ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

ALEXANDER VARCHENKO
Arrangements and Frobenius like structures

Tome XXIV, n° 1 (2015), p. 133-204.
<http://afst.cedram.org/item?id=AFST_2015_6_24_1_133_0>

© Université Paul Sabatier, Toulouse, 2015, tous droits réservés.

L’acces aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal /). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que I’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2015_6_24_1_133_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XXIV, n° 1, 2015
pp. 133-204

Arrangements and Frobenius like structures

ALEXANDER VARCHENKO()

ABSTRACT. — We consider a family of generic weighted arrangements of
n hyperplanes in C¥ and show that the Gauss-Manin connection for the
associated hypergeometric integrals, the contravariant form on the space
of singular vectors, and the algebra of functions on the critical set of the
master function define a Frobenius like structure on the base of the family.
As a result of this construction we show that the matrix elements of the
linear operators of the Gauss-Manin connection are given by the 2k + 1-st
derivatives of a single function on the base of the family, the function
called the potential of second kind, see formula (6.46).

RESUME. — On considére une famille d’arrangements pondérés génériques
de n hyperplans dans C* et montre que la connexion de Gauss - Manin
pour les intégrales hypergéométriques associées, la forme contravariante
sur I’espace des vecteurs singuliers et ’algébre de fonctions sur ’ensemble
des points critiques définissent une structure du type Frobenius sur la base
de la famille. Comme un résultat de cette construction nous montrons que
les éléments matriciels des opérateurs linéaires de la connexion de Gauss
- Manin sont donnés par les (2k+ 1)-mes dérivées d’une seule fonction sur
la base de la famille, cf. la formule (6.46).
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1. Introduction

There are three places, where a flat connection depending on a parameter
appears:

o K7 equations,

ol
K
8zi
Here k is a parameter, I(z) a V-valued function, where V' is a vector space

from representation theory, K;(z): V — V are linear operators, depending
on z. The connection is flat for all .

(2) =Ki(2)I(2), z=(21,-.-,2n), i=1,...,n. (1.1)

e Quantum differential equations,

ol .
H@z-(z) =p;i*, 1(2), z=1(z1,...,2n), i=1,...,n. (1.2)
(]
Here p1,...,p, are generators of some commutative algebra H with quan-

tum multiplication %, depending on z. These equations are part of the Frobe-
nius structure on the quantum cohomology of a variety.
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e Differential equations for hypergeometric integrals associated with a family
of weighted arrangements with parallelly transported hyperplanes,

oI
8Zi

k—(2) = K;i(2)I(2), z=(21,---,2n), 1=1,...,n. (1.3)

It is well known that KZ equations are closely related with the differential
equations for hypergeometric integrals. According to [22] the KZ equations
can be presented as equations for hypergeometric integrals for suitable ar-
rangements. Thus (1.1) and (1.3) are related. Recently it was realized that
in some cases the KZ equations appear as quantum differential equations,
see [2] and [11], and therefore the KZ equations are related to the Frobenius
structures. On Frobenius structures see, for example, [4, 5, 14]. Hence (1.1)
and (1.2) are related. In this paper I argue how a Frobenius like structure
may appear on the base of a family of weighted arrangements. The goal is
to make equations (1.3) related to Frobenius structures.

The main ingredients of a Frobenius structure are a flat connection de-
pending on a parameter, a constant metric, a multiplication on tangent
spaces. In our case, the connection comes from the differential equations
for the associated hypergeometric integrals, the flat metric comes from the
contravariant form on the space of singular vectors and the multiplication
comes from the multiplication in the algebra of functions on the critical
set of the master function. In this paper I consider the families of generic
weighted arrangements.

The organization of the paper is as follows. In Section 2, objects as-
sociated with a weighted arrangement are recalled (Orlik-Solomon algebra,
space of singular vectors, contravariant form, master function, canonical iso-
morphism of the space of singular vectors and the algebra of functions on the
critical set of the master function). In Section 3, a family of arrangements
with parallelly transported hyperplanes is considered. The construction of a
Frobenius like structure on the base of the family is given. Conjectures 3.7,
3.8, 3.14 are formulated and corollaries of the conjectures are discussed. In
Sections 4 and 5 the conjectures are proved for the family of points on the
line and for a family of generic arrangements of lines on plane. The corre-
sponding Frobenius like structures are described. Here are the corresponding
potential functions of second kind:

~ 1
P21, ., 20) = 3 Z aia; (z; — z;)? log(z; — zj) (1.4)
1<i<jsn

for the family of arrangements of n points on line and
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~ 1 Qaia;ak
P(z1,...,2n) = ] Z W(Zidj,k + zjdy,i + zkdi,j)4
k%%,

1<i<j<k<n ©J D

log(zid; k + zjdy,i + 2zxd; ;) (1.5)

for the family of arrangements of n generic lines on plane. The variables
21,...,2n are the parameters of the family, aq,...,a, are weights, |a| =
ai + -+ + ay, the number dy , is the oriented area of the parallelogram
generated by the normal vectors to the k-th and /-th lines, see formulas
(4.36) and (6.44). Note that the potential P from (1.4) appears in [5] for
a; =---=ay, and in [19] for a4, ...,a, € Z.

In Section 6, the conjectures are proved for a family of generic arrange-
ments of n hyperplanes in C¥ for any k. The potential ]5(21, vy 2n) of
second kind is defined by formula (6.44) similar to formulas (1.4) and (1.5).
It is shown that the matrix elements of the operators K;(z1,. .., z,) of the
Gauss-Manin connection for associated hypergeometric integrals are given
by the 2k + 1-st derivatives of the potential of second kind, see formula
(6.46).

This fact that the Gauss-Manin differential equations for associated hy-
pergeometric integrals can be described in terms of derivatives of a single
function on the base of the family is an important application of our Frobe-
nius like structure. One may expect that this is a manifestation of a much
more general phenomenon.

It should be stressed that that somewhat technical constructions in Sec-
tion 3 are explained in details in Sections 4, 5, and 6 for the particular
situations discussed there. The reader may decide to read first the easiest
Section 4.

In this paper I followed one of I.M. Gelfand’s rules: for a new subject,
choose the simplest nontrivial example and write down everything explicitly
for this example, see the introduction to [6].

I thank V. Schechtman and V. Tarasov for useful discussions.
2. Arrangements

2.1. Affine arrangement

Let k,n be positive integers, k < n. Denote J = {1,...,n}. Let C =
(Hj)jes, be an arrangement of n affine hyperplanes in C*. Denote U =
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C* — UjesHj, the complement. An edge X, C CF of C is a nonempty
intersection of some hyperplanes of C. Denote by J, C J the subset of
indices of all hyperplanes containing X,. Denote [, = codimgr X,,.

A subset {ji,...,5p,} C J is called independent if the hyperplanes
Hj, ..., H;, intersect transversally.

We assume that C is essential, that is, C has a vertex. An edge is called
dense if the subarrangement of all hyperplanes containing the edge is irre-
ducible: the hyperplanes cannot be partitioned into nonempty sets so that,
after a change of coordinates, hyperplanes in different sets are in different
coordinates.

2.2. Orlik-Solomon algebra

Define complex vector spaces AP(C), p = 0,...,k. For p = 0 we set
AP(C) = C. For p > 1, AP(C) is generated by symbols (Hj,, ..., H; ) with
ji € J, such that

(i) (Hj,,...,H;,) =0if H;,....H; are not in general position, that is, if
the intersection Hj, N...N H;  is empty or has codimension less than

p;
(ii) (Hja(1)7.“7HjU(p)) = (_1)IU|(HJ

symmetric group ;

15 Hj)) for any element o of the

1 i 5
(i) P (-1)i(Hy,, .., Hj,, wyHj, ) = 0 for any (p + 1)-tuple Hj,, ...,
Hj, ., of hyperplanes in C which are not in general position and such

that Hjl n...N ij+1 7é @

The direct sum A(C) = &)_;A?(C) is the (Orlik-Solomon) algebra with
respect to multiplication
(Hjy, -, Hj,) - (Hj Hj,,) = (Hjys s Hj,, Hj Hj,,)- (2.1

pF17 ) pH17 )

2.3. Orlik-Solomon algebra as an algebra of differential forms

For j € J, fix a defining equation for the hyperplane H;, f; = 0, where
f; is a polynomial of degree one on C*. Consider the logarithmic differential
form w; = df;/f; on C*. Let A(C) be the exterior C-algebra of differential
forms generated by 1 and wj, j € J. The map A(C) — A(C), (H;) — wj, is
an isomorphism. We identify A(C) and A(C).
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2.4. Weights
An arrangement C is weighted if a map a : J — C*, j — a;, is given; a;
is called the weight of Hj. For an edge X, define its weight a, = ZjeJa aj.
Denote v(a) = 3. ; a;(H;) € A'(C). Multiplication by v(a) defines a
differential d®) : AP(C) — AP*(C), z + v(a) - x, on A(C).

2.5. Space of flags, see [22]
For an edge X,, of codimension [, = p, a flag starting at X,, is a sequence
Koy D Xoy D-- D Xy, = X (2.2)

of edges such that l,, = j for j = 0,...,p. For an edge X,, we define Fo

as the complex vector space with basis vectors FO‘O’.,,@F:Q labeled by the
elements of the set of all flags starting at X,.

Define F, as the quotient of F, by the subspace generated by all the
vectors of the form

: : FO‘Ov--'vo‘j—l7ﬁ7a_7+17"'70‘1):a .

X Xa_7_1 DXﬂDXa_H-l

Such a vector is determined by j € {1,...,p — 1} and an incomplete flag
Xag 2o DX,y DX,y Do D Xy, = Xy with [y, = 1.

Denote by Fy.....a, the image in F, of the basis vector FQO,M%. For
p=20,...,k, we set

FP(C) = DX, la=p Fa - (2.3)
2.6. Duality, see [22]

The vector spaces AP(C) and FP(C) are dual. The pairing A”(C) ®
FP(C) — C is defined as follows. For Hj,, ..., H; in general position, we set

F(Hj,,...,H;)) = Fa,,....a, Where Xo, = CF, X, =Hj, y Xa, =
Hj; N ---N Hj,. Then we define <(Hj1,...,ij),Fa07,,_,ap> = (—1)"", if
Fog,..oa, = F(ng(l),...,Hja(m) for some o € ¥y, and ((Hj,, ..., H;,), Fa,.....a,)

= 0 otherwise.

Define a map 6 : FP(C) — FP~1(C) to be the map adjoint to d(® :
AP~1(C) — AP(C). An element v € FF(C) is called singular if §(®v = 0.
Denote by

Sing F*(C) c F*(C) (2.4)

the subspace of all singular vectors.
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2.7. Contravariant map and form, see [22]

Weights (a;)jes determine a contravariant map
S FP(C) = AP(C), Fagap & Y aj,--aj, (Hjy,... Hy) , (2.5)
where the sum is taken over all p-tuples (Hj,, ..., H; ) such that
Hj, > Xa,, -.., Hj, D X,, . (2.6)
Identifying AP(C) with FP(C)*, we consider this map as a bilinear form,
5@ . FP(C) @ FP(C) — C. (2.7)

The bilinear form is called the contravariant form. The contravariant form
is symmetric. For Fy, Fy € FP(C), we have

S (Fy, Fy) =
Z gy - Ay, <(Hj17"'>ij)7F1> <(Hj17""ij)7F2> ) (2'8)
{j1,-dp}CJ

where the sum is over all unordered p-element subsets.

2.8. Arrangement with normal crossings

An essential arrangement C is with normal crossings, if exactly k hyper-
planes meet at every vertex of C. Assume that C is an essential arrangement
with normal crossings only. A subset {j1,...,jp} C J is called independent
if the hyperplanes Hj,, ..., H;, intersect transversally.

A basis of AP(C) is formed by (Hj,,...,H; ) where {j1 < --- < jp}
are independent ordered p-element subsets of J. The dual basis of F7(C) is
formed by the corresponding vectors F'(Hj,, ..., H;, ). These bases of AP(C)
and FP(C) will be called standard.

We have
F(Hj,,...,H;,) = (-)°\F(H;, ..., H;,, ), cEY,. (2.9)
For an independent subset {j1,...,jp}, we have
SN(F(Hj,,....H;), F(Hj,,....H;))=a;, - aj (2.10)
and
SN F(Hj,,...,H;),F(Hi,...,H;)) =0 (2.11)

for distinct elements of the standard basis.
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2.9. If the weights of dense edges are nonzero

THEOREM 2.1. — Assume that the weights (a;)jes are such that the
weights of all dense edges of C are nonzero. Then

(i) the contravariant form is nondegenerate;

(i) HP(A*(C),d ) =0 for p < k and dim H*(A*,d®) = |x(U)|, where
x(U) is the Euler characteristics of U.

In particular, these statements hold if all the weights are positive.

Part (i) is proved in [22]. Part (ii) is a straightforward corollary of results
in [22] as explained in Theorem 2.2 in [28]. Part (ii) is proved in [30], [17].

2.10. Master function

Given weights (a;);e.s, define the (multivalued) master function ® : U —
C by the formula:

=00, = Z a;log f;. (2.12)
jet

A point t € U is a critical point if d®|; = v(a)|; = 0.

THEOREM 2.2 ([25, 16, 20]). — For generic weights (a;);cs all the
critical points of ® are nondegenerate and the number of critical points
equals |x(U)]. O

2.11. If the weights are unbalanced

Let C = (Hj) e be an essential arrangement in C* with weights (a;);je .
Consider the compactification of the arrangement C in the projective space
Pk, Assign the weight as = — ZjEJaj to the hyperplane Ho, = P* — C*

and denote by C the arrangement (H;)jejuco in P

The weights of the arrangement C are called unbalanced if the weights
of all the dense edges of C are nonzero, see [28]. For example, if all the
weights (a;);es are positive, then the weights are unbalanced. The unbal-
anced weights form a Zarisky open subset in the space of all weight systems
on C.

THEOREM 2.3 ([28]). — If the weights a = (a;);cs of C are unbalanced,
then all the critical points of the master function of the weighted arrange-
ment (C,a) are isolated and the sum of Milnor numbers of all the critical
points equals |x(U)].
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2.12. Hessian and residue bilinear form

Denote C(U) the algebra of rational functions on C* regular on U and
Iy = <g—$ |i=1,...,k) C C(U) the ideal generated by first derivatives of
®. Let

Ag = C(U) /I (2.13)

be the algebra of functions on the critical set and [] : C(t)y — A, f — [f],
the canonical homomorphism.

If all critical points are isolated, then the critical set is finite and the
algebra Ag is finite-dimensional. In that case, Ag is the direct sum of local
algebras corresponding to points p of the critical set,

Ap =®pAp e . (2.14)

The local algebra A, s can be defined as the quotient of the algebra of
germs at p of holomorphic functions modulo the ideal I, & generated by
first derivatives of ®.

