tangent bundle PGL(2,Z)\PGL(2,R).

Remark 2.8. — The image of τp under hxp does not depend on the choice
of the representative g. But two different choices leads to two different maps
hxp differing by an automorphism of τp at the source.

Until now, we have looked at only one prime number p. One can perform
the same analysis as above in the adelic group PGL(2,A), in order to get a
description of the image of the spheres inX(1). Let x = PGL(2,Z)gSO(2) be
a point in X(1), let N be an integer and define the element hN ∈ PGL(2,A)

whose component in PGL(2,R) is Id and

(
N 0
0 1

)
in each PGL(2,Qp).

Then we have

Lemma 2.9. — The sphere hx(SN ) of radius an integer N with center a
point x = PGL(2,Z)gSO(2) in X(1) is the image of the set:

(
gSO(2)×

∏

p

PGL(2,Zp)

)
hN

∏

p

PGL(2,Zp)

in X(1) via the identification

X(1) = PGL(2,Z)\PGL(2,R)/SO(2)

= PGL(2,Q)\PGL(2,A)/

(
SO(2)×

∏

p

PGL(2,Zp)

)
.
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3. Adelic mixing and Equidistribution of Hecke spheres

The previous section explained a technology to reinterpret the dynamical
problems related to Hecke trees. In this section, we explain the strategy to
deduce the answer to the first question: equidistribution of Hecke spheres,
see subsection 1.3. This strategy builds over a very deep result, namely
adelic mixing, that I will present. I will try to convince the reader that, once
accepted this result, the equidistribution of Hecke spheres is rather “easy”.
Of course, almost everything is hidden in the adelic mixing property. But I
hope that the reader more or less used to the usual mixing of the geodesic
flow will admit this mixing property without too much difficulties. And
this presentation might convince this reader that ideas coming out from
dynamical considerations, once properly reinterpreted, leads to nice and
natural arithmetic considerations.

3.1. Adelic mixing

Let us recall the setting of subsection 1.3. We take a point x = [Λ] in
X(1) and write it as PGL(2,Z)gSO(2). Stated in another way, PGL(2,Z)g
is a point in the unitary tangent bundle projecting to x. We can lift x
one more step upward, that is inside PGL(2,Q)\PGL(2,A): x is then the
projection of the set

(
gSO(2)×

∏

p

PGL(2,Zp)

)

in the double quotient

X(1) = PGL(2,Q)\PGL(2,A)/

(
SO(2)×

∏

p

PGL(2,Zp)

)
.

Moreover, thanks to lemma 2.9, the Hecke spheres hx(SN ) are the pro-
jection in this double quotient of

(
gSO(2)×

∏

p

PGL(2,Zp)

)
· hN .

In order to prove equidistribution, we will prove that, already at the level
of PGL(2,Q)\PGL(2,A), this sets equidistribute toward the Haar prob-
ability measure on PGL(2,Q)\PGL(2,A). Recall that, up to normaliza-
tion, a Haar measure on PGL(2,A) exists and is unique. Moreover, as
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PGL(2,Q) is a lattice in PGL(2,A), it induces a unique probability mea-
sure on PGL(2,Q)\PGL(2,A); we will call it the volume and denote it by
Vol. Now what exactly does this equidistribution mean ?

Consider the Haar probability measure ν on the compact subgroup

SO(2)×
∏

p

PGL(2,Zp)

of PGL(2,A). It projects to a probability measure ν̄ in PGL(2,Q)\PGL(2,A).
So we are looking at the evolution of ν̄ under the transformation PGL(2,Q)g
�→ PGL(2,Q)ghN in PGL(2,Q)\PGL(2,A) and would like to prove it con-
verges to Vol.

At this point, it appears clearly that a mixing property for the action of
hN on PGL(2,Q)\PGL(2,A) with respect to Vol would help: this property
implies that, for any measure µ absolutely continuous with respect to Vol,
the measures (hN )∗µ converge to Vol. The good news is that this mixing
property holds.

Let us define some notations: the space PGL(2,Q)\PGL(2,A)
has a probability measure Vol, so it makes sense to look at the space
L2 (PGL(2,Q)\PGL(2,A)) of square integrable functions on it. We
denote by 〈·, ·〉 the hermitian scalar product. Moreover, we denote by
L2

0 (PGL(2,Q)\PGL(2,A)) the subspace of functions ϕ such that
∫
ϕdVol =

0. The action of the group PGL(2,A) on the quotient PGL(2,Q)\PGL(2,A)
leaves the measure Vol invariant: the latter is the projection of the Haar
measure. So this action yields an action on the space of square-integrable
functions. This action is defined, with obvious notations, by:

g · ϕ : x �→ ϕ(x.g).

