
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
MARK D. BAKER, ALAN W. REID

Principal congruence link complements

Tome XXIII, no 5 (2014), p. 1063-1092.

<http://afst.cedram.org/item?id=AFST_2014_6_23_5_1063_0>

© Université Paul Sabatier, Toulouse, 2014, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2014_6_23_5_1063_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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Principal congruence link complements

Mark D. Baker(1), Alan W. Reid(2)

ABSTRACT. — In this paper we study principal congruence link comple-
ments in S3. It is known that there are only finitely many such link com-
plements, and we make a start on enumerating them using a combination
of theoretical methods and computer calculations with MAGMA.

RÉSUMÉ. — Cet article est consacré à un début d’énumération des
compléments d’entrelacs dans S3 provenant des groupes de congruence
principaux. Nous utilisons des méthodes théoriques ainsi que des calculs
avec MAGMA.

1. Introduction

Let d be a square-free positive integer, let Od denote the ring of integers
in Q(

√
−d), and let Qd denote the Bianchi orbifold H3/PSL(2,Od). A non-

compact finite volume hyperbolic 3-manifold X is called arithmetic if X and
Qd are commensurable, that is to say they share a common finite sheeted
cover (see [26] Chapter 8 for more on this). If N is a closed orientable 3-
manifold and L ⊂ N a link, then L is called arithmetic if N \ L is an
arithmetic hyperbolic 3-manifold.

In his list of problems in his Bulletin of the AMS article [33], Thurston
states as Question 19:

Find topological and geometric properties of quotient spaces of arithmetic
subgroups of PSL(2,C). These manifolds often seem to have special beauty.
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For example, many of the key examples in the development of the theory of
geometric structures on 3-manifolds (e.g. the figure-eight knot complement,
the Whitehead link complement, the complement of the Borromean rings
and the Magic manifold) are arithmetic.

The “beauty” referred to by Thurston is captured particularly well by
congruence manifolds (which includes some of the above examples). Recall
that a subgroup Γ < PSL(2,Od) is called a congruence subgroup if there
exists an ideal I ⊂ Od so that Γ contains the principal congruence group:

Γ(I) = ker{PSL(2,Od)→ PSL(2,Od/I)},

where PSL(2,Od/I) = SL(2,Od/I)/{±Id}

A manifold M = H3/Γ is called congruence (resp. principal congruence)
if Γ > Γ(I) (resp. Γ = Γ(I)) for some ideal I ⊂ Od. As above we will
also refer to a link L ⊂ N as congruence (resp. principal congruence) if the
manifold N \ L is so.

The largest ideal I for which Γ(I) < Γ is called the level of Γ. For
convenience, if n ∈ Z, we will denote the principal Od-ideal < n > simply
by n.

As we discuss in §2.2, for a fixed closed orientable 3-manifold N there are
only finitely many principal congruence link complements in N . The aim of
this paper is to make a start on enumerating all principal congruence link
complements in S3, together with their levels. Note that since links with at
least 2 components are not generally determined by their complements (see
[18]), one cannot just say “finitely many principal congruence links”. Our
main results are the following.

Theorem 1.1. — The following list of pairs (d, I) indicates the known
Bianchi groups PSL(2,Od) containing a principal congruence subgroup Γ(I)
such that H3/Γ(I) is a link complement in S3. Those annotated by * are
new.

1. d = 1: I ∈ {2, < 2± i >∗, < (1± i)3 >∗, 3∗}.

2. d = 2: I ∈ {2, < 1±
√
−2 >∗, < 2±

√
−2 >∗}.

3. d = 3: I ∈ {2, 3, < (5±
√
−3)/2 >,< 3±

√
−3 >}.

4. d = 7: I ∈ {< (1±
√
−7)/2 >, 2, < (3±

√
−7)/2 >∗, < 1±

√
−7 >∗}.

5. d = 11: I ∈ {< (1±
√
−11)/2 >∗, < (3±

√
−11)/2 >∗}.
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6. d = 15: I =< 2, (1±
√
−15)/2 >.

7. d = 19: I =< (1±
√
−19)/2 >.

8. d = 23: I =< 2, (1±
√
−23)/2 >.

In the case when the level is a rational integer we can say more.

Theorem 1.2. — Let n ∈ Z. Then Γ(n) < PSL(2,Od) is a link group
(in S3) if and only if:

(d, n) ∈ {(1, 2), (2, 2), (3, 2), (7, 2), (1, 3), (3, 3)}.

We close the Introduction by outlining the plan of the paper. In §2 we
give some preliminary discussion for the methods we use to identify or rule
out principal congruence groups from being link groups. In §3 we prove
Theorem 1.1. This includes references to the previously known principal
congruence link complements, as well as pictures of some of the links. In §4
we prove Theorem 1.2, and in §5 we discuss where these results leave the
enumeration of all principal congruence groups that are link groups. Finally,
in §6 we provide some discussion focused around the open question as to
whether there are only finitely many congruence link complements in S3.

Note Added in Proof. — Since the preprint version of this paper
appeared, Matthias Goerner has completed the enumeration of all principal
congruence link complements in the cases of d = 1, 3 (see [17]). We list these
in §5.

Acknowledgements. — This work was done during visits to the Uni-
versity of Texas by the first author, Université de Rennes 1 by the second
author, and the Université Paul Sabatier by both authors. We wish to thank
these institutions for their hospitality. We also wish to thank Marston Con-
der for Magma tutoring, M. H. Sengun for computer computations and Neil
Hoffman and Matthias Goerner for helpful comments and correspondence
on the contents of the paper.

2. Preliminaries and discussion of proofs

In this section we gather some facts and background to be used, as well
as discussing strategies involved in the proofs of Theorems 1.1 and 1.2.

2.1.

We begin by recalling the orders of the groups PSL(2,R) where R is a
finite ring of the form Od/I, with I ⊂ Od an ideal (see [14]). For such an
ideal I we have a decomposition into powers of prime ideals. Then,
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|PSL(2,Od/I)| =
{
N(I)3

∏
P|I(1− 1

N(P)2 ), when 2 ∈ I
N(I)3

2

∏
P|I(1− 1

N(P)2 ), otherwise

where N(I) = |Od/I| denotes the norm of the ideal I, and P runs over
prime ideal divisors of I.

2.2.

The solution of the Cuspidal Cohomology Problem (see [34]) showed that
there are only finitely many possible d (see below) so that Qd has a cover
homeomorphic to an arithmetic link complement in S3. Moreover in [5] it
was shown that for every such d there does exist a link complement. We
summarize this in the following result:

Theorem 2.1. — Qd is covered by an arithmetic link complement in S3

if and only if

d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

Although there is a unique arithmetic knot complement in S3 (the figure-
eight knot complement, [27]), it is easy to prove that there are infinitely
many non-homeomorphic arithmetc link complements in S3, even fixing
links with 2 components (see for example [27]).