LEMMA 2.4 ([28]). — The elements [1/f;], j € J, generate Ag. O
We fix affine coordinates t1,...,t; on C*. Let
fi =0+ bjt 4+ bty (2.15)

LEMMA 2.5. — The identity element [1] € Ag(2) satisfies the equation
1 a;
==> |2 2.16
=g 2n7]) (216)
jeJ

where [a| =3, ; a;.

Proof. — The lemma follows from the equality

-, 00 ]
;tia_ti = |0,| - jze;]bJ {f—J:| (217)
O

Surprisingly, formula (2.17) and Lemma 2.4 play central roles in the
constructions of this paper.

— 142 —



Arrangements and Frobenius like structures

We define the rational function Hess : C¥ — C, regular on U, by the
formula

Hess(t) = det 00 )®) (2.18)
R Py ot; 0t ' '
The function is called the Hessian of ®.

Let pp : Ap.e — C, be the Grothendieck residue,
1 f 1 / fdta A Adtg
r, I

f — ————— Res = ,
(2my/—1)k P e, g_;b (2my/—1)k - g%b
(2.19)

where I'y, is the real k cycle in a small neighborhood of p, defined by the

equations |g—$\ =€, i =1,...,k, and oriented by the condition d arg g—t‘? A

ERNA dargg—i > 0, here ¢, are positive numbers sufficiently small with

respect to the size of the neighborhood, see [12, 1].

Let (, ), be the residue bilinear form on A, ¢,

(f:9)p = pp(f9), (2.20)

for f,g € A, . This form is nondegenerate.
Let all the critical points of ® be isolated and hence, As = ®pAp.a.
We define the residue bilinear form (,) on Ag as @,(, )p. This form is

nondegenerate and (fg, h) = (f, gh) for all f,g,h € Ag. In other words, the
pair (4s, (, )) is a Frobenius algebra.

2.13. Canonical isomorphism and algebra structures on Sing F*(C)

Let (Fn)men be a basis of F*(C) and (H™)menr C A*(C) the dual
basis. Consider the element > H™®F,, € A*(C)®F*(C). We have H™ =
fmdty A -+ - Adty, for some f™ € C(U). The element

E= )Y f"®F, € C(U)®F*C) (2.21)
meM

is called the canonical element of C. Denote [E] the image of the canonical
element in Ag @ F*(C).

THEOREM 2.6 ([28]). — We have [E] € Ag @ Sing F*(C).

Assume that all critical points of ® are isolated. Introduce the linear
map

a: Ag — Sing F*(C), [9] — ([g], [E])- (2.22)
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THEOREM 2.7 ([28]). — If the weights (a;)jcs of C are unbalanced, then
the canonical map « is an isomorphism of vector spaces. The isomorphism o
identifies the residue form on Ag and the contravariant form on Sing F*(C)
multiplied by (—1)*, that s,

(f.9) = (1S (a(f),alg))  forall f,g € As. (2.23)

The map « is called the canonical map or canonical isomorphism.

COROLLARY 2.8 ([28]). The restriction of the contravariant form S(®)
to the subspace Sing F*(C) is nondegenerate. O

On the restriction of the contravariant form S(* to the subspace
Sing F*(C) see [7].

If all critical points p of the master function are nondegenerate, then

asfgle > N %’?(?FW (2.24)

Hess(p

If the weights (a;)jes of C are unbalanced, then the canonical isomor-
phism a : Ap — Sing F¥(C) induces a commutative associative algebra
structure on Sing F*(C). Together with the contravariant form it is a Frobe-
nius algebra structure.

2.14. Change of variables and canonical isomorphism

Assume that we change coordinates on C", t; = E?Zl cijsj with¢; ; € C.

LEMMA 2.9. — The canonical map (2.22) in coordinates ty, ...ty equals
the canonical map (2.22) in coordinates s1,. .., sy divided by det(c; ;), ay =

1
det(e; ;) Vs
Proof.— We have H™ = f™dt; A --- A dty = det(c; ;) f™ds1 A -+ Adsy

and Hess; = detQ(cm)Hesss. Now the lemma follows, for example, from
(2.24). O

To make the map (2.22) independent of coordinates one needs to consider
it as a map

Ap @dty A+ ANdty, — Sing}"k(C), [g] @ dt; A -+ Adtg — ([g], [E]){(2.25)
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3. A family of parallelly transported hyperplanes

This section contains the main constructions of the paper. These con-
structions are explained in details in Sections 4, 5, and 6 for the particular
situations discussed there.

3.1. An arrangement in C" x C*

Recall that J = {1,...,n}. Consider C* with coordinates ty,...,t;, C"
with coordinates zi, ..., z,, the projection C* x C*¥ — C". Fix n nonzero
linear functions on CF, g; = b}tl + -4 b?tk, J € J, where bé € C. Define
n linear functions on C™ x CF, fi=z+gi =2+ b%tl + et bftk, J € J
In C" x C* we define the arrangement C = {H; | f; = 0, j € J}. Denote
U=CrxCk— Uje].gj.

For every z = (z1,...,2,) the arrangement C induces an arrangement
C(z) in the fiber of the projection over z. We identify every fiber with C*.
Then C(z) consists of hyperplanes H;(z),j € J, defined in C* by the equa-
tions f; = 0. Denote U(C(z)) = C* — U;e H;(2), the complement to the
arrangement C(z). We assume that for every z the arrangement C(z) has a
vertex. This happens if and only if C(0) has a vertex.

A point z € C" is called good if C(z) has normal crossings only. Good
points form the complement in C™ to the union of suitable hyperplanes
called the discriminant.

3.2. Discriminant

The collection (g;);jes induces a matroid structure on J. A subset C' =
{i1,...,4,} C J is a circuit if (g;);ec are linearly dependent but any proper
subset of C' gives linearly independent g;’s.

For a circuit C' = {i1,...,i,}, let (A\{);cc be a nonzero collection of
complex numbers such that ), )\Z»Cgl- = 0. Such a collection is unique up
to multiplication by a nonzero number.

For every circuit C we fix such a collection and denote fo =), /\zczl
The equation fo = 0 defines a hyperplane Hg in C". It is convenient to
assume that A = 0 for i € J — C and write fo =Y. ; A9z,

For any z € C", the hyperplanes (H;(z))icc in C* have nonempty in-
tersection if and only if 2 € He. If 2 € He, then the intersection has
codimension 7 — 1 in CF.
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Denote by € the set of all circuits in J. Denote A = UgeceHe. The
arrangement C(z) in C* has normal crossings if and only if z € C* — A, see
[28].

For example, if k = 1 and f; = t1 + 2;,j € J, then the discriminant
is the union of hyperplanes in C" defined by the equations z; — z; = 0,
1<i<y<n

3.3. Good fibers and combinatorial connection

For any 2!, 22 € C"— A, the spaces FP(C(z')), FP(C(2?)) are canonically
identified. Namely, a vector F(Hj, (2'),...,H; (z')) of the first space is
identified with the vector F(Hj, (2?),...,H;,(2?)) of the second. In other
words, we identify the standard bases of these spaces.

oS

Assume that nonzero weights (a;);cs are given. Then each arrange-
ment C(z) is weighted. The identification of spaces F?(C(z1)), FP(C(2?))
for 21,22 € C™ — A identifies the corresponding subspaces Sing F*(C(z1)),
Sing F*(C(2?)) and contravariant forms.

For apoint z € C"—A, we denote V = F¥(C(z2)), Sing V = Sing F*(C(2)).
The triple (V, Sing V, $(*)) does not depend on z € C" — A under the above
identification.

As a result of this reasoning we obtain the canonically trivialized vector
bundle

U.ecna FF(C(2)) = C™ = A, (3.1)

with the canonically trivialized subbundle U,ecn—a Sing F*(C(z)) — C™ —
A and the constant contravariant form on the fibers. This trivialization
identifies the bundle in (3.1) with

(C"—A)xV =C"-A (3.2)
and the subbundle with
(C*— A) x (SingV) —» C" — A. (3.3)

The bundle in (3.3) will be called the combinatorial bundle, the flat connec-
tion on it will be called combinatorial.

LEMMA 3.1. — If the weights (a;)je.; are unbalanced for the arrangement
C(z) for some z € C™ — A, then the weights (a;j);ecs are unbalanced for C(z)
for all z € C™ — A. O
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3.4. Bad fibers

Points of A C C" are called bad. Let 2° € A and z € C* — A. By defi-
nition, for any p the space AP(C(z°)) is obtained from AP(C(z)) by adding
new relations. Hence A¥(C(z")) is canonically identified with the quotient
space of V* = A*(C(z)) and FP(C(z")) is identified with a subspace of
V = FP(C(2)).

3.5. Operators K;(z):V =V, jeJ

For any circuit C' = {iy,...,i,} C J, we define the linear operator
Le .V — V as follows.

For m = 1,...,r, we define Cp, = C' — {i;n}. Let {j1 < - < jx} C J
be an 1ndependent ordered subset and F(Hj,,...,H,,) the corresponding
element of the standard basis. We define Le : F(Hj,,...,Hj,) — 0 if
i1, gkt NCl < r—=1.If {j1,...,5k,} NC = C,, for some 1 < m < r,
then by using the skew-symmetry property (2.9) we can write

F(Hj,,...,Hj,) = iF(Hzl,sz’-~-aHimy-~-’Hi,,,,1Hi,,.7Hsl,-~-aHsk,r+1)
(3.4)
with {s1,...,Sk—r+1} = {J1,-- -,k } — Cm. We set
Lo ¢ F(H,,... H,. ... . H H,. . H,_ ) (3.5)
mz a’ll 11""?Hil7'"7Hir’H51?"'7HSk—r+1)
=1

Consider on C™ x C* the logarithmic differential one-forms we = ff— Cec.
Recall that fo =Y. ; A z;. We define

=2

Cec

jeJ

fc jeJ (3.6)

The operators K;(z) are rational functions on C” regular on C” — A and

Y we®Le =Y dzeK;(z) (3.7)

Ccee jeJ

THEOREM 3.2 ([28]). — For any j € J and z € C* — A, the operator
KJ( z) preserves the subspace SingV C V and is a symmetric operator,

SO(K;(2)v,w) = S (v, Kj(2)w) for all v,w € V.
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3.6. Gauss-Manin connection on (C" — A) x (SingV) - C" — A
Consider the master function

D(z,t) = Zaj log f;(z,t) (3.8)

JjeJ

as a function on U C C" x C*. Let x € C*. The function e®*)/% defines a
rank one local system £, on U whose horizontal sections over open subsets
of U are univalued branches of ¢®(z:)/% multiplied by complex numbers, see
for example [22, 24].

The vector bundle
Uzecn—A Hk(U(C(Z)),ACN‘U(C(Z))) —-C"—-A (3.9)

will be called the homology bundle. The homology bundle has a canonical
flat Gauss-Manin connection.

For a fixed z, choose any v € Hy(U(C(2)), Lx|u(c(z)))- The linear map
(v} AF(C(2) = C,  we / ek, (3.10)
¥

is an element of Sing F*(C(z)) by Stokes’ theorem. It is known that for
generic k any element of Sing F*(C(z)) corresponds to a certain v and in
that case this construction gives an isomorphism

Hk(U(C(Z))7 £n|U(C(z))) — Slng]-'k(C(z)), (311)

see [22]. This isomorphism will be called the integration isomorphism. The
precise values of x for which (3.11) is an isomorphism can be deduced from
the determinant formula in [23].

For generic k the fiber isomorphisms (3.11) defines an isomorphism of the
homology bundle and the combinatorial bundle. The Gauss-Manin connec-
tion induces a flat connection on the combinatorial bundle. This connection
on the combinatorial bundle will be also called the Gauss-Manin connection.

Thus, there are two connections on the combinatorial bundle: the com-
binatorial connection and the Gauss-Manin connection depending on k. In
this situation we can consider the differential equations for flat sections of
the Gauss-Manin connection with respect to the combinatorially flat stan-
dard basis. Namely, let v(z) € Hp(U(C(2)), Lclu(c(z))) be a flat section of
the Gauss-Manin connection. Let us write the corresponding section I, (2)
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of the bundle C™ x Sing V' — C” in the combinatorially flat standard basis,

L(z)= Y Lw*)F(Hj,,... Hj,),
independent
{j1<-<jp}cJ

I%l"“’j’“ (2) = /( )eq’(z’t)/"‘wjl A A wjy . (3.12)
vy(z

For [ =Y [7v-ikF(H; Hj, ) and j € J, we denote

oI o) ARSI

D Dher

THEOREM 3.3 ([24, 28]). — The section I,(z) satisfies the differential
equations

F(Hj,,...,H;,). (3.13)

ng—zlj(z) = K;(2)1(z), Jjed, (3.14)

where K;(z) : V — V are the linear operators defined in (3.6).

From this formula we see, in particular, that the combinatorial connec-
tion on the combinatorial bundle is the limit of the Gauss-Manin connection
as Kk — 00.

3.7. Bundle of algebras

For z € C™, denote Ag(z) the algebra of functions on the critical set of
the master function ®(z,-) : U(C(z)) — C. Assume that the weights (a;) e
are unbalanced for all C(z), z € C™ — A. Then the dimension of Ag(z) does
not depend on z € C" — A and equals dim Sing V. Denote [a| = }_,c ; a;.

LEMMA 3.4. — The identity element [1](z) € As(2) satisfies the equation
1 a;
M) = > %2 (3.15)
J

Proof. — The lemma follows from Lemma 2.5. O
The vector bundle
Uzegn,Apr(z) —C"—-A (316)

will be called the bundle of algebras of functions on the critical set. The
fiber isomorphisms (2.22),

afz) 1 Ap(z) — SingV,
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establish an isomorphism « of the bundle of algebras and the combinato-
rial bundle. The isomorphism « and the connections on the combinatorial
bundle (combinatorial and Gauss-Manin connections) induce connections
on the bundle of algebras which will be called also the combinatorial and
Gauss-Manin connections on the bundle of algebras.

The canonical isomorphism a(z) induces a Frobenius algebra structure
on Sing V' which depends on z. The multiplication *, is described by the
following theorem.

THEOREM 3.5 ([28]). — The elements a(z){
erate the algebra. We have

;—;} € SingV, j € J, gen-

a(z) [;—ﬂ *, 0= K;(2)v, (3.17)

for all v € Sing V' and j € J.

3.8. Quantum integrable model of the arrangement (C(z),a)

For z € C" — A, the (commutative) subalgebra B(z) C End(Sing V)
generated by K;(z),j € J, is called the algebra of geometric Hamiltonians,
the triple (Sing V', S(®), B(z)) is called the quantum integrable model of the
weighted arrangement (C(z),a), see [28].

The canonical isomorphism a(z) identifies the triple (Sing V, $(®), B(z))
with the triple (A (2), (=1)*(, )., As(2)), see Theorems 2.7 and 3.5.

Notice that the operators K;(z) are defined in combinatorial terms, see
Section 3.5, while the algebra Ag(z) is an analytic object, see (2.13). C.f.
Corollaries 5.28 and 6.21.