We may then state:

Theorem 3.1. — Let ϕ and ψ be two functions of L2
0 (PGL(2,Q)\

PGL(2,A)). We suppose that ϕ and ψ are invariant under the action of∏
p PGL(2,Zp).

Then, as g →∞ in PGL(2,A), we have:

〈ϕ, g · ψ〉 → 0.

This theorem deserves a lot of comments.

First of all, it is indeed a mixing property: if A and B are two open sets of
PGL(2,Q)\PGL(2,A), denoting by ϕ = χA−Vol(A) and ψ = χB−Vol(B)
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their normalized characteristic functions , we get the usual mixing property:

Vol(A ∩Bg−1)
g→∞−−−→ Vol(A)Vol(B).

Second, it is valid in a very wide generality. It is more or less true for any
semisimple algebraic group. We refer the reader to Gorodnik-Maucourant-
Oh [13] for a general result.

It is proven by the study of certain unitary representations of PGL(2,A).
In this setting, it states that the trivial representation is isolated among
automorphic ones. This is called “property τ” (in reference to the stronger
property (T )). The final step of this was done by Clozel [3], after many
works. I will not go into these topics, far too involved for my purpose.

One last comment: the speed of convergence (so-called “decay of coeffi-
cients”) is known. In the case of PGL(2) it is deeply and directly related to
bounds towards the “Ramanujan conjecture”.

The reader will find more explanations in Gorodnik-Maucourant-Oh [13],
Clozel-Oh-Ullmo [4], Sarnak [28] and Goldstein-Mayer [12].

3.2. How to prove equidistribution of Hecke spheres ?

As previously analyzed, we want to prove the convergence of the measure
h∗Nν. First of all, note that the sequence hN of elements of PGL(2,A) goes
to ∞ as N → ∞. So they fit in the setting of theorem 3.1. However, the
measure ν̄ is too singular: it is supported on a set of volume 0. It is a classical
trick to first approximate ν̄ by a measure which has a density with respect
to Vol. And then hope the approximation will not be too difficult to track
when letting the dynamics evolve.

Here we are in a very good situation. Recall that the support of ν̄ is the
set:

PGL(2,Q)g

(
SO(2)×

∏

p

PGL(2,Zp)

)
.

Now, the real component of hN is Id. So one can “fatten up” SO(2), by tak-
ing a small neighborhood Ω of Id in PGL(2,R); and replace ν by the volume

restricted to g
(
SO(2)Ω×∏

p PGL(2,Zp)
)
, normalized to be a probability

measure. Denote by νΩ this probability measure. As Ω shrinks to SO(2), νΩ
converges to ν. But, note that the action of Ω commutes to the action of
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hN :

PGL(2,Q)g

(
SO(2)Ω×

∏

p

PGL(2,Zp)

)
hN

= PGL(2,Q)g

(
SO(2)×

∏

p

PGL(2,Zp)

)
hNΩ.

So the fattening is inert under the dynamic: h∗N ν̄Ω converges uniformly to
h∗N ν̄.

So we only need to prove the convergence of h∗N ν̄Ω towards Vol, for any
Ω. This is a direct consequence of theorem 3.1, as ν̄Ω has a (bounded) density
with respect to Vol: let ψ be this density. For any function ϕ continuous
with compact support on PGL(2,Q)\PGL(2,A), let ϕ′ = ϕ−

∫
ϕdVol and

ψ′ = ψ − 1. Then we have:

∫
ϕd(h∗N ν̄Ω) =

∫
ϕ′d(h∗N ν̄Ω) +

∫
ϕdVol

=

∫
ϕ′(hN · ψ)dVol +

∫
ϕdVol

= 〈ϕ′, hN · ψ〉+
∫
ϕdVol

= 〈ϕ′, hN · ψ′〉+
∫
ϕdVol

N→∞−−−−→
∫
ϕdVol

From the third line to the fourth, you just use that 〈ϕ′, 1〉 =
∫
ϕ′dVol = 0.

And the convergence is given by the mixing property, i.e. theorem 3.1.

This proves theorem 1.3 on the equidistribution of Hecke spheres.

This text only touch on the topic of adelic mixing and adelic dynami-
cal systems. For instance, I completely ignored any property linked to en-
tropy of these dynamic; the reader may refer to the beautiful papers by
Einsiedler-Lindenstrauss-Michel-Venkatesh [8] (where Hecke trees and their
adelic interpretation are a central object), Lindenstrauss [20], Einsiedler-
Katok-Lindenstrauss [7].
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