More generally, for a fixed closed orientable 3-manifold N , there are at
most finitely many d for which an arithmetic link complement N \L covers
some Qd. To discuss the reason for this we recall the following description
of the degree 1 cuspidal cohomology.

Suppose that X = H3/Γ is an orientable, non-compact, finite volume
hyperbolic 3-orbifold, and UΓ the normal subgroup of Γ generated by the
parabolic elements of Γ. Then the subspace of H1(X,Q) which defines the
degree 1 cuspidal cohomology of X (or Γ) can be identified with:

VX( or VΓ) = (Γ/UΓ)ab ⊗Z Q.

If now X = N \L, is as above, then the dimension of VX can be shown to
be bounded above by dim H2(N;Q), whilst on the other hand, it is known
that (see [19]) as d→∞ the dimension of VQd goes to infinity.

Thus we deduce the following corollary of this discussion.
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Corollary 2.2. — Suppose that N is a fixed closed orientable 3-manifold.
If N \ L = H3/Γ(I) then the there are at most finitely many d such that
I ⊂ Od.

We now prove the finiteness of principal congruence link complements
in a fixed manifold.

Proposition 2.3. — Let N be a closed orientable 3-manifold. Then
there are only finitely many principal congruence link complements in N .

Proof. — Corollary 2.2 shows that to establish finiteness for principal
congruence manifolds, we need to prove finitely many possible levels, which
in turn reduces to bounding the norm of the ideal.

We will discuss the case when N is not hyperbolic (which is straightfor-
ward). The case when N is hyperbolic is proved in [25] (see Corollary 4.2)
and is a good deal more delicate. We shall give a proof that is the motivation
for that in [25]. A different proof in the case of when Qd has 1 cusp is given
in [16] (see §4.1 for some discussion of this proof).

The proof is a consequence of the next two results, the first of which is
proved in [1]. To state this result, recall that if M is a complete hyperbolic
n-manifold of finite volume, by a systole of M we mean a shortest closed
geodesic in M . By the systole length of M we mean the length of a systole.
We denote this by sys(M).

Theorem 2.4. — Let N be a closed orientable 3-manifold which does
not admit any Riemannian metric of negative curvature. Let L be a link
in N whose complement admits a complete hyperbolic structure of finite
volume. Then sys(N \ L) � 7.35534....

Lemma 2.5. — Let γ ∈ Γ(I) be a hyperbolic element. Then tr γ =
±2 mod I2.

Proof. — Since γ ∈ Γ(I), it has the form

γ =

(
±1 + a b

c ±1 + d

)
,

where a, b, c, d ∈ I. Thus tr γ = ±2 + a + d. In addition, since det γ = 1,
expanding we have

(±1 + a)(±1 + d)− bc = 1

from which it follows that

±(a+ d) = −ad+ bc

and the right hand side is easily seen to lie in I2 as required. �
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To complete the proof of Proposition 2.3, Lemma 2.5 shows that if γ is a
hyperbolic element corresponding to a systole of H3/Γ(I) then tr γ = ±2+x
for some x ∈ I2. By assumption, N is not hyperbolic and so the systole
bound of Theorem 2.4 applies to give a bound on |x| (independent of N).
This in turn bounds the norm of I and the finiteness is proved. �

Remark. — For the explicit systole bound given in Theorem 2.4, the
bound for the norm of the ideal produced is 42.

2.3.

We will make use of the following result. This is modelled on the case of
PSL(2,Z) which is proved in [29] (see Lemma 1.42).

Recall that the set of fixed points of parabolic elements of PSL(2,Od)
coincides with Q(

√
−d)∪{∞}, and that the number of orbits for the action

of PSL(2,Od) on the set of fixed points of parabolic elements is hd (the class
number of Q(

√
−d)), which is therefore the number of cusps of Qd.

Theorem 2.6. — Suppose that hd = 1, and let c, c′, d, d′ ∈ Od satisfy
(c, d) = (c′, d′) = 1 (i.e the ideals < c, d >=< c′, d′ >= Od) . Then d/c and
d′/c′ are equivalent modulo Γ(I) < PSL(2,Od) if and only if

[
d
c

]
= k

[
d′

c′

]
mod I,

where k is a unit of Od.

Proof. — Suppose that I =< π >, and T ∈ Γ(I) such that T (d/c) =

d′/c′. This determines an equation of the form (d+π1

c+π2
) = d′

c′ , for π1, π2 ∈ I.
This in turn implies that there exists λ ∈ Q(

√
−d)∗ with

λ

[
d′

c′

]
=

[
d+ π1

c+ π2

]
.

Writing λ = m/n with m,n ∈ Od and (m,n) = 1 we deduce that

m

[
d′

c′

]
= n

[
d+ π1

c+ π2

]
.

Hence < d′ > and < c′ > are divisible by < n > and so n is a unit

by assumption. Now repeating this argument with T−1(m

[
d′

c′

]
) =

[
d
c

]

we also deduce that m is a unit and the required congruence condition is
established.
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Now assume that the congruence condition holds, we will construct an
element T ∈ Γ(I) with T (d/c) = d′/c′ as follows. Assume first that d/c =
1/0. Then d′ = k mod I, c′ = 0 mod I and so k−1d′ = 1 mod I, and
k−1c′ = 0 mod I. Using k−1d′ = 1 mod I, we deduce that (1−k−1d′)/π ∈ Od,
and so we can find x, y ∈ Od so that d′x− c′y = (1− k−1d′)/π. Now choose
T to be the matrix

T =

(
k−1d′ kyπ
k−1c′ 1 + kxπ

)
∈ Γ(I).

As can be checked, this has determinant 1.

For the general case, let x, y ∈ Od satisfy dx + cy = 1 and let U =(
d −y
c x

)
. Then U(1/0) = d/c and so the assumption of the congruence

condition gives

U−1

[
kd′

kc′

]
=

[
1
0

]
mod I,

for unit k. From above, one can find an element T ∈ Γ(I) so that

T

[
1
0

]
= U−1

[
kd′

kc′

]
.

Then UTU−1 ∈ Γ(I) is the required element. �

Also note that the number of cusps of H3/Γ(I) can be computed for
any given I. In the case of hd = 1, this follows directly using the order of
the finite group PSL(2,Od/I) given in §2.1 and the image of the peripheral
subgroup P∞ (i.e. the subgroup of PSL(2,Od) consisting of those elements
fixing ∞) in PSL(2,Od/I). When d �= 1, 3, P∞ ∼= Z⊕Z, and when d = 1, 3,
P∞ is an extension of Z⊕Z by a group of order 2 or 3. Thus when d �= 1, 3,
the image of P∞ in PSL(2,Od/I) is either a cyclic or a rank 2 finite abelian
group, and when d = 1, 3, the image is an extension of a cyclic or a rank 2
finite abelian group.

2.4.

The proof of Theorems 1.1 and 1.2 will make use of the following presen-
tations from [30] for the Bianchi groups in the cases for d ∈ {1, 2, 3, 7, 11, 19}.
Note that in these cases hd = 1, and so Qd has one cusp.