3.9. A remark. Asymptotically flat sections

Assume that the weights (a;);e.s are unbalanced for all C(z), z € C" —A.
Let B € C™ — A be an open real 2n-dimensional ball. Let ¥ : B — C be
a holomorphic function. Let s;,j € Zx>¢ be holomorphic sections over B of
the bundle of algebras, see (3.16). We say that

s(z,k) = e/ Z K s(2) (3.18)
J=20

is an asymptotically flat section of the Gauss-Manin connection on bundle
of algebras as k — 0 if s(z, k) satisfies the flat section equations formally,
see, for example, [18, 27].
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Assume that B is such that for any z € B, all the critical points of
®(z,-) : U(C(z)) — C are nondegenerate. Let us order them: p1(2), . .., pa(z),
where d = dim Ag(z) = dim Sing V. We may assume that every p;(z) de-
pends on z holomorphically. Then the function

0?d
z — Hess(z,pi(2)) = 1<C},ejt<k (m)(zapi(z)) (3.19)
is a nonzero holomorphic function on B. We fix a square root Hess(z, p;(2))'/2.
We denote w;(z) the element of Ag(2) which equals Hess(z, p;(2))/? at p;(2)

and equals zero at all other critical points. Let (, ), be the residue form on
Ag(2). Then

(wi(2),w;(2)), =0;; and w;(z) wj(z) = 5iness(z,pi(z))1/2wi(z)
(3.20)
for all 4, j.

THEOREM 3.6. — For every i, there exists a unique asymptotically flat
section s(z,k) = e¥(2)/x 2is0 k7s;(z) of the Gauss-Manin connection on
the bundle of algebras such that

U(z) = ®(z,pi(2)) and s0(2) = w;i(z). (3.21)

Proof. — We first write asymptotically flat sections of the Gauss-Manin con-
nection on the bundle (C™ — A) x Sing V' — (C™ — A) by using the steepest
descent method as in [18, 27] and then observe that the leading terms of
those sections are nothing else but a(z)(e®=Pi()/Fy;(2)). O

3.10. Conformal blocks, period map, potential functions

Denote by

{1}(2) = a(2)([1](2)) (3.22)

the identity element of the algebra structure on Sing V' corresponding to
a point z € C™ — A. An analog of this element was studied in [15] in a
situation related to the geometric Langlands correspondence, see element
v in [15, Section 8.

For r < k and mq,...,m, € J, denote

or{1}

O0Zm, - -0z,

(). (3.23)
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CONJECTURE 3.7.— The Sing V -valued function {1}(z) satisfies the Gauss-
Manin differential equations with parameter Kk = |a|

la] O{1}

k 0z ——(2) = K;(2){1}(2), Jje€J, (3.24)

where the derivatives are defined with respect to a combinatorially flat basis
as in (3.13). More generally, for r < k and my,...,m, € J, the SingV -
valued function I, .. m,(2) satisfies the Gauss-Manin differential equations

,,,,,

with parameter k = 7=,

|a| Olm,,...;m,
k—r 0z

(2) = K;(2)I ;... ;m.(2), jed (3.25)

CONJECTURE 3.8. — If we write the Sing V-valued function {1}(z) in
coordinates with respect to a combinatorially flat basis, then {1}(z) is a
homogeneous polynomial in z of degree k.

The conjectures describes the interrelations of four objects: the identity
element in Ag(2), the canonical isomorphism, the integration isomorphism,
and the Gauss-Manin connection on the homology bundle. In the next sec-
tions we will prove this conjecture for families of generic arrangements.

THEOREM 3.9. — If Conjecture 3.7 holds, then forr < k andmgy,...,m, €
J, we have

o {1} (2) = k(k—1)...(k—r+1) a(z)(ﬁ [C‘LD (3.26)

8zm1 e 3zmr ‘a|r =1 fm1

Proof.— The proof is by induction on r. For r = 0, the statement is true:
{1} = {1}. Assuming the statement is true for some r, we prove the state-
ment for r + 1. By (3.25) and Theorem 3.5, we have
orti{1} k—r o {1}
0Zm, - .02, 0% (2) |al i) OZmy - 02, (2)

:Qa()({%})* k(k—l)...(k—r+1)a(z)( {ami})

|al fi |a|” =2 L,
_ k(k — 1)...Tslr+z’+ 1)(kfr)a( )([C}ﬂ I[l [(;:])
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For given r < k, the sections I, . m,(2), m1,...,m, € J, generate
a subbundle of the combinatorlal bundle. We will call it the subbundle of
conformal blocks at level — ey and denote by CB lol - The subbundle of

conformal blocks at level % is invariant with respect to the Gauss-Manin

connection with x = k‘i. On conformal blocks in conformal field theory

see, for example, [8, 9, 24] and Section 3.6 in [26].

One may show that
CBM C CB |4 - C CBla. (3.28)
k

k—1 1

Let us consider Sing V' as a complex manifold. At every point of Sing V',
the tangent space is identified with the vector space Sing V. We will consider
the manifold Sing V' with the constant holomorphic metric defined by the
contravariant form S(®. We will denote this metric by the same symbol
Sla),

Define the period map q : C* — A — Sing V' by the formula
q:z—{1}(2). (3.29)

The period map is a polynomial map. Define the potential function of first
kind P : C" — A — C, by the formula

P(z) = 5(q(2), q(2))- (3.30)

The potential function of first kind is a polynomial.

3.11. Tangent bundle and a Frobenius like structure

Let T(C" — A) — C™ — A be the tangent bundle on C™ — A. Denote
0; = a%j for j € J. Consider the morphism g of the tangent bundle to the

bundle of algebras defined by the formula,

Bz) + 0 €TL(C = A) [9‘1)]:[%

— —| € As(2). 3.31
5] = [F] e e @3
The morphism S will be called the tangent morphism.

The residue form on the bundle of algebras induces a holomorphic bilin-
ear form 7 on fibers of the tangent bundle,

1(0:,0;). = (B(2)(8:),8(2)(95))- (3.32)
(—1)*5(a(2)8(2)(8i), a(2)B(2)(9;))

- (D vl b))
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THEOREM 3.10. — If Conjecture 3.7 holds, then the bilinear form n is
induced by the period map q : C* — A — Sing V' from the flat metric S(®

multiplied by (—1)F ‘Z—L ,

0.0, = SO G, S ). (3.33)

Proof. — By Theorem 3.9, we have \%Ig_ij = a(z)([;—j]) Hence

al? a; a;
M ks (S 20 - (15 aa) (2] (L)) = 06010
’ ’ (3.34)
O

For r < 2k, introduce the constant Ay, by the formula

" /r k1?2 .
A= <Z) = i),((k)_ o sk (3.35)

=0 ’

k
B T (k1?2 )
Avr= 2 (z) Gl 1rk

i=r—k

For example, As 3 = 24 and Ay o, = (2k)!.

THEOREM 3.11. — If Conjectures 3.7 and 3.8 hold, then for any r < 2k,
we have

(=1*al" __ 0"P

(B(E)O) 52 52 B0, ) () = B (a),
(3.36)
for allmy,...,m, € J. Here (, ), is the residue bilinear form on Ag(z).

Proof. — We have

T

(B(2)(Om,) # -+ 2 BE)Om,), (D)= = ([T [5] 01(2))-

i=1 fms
-

= (DO I |52 ke, (337)

i Lfm,
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Consider the example r = 2,k > 2. Then

o SUa2) = SO GEL )+ SOGE ) (aas)
#5215, ;) = M s oo (%] [4]).0)
5@ (] a@ (L) + 5@ (2] e (%))
800 ([F][5]) = s e (3] [$) 0

Here we used Theorem 3.9 and the fact that S(® is constant with respect
to the combinatorial connection. This calculation proves the theorem for
r = 2,k > 2. The general case for r < k is proved exactly in the same way.
If » > k, then we need to take into account that ¢(z) is a polynomial of
degree k. O

For v € SingV, define the differential one-form 1, on C™ — A by the
formula

Yy : 0; € To(C" — A) = S (v, a(2)B(2)(8;)). (3.39)

THEOREM 3.12. — If Conjecture 3.7 holds, then the differential form 1,
18 exact,

Yy = %dS(a)(v, q(2)). (3.40)

Proof. — By Theorem 3.9, we have %g—; = a(z)([;—;]) Hence

0(8) = S (0.0(2)8(2)()) = SV (0.a(2) ([£]) = 59 0, 'z?'g—q)

_ |a\ (a)
- ]f aZJS ('U q)

O
For k € C*, let I(z) € SingV be a flat (multivalued) section of the

Gauss-Manin connection with parameter . Define the (multivalued) differ-
ential one-form ¢; on C™ — A by the formula

U110 € To(C™ — A) 5 SO (I(2), a(2)B(2)(;)). (3.41)

- 155 -



Alexander Varchenko

THEOREM 3.13. — If Conjecture 3.7 holds and k # %, then the differ-
ential form vy is exact,

vr = (% + %)_1015(“)(1@)@(2)). (3.42)
Proof. — We have
5 S O (E)a(2) = SO G a(:) + SOI(), 5a()
— SO K 16,06 + SO, %Kmq(z)))
1 k @ a;
= (% + W)S( >(I(z),a(z)5(z)([f—j])).

O

The functions C* — A — C, z — S (v, ¢(2)), of Theorem 3.12 are noth-
ing else but the coordinate functions of the period map. We will call them
flat periods. The functions C* — A — C,z — S@(I(2),q(z)), of Theorem
3.13 will be called twisted periods.

CONJECTURE 3.14. — There exists a function P(z1,...,z,) such that
(3.43)

2k+1 P
o (2) = (=1)*(B(2)(Omo) *2 - %2 B(2) (Oman ), [11(2))-

O0Zmyg - - - 0Zma,

for all mg,...,mog € J.

The function ]S(z) with this property will be called the potential function
of second kind.

Notice that formula (3.36) does not hold for r = 2k + 1.

The potential function of second kind P(z) determines the potential
function of first kind P(z). Indeed, by formula (3.4) we have

2k+1 P
P(2) 1 > : o p (2)(3.44)

= ZmeZmy - -« Zmak
|la|2k+1 02mg02my - - - OZma,

mo,mi,...,mak€J
More generally, for any r < 2k, we have
o P ) Apr > R+ p
z) = T s—
0zmg - OZm,_, |a|2k+1 e " D2 me

(3.45)

...0z
My, Mo €J mzk
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We will call the collection of our objects— the combinatorial bundle
(C* — A) x (Sing V) — C" — A with the contravariant form S(* and con-
nections (combinatorial and Gauss-Manin); the bundle of algebras
U.ecn—aAs(z) — C* — A; the period map ¢ : C* — A — Sing V, the po-
tential functions P(z) and P(z), flat periods S(®) (v, q(2)), twisted periods
S (1(2),q(2))~ a Frobenius like structure on C* — A.

The situation here reminds the structure induced on a submanifold of a
Frobenius manifold, cf. [21]. From that point of view one may expect that
Sing V' has an honest Frobenius structure and our Frobenius like structure
on C" — A is what can be induced from the Frobenius structure on Sing V'
by the period map, cf. with constructions in [3, 13].

Numerous variations of the definition of the Frobenius structure see, for
example, in [4, 5, 14, 21, 10].

In the next sections we will prove Conjectures 3.7, 3.8, 3.14 for families
of generic arrangements and will describe our structure more precisely.

4. Points on line
4.1. An arrangement in C" x C

Recall that J = {1,...,n}. Consider C with coordinate ¢ and C™ with
coordinates z1,. .., z,. Consider n linear functions on C" x C, f; = z; + t,
j € J.In C" x C we define the arrangement C = {H, | f; =0, j € J}.

For every z = (z1,...,2,) € C" the arrangement C induces an arrange-
ment C(z) in the fiber over z of the projection C* x C — C". We iden-
tify the fiber with C. The arrangement C(z) is the arrangement of points
{=%1,...,—2n}. Denote U(C(z)) = C — {—21,...,—2,} the complement.

A point z € C™ is good if the points —z1,...,—z, are distinct. Good
points form the complement in C™ to the discriminant A, which is the union
of hyperplanes H;; = {(z1,...,2,) € C" | z; = z;} labeled by two-element
subsets {7,j} C J.

4.2. Good fibers

For any z € C" — A, the space A*(C(2)) has the standard basis Hj(2),
.., H,(2), the space F!(C(z)) has the standard dual basis F(H(z)), ...,
F(H,(z)). For 2',22 € C" — A, the combinatorial connection identifies the
spaces A'(C(z1)), F1(C(2')) with the spaces A'(C(z?)), F1(C(2?)), respec-
tively, by identifying the corresponding standard bases.
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Assume that nonzero weights (a;) ;e are given. Then each arrangement
C(z) is weighted. For z € C™ — A, the arrangement C(z) is unbalanced if
la| =" e a5 # 0. We assume |a| # 0.

For z € C"—A, we denote V = F!(C(z)). We also denote F; = F(H;(z))
for j € J. We have

S(a)(Fi,Fj)Z(Sijai, SingV: {ZCij | chaj:O}. (41)
jeJ jeJ
For j € J, we define the vector v; € V' by the formula
_ aj
Uj——Fj-FmZFi. (42)
ieJ
LEMMA 4.1. — We have the following properties.
(i) dimSingV =n — 1.
(i1) For j € J, we have vj € SingV and 3_,c ;v; = 0.
(1it) Any n — 1 vectors of (vj)jes are linearly independent.
(iv) We have

a?

S(“)(vj,vj) =a; — ﬁ, j € J, (43)
R R AL
a
O
LEMMA 4.2. — We have
1
(@ (0 1)) = — .
et (S W) = H a;. (4.4)
jedJ

Proof. — Denote M the transition matrix from the standard basis Fy, ..., Fj,

of V to the basis vy,...,0,_1, ZjEJ F;. It is easy to see that det M =
(—=1)"=L. The vector >_jes Fj is orthogonal to Sing V' and S (. F;

JjeEJ I
>_jes Fj) = lal. The determinant of S(@) on V with respect to the standard
basis Fi,..., F, equals HjeJ a;. These remarks imply (4.4). O

4.3. Operators K;(z):V =V

For any pair {i,j} C J, we define the linear operator L; ; : V. — V by
the formula

F; HajFi—aiFj7 Fj »—)aiFj—ajFi, F,, — 0, if m¢ {Z,]}7(45)
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see formula (3.5). Define the operators K;(z) : V. — V, j € J, by the
formula

Ki() = 3 (46)
i#j ‘

see formula (3.6). For any j € J and z € C* — A, the operator K,(z)
preserves the subspace SingV C V and is a symmetric operator, that is
S (K;(2)v,w) = S (v, K;(2)w) for all v,w € V, see Theorem 3.2.

LEMMA 4.3. — For j € J, we have

a; a;
K. ;= Lo, ! ;) i # 7, 4.7
j(2)v Pl i # (4.7)
Kj(z)v; = =) Kj(z)v
i#

COROLLARY 4.4. — We have K;(z)v; = K;(z)v; for all i,j.
The differential equations (3.14) for flat sections of the Gauss-Manin

connection on (C™ — A) x Sing V' — C™ — A take the form

ol

i(2)1(2), jed (4.8)
For generic x all the flat sections are given by the formula

=> / I1 Gm +t)em/" Zd—it)F’“ (4.9)

ieJ (2 meg

see formula (3.12). More precisely, all the flat sections are given by (4.9) if
1+ L ‘ ¢ Zgo and 14 2 ¢ Zq for all j € J, see [23] or Theorem 3.3.5 in
[26].

Notice that equations (4.8) are a particular case of the KZ equations,
see Section 1.1-1.3 in [26].

4.4. Conformal blocks

LEMMA 4.5. — If k = |a|, then the Gauss-Manin connection has a one-
dimensional invariant subbundle, generated by the section

1 1
— m ZZj’Uj = m Zq]‘(Z)Fj, (410)
jeJ jeJ
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where
s
qi(z) = —z; + Z ﬁzj. (4.11)
jeJ
This section is flat.
Proof. — The lemma follows from formulas (4.7). O

This one-dimensional subbundle will be called the bundle of conformal
blocks at level |a|. A flat section of the subbundle of conformal blocks can
be presented as an integral I.,(z), where «y is a small circle around infinity.

4.5. Canonical isomorphism and period map

The master function of the arrangement C(z) is

D(z,t) = Z a;log f; = Zaj log(z; +t). (4.12)
jeJ jeJ
The critical point equation is %—f =3 jeJ % = 0. The critical set is

Ca(z) = {teUC() | Y -4 =0} (4.13)

ier Zj +1

The algebra functions on the critical set is

As(z) = CUCENN S =), (4.14)

ST 2 +t

a;

The identity element [1](z) € Ag(z) equals ﬁ djet % [f_j]

LEMMA 4.6. — We have dim Ag(z) = n — 1. Any n — 1 elements of

([ij_t} )jeJ are linearly independent. O

Let p € Cg(z). The Grothendieck residue p, : A, ¢(z) — C is given by

1 R f 1 fdt

= VS 98 T 57 | 23>
where I',, is a small circle around the critical point p oriented clock-wise.
The residue bilinear form (, ). on Ag(2) is @pecy(2)(5 )p-

[ (4.15)
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LEMMA 4.7. — For f,g € C(U(C(z))), we have

o o 1 fg
([f]a[g]) = 27_(_\/_—1 Res;—o %7? QW\/——liEZJReSt:_Zi %f (416)

The canonical element is

[E] :Z[Z]—-f—t} ®F € Ag(2) ® Sing V. (4.17)
jeg I

The canonical isomorphism «a(z) : Ag(z) — Sing V' is given by the formula

1 f /
[f] — o Z (Rest:m m—kz Resi—_, W)Fj.

eJ J ot  ieJ
(4.18)
THEOREM 4.8. — For k € J, we have
ag
: . 4.19
a(z) {Zk—l-t] Uk ( )
Proof.— Denote
i = ak 1 ak [[nes(Gm +1)
T (e t)(z +t) 38_% (21 + (2 +1) ey @m L (2e +1)

(4.20)

If k # j, then Resi—=—_,, gjr =0 for all i € J. If k = j, then Res;=_., g;; =0
fori # j and Res;—_., g;; = 2my/—1. We also have Res;—o gr; = 727r\/j1|%’“|
for all j € J. We obtain the theorem by comparing these formulas with for-
mula (4.2). O

COROLLARY 4.9. — Conjectures 3.7 and 3.8 hold for this family of ar-
rangements.

Proof. — By Theorem 4.8, we have a(z)([1](z)) = q(z), where ¢(z) is given
by (4.10). Lemma 4.5 implies Conjectures 3.7 and 3.8. ]

COROLLARY 4.10. — For this family of arrangements the period map
q:C"— A — SingV is given by the formula

1 1
a(=) = 11 270 = o D as(2)F (4.21)
jeJ jeJ
the potential function of first kind is
1 aia9
P(z) = PG daz) = ) W(zi —zj)2. (4.22)
JjeJ 1<i<j<n
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By Corollary 4.10, the period map extends to a linear map C" — Sing V.
The linear map is an epimorphism. The kernel is generated by the vector

(1,...,1).
The standard basis (H;)jes € V* induces linear functions on SingV,

hj LU if j 75 7, -1 + — (423)

Ial

ai
lal”
We have Y
(Sing V')*.

jesajh; =0 and any n —1 of these functions form a basis of

For i # j, define the hyperplane fI” C Sing V by the equation h; —h; =
0.

LEMMA 4.11. — For all i,j we have ¢*(h; — hj) = z; — z; and q(A)
Ui<jHi,j- O

4.6. Contravariant map as the inverse to the canonical map
The canonical map a(z) : Ag(z) — Sing V' is the isomorphism described

in Theorem 4.8. The contravariant map S® : V — V* is defined by the
formula F; — a;(H;). By identifying a;(H;) with the differential form Gt

and then projecting the coefficient to Ag(z) we obtain the map

SOV = Ag(2),  Fyes {;—} (4.24)

THEOREM 4.12. — The composition a(z) o [S@]: V — Sing V is the or-

thogonal projection multiplied by -1. The composition [SD]oa(z) : Ag(z) —
Ag(2) is the identity map multiplied by -1.

Proof.— The composition a(z)o[S(®] sends F; to v; which is the orthogonal
projection multiplied by -1 The composition [S(*)] o a(z) sends [“] to

ElrazE) (429

The last sum is zero in Ag(2). O
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4.7. Multiplication on Sing V' and (Sing V)*

THEOREM 4.13. — The canonical isomorphism a(z) : Ag(z) — SingV’
defines an algebra structure on Sing V',

a; a;
_ ] 1 . .
Vj ok Vg = v; + vy, i # 7, (4.26)
Zj — Z; Zi — Zj
Vj X, vy = - E Vj *, V.
i#]

The element
1
Tl >z, (4.27)
jeJ

is the identity element. O

The isomorphism S(a)|smgv : Sing V' — (Sing V)* induces an algebra
structure on (Sing V)*.

LEMMA 4.14. — The isomorphism S®|singv : Sing V' — (Sing V)* is
given by the formula v; — —aj;h; for all j.
Proof. The lemma follows from formulas (4.23) and (4.3). O

COROLLARY 4.15. — The multiplication on (SingV)* is given by the
formula

1 1
hi*, h; = h; hj, L % 7, 4.28
¥ %— 2 +Zj*21'] i ( )
ajhj Xy hj = - a; hz * 5 hj.
i#j
The element
1
—m Z aijhj (429)
JjeJ
1s the identity element. U

4.8. Tangent morphism

The tangent morphism S of the tangent bundle T(C* — A) - C* — A
to the bundle of algebras U,ecn—aAs(z) — C* — A is given by the formula
(3.31),

B(z) : 9, € TL(C" —A) s [3—2} - [Zj“it} € Ao(2).  (4.30)
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LEMMA 4.16. — The map B(z) is an epimorphism. The kernel of 5(2)
is generated by the vector ZjeJ 0. O

The residue form on the bundle of algebras induces a holomorphic sym-
metric bilinear form 1 on T'(C™ — A), see formula (3.32). The bilinear form
7 has rank n — 1. Tts kernel is generated by the vector >

LEMMA 4.17. — We have

jEI

2

a .
1(05,0;) = —a; + ﬁ, j€d, (4.31)
a;a; . o
(i, 0;) = |a|3, i,jeJ i#].

Proof. — The lemma follows from Lemmas 4.1, 4.8 and Theorem 2.7. It can
be checked also by a straightforward calculation. O

4.9. Multiplication and potential function of second kind

Let us define the multiplication on fibers of T'(C™ — A) by the formulas
a;

0%, 0; = SO+

Zi — Zj — Z;

O; % 07 = —Za*z j,
J#i

cf. formula 5.25 in [5]. The vector )

aj

a;, (4.32)

;cs 0i has zero product with everything.

LEMMA 4.18. — For every z € C* — A, the morphism ((z) defines an
algebra epimorphism of T.(C™ — A) to Ae(z), in particular, 5(z)(v) *.
B(z)(w) = B(2)(v *, w) for all v,w € T,(C™ — A). O

Consider the ideal of T.,(C" — A) generated by .. ;0;. Denote B(2)
the quotient algebra. The morphism 4(z) induces an isomorphism B(z) ~
Aq;.(z)

LEMMA 4.19. — The element Tal EZEJ z;0; projects to the identity ele-
ment of B(z). O

The bilinear form 7 defines a morphism 7 of the tangent bundle T(C™ —
A) to the cotangent bundle T*(C™—A). For j € J, denote p;(2) = a;jq;(z) =
aj(=zj + 3 e farzi)- We have 37 ;p; = 0.

LEMMA 4.20. — The morphism 1 is given by the formula 0 — dp; for

all j. The kernel of 7 is generated by the vector Z]EJ Ol
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Consider the span of differential one-forms (dp;);ecs. This span equals
the span of differential one-forms (dz; —dz;)1<i<j<n. The spans in the fibers
define the subbundle

Usecn_aB*(z) > C" — A (4.33)

of the cotangent bundle T*(C™ — A). The subbundle has rank n — 1.

LEMMA 4.21. — The form n induces the algebra structure on B*(z)
given by the formula
a; a; a;a; . .
dp; *, dp; = dp; + —>—dpi = —d(z; — zj), i # s
Zi — Zj Zj — 24 Zi — Zj§
dp; x, dp; = — Z dpj *. dp;, (4.34)
J#i
and the bilinear form
a2
(dpj,dpj) = —a; + ﬁ jed, (4.35)
a;a; o .
(dpladpj): ‘7'a|.7’ 7’7.76']7 Z#.]
O
Introduce the potential function of second kind
~ 1
Pl)=5 3 (e — ) log(si — 2), (4.36)
1<i<jsn
THEOREM 4.22. — We have
9*P
= —7(9;) *, 71(0; 4.37
(525) = —10) = 7(0) (4.37)
for alli,j.
Proof. — The theorem follows from Lemma 4.21. O

Notice that equation (4.37) is the definition (3.5) in [5] of the potential
function of an almost dual Frobenius structure.

The right hand side in (4.37) can be rewritten: 7(0;)*,7(9;) = 7(0;%.0;).
For all 4, j, k, we have

1(0i %= 07)(0c) = 1(9; %= 05,00) = (B(2)(0i) *= B(2)(95) %= B(2)(0e), [1](2))-,
(4.38)
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where (, ), is the residue form on Ag(z). Formula (4.37) says that for all

1,7, k, we have
ﬂ( ) = =(B(2)(8i) = B(2)(05) *= B(2)(8r), [1](2)) (4.39)
6‘zi82j5‘gz_ 2)(0;) . B(2)(9;) *= B(2)(De), [1](2)). .

Hence Conjecture 3.14 holds for this family of arrangements.

4.10. Connections on the bundle U,ccn_aB*(z) — C* — A defined
in (4.33)

The combinatorial and Gauss-Manin connections on (C"—A) xSing V' —
C™ — A induce the combinatorial and Gauss-Manin connections on bundle
(4.33).

LEMMA 4.23. — The differential one-forms (dp;)jes are flat sections of
the combinatorial connection on bundle (4.33).

Proof. — The vectors v; € SingV give flat sections of the combinatorial

connection on C" x Sing V' — C™. By formula (4.19), the elements [zjit} €
Ag(2) give flat sections of bundle of algebras. Now formula (4.30) and

Lemma 4.20 imply Lemma 4.23. O

Let I(z) = > ;s I’(z)dp; be a section of bundle (4.33). For i € J, we
denote g—i = g—dej.

LEMMA 4.24. — The differential equations for flat sections of the Gauss-
Manin connection take the from

1

see formula (4.34). For generic k all the flat sections are given by the formula

L w(2) = JEZJ (L 1_[(,2Z + t)@i/" zjdj_ t)dpj7 (4.41)

() icg

where v(z) € Hi(U(C(2)), Lcluc(z))) is a flat section of the Gauss-Manin
connection on U.ecn—aHp(U(C(2)), Lrlu(c(z))) — C* — A.

Proof. — The lemma follows from Theorem 3.3 and formula (4.9). O

THEOREM 4.25. — For every flat section I ., we have I, = —kdp, «
where

Py = / [z +t)"/%at. (4.42)
v(2) icJ
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Proof. — The theorem follows from two formulas:

OD~ i / oagdt
R = (2 + 1)/ —— (4.43)
3zj 'y(z) 11;[] Zj + t
and 3., s —, O

jeJ 82]'

Following Dubrovin [4, 5], we will call the functions p, . twisted periods.
Notice that this definition agrees with the definition of twisted periods in
Section 3.11, namely, the twisted periods of Theorem 4.25 can be also defined
by formula (3.42) of Theorem 3.13.

LEMMA 4.26. — Given k € C*, let I(z,k) be a flat section of the Gauss-
Manin connection with the parameter k. Let I(z, —k) be a flat section of the
Gauss-Manin connection with the parameter —k. Then (I(z,k),I(z,—K)).
does not depend on z € C" — A.

Proof. — The lemma follows from the fact that B*(z) is a Frobenius algebra.
O

4.11. Functoriality

In this section we will discuss how our objects extend to strata of the
discriminant A C C™.

4.11.1. A stratum X of A is given by a partition (Ji,...,J,,) of J,
X={(z1,...,20) €C" | z; —2; =0 fori,jeJy, £=1,...,m}, (4.44)

dim X = m. The coordinates on X are functions x1,..., %, where z, = z;
for j € J;. Let ¢ : X < C™ be the natural embedding. Then

6@ Z 82 oidzy s drg if g€ Jp (4.45)

The remaining strata of A cut on X the union of hyperplanes z; = z;, 1 <
1 < j < m which we denote Ax. For { =1,...,m, we denote by = EjEJ[ a;
We assume that b, # 0 for all /.