PSL(2,O1) =< a, !, t,u | !2 = (t!)2 = (u!)2 = (a!)2 = a2 = (ta)3

= (ua!)3 = 1, [t, u] = 1 >,
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PSL(2,O2) =< a, t,u | a2 = (ta)3 = (au−1au)2 = 1, [t,u] = 1 >,

PSL(2,O3) =< a, !, t,u | !3 = a2 = (a!)2 = (ta)3 = (ua!)3 = 1, !−1t!

= t−1u−1, !−1u! = t, [t, u] = 1 >,

PSL(2,O7) =< a, t,u | a2 = (ta)3 = (atu−1au)2 = 1, [t,u] = 1 >,

PSL(2,O11) =< a, t,u | a2 = (ta)3 = (atu−1au)3 = 1, [t,u] = 1 >,

PSL(2,O19) =< a,b, t,u | a2 = (ta)3 = b3 = (bt−1)3 = (ab)2

= (at−1ubu−1)2 = 1, [t, u] = 1 > .

In addition in all cases a =

(
0 −1
1 0

)
, t =

(
1 1
0 1

)
and u =

(
1 ωd
0 1

)

(with the obvious abuse of notation between SL and PSL) and where

ωd = i,
√
−2,
−1 +

√
−3

2
,
1 +
√
−7

2
,
1 +
√
−11

2
,
1 +
√
−19

2
.

2.5.

To establish the new examples of principal congruence link complements
in Theorem 1.1, we employ two different strategies. First, in two cases,
explicit links in S3 are identified in the literature, and we prove them to
be principal congruence links. Second, and more usually, we are unable to
describe an explicit link, but use experiment and computation to prove
that certain principal congruence subgroups determine link groups in S3.
The outline for this is as follows, and is based on three facts about link
complements and their groups that we now recall.

Let L = L1 ∪ . . . ∪ Ln ⊂ S3 be a link, X(L) denote the exterior of L,
and Γ = π1(S

3 \ L) be the link group. Then:

1. Γab is torsion-free of rank equal to the number of components of L;
i.e. Γab ∼= Zn.

2. Γ is generated by parabolic elements.

3. For each component Li, there is a curve xi ⊂ ∂X(L) so that Dehn
filling S3 \ L along the totality of these curves gives S3. Following
Perelman’s resolution of the Geometrization Conjecture, this can be
rephrased as saying that the group obtained by setting xi = 1 for each
i is the trivial group.
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Given this, our method is:

Step 1: Show that Γ(I) is generated by parabolic elements.

We briefly discuss how this is done. Let P = P∞(I) be the peripheral
subgroup P∞∩Γ(I), and let < P > denote the normal closure in PSL(2,Od).
Since Γ(I) is a normal subgroup of PSL(2,Od), then < P > < Γ(I). Thus
if < P > = Γ(I) then Γ(I) is generated by parabolic elements. Note that
the converse also holds in this case (i.e. hd = 1); for if Γ(I) is generated
by parabolic elements, then since Γ(I) is a normal subgroup and Qd has 1
cusp, all such generators are PSL(2,Od)-conjugate into P .

From §2.1 we know the order of PSL(2,Od/I), and we can use Magma [8]
to test whether Γ(I) = < P >. In some cases Magma is unable to decide
whether the index is finite, and so is of no help here. In addition Magma
can also return an index greater than [PSL(2,Od) : Γ(I)]. In this case we
can prove that Γ(I) is not a link group. To see this we argue as follows.

If Γ(I) is a link group then it is normally generated by its peripheral sub-
groups. On the other hand, since Qd has 1 cusp, all the peripheral subgroups
of Γ(I) are PSL(2,Od)-conjugate to P . If < P > is a proper subgroup of
finite index in Γ(I), then all the peripheral subgroups of Γ(I) lie in a proper
subgroup of Γ(I). In particular the peripheral subgroups cannot normally
generate Γ(I).

Step 2: Find parabolic elements in Γ(I) so that as above, trivializing these
elements, trivializes the group.

This step is largely done by trial and error, however, the motivation be-
hind our experimentation can be usefully described. Given Step 1, if H3/Γ
has n cusps, we attempt to find n parabolic fixed points that are Γ(I)-
inequivalent, and for which the corresponding parabolic elements of < P >
provide curves that can be Dehn filled as in Step 3 above. The inequivalence
can be shown using Theorem 2.6. Our search for inequivalent fixed points
is informed by what happens for PSL(2,Z), and additionally we sometimes
use an intermediate group Γ(I) < Γ < PSL(2,Od) that is easier to work
with.

One upshot of attempting to implement the above strategy is the follow-
ing question, for which a positive answer would greatly simplify our work.

Question. — Let M = H3/Γ be a finite volume orientable hyperbolic 3-
manifold for which Γ is generated by parabolic elements. Is M homeomorphic
to a link complement in S3?
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However, recently Matthias Goerner found an example of a 1-cusped
hyperbolic 3-manifold (denoted m011 in the SnapPy census [10] of cusped
hyperbolic 3-manifolds arising from gluing at most 5 tetrahedra) that is not
homeomorphic to a knot complement in S3 but its fundamental group is
generated by parabolic elements (see [17] §12.1 for further discussion).

3. Proof of Theorem 1.1

We now give the details of how to implement the strategies described in
§2.5. Before that we list the known principal congruence link complements
with references. We use the notation (d, I) to indicate the Bianchi group
and level given in Theorem 1.1. Note that if Γ(< α >) is determined to be
a link group in S3, then Γ(< α >) also is. Therefore, in what follows we
simply refer to one of the complex conjugate pair.

3.1.

The cases (1, 2),(2, 2), (3, 2) and (7, 2) were described in the Ph.D thesis
of the first author [3]. The links in question are shown in Figure 1a-1d below.

 Figure 1a

 Figure 1b
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 Figure 1c

 Figure 1d

For (3, (5+
√
−3)/2), this was shown by Thurston and described in [16].

Thurston’s link is shown in Figure 2 below.

Figure 2

Note that, as ideals < (5 +
√
−3)/2 > = < 2 −

√
−3 >, and so

H3/Γ(< 2±
√
−3 >) is also homeomorphic to a link complement in S3.

The cases (3, 3) and (3, 3 +
√
−3) are described in Chapter 1 of [16].

These are 12 and 20 component link complements respectively. We refer the
reader to [16] for a description of the links.

The case of (7, (1+
√
−7)/2) is described in [21] (the link is shown below
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in Figure 3, and the complement is known as the Magic Manifold).

Figure 3

The case of (19, (1 +
√
−19)/2) was shown in [5], and those of

(15, < 2, (1 +
√
−15)/2 >) and (23, < 2, (1 +

√
−23)/2 >) in [6]. In the

first case, no link was described, but in the other two cases, the following
links in Figure 4a-4b were identified.

 Figure 4a

 Figure 4b
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3.2.