We restrict our family of arrangements C(z),z € C", to X —Ax. For z €
X —Ax the corresponding arrangement C(z) consists of points —z1, ..., —Zp,
of weights b1, ..., by, respectively. For this new family we will construct all
the objects described in Sections 4.1-4.10 and relate them to the objects con-
structed for the arrangements C(z),z € C™ — A. The objects corresponding
to the new family will be provided with the index X.
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4.11.2. For x € X — Ay, the space (Vx)* = A'(C(x)) has the standard
basis (H¢ x),£ = 1,...,m. Recall that the space V* of Sections 4.1-4.10 has
the standard basis (H;),j € J. We have the canonical epimorphism

f* Vr— (Vx)*, (H]) — (Hg,X) if j € Jp. (446)
The space Vx = F1(C(x)) has the standard basis Fy x,¢ = 1,...,m. The

space V' of Sections 4.1-4.10 has the standard basis F},j € J. We have the
canonical embedding

fiVx =V,  Fixw— Y F (4.47)
JEJe

The subspace of singular vector is defined by the formula

Sing VX = { Z CZFE,X | Z bng = 0}. (4.48)
=1 =1

We have f(Sing Vx) = f(Vx) N (Sing V). Consider the embedding

f :Sing Vx — SingV, v f(v). (4.49)

For the contravariant form on Vx we have

SO (Fox, Fix) = 8O (f(Fox), f(Fr.x)) = 0cibr. (4.50)
For ¢ =1,...,m, we define a vector vy x € Sing Vx by the formula
be
vex = —Fix + Tl ZFk,X- (4.51)
k=1

We have f:vpx — Zjng Uy -

The standard basis (Hy x),¢ = 1,...,m, induces linear functions on
Sing Vx,
b . be
hex @ vpx — m if k+#4¢, Ve, x —l—l—m. (4.52)

We have f*: hj s hy x if j € Jp.
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4.11.3. For { = 1,...,m and z € X — Ay, the operators K, x(z) :
Sing Vx — Sing Vx are defined by formulas (4.7),

b b
Kgyx(l')’l)k’x = ¢ Vg, x + k Ve, X for /¢ 75 k, (453)
Ty — Tk T — Ty
Ky x(@x)vex = -— ZKZ,X(x)'Uk,X~
k0
For all ¢, k, we have
F(Kex(@vex) =Y Kj(2)f(ve.x) (4.54)
JEJe

Notice that the right hand side in (4.54) is well-defined despite the fact that
K(x)v; is not well-defined for all v;, see formula (4.7).

4.11.4. Multiplication on Sing Vx is defined by formulas (4.26),

b b
VX *p X Uk X = ¢ v x + k ve,x for £#k, (4.55)
Ty — Tk T — Xy
Vg, X *z, X Vg X = — Z Ve, X *z,X Vk,X-
kL
For all ¢, k, we have
fvex *o,x Vi, x) = f(ve,x) *2 f(0r,x). (4.56)

Notice that the right hand side in (4.56) is well-defined despite the fact that
v; %5 v; is not well-defined for all v;,v;, see formula (4.26).

4.11.5. The multiplication on (Sing Vx)* is given by formula (4.28),

hex *ex hiex = he x +
Ty — Tk

behe x *o.x ke = — Z b hi,x *¢,x hex-
Py,

1
b x, #k, (4.57)
~

If¢+k, i€ Jyj€ Jy, then
f*(hz’ *z hj) = he x %2, x hix - (4.58)

Notice that h; x, h; is well-defined despite the fact that h; *; h; is not
well-defined for all h;, hj, see formula (4.26).
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4.11.6. For z € X — Ax the residue form on Ag () induces a holomorphic
bilinear form nx on T,(X — Ax),

b;

o 0 .

nx (a—ff 5—306) = —by+ m’ JEJ, (4.59)
0 0\ _ beby

nX(8_x/8—xk)_ la] t#k.

For all ¢, k, have

(83@4 89%) - 77( Z Z 8z]) (4.60)

ng =
For £ =1,...,m, we define a linear function on X,
qox(x) = —x¢ + Z (4.61)
k;ﬁl
We have
qe.x(x) = qi(z), ifie (4.62)

The period map ¢x : X — Ax — Sing Vx is defined by formula (4.21),

1 m m
= |— Z Z:L‘e Ve, X - (4.63)
= tz
THEOREM 4.27. — For all x € X, we have
Fax(@)) = q(x) (4.64)
and for the potential functions of first kind we have

Px(z) = P(z). (4.65)

O

4.11.7. For x € X — Ax, the multiplication on T (X — Ax) is defined by
formulas (4.32),

) o) by 0 b, 0
o= = = — 4.66
8$g * X 8xk Ty — Tk 8a:k + T — Ty 8:1:4 ( )
9] 0 0 0

81‘@ X 8xe _; 81‘k 8:6@
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For all ¢, k, we have
0 0 0 0
g % Bz (;ﬁ a_z) *a (j; a_zj)' (4.67)

Notice that the right hand side in (4.67) is well-defined despite the fact that

% *g % is not well-defined for all i, j, see (4.66).

4.11.8. For £ =1,...,m, we denote p; x = beqe, x. The map

TN]X :TT(Xfo)*)T;(Xfo), w+—>nx(w,~), (468)
sends 6% to dpe,x. We have
dpex =" ( Z dpi). (4.69)
i€Jy

Denote B% (x) the span of (dpe,x)7~, in T (X — Ax). This span equals the
span of differential forms (dzy —dzk)1<r<k<m. The multiplication on B ()
is given by the formulas (4.34),

be

k
dpe x *z,x dpp,x = dpk X + dpe x
Ty — — Xy
b b
= e d(zg — xr), L #k,
Ty — Tk
dpex *zx dpex = — Y dprx *ex dpex. (4.70)
P,

For all ¢, k, we have
L*( Z dpi) *p X L*( Z dpj) = L*( Z Z dp; *4 dpj>. (4.71)
i€Jy jeJk ic€Jp jedy
The potential function of second kind is defined by formula (4.36),
- 1
Py (1, am) = 5 > bebg (wp — xp)log(ze — xp).  (4.72)
1<e<k<m

By formula (4.37),

.
(o 2) = i () ﬁx(a;jk) (473

for all ¢, k. For all ¢, k, we have

Py
e () = lim ZZ

Z€CTM=A e, jeT

o sz (4.74)
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4.12. Frobenius like structure

Consider the quotient M of C"™ by the one-dimensional subspace
C(1,...,1) and the natural projection = : C* — M. Then all our ob-
jects — the combinatorial bundle (C™ — A) x (SingV) — C"™ — A with
the contravariant form S(®) and connections (combinatorial and Gauss-
Manin); the bundle of algebras U,ccn—aAg(z) = C™ — A; the period map
q: C" — A — Sing V, potential functions P(z) and ﬁ(z), flat periods p;(2),
twisted periods py . (z)— descend to the quotient and form on M — 7(A) a
structure which we will also call a Forbenius like structure.

In particular, the functions pq,...,p,—1 will form a coordinate systems
on M and n will induce a holomorphic metric on M constant with respect
to the coordinates p1,...,pn_1. If y; = Z;:ll ¢jivj,j=1,...,n—1,is a
linear change of coordinates with ¢; ; € C such that n = Z;le dyjz. Then
equation (4.37) will take the form

9*P
a( ) = —dyi =, dy; 475
By:0y; Yi *y AYj ( )
for all 4,j. The functions —#yfa% will become the structure constants

of the multiplication on T, (M — 7(A)) and the potential function P will
satisfies the WDVV equations with respect to the coordinates y1,...,yn—1.

5. Generic lines on plane

5.1. An arrangement in C" x C2

5mm Consider C? with coordinates t;,ts, C™ with coordinates zi, ..., zn.
Fix n linear functions on C?, g; = b}tl + b?tz, J € J,b; € C. We assume
that

bl p2
d; j = det ( bll bé ) #0 for all ¢ # j. (5.1)
J J

We define n linear functions on C" x C?, f; = 2+ g;, j € J. In C" x C?
we define the arrangement C = {H, | f; =0, j € J}.

For every z = (z1,...,2,) the arrangement C induces an arrangement
C(z) in the fiber of the projection C"™ x C2 — C" over z. We identify every
fiber with C2. Then C(z) consists of lines H;(z),j € J, defined in C? by the
equations f; = 0. Denote U(C(z)) = C% — Uje s H;(2), the complement to
the arrangement C(z).
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The arrangement C(z) is with normal crossings if and only if z € C* — A,
where A = Uigicj<k<nHij i and the hyperplane H; ;; is defined by the
equation f; jr =0,

f@jjk = d<7kzi + d/ij + dw-zk. (5.2)
LEMMA 5.1. — For any four distinct indices 1, j, k, £ we have
figk fik,e fiej
3J vy 1Ly, — O 5.3
gy | dpadig | dydig (5:3)
fz%j,k ij,k,e fl?,f,i fZQ,i,j —0. (54)

di jd;kdrs  djrdiede;  diedeidiy  deidiid;e

5.2. Good fibers

For any z € C" — A, the space A?(C(z)) has the standard basis
(Hi(2),H;(2)), 1 <i < j < n. The space F2(C(z)) has the standard dual
basis F(H;(z),H;j(z)), 1 <i < j < n. For z!,22 € C" — A, the combinato-
rial connection identifies the spaces A%(C(z1)), F2(C(z!)) with the spaces
A2%(C(2?)), F?(C(2?)), respectively, by identifying the standard bases.

Assume that nonzero weights (a;);cs are given. Then the arrangement
C(z) is weighted. For z € C" — A, the arrangement C(z) is unbalanced if
la|] # 0. We assume that |a| # 0.

For z € C" — A, we denote V = F2(C(z)), V* = (F2(C(2))* = A%*(C(2)),
Fi,j = F(HZ(Z),HJ(Z)) We have Fi,j = —Fjﬂ‘,

S(a)( i,ijk,l) = 0, ifi<j7 k < ¢ and (Za])#(kvg)v (55)
S(Fiy Fig) = aa,
i—1 n
Sinsz { Z CiJ‘Fl‘,j | Zajcm— Z a;Cq g ZO7 1= 1,...,71}.
1<i<j<n j=1 j=i+1
(5.6)

By Corollary 2.8, the restriction of S(®) to Sing V' is nondegenerate. Denote
(Sing V) the orthogonal complement to Sing V with respect to S(*). Then
V = Sing V @ (Sing V))*. Denote 7 : V — Sing V the orthogonal projection.

LEMMA 5.2. — The space (Sing V)* is generated by vectors
ZFiJ’ Jed (5.7)
icJ
O
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For i # j, we define the vector v; ; € V by the formula
i = Fig = o 30 Fuk = 1r 3 o (5.8)
keJ eeJ
‘We have Vij = —Vj- Set Vii = 0.
LEMMA 5.3. — We have the following properties.
(i) dimSingV = ("").
(i) We have v; ; € SingV and v; ; = n(F; ;).

(iii) For j € J, we have ), ;v;; = 0.
(tv) For any k € J, the set v; 5, 1 <i < j<n, k¢{ij}, is a basis of

Sing V.
O
LEMMA 5.4. — We have
S (vij,vke) =0, if 1,7, k, £ are distinct, (5.9)
S(a)(vivj,v@k) = —ailajrlk, if 1,5,k are distinct,
a
S (v, 015) = — 3 8@ (vr 1, v1) = sy — aiaj(ai + aj)
Py la

O

5.3. Operators K;(z):V =V

For any subset {i, j,k} C J, we define the linear operator L; j : V — V
by the formula

F; = aplij+a e+ aiFy;, (510)
Firx = apFij+aiFj,+a;Fg,

Frp, = apFij+aily,+ajFy;,

Fom — 0 if {£,m} is not a subset of {3, j, k}.

see formula (3.5). Notice that L; ;; does not depend on the order of i, j, k.

We define the operators K;(z) : V — V, i € J, by the formula

Z f Lijk (5.11)
Zh])
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where the sum is over all unordered subsets {j,k} C J — {i}, see for-
mula (3.6). For any ¢ € J and z € C™ — A, the operator K;(z) preserves
the subspace SingV C V and is a symmetric operator, S(®) (K;(2)v,w) =
S(@) (v, K;(2)w) for all v,w € V, see Theorem 3.2.

LEMMA 5.5. — For i € J, we have

d; s .
Ki(z)vj = fj_kk (aivjk + ajvg,; + agvij), if i ¢ {4,k},(5.12)
0.4,
Ki(Z)’Ujﬂ‘ = — Z Ki(Z)U]‘JG. (513)
k¢{i,j}

Proof. — The restriction of K;(z) to (Sing V)= is zero by formula (5.10) and
Lemma 5.2. We have

Ki(Z)Uij = Ki(Z)Fj,k f . (CLZFJ k+ a]Fk i+ CLkFZ J) (514)

04,
The right hand side in (5.14) equals the right hand side in (5.12) by Lemma
5.3. O

The differential equations (3.14) for flat sections of the Gauss-Manin
connection on (C™ — A) x Sing V' — C" — A take the form

o1

na—zj(z) = K,;(2)I(z), jed (5.15)

For generic x all the flat sections are given by the formula

SRS

1<i<jsn 1

’J -y tz) Fij. (5.16)

see formula (3.12). These generic « can be determined more precisely from
the determinant formula in [23].

5.4. Conformal blocks

Define the map ¢ : C" — Sing V' by the formula

1 (Zibl— _b1)2
q:.zr —W Z W Vi,j- (517)
1<i<j<n LIy
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LEMMA 5.6. — For any k € J, we have
1,5,k
, 5.18
q(2) |a‘22d,]d],kdk7, 4, ( )
where the sum is over all pairs i < j such that k ¢ {i,j}.

i by
Proof. — Denote A, ; = —%, then

=5 Y A (5.19)
1<1,<]<n
We replace in (5.19) each v; , with — Zﬁék v;,; and each vy j with — Zi#k Vi g
Then

1 /
q(z) = W Z(Ai’j + Aj,k + Akﬂ‘)vi,j, (520)

where the sum is the same as in (5.18). The lemma follows from the identity
Dk

Aij+Aje+ A = W (5.21)

O

By Lemma 5.6, the map ¢ can be defined in terms of the determinants
d; j, 1 <i < j < n, only without using the individual numbers b; .

THEOREM 5.7. — If & = |a|/2, then the Gauss-Manin connection on
(C"—A) x (Sing V) = C™ — A has a one-dimensional invariant subbundle,
generated by the section q : z — q(z), see (5.18). This section is flat.

This one-dimensional subbundle will be called the bundle of conformal
blocks at level |al/2.
Proof. — We check that

lal 99

5 01 (2) = K1(2)q(2). (5.22)

The other differential equations are proved similarly. By Lemma 5.6 we have

]- fl z]
= - 2
q(z) al? E i dadis Vi j (5.23)

£~ d;
1<i<j<n
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Then
la| 9q 1 f1i
——(2) = — s 5.24
2 (9221( ) |a\ 1<i<j<n dj,ldl,i & ( )
and
1 fli]
Ki(z)g(z) = — : a1v; i + a;vi1 + a;v 5.25
1(2)q(2) BE dj,1d12( 1Vi,5 iVj,1 jU1,1) ( )

by formula (5.12). By replacing v; 1 with — Z#l vj; and vy ; with — Zj# Vi j
and using Lemma 5.1 we obtain

J1,ij

1
Ki(2)a(s) = e
75 5T

lal 1<i<j<n
X

Vi,j- (526)

O
5.5. Algebra Ag(z)
The master function of the arrangement C(z) is
t) = Z ajlog f; = Z a;log(z; + bjltl + b?tg). (5.27)
jed jed
The critical point equations are
o0 b; 0P b?
o =% =0 =D 4 =0 (5.28)
oty jeJ fi Ot2 jeJ fi
Introduce H;, i = 1,2, by the formula
o0d H;
— == (5.29)
ot; Hjej fj
We have
0P
t1—— + t2 = |a| — Zz (5.30)
a i€J fz

In other words, we have

tlHl + tQHQ = |a\ H fj - Zziai Hf] (531)

jeJ icJ i
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The critical set is

Ca(z) = {t e U(C(2) 9% _, 0%

5 =05 :o} — {t € U(C(2))|H, = 0, Hy = 0}.

(5.32)
The algebra of functions on the critical set is

Aalz) = CUEEN)/ (G g ) = COCEN /(). (.39
LEMMA 5.8. — We have dim Ag(z) = (";1) O

Introduce elements w; ; € Ag(2) by the formula

ﬁﬁ}' (5.34)

LEMMA 5.9. — We have w; j = —wj; and 3, ;w;; = 0.

WJZ%%[

Proof. — The lemma follows from the identity

o i
4 /\—_Z a;a; th/\dtz—l—Zdz]/\,u], (5.35)
fl flf meJ

where p; are suitable one-forms. O

The elements [;ﬁ} i € J, generate Ag(z) by Lemma 2.4.
LEMMA 5.10. — For j € J, we have the following identity in Ag(2),

E:dd[ }_0 (5.36)

U
LEMMA 5.11. — We have
[2] {z] - i;wm’ i 7, (5.37)
[g] [%} ::iggﬁdiZJWJ7 e
[%} *e Wik = ;l (aiwj i + ajwy,; + agwi ), if i ¢ {j,k},(5.38)
v .3,k
(o] wew = - = %) vy
]
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COROLLARY 5.12. — The elements w; ;, 1 <i < j < n, span Ag(z).

LEMMA 5.13. — The identity element [1](z) € As(2) satisfies the equa-
tions

i) (2:b} — z;b})?
‘a| ; |: z:| |CL|2<%;Zz |:%i|) :_#lgggn%wid.
(5.39)

Proof.— To obtain the last expression in (5.39) we replace [‘}—} {‘;‘} with
bl a;
-3 St -

THEOREM 5.14. — For any k € J, the identity element [1](z) € As(2)
satisfies the equation

1)(z) = — Sk, (5.40)
|a]? = d; jdj pdi; '

where the sum is over all pairs i < j such that k ¢ {i,7}.

Proof. — The proof is the same as the proof of Lemma 5.6. O

The canonical element is

[F] = Z d’J} F,; € Ag(z)®SingV. (5.41)
1<i<j<n flfﬂ

THEOREM 5.15. — The canonical isomorphism
a(z) : Ag(z) — SingV (5.42)
is given by the formula
Wy > Vg 5. (5.43)

COROLLARY 5.16. — We have a(z)[1]) = q(z), where q(z) is the confor-
mal block of Theorem 5.7.

5.6. Proof of Theorem 5.15

Introduce the coefficients B; ; by the formula

a(z)(wpe) = Y BijFi;. (5.44)

1<i<j<n
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We have
47 I1 J f2
™ oY Res, mestin (545
araedy od; ; peCals) frufefif; HiHo
LEMMA 5.17. — We have B; j =0, if {i,j} N {k,(} = 0.
Proof. — The differential form
[Loes fn
Whopi; = ——2= 0 dt; Adt 5.46
B frefefifiHiHo ! ? (5.46)

has poles only on the curves H; = 0 and Hy = 0. The poles are of first
order. To calculate the right hand side in (5.45), we need to take the residue
Resp,—o Wi ¢,4,; of the form wy ¢ ; ; at the curve H; = 0 and then take the
residue of that form on the curve H; = 0 at the points where Hy = 0. This
is the same as if we took with minus sign the residue of Resp,—owk¢,;
on the curve H; = 0 at infinity. That residue at infinity with minus sign
could be obtained differently in two steps. First we may take the residue
Resoo Wi,e,i,j Of wiei; at the line at infinity and then take the residue of
that one-form on the line at infinity at the points where H; = 0.

So to calculate the right hand side in (5.45) we first calculate Resoo wi ¢4
The coordinates at infinity are u; = = t1/te, ug = 1/t5. We have f,, =
(b ug + b2, +U22m>/U2 Denote fm(ul) =5l U1 +b2,. For i = 1,2, we have
H;(uy/ug,1/us) = H; (u17u2)/u2 , where H (u1,us) are some polynomi-
als. Denote I:IZ(ul) = ﬁi(ul,O). We have dt; A dty = ——du1 A dus. Then

the residue of wy ¢ ; ; at the line at infinity equals

-1 - Hmlem(u)Q du
Vs = A hwEm ™ 4

where © = u;. On the line at infinity this one-form is holomorphic at u = co.

The number —27¥Y—1 _ B; ; equals the sum of residues of the form wy ¢ ; ;
apagdy, (d 2y 52,7

at the points where Hl( )=0.

By formula (5.30), we have

wHy (u) + Ha(u) = |a| J] fm(u (5.48)

meJ

Thus Hy(u) = |af | fim(u) at the point where H;(u) = 0. Therefore,
the sum of residues of the form @y, ¢ ; ; at the points where H, (u) = 0 equals
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the sum of residues of the form

gt (hoting) S (U

B = Wong gty Fn(®) du (5.49)
|a| Hy(u)

at the points where Hj(u) = 0. This sum is zero. O

LEMMA 5.18. — We have By j = —%l, if j & {k,¢}.

Proof. — On the line at infinity we consider the differential one form

ey fm@?
F2(w) fo(u) f3(w) Hy (w) Ha (u)

As in Lemma 5.17 we observe that — Q’TdV 7— Bk j equals the sum of residues
kQpQk ¢Qk, 5

of that one-form at the points where H; = 0 Consider the differential one-
form

W0, = du, (5.50)

_ gy ) "
\a| fi(uw)Hi(u)

As in Lemma 5.17 we observe that QWdV 7— Bk.j equals the sum of residues
kQrQk 00k, 5

(5.51)

of p at the points where Hj(u) = 0 and this sum equals

2r/—1

—Resj _opu= axlaldride (5.52)

The lemma is proved.
O
By Lemmas 5.17 and 5.18 we know that o(z)(wie) = BieFre

— i Dien Fie— il > j2¢ Fk,j. From the condition that a(z)(wg ) € Sing V/

we conclude that By, = Mlai’““” The theorem is proved.

5.7. Contravariant map as the inverse to the canonical map

The canonical map a(z) : Ag(z) — Sing V' is the isomorphism described
in Theorem 5.15. The contravariant map S : V' — V* is defined by the
formula F; ; — a;a;(H;, H;). By identifying a;a;(H;, H;) with the differen-
tial form aiaji_'"—}é dt; A dty and then projecting the coefficient to Ag(2z) we
obtain the map

[S@]:V = Ag(2), F, ;= w;j = a;a; [;ll—f]} (5.53)
ifj
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THEOREM 5.19. — The composition a(z) o [S\] : V' — SingV is the
orthogonal projection. The composition [S®]oa(z) : Ag(2) — As(2) is the
identity map.

Proof. — The composition a(z) o [S(®)] sends F; ; to v; ; which is the or-
thogonal projection by Lemma 5.3. The composition [S(®)] o a(z) sends Wy j
to

Wi, j Z Wk,5 — Z Wi p- (554)

kGJ ZGJ

The last two sums are equal to zero in Ag(z) by Lemma 5.9. O

5.8. Corollaries of Theorem 5.15

THEOREM 5.20. — For any j € J, the Sing V-valued function %(z)
J
satisfies the Gauss-Manin differential equations with k = |al,

0 0q

a %
0z; 0z;

9 = K()az]() ieJ. (5.55)

Proof. — By Theorems 5.14 and 5.15, we have

4() = a(2)([1)(=2) = T5a) (X 2] 22])?)

ap 2 ol
= e 2 e (E] ]

By Theorem 5.15, for any m,{ € J, the element o(z)([%=] [f ]) € SingV
is a linear combination of vectors v; ; with constant coefficients. Hence

9? a;1[a;
509 = e (3] [$]),

a0 =) 2 D e 3

J

K25 ) = o) ([ 5] (2]

This implies the theorem. O
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COROLLARY 5.21. — Conjectures 3.7 and 3.8 hold for this family of ar-
rangements. O

The tangent morphism § and the residue form on the bundle of algebras
induce a holomorphic bilinear form 7 on fibers of the tangent bundle,

0(0:,0;). = (B(2)(8:),B(2)(9))= = (=1)*S ™ (a(2)(2)(8:), a(2) B(2)(9;))
_ ([;’;} [jﬂ) =(—l)kS(a)(a(z)({%b,a(z)([;—ﬁ)). (5.56)

By Theorem 3.10, we have

dq
azi

dq
0z

Ia\

0(0:,05): = =557 (2), 5 (2))- (5.57)

Theorems 3.12 and 3.13 also hold for this family of arrangements.

THEOREM 5.22. — Recall the potential function of first kind P(z) =
5@ (q(2),q(2)). We have

4
a;a;ay fiik
P(z)= I . (5.58)
1<i<j<k<n |al® d; ;d5 . dy

Proof. — By Theorem 3.11, for any r < 4, we have

for all mq,...,m, € J. In particular,
la]> 03P
(B0 5 BEE0) 52 A O2): [): = G 55— (2) (5.60)
for all k,¢,m € J. Introduce the function
- 1 a;a;ag f24 k
P(2) = 4 > |aj|2 pe d; Z (5.61)
TIi<j<k<n 4,374k
PROPOSITION 5.23. — We have

PBPP
(B(2)(95) *2 B(2)(0r) *- B(2)(0zm), [1](2)). = m(z) (5.62)

forallk,£,m e J.
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Proof. — For k,{ € J, we define the differential one-form 4y, » on C* — A by
the formula

Vr,e(Om) = (B(2)(0k) *= B(2)(e), B(2)(Om))-- (5.63)

The canonical isomorphism identifies the residue form and the contravariant
form and therefore we may write

Vit (Om) = S (a(2)B(2)(O0) = a(2)B(2)(8r), a(2)B(2)(0m))-  (5.64)

LEMMA 5.24. — The form vy is the differential of the function

al 1
pr(2) = 5l 2 a2 (5.65)
if k £ 4, and of the function
Pre(2) = la] > ﬁs({l}(v‘k v) (5.66)
’ 2 A~ dpdix R ’
ig{g .k} T

if k = £, where j is any number in J such that j # k.

Proof. — The vector a(2)8(2)(0k)*.a(2)B(2)(0e) = a(z )([‘}—:] [a—j]) € SingV
equals d Uk, if k # ¢ and equals ZZ¢{] K} dkd]d Uik if k = £. We also have

a(z)ﬁ(z)(@m) = Igl azq This implies the lemma. O

Proposition 5.23 is equivalent to the formula

02p

m = Pk, (5.67)

for all k, ¢ € J. The proof of (5.67) is by direct verification. Namely, assume
that & < ¢. Then

(5.68)
o2p a;a50p ikl il 1
02,0z 2lal? <Zdzkdk£dhdk€ Z dkz iedok dog

- o)

edpid; 1 di o
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We also have

(5.69)
= 5<a>(_ , fii l_>:
Pk, 2l Uk, Z d; d]kdkva
ké{lJ}
17 0k ek

= S(a)( % ;i _ Jibk

2|a\dke ”’Zdledekdkz et Z dzédfkdkl

fZix
TR
dé,idi,kdk,é

_ Gagap ( Z sz fiok fiin )
= 2 4 : T :

2|al2dy. ¢ di.e diedy, kdkz o diede 1 dy i ey deid; kdi.e

Comparing (5.68) and (5.68) we conclude that (5.67) holds if k < £. Assume
that k = £. Then

82P a5 fzzj k

— = 2 5.70
57 = 2 P ., (5.70)
ke (i} o

We also have

Pht = 2\a| (@( by ddém Z d;, ddk ”W‘) (5.71)

k,08m & ik ki
mé{k.e} kg0

1 fi ik dy dy
- — oJ 5(@)( P 5 B )
ZJ: 2|al d; jd; kdk.i deedip ™" diedyy 7
!

_ Z a;a;a fi%j,k (7 dyi I %)
< 2lalPdie dijdjkde; N ik djk

i <j

kg{i g}

2 2
Z aiajap  Fije  derdiy Z aiajag Tijx
2 . . T 2 2 32
— 2l|al*dye dijdjkdy,i dipdjk —  2la|* dj,di;
kg{i,j} kg{ij}

Comparing (5.70) and (5.71) we conclude that (5.67) holds for k = ¢. The
proposition is proved. O

Both functions |a[3P(z)/4! and P(z) satisfy the same equation and
both functions are homogeneous polynomials in 2 of degree four. Hence
la|> P(2)/4! = P(z). Thus the proposition implies the theorem. O
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The period map ¢ : C* — A — C™ — A is a polynomial map in z of
degree two with respect to the combinatorial connection.

The space Sing V' has distinguished bases labeled by k € J. The basis
corresponding to k consists of the vectors v; ; such that 1 <i < j < n and
k ¢ {i,7}. Such a basis defines coordinate hyperplanes in Slng V.

LEMMA 5.25. — The period map sends the discriminant A C C" to the
union Ay C Sing V' of all coordinate hyperplanes of all distinguished bases
in Sing V.

Proof. — The period map is given by the formula g(2) = I |2 Z T Jz;;:dk v,
where the sum is over all pairs ¢ < j such that k ¢ {4, j}. Thus the functions

Flin
di jdj kd,q
rially flat) basis. The lemma follows from this description of the coordinate
functions. O

LEMMA 5.26. — For z € C™ — A, the kernel of the differential of the
period map is two dimensional. The kernel is spanned by the vectors

are the coordinate functions of the period map in this (combinato-

> dj0;, Qe (5.72)
J#i
Any two of these vectors are linearly independent. O

Introduce the potential function of second kind

~ 1 a;a;aL
Plzsiz) = 4 ) m‘f%j,klog Jigie- (5.73)
TIi<j<k<n ©IJk

THEOREM 5.27. — For any mg,...,m4 € J we have

PP = ([2]eon [2) ) . 67

8Zm0 e 0Zm, fmo Jma z

Theorem 5.27 proves Conjecture 3.14 for this family of arrangements.
If my # mo and ms # my, equation (5.74) takes the form

(@) >°P
S (Kmo (Z)UmhmZ’ U’m37m4) = dml,mz dm37m4 m(Z) (575)
COROLLARY 5.28. — The matriz elements of the operators K;(z) with
respect to the (combinatorially constant) vectors v;; are described by the
fifth derivatives of the potential function of second kind.
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Notice that
lal* o*pP

a
St (Umlam2’vnl37m4) = dimy,maimg,my ar

! Ozmy - .. O2m, (), (5.76)

where P(z) is the potential function of first kind, see Theorem 3.11.

Proof of Theorem 5.27.— We have the relation
any ¢ € J, see (5.36), and the relation

> d; ‘iazlip(z) =0 (5.77)

,Ja
2i OZm, ...0%
jeJ J my ma

jesd [j]zOfor

for any my,...,myq,t € J. By using these two relations and by reordering
the set J if necessary, we can reduce formula (5.74) to three cases in which
(mo,...,myq) equals (5,1,2,3,4) or (3,1,2,3,4) or (3,1,2,1,2).