We now deal with the cases (2, 1+
√
−2) and (11, (1+

√
−11)/2). Consider

the links that are shown below in Figures 5a and 5b.

 Figure 5a

 Figure 5b

These links were previously described in Thurston’s Notes [32], and [22]
respectively, and in both cases, commensurability of the link complement
with the Bianchi orbifolds Q2 and Q11 respectively was established in [32]
and [22]. Since Q(

√
−2) and Q(

√
−11) have class number 1, it follows from

[27] Theorem 3, that these link complements cover Qd. Using the calculation
of volume in [32] which can be observed experimentally using SnapPy [10],
we deduce that the degree of the cover of Qd in both cases is 12.

In the remainder of this subsection, I denotes either of the ideals
< 1 +

√
−2 > or < (1 +

√
−11)/2 >. Now N(< 1 +

√
−2 >) =

N(< (1+
√
−11)/2 >) = 3, so that in both cases Γ(I) is a normal subgroup

of the Bianchi group of index 12, and the principal congruence manifolds
each have 4 cusps (the image of P∞ is cyclic of order 3).

Case 1, d=2: Table 5 of [21] lists the PSL(2,O2)-conjugacy classes of
subgroups Γ of PSL(2,O2) of index � 12 with Γab being torsion-free. Thus
if Γ denotes the link group associated to the link L1 above, then Γ must
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appear in Table 5 of [21]. There are 3 groups listed in Table 5 of [21] whose
first homology is Z4. In the notation of [21] these are Γ−2(12, 9), Γ−2(12, 10),
and Γ−2(12, 11). As noted in [21], the first two of these are conjugate in
PSL(2,C), and the other group is not torsion-free. Hence the group Γ must
be conjugate to one from the first pair.

Also upon consulting Table 5 of [21], one sees that the group Γ−2(12, 10)
is generated by (in the notation of §2.4)

{g1 = tu, g2 = t3, g3 = atua, g4 = t−1at−1u−1at}

Now g1 =

(
1 1 +

√
−2

0 1

)
, g3, g4 are conjugates of g±1

1 (recall that a

has order 2) and so also lie in Γ(I). It is also clear that g2 ∈ Γ(I) (since
N(I) = 3). Hence, by index considerations, Γ(I) coincides with Γ−2(12, 10),
and we deduce that Γ = Γ(I).

Case 2, d=11: Since [21] does not deal with d = 11, we need to argue
differently. We begin with an observation. As noted above the link group Γ
associated to L2 is a subgroup of index 12 in PSL(2,O11). For future use,
we note that Vol(S3 \ L2) = 16.591299695 . . .

Claim. — Γ is a normal subgroup of PSL(2,O11) with quotient group
A4.

Proof of Claim. — SnapPy computes that the symmetry group of the
link complement contains a subgroup of order 24 (isomorphic to the rota-
tional octahedral group). SnapPy also computes that the link complement
has no orientation-reversing isometries. The argument below will show that
this is in fact the full symmetry group and the quotient of S3 \ L2 by this
symmetry group is H3/PGL(2,O11).

First, these comments show that S3 \L2 is a regular cover of an orbifold
Q commensurable with Q11. Using the volume of S3 \ L2 given above we
deduce that Vol(Q) = 0.6913041542 . . .. Now using the structure of minimal
orbifolds in the commensurability class of Q11 (see [26] Chapter 11), it can
be checked that although there are infinitely many minimal elements in the
commensurability class of Q11, there is a unique minimal volume orientable
orbifold in the commensurabilty class of Q11, namely H3/PGL(2,O11). It
also follows from [26] Chapter 11, that the volume of this orbifold is that
of the orbifold Q above. Hence Q = H3/PGL(2,O11) and so it follows that
S3 \ L2 is a regular cover of H3/PGL(2,O11), and hence Q11 as required.
The covering group of S3 \L2 → Q11 is then A4 (since the full group is the
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octahedral group).

Given this claim we now run the following routine in Magma that takes
a group G and outputs all normal subgroups of index 12 with A4 quotient
and for which abelianization is Z4. In the case at hand, G = PSL(2,O11)
and the presentation used is that given in §2.4.

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*t*u^-1*a*u)^3,(t,u)>;

L := LowIndexNormalSubgroups(G,12);

for i in [1..#L] do N := L[i]‘Group;

if Index(G,N) eq 12 then Q := CosetImage(G,N);

if IsIsomorphic(Q,Alt(4)) then if AQInvariants(N) eq [0,0,0,0]

then N := Rewrite(G,N); print ""; print N; end if; end if;

end if; end for;

Magma outputs only three subgroups, N1, N2 and N3. Hence Γ corresponds
to one of these. The generators produced by Magma are listed below:

N1 = < u, aua, tauat−1, t−1auat >, N2 = < ut−1, aut−1a, t3, tauata >,

and N3 = < tu, at2u−1a, uauat−1a, auatu−1at−1 >.

Note that u ∈ Γ(< (1 +
√
−11)/2 >) and so since all generators of N1 are

conjugates of u (recall a has order 2) we see that N1 < Γ(< (1+
√
−11)/2 >)

and so we must have N1 = Γ(< (1 +
√
−11)/2 >).

Similarly, for N2, it is easy to see that the first three generators in this
case all lie in Γ(< (1−

√
−11)/2 >). The fourth generator is

(
(3−

√
−11)/2 −(1−

√
−11)/2

(1−
√
−11)/2 (1 +

√
−11)/2

)
,

which can be checked to be congruent to the identity modulo < (1 −√
−11)/2 >. Hence N2 = Γ(< (1−

√
−11)/2 >).

Now the group Γ must appear in the list enumerated by Magma; i.e. it
must be one of N1, N2 or N3. We wish to show that Γ is either N1 or N2;
i.e. we are done if we can show that Γ �= N3. To do this we look at the
first homology groups of double covers of S3 \L2 and compare with the first
homology groups of index 2 subgroups of the group to be eliminated. To
that end, using SnapPy, we can check double covers of S3 \ L2 and we see
that there is a double cover with first homology group Z4 ⊕ Z/3Z. On the
other hand, as can be checked with Magma, there is no subgroup of index
two in N3 having this first homology group. This completes the proof.
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3.3.

We now discuss the remaining cases of Theorem 1.1. In particular, d ∈
{1, 2, 7, 11}.

d=1:

Proposition 3.1. —

1. Γ(< 2 + i >) is a six component link group.

2. Γ(< (1 + i)3 >) is a twelve component link group.

3. Γ(3) is a twenty component link group.

Proof. — We describe the cases of 2 + i and 3 in some detail. The case
of (1 + i)3 is similar to that of 2 + i. The relevant information is included
at the end of the proof.

First, since N(< 2 + i >) = 5, Γ(< 2 + i >) is a normal subgroup of
PSL(2,O1) of index 60. Since P∞ has order 10 in this case, we deduce that
H3/Γ(< 2 + i >) has 6 cusps. Recalling Step 1 from §2.5, the subgroup P
in this case can be seen to be < t2u, t5 >. We now use Magma as discussed
above (see below for the Magma routine used in this proof) to see that
[PSL(2,O1) :< P >] = 60, and so Γ(< 2 + i >) =< P >. Note also that the
Magma routine shows that < P >ab∼= Z6.