Let (mg,...,m4) = (5,1,2,3,4). Then BZLP(Z) =0 and

02y

(8] oo [22],12)) = S (Do

B di2
dy,2d3,4f51,2

Let (mg,...,mq) = (3,1,2,3,4). Then azmﬂ(z) =0 and

S(a) (a5v172 + a1V2,5 + azvs5 1, 1)3,4) =0. (578)

PR
({jc:ﬂ L {;:ﬂ [1](2:))2 i 2d345(a)(K3( 2)v1.2,03.4)

- #Z%MS(“) (a3vi2 + a1v2,3 + a2v3,1,v3.4)

- % (O+a azﬁf\% a2 a1|C;3‘CL4) =0. (5.79)

Let (mo,...,m4) = (3,1,2,1,2). Then 5— o°P (z) = ;49295 and

< 0Zmy d1,2f1,2,3
amo} . {am“] 1 z) = 1 S (K3(2)vy 9,0
(722 e oms [ 0), = grgs 8 sl o)
= Lg(a)(agvm + a1v2,3 + agv3,1,v1,2)
di2di2f31,2
B di o u a1a2 3 i¢01.2y 4 g 210208 L a1a2a3)
= 3 1 2
di2d1 23,12 |al |a| |a
a1a20as3
= " 5.80
di2f1,2,3 (5.80)
The theorem is proved. O
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5.9. Frobenius like structure
Consider the quotient M of C™ by the two-dimensional subspace, which
is the kernel of the period map, see Lemma 5.26. Let 7 : C* — M be the

natural projection. Then all our objects descend to the quotient and form
on M — w(A) a structure which we will also call a Forbenius like structure.

6. Generic arrangements in C*

6.1. An arrangement in C" x C*

Consider C* with coordinates ¢1, . .. ,tlgg, C™ with coordinates z1,..., zy,.
Fix n linear functions on C*, g; = > _, b"tm, j € J, b7 € C. For
i1,...,1, C J, denote

k
dil _____ iy — detam:l(b;’;). (61)
We assume that all the numbers d;, ... ;, are nonzero if i1,...,1; are distinct.

In other words we assume that the collection of functions g;,5 € J, is
generic. We define n linear functions on C" x C*, fi=z+g;,jeJ In
C" x C* we define the arrangement C = {H; | f; =0, j € J}.

For every z = (z1,...,%,) the arrangement C induces an arrangement
C(z) in the fiber of the projection C™ x C¥ — C™ over z. We identify every
fiber with C*. Then C(z) consists of hyperplanes H;(z),j € J, defined in C*
by the equations f; = 0. Denote U(C(z)) = C¥—U;c;H;(z), the complement
to the arrangement C(z).

The arrangement C(z) is with normal crossings if and only if z € C*— A,

A= U{i1<~~<ik+1}CJHi17~--,ik+1a (62)
where Hy, .. ;... is the hyperplane defined by the equation f;, . ;. ., =0,
k41
-1
fil ..... tht1 Z(_l)m Zimdil ..... A T (63)
m=1

6.2. Good fibers

For any z € C" — A, the space A*(C(z)) has the standard basis
(Hi, (2),...,H;, (), 1 < iy < - - < i < n. The space F*(C(z)) has the
standard dual basis F(H;,(2),..., H;, (2)). For 2!,2%2 € C* — A, the com-
binatorial connection identifies the spaces A*(C(z')), F*(C(z')) with the

ik
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spaces A¥(C(2?)), F*¥(C(2?)), respectively, by identifying the corresponding
standard bases.

Assume that nonzero weights (a;) ;e are given. Then each arrangement
C(z) is weighted. For z € C™ — A, the arrangement C(z) is unbalanced if
la|] # 0. We assume that |a| # 0.

For z € C" — A, we denote V = F*(C(z)), V* = (FF(C(2))* = A¥(C(2)),
ivoin = F(Hiy (2),...,H;, (2)). For any permutation o € Xj, we have
Fio‘(l) ----- io(k) — (_l)UFil ----- i Ifv= Zl<i1<~~<ik<n Civ,..oyinFiy ... iy, 18 & vec-
tor of V, we introduce ¢;, ... 4, forall¢y,...,%; € J by the rule: Cig (1)

(—=1)%¢4,,... i, - The contravariant form on V is defined by

o(k) —

SO(E, i Fi ) = 0, if {iv, ... iny # {i1,...,ir}, (6.4)
k

SE, iy Fiiy) = Haz‘n”
m=1

the singular subspace is defined by

Sing V' = { E CiyoovinFir e | E A5 Cjjy,jior =0

1<i1 < <ip<n jeJ

for all {j1,...,jk_1} C J}. (6.5)

By Corollary 2.8, the restriction of S(*) to Sing V' is nondegenerate. Denote
(Sing V) the orthogonal complement to Sing V with respect to S(*). Then
V = Sing V @ (Sing V)*. Denote 7 : V — Sing V' the orthogonal projection.

LEMMA 6.1. — The space (Sing V)* is generated by vectors

ZFj»j17~~»7jk71, (6.6)

jeJ
labeled by subsets {ji,...,Jk—1} C J. O
For distinct 41, .. .,%x, we define the vector v;, .. ;. € V by the formula

U5

k
aim
Voo = Fliy i — E al E Fir it Gyt (6.7)

— g
We have vi, ... i,0) = (=1)%v4, .. iy Set vy,
distinct.

i = 0if i1,...,9; are not

.....
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LEMMA 6.2. — We have the following properties.

(i) dimSingV = (" 1).

(i1) For distinctiy, ..., i, we havev;, ;. € SingV andv;, . ; = 7(F;, .
(i) For {ji,...,jk—1} C J, we have 3 ;c ;v j. ;= 0.
(iv) For any m € J, the set vy, 4, 1 < i1 < -+ < ip < n, m ¢

{#1,...,9k}, is a basis of Sing V.
O
LEMMA 6.3. — We have

S (Viy s Vjr ) = 0, if i,y in} O {1k} < k=1,

k+1
a;
S(a)(vi1,~~7ik—1;ik7vilwnyik—lyikJrl) = H£|;| =
for distinct iy, ... ik—1,1k, Ikt1,
k
(e (inonniny @ie) Iy @i

S Ui i) = TS (6.8)
O

Proof. — The lemma is a straightforward corollary of (6.4) and (6.7). O

6.3. Operators K;(z): V -V

For any subset {i1,...,ix41} C J, we define the linear operator L;, ., ., :
V' — V by the formula
k+1
¢ _
i i P (_1)mZ(_1) ai, By oo i m=1.. k+1,(6.9)
(=1
Fj ... — 0, if {j1,...,Jk} is not a subset of {i1,...,ix1+1},

see formula (3.5). Notice that L;
U5y Tkt

1reing: does not depend on the order of

We define the operators K;(z) : V — V, i € J, by the formula

Zf“’ U Lty ins (6.10)

where the sum is over all unordered subsets {iy,...,ix} C J — {i}, see
formula (3.6). For any ¢ € J and z € C” — A, the operator K;(z) preserves
the subspace SingV' C V and is a symmetric operator, S(® (K;(z)v,w) =
S(@) (v, K;(2)w) for all v,w € V, see Theorem 3.2.
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LEMMA 6.4. — We have

d k+1
19, eyik
Kil (Z)Ui27“"ik+l - f z- k.ﬂ Z(_l)z—‘rlai’fvil,~~7iAzw~,ik+1’
21,2253k 41 /=1
ifiv & {iz, . sikg1l,s
Kil (Z)vil,imm,ik = = Z Kil(z)vm,iz,-u,ik' (611)
mg{il,...,ik}

Proof. — The operator K;(z) preserve the decomposition Sing V@& (Sing V)*+
Hence

Kil (Z)/Ui21“~7ik+l - Kh (Z)W(F‘i27~--,ik+1) = W(Kil (Z)Fiz,---,ik+1)
4 k+1
12,0k )
- ﬂ-( . 2, kA+1 Z(*l) +1aigFil,_“7z?,...,ik+1)
fll,l2,~~~ﬂk+1 /=1

d: ) k+1
12,00yl
_ 2 k41 (*1)”1@@%1 -

f4 . . RV
2150255tk +1 g q

O

The differential equations (3.14) for flat sections of the Gauss-Manin
connection on (C™ — A) x Sing V' — C" — A take the form

oI
k= (2) = K;(2)I(z), jed (6.12)
0zj
For generic x all the flat sections are given by the formula
IV(Z)Z Z / H fam/rc 11, 7f dty A. . A dtk> s

1< < <ip<n (=) me Tk
(6.13)
see formula (3.12). These generic « can be determined more precisely from
the determinant formula in [23].

6.4. Algebra As(2)

The master function of the arrangement C(z) is

t) = a;log f;. (6.14)

jeJ

The critical point equations are

0 ; Qj )
§:ijffj:o, i=1,...,k (6.15)
13 jeJ
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Introduce H;,i =1,...,k, by the formula
0®  H;
0z HjGJ fj'

(6.16)

The critical set is

Colz) = {teU(C(z))|g—i(z,t):o,izl,...,k}: (6.17)

= {teU(C(2)) | Hi(z,t)=0,i=1,...,k}.
The algebra of functions on the critical set is

Agp(z) = (C(U(C(z)))/<g—i, o g—i> = C(U(C(2)))/{H,..., Hy). (6.18)

LEMMA 6.5. — We have dim Ag(z) = (";1) O

Introduce elements wy;, .. ;. € Ag(z) by the formula

d
Wiy, ig = @iy -0 [4} (6.19)
s k 1 k fll o fzk
LEMMA 6.6. — We have wi, ;. ..i,q) = (—1)%w;, .4y, for o € Xy and
Zwilv'uxik—hi = 0. (6.20)
icd
O
Proof. — The lemma follows from the identity
i dfs i dfi, dd
@ dliy g G Wiy 42 (6.21)
fi1 fik_l @
iy, i1
= Zail c Q104 17A%kihdtl A= ANdt + Z de A g,
= Jir oo Jo=1ti =
where p; are suitable £ — 1-forms. O
The elements [%L i € J, generate Ag(z) by Lemma 2.4.
LEMMA 6.7. — For iy,...,ix_1 € J, we have the following identity in

Aa(2),
Z iig,iny [ﬁ] =0. (6.22)

icd fi
O

- 192 —



Arrangements and Frobenius like structures

Denote I = {i1,...,ix—1}. Relation (6.22) will be called the I-relation.
LEMMA 6.8. — We have in Ag(z),

(6.23)
a; diy. . A
194yl
[i} ¥z Wig,.igyr  — : 2‘ k‘+1 Z(fl)l+1a”wil et
fll f'Llﬂ2;~~-7'Lk+1 =1 e
ifin & {i2, ... kg1t
a a
[f_“} ¥z Wiyig,niy = 7 Z {f“} *2 Wmia, ... iy,
. m@{in,in} 0
O
Proof. — The first formula follows from the identity
df; df;
fir o\ Wi (6.24)
fir finin
k+1 T
_ dfil,...,ik+1 A Z(_l)m_lﬁ Aoei A dfim A-- dflk+1
Jirsa — fix im fzk+1
O
LEMMA 6.9. — Fiz i9 € J. Then every monomial M = H]EJ [ }Sj €
Aa(2) with 3. ;8; = k can be written as a linear combination of ele-
ments wy, . ;. where iy < -+ < iy and ig ¢ {i1,..., ik} with coefficients

independent of z.

Proof. — Let us write

a;, %0 ra;, 141 a; 1%m
M= [ “’} [i} [ﬂ} : (6.25)
flo fjl fjm
where ig, j1,. .., jm are distinct, €;,,¢;,,...,¥;, are positive and £;, + £, +

4l =k

If ¢;, > 0, then let us decrease ¢;, by one. For that let us use an I-
relation of formula (6.22), where I = {p1,...,pk—1} is any subset which
contains ji,. .., j, but does not contain iy. By using (6.22), we can write

[%rio _ _[%}eio—l( Z dipy,...pr_1 [%]) (6.26)
fio fio i¢{io,p1,...,Pk—1} di Pe—1 i
Substituting this expression into M, we will present M as a sum of mono-

mials M’ with the degree of [;ﬂ] equal to ¢;, — 1. In any monomial M’
20
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the degrees of initial factors [ fj* ] are the same and one new factor appears.

Now to each of the monomials M’ we will apply the same procedure until
the monomial [ ‘0] will not appear in each of the constructed monomial.

Then we will decrease those degrees of ;. ,...,¢; which are greater than
J1 Jm
one. In the end we will present M as a sum of monomials of the form
[;1] [f"} where iy < -+ < i and i & {i1,...,%%}. Such a monomial
i1 'Lk

O

equals ﬁwih_“ ;

LEMMA 6.10. — Fiz ig € J. Then every monomial M =[], [ ]S] €

Ag(z) can be written as a linear combination of elements w;, .. i, where
i1 < - <ig and ig & {i1,... ik} If ZjGJ sj # k, then the coefficients of
the linear combination may depend on z.

Proof. — The lemma follows from Lemmas 6.9, 6.8, 3.4. O
THEOREM 6.11. — Fiz ig € J. Then the (";1) elements wy, .., with
i1 < - <ip and ig & {i1,...,ix}, form a basis of Ag(z).

Proof.— The elements [‘}—], i € J, generate Ag(z) by Lemma 2.4. Each

polynomial in [f ] i € J, is a linear combination of ( X ) elements w;, ..,
with iy < -+ < i and ig & {i1,...,ix} by Lemma 6.10. But dim A¢(z) =

(";1) The theorem follows. O

THEOREM 6.12. — For ig € J, the identity element [1](z) € As(2) sat-
isfies the equation

1 K
M) = o D Wiy oy = (6.27)
lal® T Mo D™y
0@ i1 in}
k k
1 o (—D)™2id, o~ )
= W Z m 10,y lmyeenslk Wi,

k
wtin ity ool

Proof. — Our goal is to prove that the decomposition of

oSl - Z (L) T

s1+-+sp=Fk jeJ
(6.28)

with respect to the basis (wi,, i, 1 < -+ < ik, to ¢ {i1,...,9}) equals
the right hand side in (6.27). For every monomial [[,., zjj we need to
show that (31 § sn) [es [‘;—;]Sl equals the coefficient of that monomial in

.....

(6.27). For that we need to express [],; [‘;—J] *7 as a linear combination of
J
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basis vectors. To obtain this linear combination we will eliminate from this
product the factor [;—0]50 and will make the powers of all other factors
)

not greater than 1. This will be done by using the I-relations of formula
(6.22) like in the proof of Lemma 6.9. At every step of that simplification
we will use one of the I-relations. Although the steps of this procedure
are not unique, the resulting linear combination is unique. To prove that
the linear combination of basis vectors representing (Slkgn) HjEJ [%]51
equals the coefficient of [];.; z; in (6.27), we will fix an arbitrary basis
vector wj, .. i, and choose a particular sequence of I-relations so that the

coefficient of w;, ... ;, in the decomposition of (31 k s ) HjeJ [ﬁ]sj will be

) £
Tw;y e 10 (6.27).

k

equal to the coefficient of []

El
jeg %j

By comparing the coefficients of a monomial [[,; z;j in (6.27) and
(6.28), we observe that the coefficients have common factors ﬁ(sl r o)

so we will ignore these common factors in our next reasonings.

Before explaining the choice of the [-relations for an arbitrary pair
(Iljes z;j , Wiy, ) let us consider two examples.

As the first example, we consider a monomial M = z;, ... 2,9 < -+ <
ik, G0 & {41, .. 2, . The coefficient of M in (6.28) is

[ail} [%] = #w = ;w _
fi1 fik dily...,ik otk (71)0d;07i1,-.<,ik 115050k
Hk = (_1)md- i .
= = bt Wiy,... ik (629)

k
Hm:O(_l)mdio,...,i,:,4..,ik

which is the coefficient of M in (6.27).

As the second example we consider a monomial M = z 2, ... 25, _;,
where g, ji, ..., jk—1 are distinct. The monomial M appears in (6.27) in
the coefficient of a basis vector w;, ;. if {j1,...,dk—1} C {41,...,%}. So

we may assume that for some 1 < ¢ < k, we have M = z;, Hlfnzl %, In
m#£L '

(6.28), the coefficient of M is [;0] H]fnz [;—m] By using the I-relation for
0 m tm

I ={io,%1,...,%,...,1}, we transform it into

k . .
o 1 D DY (e

PR 7AC TRV FRR %
iy, -2 CARSIIR VU 7% S St
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We choose the summand in (6.30) corresponding to m = 4. This sum-
mand is

k d = k

_ I | |:a'7f'mi| Ley21 sVl yk |:a/l£i| | I |:al7n:| 7/1; Byl
m=1 fim PRI fid m=1 fim ) 10,8100 0y00 5000k
)

oo (-1)"d;,

m#£l yimyee et

= Wi i
k LERPON VNN IR
[lnmo (D™ i
which is the coefficient of Mw;, . ;,... 4, in (6.27).

Now let M be an arbitrary monomial of degree k in variables 21, ..., z,.
The monomial M appears in (6.27) in the coefficient of a vector wZl i 1f
there is a subset {p1,...,pr} C {1,...,k} such that M = 2;° [[,_; zf;”m
Z:n,:O Sm = k, and all numbers S$1y...,8, are posmve Denote

{a1, -, qe—r} ={1,...,k} — {p1,...,pr}, the complement.

In (6.28), the coefficient of M is P = [a”’] . [;pm } " To express
’0 “Pm

this product as a linear combination of the basis vectors we need to apply to
this product [-relations k£ — r times. To calculate the coefficient of w;, . ;.
we first apply the I-relation with I = {i/(\),il, ... ,z'/q\l, coyigt C o, .-y}
and decrease the degree of [72 ] by 1,

dmfn{q\lz m
P[] [T et

105,00,81 50ensbgq yeeert
m¢{20, 1q1’ 1k} 0520521 5++52gq 5tk

In the next steps we will simplify further the first factors of this expression.
After the future simplifications the only term of this sum that can give
Wi, ... i, 15 the term with m = 74, , which is

a o—1 " a; Sm d. -~ . —~ Qs
|: 10] H [ 1pm :| 2q1 520521 5-+5qq -2tk |: tqq ] (6 31)
m=1

f7‘0 fipm io,{g),il,...,’i/(l\l,...,ik fi‘ll
I
_ |:ai0 ] so—1 | | |:aipm } m dio,i17~--,ik {airu :|
. . — q1 —~ . :
fzo me1 fzpm ( 1) dio,ihm,iql,...,ik fqu

We will call this term the main term. Now we apply the I-relation with
I={ip,01,..., 9,59} C {0,...,ix} and again decrease the degree of

[(;“] by one. After the second step the only term of the obtained sum that
ig
may produce the vector wj, ... ;, is the term
[%} so! ﬁ |:a/i}7m :| S ' diAo,ih---,ik |:ait11 } diA(J7i1»--<7ik
in m=1 fipm (_1)1“ dio,il,...,i;\l,...,ik fitn ( )qzdzo,zl zq2,...,i;€
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This will be our main term after two steps of the simplifying procedure. We
will repeat this procedure to kill all factors [;—"] After s;, steps the main

term will be ’

T So d/\ .
H %m } H 50,8150 {%m }
m=1 flpm m=1 (_1)qmdi0,i1,...,i/q-;,4,,,ik fiqz
Now we will apply the I-relation with I = {4, ..., i;;, e ,gm:, cey ik} C
{40, ..., } and decrease the degree of [;pl ] by one. After this procedure
p1

the main term will be

ip, 1517 4 ip 5™ i d?,i et g
G LG e

m=1 20,0155 Tqum »---2 Tk
(_1)p1d_ . T~ . a;
% 20,01 50+30py ootk "dsg+1
( l)q%“d J— fl
10,81 5. ﬂqg F100 ik dsg+1

Now we will be decreasing the degree of [ 7, ] to make it 1. Then we will
continue this procedure of simplification, which will end with the main term

( ﬁ [aD (=1)°g ;. ) Tl (1P dy ) |
ot Jin anzo(_l)mdio,.. Gomseeesile

m=1 Hlm,y

After replacing the first factor d~

10,91,

k a; .

serve that the second factor equals the coefficient of Mwj, . 4 in (6.27).
The theorem is proved. O

6.5. Canonical isomoprhism

The set of vectors v;, . 4,1 <1 <--- < i, < n,is a basis of Sing V, by
Lemma 6.2. For z € C" — A, the set of vectors w;, . i.,1 <t <- - < <
n, is a basis of As(z), by Theorem 6.11.

THEOREM 6.13. — For z € C™* — A, the matriz of the canonical isomor-
phism a(z) 1 Ag(z) — Sing V' with respect to these bases does not depend
on z.

Proof.— For 1 <m; <---<mp <nand 1< <- -+ <i, <n denote

1 1 k
Biy, .y = Z Resp, — [ees fo ) (6.32)
pECs(z) HJ 1 fm] H] 1 f’LJ Hl 1 H
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Then

k
dml ~~~~~ mkdil ----- ik Hj:l Am; B

(27‘(‘\/—_1)k7 L1452k

[T PR

O‘(Z)(wml,-..,mk) = Z
1<y <+ <ip<n.
(6.33)
see formulas (2.19), (2.22). In order to prove the theorem we need to show
that every B;, . ;. does not depend on z.

The differential form

_— 1 1 [Ty 17 dty A -
Hj:lfmj H] 1fl7 Hz 1H

has poles only on the hypersurfaces H; = 0, ¢ = 1,..., k. The poles are of
first order. To calculate B; . ;, we mneed to take the residue
1 = Resm,=0,i=1,.. k—1w of the form w at the curve C = {H; = 0,7 =
1,...,k — 1} and then take the residue of the form v on the curve C at the
points where Hj = 0. This is the same as if we took with minus sign the
residue at infinity of the form v on the curve C. That residue at infinity
(up to sign) can be obtained differently in two steps. First we may take the
residue of w at the hyperplane at infinity (denote the residue by ¢) and then
take the residue of ¢ at the points of the set {H; =0,i=1,...,k — 1}.

<A dty, (6.34)

So to calculate B;, ... ; we first calculate ¢. The coordinates at infinity
are u; = t1/tg, e Up—1 = tg_1/tr, up = 1/tr.. We have f,, = (b}, u; +
+ 0F Vg1 4 bE + zpur) /uk. Denote fo(uy, ... up_1) = bt uy + - +

bk luk 1 + 0. Fori = 1 .., k, we have H; (ul/uk,..., uk,l/uk,l/uk) =

H (wy, ... Ug— 1,u;€)/u,C , where I:[i(ul, ..., Ug—1,Ug) IS a polynomial.
Denote Hl(ul, ceyug—1) = Hi(ui,...,uk-1,0). The polynomial
H;(uy,...,ug—1) does not depend on z.

We have dt1 A --- Adty, = — k+1 duj A -+ A duy. By counting all orders

of uy in factors of w we conclude that the form w has the first order pole
at the hyperplane at infinity. The residue ¢ of w at the infinite hyperplane
equals

1 Il er
+271/—1 < d A Adug_q. (6.35)
" H] 1fmj | | " o

This form does not depend on z. Now we are supposed to take the sum of
residues of ¢ at the points of the set {H; = 0,i = 1,...,k — 1} and the
polynomials f]i also do not depend on z. Hence B, . ;, does not depend
on z. The theorem is proved. O
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Define the naive isomorphism v(z) : Ag(z) — Sing V' by the formula
i1yeein T Vig, i (6.36)
for all i1,...,4; € J.

LEMMA 6.14. — The map v(z) is an isomorphism of vector spaces and
for everyi € J and w € Ag(z) we have
v(z) {%] x, w= K;(2)v(z)(w). (6.37)

K2

Proof. — The map v(z) is an isomorphism by Lemma 6.2 and Theorem 6.11.
Formula (6.37) holds by Lemmas 6.4 and 6.8. O

Introduce the linear isomorphism
¢ =a(2)v(z)"" : SingV — Sing V. (6.38)

By Theorem 6.13 and Lemma 6.14 the isomorphism ¢ does not depend on
z. By Theorems 6.13 and 3.5 the isomorphism ( commutes with the action
of operators K;(z) for all i € J and z € C* — A, [K;(2),¢] = 0.

THEOREM 6.15. — The isomorphism ( is a scalar operator.

Proof.— By Lemma 4.3 in [27], the eigenvalues of the operators K;(z) sep-
arate the eigenvectors. The theorem follows from the fact that the operators
K;(2) have too many eigenvectors, and ¢ must preserve all of them. More
precisely, let i1, ...,ix11 € J be distinct. Assume that z € C" — A tends to

a generic point z° of the hyperplane defined by the equation f;, . 4, =0
It follows from Lemma 6.4 that the vector
k+1
0+1 :
Tiq ..., ihyr = Z(—l) + G’inl,...,i},...,iwrl S SlngV (639)
=1
is the limit of an eigenvector of operators K;(z) as z — 29. Hence, Ty, i

is an eigenvector of ¢. It is easy to see that the vectors x;,, . ;. ,, generate

Sing V' and for distinct i1, ..., 752 we have
k+2
Z(_l)gaéxil,4--7547---7%:2 =0. (6'40)
(=1

This equation implies that ( is a scalar operator on the subspace generated
by the vectors z, -~ . | £=1,...,k+ 2, and this fact implies that
is a scalar operator on Sing V. ]
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COROLLARY 6.16. — There exists ¢ € C* such that a(z) = cv(z), that
18,

(6.41)

foralliy,... i € J. Ol

One may expect that ¢ = (—1)F, see Theorems 4.8 and 5.15*.

The canonical isomorphism a(z) induces an algebra structure on Sing V'
depending on z € C"™ — A.

COROLLARY 6.17. — For any ig € J, the identity element {1}(z) of that
algebra structure satisfies the equation

k

{1}(z):W > - folLet Vipoins  (6.42)

= T (-D)md. ~
ip<-e<ig m=0 205 ylmse sk

where ¢ is defined in Corollary 6.16. (I

THEOREM 6.18. — Conjectures 3.7 and 3.8 hold for this family of ar-
rangements.

Proof.— Conjecture 3.8 is a direct corollary of Theorem 6.13.

LEMMA 6.19. — Forr < k and my,...,m, € J, we have

or{1}

OZmy - .- 02,

(z):k(k_l)"'(k_r+1)a(z)(H[%D. (6.43)

lal” P

Proof.— The proof is by induction on r. For r = 0, the statement is true:
{1} = {1}. Assuming the statement is true for some r, we prove the state-
ment for r + 1. We have

o) or{1} . ik(k;—l)...(k—r—&—l)()(ﬁ{amib

8_;:]-82,,11 Oz, - 0z; la|” A palen Fms
O k(1) (k—r+1) Tam] 1 IR
8Zj |a|7" Oz(Z)(g |:fm1:| |a|’f—7" (ZEZJ Zl[fj) )

(*) ¢ = (=1)* by [29, Theorem 2.16].
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- Saree (2] - R e ]
XW%(Z {fj)k ")
k(kz—l)?ij';f—kl)(k { } [;:}

=1

Let us finish the proof of Conjecture 3.7. We have
0 o {1}

B2 Do o )

:Qa( )({ajb k(k—l)...(kfr+1)a(z)( {ami})

|al fi |a|” 5 L,
k—r o{1}
= K —(2).
|al (2) OZmy -+ - OZm,. (2)
O
Introduce the potential function of second kind
P(z1,...,2n) (6.44)
c? Hi:ll @iy 2%k
N (2k)! Z k+1 1o . 15Tkt log fir,..ins1s

IS << S LU= ) i
where c is the constant defined in Corollary 6.16.

THEOREM 6.20. — For any mg, ..., max € J, we have

92k+1p () = (_1)k(|:am0:| . |:am2k:| [1](2)) . (6.45)

O0Zmyg - - - 0Zmo, fmeo Frman 2

Theorem 6.20 proves Conjecture 3.14 for this family of arrangements.

If mq,...,my are distinct and my1, . . ., mak are distinct, equation (6.45)
takes the form

s (ng (Z)'Uml,‘..,mk ) Umk+1,-..,m2k) (646)
82k+1p
—d d _E

MLy M M 41,50, M2k
OZmyg - - - 0Zmoy
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COROLLARY 6.21. — The matriz elements of the operators K;(z) with
respect to the (combinatorially constant) vectors v, ;. are described by the
(2k + 1)-st derivatives of the potential function of second kind.

Notice that

|a‘2k aZkP

= dm m dm 1 m ) 6.47
o man g gy, - h (647)
where P(z) is the potential function of first kind, see Theorem 3.11.
Proof.— We have the I-relation ZjeJ Ajiroin s [‘}—j] = 0 for any
i1,...,0k—1 € J, see (6.22), and the relation
9 kP
Qiigin 17— (2)=0 (6.48)
j;] "0z 02y .- 02y,
for any mq,...,mok,41,...,ik—1 € J. By using these two relations and
by reordering the set J if necessary, we can reduce formula (6.45) to the
case in which (my,...,my) are distinct, (mg41,...,mox) are distinct, and

mo & {mq,...,my}. After that we need to check identity (6.46). That is
done by direct calculation of the left and right hand sides, cf. the proof of
Theorem 5.27.

For example, the most difficult case is if (mg,...,mor) = (K +1,1,...,
k,1,...,k). Then
92k+1p k+1 .
2 - ()=¢ ka=1a (6.49)
DZmg -+ - OZmay (=D)*di,. wfi,. k41
and
-1 k([am"} Ky ook {—am%}, 1](= )
(1) o e [ [1(z))
1
=S (K1 (2)v1, ks v1, k)
i,k
1 k
— 2 (a) ¢ N
=c¢—5 -1
¢ di,. kS0, 0k (311, +;( ) AV 11,5 VLisk)

k41 k41
— 2 1 (Hm:l am Z as + [[,=am Z ae)
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