We now find six parabolic elements that are not conjugate in
Γ(< 2 + i >), that generate Γ(< 2 + i >) and have the property that
trivializing these elements trivializes the group.

Lemma 3.2. — Let S = {∞, 0,±1,±2}. Then each element of S is a
fixed point of some parabolic element of Γ(< 2+ i >) and moreover they are
all mutually inequivalent under the action of Γ(< 2 + i >).

Proof. — That each element of S is a fixed point is clear as Γ(< 2+ i >)
has finite index index in PSL(2,O1). An explicit collection of parabolic
elements of Γ(< 2 + i >) that fix the elements of S is:

S′ = {t2u, at2ua, t−1at2uat, tat2uat−1, t−2at2uat2, t2at−3uat−2}.

It is also easy to see that ∞ is not equivalent to 0, since any element
T ∈ PSL(2,C) with T (∞) = 0 has (1, 1)-entry 0 which is impossible for an
element of Γ(< 2 + i >). Similarly ∞ is not equivalent to ±1 or ±2. For if
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T (∞) = ±1, then a = ±c, but c = 0 mod < 2+i > and a = 1 mod < 2+i >,
a contradiction. A similar argument holds for ±2 (as < 2+ i > has norm 5).

A similar argument also works to rule out the equivalence of 0 and ±1
and the equivalence of 0 and ±2.

Finally an application of Theorem 2.6 rules out the other equivalences.
For example, suppose that 1 and 2 are equivalent with T (1) = 2 for some
T ∈ Γ(< 2 + i >). This determines an equation:

1 + (2 + i)α = 2(1 + (2 + i)β),

which implies 1 ∈< 2 + i >, a contradiction. �

Magma routine for Γ(< 2 + i >)

G<a,l,t,u>:=Group<a,l,t,u|l^2,a^2,(t*l)^2,(u*l)^2,(a*l)^2,

(t*a)^3,(u*a*l)^3,(t,u)>;

h:=sub<G|t^2*u,t^5>;

n:=NormalClosure(G,h);

print Index(G,n);

\\60

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0 ]

r:=sub<n|t^2*u,a*t^2*u*a,t^-1*a*t^2*u*a*t,t*a*t^2*u*a*t^-1,

t^-2*a*t^2*u*a*t^2,t^2*a*t^-3*u*a*t^-2>;

print Index(n,r);

\\1

We now deal with case of Γ(3), which is a normal subgroup of PSL(2,O1)
of index 360. In this case P∞ maps to a group of order 18 so that H3/Γ(3)
has 20 cusps, and the group P in this case is < t3, u3 >. Magma again
checks that < P >= Γ(3) (see below).

In this case we find it helpful to work with an intermediate subgroup
Γ(3) < Γ < PSL(2,O1), where Γ is defined to be the group < Γ(3), δ >=
Γ(3).δ where δ = atu−1. Magma shows that [Γ : Γ(3)] = 5, and so we may
deduce that the cover H3/Γ(3)→ H3/Γ is a regular 5-fold cyclic cover with
H3/Γ having four cusps, and each cusp of H3/Γ(3) projecting one-to-one
to a cusp of H3/Γ.

As in the previous case we need to determine appropriate parabolic ele-
ments. We briefly discuss how this tedious but straightforward computation
is done, and spare the reader details.
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First, the four parabolic fixed points∞, ±1 and 1−i (the set of which we
again denote by S) can be shown all to be mutually inequivalent under the
action of Γ. For since γ ∈ Γ, then γ = γ0δ

n for some γ0 ∈ Γ(3) and n ∈ Z.
Furthermore, from the previous paragraph, δ5 ∈ Γ(3) and so it suffices to
check, using Theorem 2.6, that for n ∈ {0,±1,±2}, the δn-orbits of the four
elements of S are all Γ(3)-inequivalent.

Now the following parabolic elements in Γ fix these four points:

S′ = {t3u3, tat3u−3at−1, t−1au3at, u−1tau3at−1u}.
As can be readily checked, these are primitive parabolic elements in Γ.

Magma now shows that the normal closure of S′ in Γ is Γ(3). Since the
parabolic elements listed above represent inequivalent cusps of H3/Γ, if we
now perform Dehn filling on H3/Γ along the curves corresponding to these
parbolic elements, the normal closure computation shows that we obtain a
group of order 5. Since these are primitive parabolic elements, this group
is the fundamental group of a closed 3-manifold, namely some lens space L
(by Geometrization). Hence we deduce that H3/Γ is a 4 component link in
L with fundamental group of order 5. From above we can compatibly fill
the cusps of H3/Γ(3) → H3/Γ resulting in a 5-fold cover N → L, and so
N ∼= S3 as required.

Magma routine for Γ(3)

G<a,l,t,u>:=Group<a,l,t,u|l^2,a^2,(t*l)^2,(u*l)^2,(a*l)^2,

(t*a)^3,(u*a*l)^3,(t,u)>;

h:=sub<G|t^3,u^3>;

n:=NormalClosure(G,h);

print Index(G,n);

\\360

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

d:=sub<G|n,a*t*u^-1>;

print Index(G,d);

\\72

print AbelianQuotientInvariants(d);

\\[ 5, 0, 0, 0, 0 ]

d1:=sub<d|t^3*u^3,t*a*t^3*u^-3*a*t^-1,t^-1*a*u^3*a*t,u^-1*t*a*

u^3*a*t^-1*u>;

d2:=NormalClosure(d,d1);

print Index(d,d2);

\\5

d2 eq n;

\\true
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We now sketch some of the details for the case of (1 + i)3. In this case
Γ(< (1 + i)3 >) has index 192, and H3/Γ(< (1 + i)3 >) has 12 cusps. The
subgroup P to be used here is < t2u2, t4 >, and Magma confirms that <
P >= Γ(< (1+i)3 >). Using Theorem 2.6 it can be shown that the following
twelve parabolic fixed points are inequivalent under Γ(< (1 + i)3 >):

{∞, 0, 1/2,±1, 2,±i, 1± i, (1± i)/2}

Parabolic elements were then constructed and the Dehn filling argument
as in the previous cases applied. The Magma routine is shown below:

Magma routine for Γ(< (1 + i)3 >)

G<a,l,t,u>:=Group<a,l,t,u|l^2,a^2,(t*l)^2,(u*l)^2,(a*l)^2,

(t*a)^3,(u*a*l)^3,(t,u)>;

h:=sub<G|t^2*u^2,t^4>;

n:=NormalClosure(G,h);

print Index(G,n);

\\192

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

s:=sub<G|t^2*u^2,a*t^-2*u^2*a,t^2*a*t^2*u^2*a*t^-2,

t*a*t^2*u^2*a*t^-1,t^-1*a*t^2*u^2*a*t, u*a*t^2*u^2*a*u^-1,

u^-1*a*t^2*u^2*a*u,t*u*a*u^4*a*u^-1*t^-1,t*u^-1*a*t^4*a*u*t^-1,

a*u*t^-1*a*t^2*u^2*a*t*u^-1*a,a*u^-1*t^-1*a*t^2*u^2*a*t*u*a,

a*t^-2*a*t^2*u^2*a*t^2*a>;

print Index(s,n);

\\1

s eq n;

\\true

This completes the proof of Proposition 3.1. �

d=2:

Proposition 3.3 Γ(< 2 +
√
−2 >) is a twelve component link group.

Proof: The proof is similar to that of Case 3 of Proposition 3.1 and so we only
include relevant information. Since < 2 +

√
−2 > has norm 6, the principal

congruence subgroup Γ(< 2 +
√
−2 >) is a normal subgroup of index 72.

In this this case the image of P∞ has order 6 and so H3/Γ(< 2 +
√
−2 >)

has 12 cusps. Taking P =< t2u, t6 >, and as before Magma confirms that
< P >= Γ(< 2 +

√
−2 >) (see below).
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As in Case 3 of Proposition 3.1, we find it convenient to work with a group
Γ where Γ(< 2 +

√
−2>) <Γ<PSL(2,O2) and [Γ : Γ(< 2 +

√
−2>)] = 2;

namely Γ =< Γ(< 2 +
√
−2 >), a >. As before we find a collection of

parabolic elements in Γ whose normal closure in Γ is Γ(< 2+
√
−2 >). This

is illustrated in the Magma routine shown below:

Magma routine for Γ(< 2 +
√
−2 >)

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*u^-1*a*u)^2,(t,u)>;

h:=sub<G|t^2*u,t^6>;

n:=NormalClosure(G,h);

print Index(G,n);

\\72

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

d:=sub<G|t^2*u,t*a*t^2*u*a*t^-1,t^2*a*t^2*u*a*t^-2,

t^-2*a*t^2*u*a*t^2,t^3*a*t^-4*u*a*t^-3,

t*a*t^-2*a*t^-4*u*a*t^2*a*t^-1>;

m:=sub<G|n,a>;

print Index(G,m);

\\36

d2:=NormalClosure(m,d);

print Index(m,d2);

\\2

d2 eq n;

\\true

Arguing as before we see that the 2-fold cover H3/Γ(< 2 +
√
−2 >) →

H3/Γ can be Dehn filled compatibly to extend to a cover S3 → RP3, and
the proposition is proved. �

d=7:

Proposition 3.4. —

1. Γ(< (3 +
√
−7)/2 >) is a six component link group.

2. Γ(< 1 +
√
−7 >) is an eighteen component link group.

Proof. — The first case is dealt with exactly as some of the previous
cases. Here Γ(< (3 +

√
−7)/2 >) is a normal subgroup of index 24, and

H3/Γ(< (3 +
√
−7)/2 >) has 6 cusps. The Magma routine is included

below.

Magma routine for Γ(< (3 +
√
−7)/2) >)
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G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*t*u^-1*a*u)^2,(t,u)>;

h:=sub<G|t*u,t^4>;

n:=NormalClosure(G,h);

print Index(G,n);

\\24

s:=sub<G|t*u,a*t*u*a,t*a*t*u*a*t^-1,t^-1*a*t*u*a*t,

t^2*a*t*u*a*t^-2,a*t^2*a*t^-3*u*a*t^-2*a>;

print Index(G,s);

\\24

s eq n;

\\true

The second case of Proposition 3.4 involves some additional work as
we now describe. The ideal < 1 +

√
−7 > has norm 8 and factorizes as

< ω7 >
2< ω7 >. Thus [PSL(2,Od) : Γ(< 1 +

√
−7 >)] = 144 and the image

of P∞ has order 8. Hence H3/Γ(< 1 +
√
−7 >) has 18 cusps. From the

Magma routine shown below we see that Γ(< 1 +
√
−7 >) =< u2, t4 >

Now consider the group ∆ =< Γ(< 1 +
√
−7 >), x > where x = at−2a.

Magma shows that [∆ : Γ(< 1+
√
−7 >)] = 2, and so we have the following

sequence of 2-fold covers.

H3/Γ(< 1 +
√
−7 >)→ H3/∆→ H3/Γ(2).

To show that H3/Γ(< 1+
√
−7 >) is homeomorphic to a link complement

in S3 we show that H3/∆ homeomorphic to a link complement in RP3, and
the double cover is compatible with S3 → RP3.

As before this is done by exhibiting a collection of parabolic elements
that normally generate, and we refer the reader to the Magma routine below
for this list. Now H3/∆ has twelve cusps and in the double cover H3/Γ(<
1 +
√
−7 >) → H3/∆ six of these cusps each lift to two cusps of H3/Γ(<

1 +
√
−7 >) and each of the remaining six is covered by a single a cusp of

H3/Γ(< 1+
√
−7 >). These cusps fill compatibly to give the required cover

S3 → RP3.

Magma routine for Γ(< 1 +
√
−7 >)

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*t*u^-1*a*u)^2,(t,u)>;

h:=sub<G|u^2,t^4>;

n:=NormalClosure(G,h);

print Index(G,n);

\\144

print AbelianQuotientInvariants(n);
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\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

m1:=sub<G|n,a*t^2*a>;

print Index(G,m1);

\\72

m2:=sub<m1|u^2,a*(t^-4*u^2)*a,t*a*u^2*a*t^-1,t^2*a*u^2*a*t^-2,

u*a*u^2*a*u^-1,t^-1*u*a*u^2*a*u^-1*t,t^-2*u*a*u^2*a*u^-1*t^2,

a*t^-1*u*a*u^2*a*u^-1*t*a,t^-1*a*t^-1*u*a*u^2*a*u^-1*t*a*t,

t*a*t^-1*u*a*u^2*a*u^-1*t*a*t^-1,a*u*a*u^2*a*u^-1*a,a*t^-1*a

*t^-1*u*a*u^2*a*u^-1*t*a*t*a>;

d:=NormalClosure(m1,m2);

print Index(m1,d);

\\2

d eq n;

\\true

d=11:

Proposition 3.5. — Γ(< (3 +
√
−11)/2 >) is a twelve component link

group.

Proof. — In this case Γ(< (3 +
√
−11)/2 >) is a normal subgroup of

PSL(2,O11) of index 60, and H3/Γ(< (3+
√
−11)/2 >) has 12 cusps. Setting

P =< tu, t5 >, Magma shows that < P >= Γ(< (3 +
√
−11)/2 >). As in

some of the other cases we will exploit an intermediate group Γ =< Γ(<
(3 +

√
−11)/2 >), a >, so that [Γ : Γ(< (3 +

√
−11)/2 >)] = 2. We then

argue as in Proposition 3.3. The Magma routine illustrates this.

Magma routine for Γ(< (3 +
√
−11)/2) >)

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*t*u^-1*a*u)^3,(t,u)>;

h:=sub<G|t*u,t^5>;

n:=NormalClosure(G,h);

print Index(G,n);

\\60

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

d:=sub<G|n,a>;

print Index(G,d);

\\30

m:=sub<d|t*u,t*a*t*u*a*t^-1,t^2*a*t^3*u^-2*a*t^-2,a*t^-2*a*t*u*

a*t^2*a,t*a*t^-2*a*t*u*a*t^2*a*t^-1,t^2*a*t^2*a*t^6*u*a*t^-2

*a*t^-2>;

M:=NormalClosure(d,m);
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print Index(d,M);

\\2

M eq n;

\\true

This completes the proof of Proposition 3.5 and the proof of Theorem 1.1.
�

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Since it will be useful in what
follows in this section and in §5, we begin with some comments on the
argument used in [16] to establish finiteness.

4.1.

Suppose that d ∈ {1, 2, 3, 7, 11, 19} so that Qd has one cusp. Assume
that S3 \ L = H3/Γ(I) is a principal congruence link complement. Then,

following our earlier notation, P∞ = {
(

1 x
0 1

)
: x ∈ I}.

For every cusp C of H3/Γ(I), we have a cusp torus TC equipt with
a Euclidean metric. Now, since H3/Γ(I) is a link complement in S3, the
6-Theorem (see [2] Theorem 6.2, [23] Theorem 3.1 and [16] Lemma 1.6.1)
implies that there is some cusp C for which there is a geodesic on TC whose
length in the Euclidean metric is < 6. Moreover, since S3 \ L is a regular
cover of Qd (with one cusp) it follows that for all cusps C, the tori TC have
a geodesic with length < 6.

Referring now to the cusp C∞ associated with P∞, the length of the
geodesic η on TC∞ can be computed as follows. There is a horopshere H∞
at height h say so that P∞ acts by translations on H∞ and the length of η
is |z|/h for some z ∈ I. From above we have |z|/h < 6.

If we now take h to be the height of a maximal horosphere H∞, then
h � 1 (see [7] Lemma 2.5 for example), and so |z| < 6. There are only
finitely many such z.

Remark. — The 6-theorem of [2] and [23] usually gives |z| � 6. However
as is pointed out in [16], in the case of S3 (or more generally finite funda-
mental group) the proof can be improved to show that |z| < 6 (since the
cores of the Dehn fillings still have infinite order).
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4.2.

For those (d, n) stated in Theorem 1.2, it follows from Theorem 1.1 that
these do provide principal congruence link complements in S3. It remains to
show that these are the only ones. To that end we recall the following result
from [4] that places further restrictions on the list of possible d’s stated in
Theorem 2.1.

Theorem 4.1. — If hd > 1, and Γ(n) < PSL(2,Od), then H3/Γ(n) is
not homeomorphic to a link complement in S3.

This result, together with the discussion in §4.1, gives the following corollary.

Corollary 4.2. — Suppose that Γ(n) < PSL(2,Od) and H3/Γ(n) is
homeomorphic to a link complement in S3. Then d ∈ {1, 2, 3, 7, 11, 19} and
n ∈ {2, 3, 4, 5}.

The proof will be completed by a combination of methods as detailed in
the following subsections.

4.3.

First, as in the proof of Theorem 1.1, we can quickly eliminate some pairs
(d, n) by using Magma to show (in the notation of §2.5) that< P > �= Γ(n).
The table below shows the cases for which this works. In this table, N is a
normal subgroup of PSL(2,Od) that contains the group < P >.

d n N Order of Order of
PSL(2,Od)/N PSL(2,Od/I)

2 3 < t3, u3, (u2at2)6 > 2304 288
3 4 < t4, u4 > 3840 1920
7 3 < t3, u3 > 1080 360
11 2 < t2, u2 > 120 60
11 4 < t4, u4, (t2au2)2 > 7680 1920

Remark. — The cases of (7, 3) and (11, 2) can also be handled by the
arguments in §4.4.

4.4.

We now deal with the case when the level is divisible by an inert rational
prime or certain split primes. Recall that if p ∈ Z then p is called inert if
the Od-ideal < p > remains prime, and p is said to split if the Od-ideal
< p >= P1P2.
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Proposition 4.3. — Assume that d ∈ {2, 7, 11, 19}, then Γ(p) < PSL(2,Od)
is not a link group in the following two cases:

• p is an inert prime in Od.

• p � 5 splits in Od.

Proof. — We begin with some comments relevant for both. For d ∈
{2, 7, 11, 19}, H1(Qd;Z) ∼= Z ⊕ T where T is finite. Thus for all integers
n > 1 we have epimorphisms

φn : PSL(2,Od)→ Z→ Z/nZ.

Let ∆n = kerφn. Now for d ∈ {2, 7, 11, 19} inspection of the presentations
in §2.4 shows that on abelianizing, the image of u has infinite order and
on projecting to Z the image of t is trivial. Thus αn ∈ ∆n for all elements
α ∈ PSL(2,Od), and in particular for parabolic elements.

If now p is a prime and Γ(p) < PSL(2,Od) is a link group then Γ(p)
is generated by parabolic elements, and so we deduce from this and the
previous paragraph that Γ(p) < ∆p.

When p is inert, we therefore have PSL(2,Od)/∆p a normal subgroup
of PSL(2,Od/ < p >), and this latter group is always a finite simple group
in this case, a contradiction.

When p � 5 splits, say p = ππ, then a composition series for G =
PSL(2,Od/ < p >) = PSL(2,Od)/Γ(p) is

G = G0 > G1 > G2 > G3 = 1,

where G0/G1
∼= G1/G2

∼= PSL(2,Fp), and G2/G3
∼= Z/2Z. Since p � 5,

then PSL(2,Fp) is a non-abelian simple group and so we cannot also have
a composition series with PSL(2,Od)/∆p

∼= Z/pZ. �

Using this we can eliminate the following cases.

Corollary 4.4. — For (d, n) ∈ {(2, 5), (7, 3), (7, 5), (11, 2), (11, 5),
(19, 2), (19, 3), (19, 5)}, the groups Γ(n) are not link groups.

4.5.

Let {1, ωd} be the usual integral basis for Od, and for r ∈ N, let Od(r) ⊂
Od be the order generated over Z by {1, rωd}.
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Lemma 4.5. — If r|n then Γ(n) < PSL(2,Od(r)).

Proof. — The entries of an element of Γ(n) have the form nx or 1 + nx
for some x ∈ Od. If r|n, then clearly, such integers belong to Od(r). �

Given that a link complement in S3 has trivial degree 1 cuspidal coho-
mology, Lemma 4.5 and the following result completes the proof of Theorem
1.2.

Proposition 4.6. — For those pairs (d, r) listed below, the groups
PSL(2,Od(r)) have non-trivial degree 1 cuspidal cohomology.

{(1, 4), (1, 5), (2, 4), (3, 5), (7, 4), (11, 3), (19, 4)}.

Proof. — This follows from [20] as we now describe. In §2 of [20] the
authors describe a construction of homology classes for H3/PSL(2,Od(r))
which can be used to generate a subspace of PSL(2,Od(r))ab ⊗Q. At the
heart of this construction is a set of positive integers (the so-called Zimmert
set) W (d,m), which we will not define here, but suffice it to say that if
w(d,m) = |W (d,m)| satisfies w(d,m) � 2, then the degree 1 cuspidal co-
homology of PSL(2,Od(r)) is non-trivial. In the cases stated, the Zimmert
sets all have at least 2 elements. This proves the proposition. �

5. Handling the remaining cases

In this section we summarize for d ∈ {1, 2, 3, 7, 11, 19} what remains
to be done to complete the enumeration of all principal congruence link
complements covering Qd. Of course there still remains the cases of d ∈
{5, 6, 15, 23, 31, 39, 47, 71} to deal with. However, using the techniques de-
veloped in this paper, the authors have recently shown that for d = 5, 31
there are principal congruence link complements of levels < 3, 1 +

√
−5 >

and < 2, (1 +
√
−31)/2 > respectively.

We first discuss the cases of d = 1, 3 following Goerner’s work [16] and
[17]. In these cases, it is proved in [17] (Corollary 5.3) that the complete list
of levels for which the principal congruence subgroups are link groups are
those in Theorem 1.1 together with:

d=1: < 3 + i >, < 3 + 2i >, < 4 + i >.

d=3: < (7 +
√
−3)/2 >,< 4 +

√
−3 >, < (9 +

√
−3)/2 >.

We now discuss the remaining cases. Using §2.2 and §4.1, to enumerate the
possible levels of principal link complements, we can use both the systole
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bound from Theorem 2.4, and the norm of an element z ∈ I as described in
§4.1. Using Magma as described earlier, some levels arise as candiates for
link groups, whilst some can be eliminated using the methods above. On
the other hand, on many occasions Magma cannot determine whether the
index is finite. In what follows we tabulate levels that provide candidates
for link groups, and those that we can eliminate. All other levels (subject
to the bounds above) are such that Magma provides no useful information.

In the second, third, and fourth columns, we list x a generator of the ideal
being considered, its norm N and the order O of PSL(2,Od)/ < P > where
P denotes, as before, the stabilizer of infinity in the principal congruence
subgroup.

d x N O Comments
1 1 + i 2 6 Torsion in Γ(< 1 + i >)
1 4 + 2i 20 1474560 Not a link group,

|PSL(2,Od/ < 4 + 2i >)| = 2880
1 5 + i 26 −− Not a link group, see (i) below

2
√
−2 2 6 Torsion in Γ(<

√
−2 >)

2 1 + 2
√
−2 9 324 Possible 36 component link group

2 3 +
√
−2 11 660 Possible 60 component link group

2 2 + 2
√
−2 12 8432 Not a link group,

|PSL(2,Od/ < 2 + 2
√
−2 >)| = 576

2 4 +
√
−2 18 −− Not a link group, see (ii) below

2 2 + 3
√
−2 22 −− Not a link group, see (iii) below

7
√
−7 7 168 Possible 24 component link group

7 (5 +
√
−7)/2 8 192 Possible 24 component link group

7 2 +
√
−7 11 660 Possible 60 component link group

7 (7 +
√
−7)/2 14 1008 Possible 72 component link group

7 3 +
√
−7 16 −− Not a link group, see (iv) below

11 (5 +
√
−11)/2 9 324 Possible 36 component link group

(i) |PSL(2,O1/ < 5 + i >)| = 6552, and < P > is contained in a normal
subgroup of index 46800.

(ii) |PSL(2,O2/ < 4+
√
−2 >)| = 1944, and < P > is contained in a normal

subgroup of index 2654208.

(iii) |PSL(2,O2/ < 2 + 3
√
−2 >)| = 3960, and < P > is contained in a

normal subgroup of index 36432.

(iv) |PSL(2,O7/ < 3 +
√
−7 >)| = 1152, and < P > is contained in a

normal subgroup of index 4608.
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Remark. — Using a computer M. H. Sengun checked for us that for d =
1, 2, 7, 11 and P a prime of norm p having a generator x satisfying |x| < 6,
that Γ(P) has trivial cuspidal cohomology except for two cases. These are
d = 1 and level < 5 + 2i >, and d = 11 and level <

√
−11 >.

In addition, in the cases of d = 2 and level < 3 + 2
√
−2 >, d = 7 and

levels < 4+
√
−7 >, < 1+2

√
−7 > and d = 11 and levels < (9+

√
−11)/2 >,

< (5 + 3
√
−11)/2 >, Sengun checked that the principal congruence groups

have torsion in first homology. The orders of the torsion subgroups are: 29,
222, 515, 2112 and 29653029323130 respectively.

Hence the corresponding principal congruence subgroups in all of the
above cases are not link groups.

6. Final Remarks

As mentioned in the Introduction, the following question remains open:

Question. — Are there finitely many congruence link complements in
S3?

It is worth comparing the 3-dimensional setting with what is known
in dimension 2. In this setting a link complement in S3 is replaced by a
punctured S2, and it was conjectured by Rademacher that there are only
finitely many congruence subgroups of PSL(2,Z) of genus 0. The proof of
this was completed in a sequence of papers [11], [12] and [13]. Different
proofs of this (actually of a slightly stronger version of this result) were also
given by Thompson [31] and Zograf [35]. Indeed, in these two papers it is
proved that there are only finitely congruence subgroups of PSL(2,Z) of
any fixed genus.

The list of torsion-free congruence subgroups of genus 0 was completed
in 2001 and given in [28] (there are 33 and the levels are all of the form
2a3b5c7 with a � 5, b � 3, and c � 2 with 25 being the largest level). Of
those only 4 are principal congruence subgroups (of levels 2, 3, 4 and 5).

Now congruence manifolds admit a spectral gap; i.e. there exists a num-
ber C > 0 (conjectured to be 1) so that if M = H3/Γ (or H2/Γ) is any
congruence manifold, then λ1(M) > C. The argument of [35] to prove the
finiteness result in dimension 2 for congruence surfaces of genus 0 mentioned
above is done by playing off the spectral gap for congruence manifolds in
dimension 2, together with a result proved in [35] that says that for a se-
quence of genus 0 manifolds with increasing numbers of punctures we must
have λ1 → 0.
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Thus a natural question is whether there exists a “Zograf type result” in
dimension 3. The answer to this in general is no since Lackenby and Souto
(in preparation) have shown that there exists a family of hyperbolic link
complements in S3 (say Mn) with Vol(Mn) → ∞ and a constant C1 > 0
such that λ1(Mn) > C1.

On the other hand there are classes of links known for which sequences
as above do not arise (see [15] and [24]). In particular, it follows from [24]
that: There are only finitely many alternating links whose complements are
congruence link complements.
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