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Toric surfaces, vanishing Euler characteristic
and Euler obstruction of a function

Tháis Maria Dalbelo(1), Nivaldo de Góes Grulha Jr.(2)

and Miriam Silva Pereira(3)

ABSTRACT. — We define the vanishing Euler characteristic of a normal
toric surface Xσ , we give a formula to compute it, and we relate this num-
ber with the second polar multiplicity of Xσ . We also present a formula
for the Euler obstruction of a function f : Xσ → C and for the difference
between the Euler obstruction of the space Xσ and the Euler obstruction
of a function f . As an application of this result we compute the Euler
obstruction of a type of polynomial on a family of determinantal surfaces.

RÉSUMÉ. — Nous définissons la caractéristique d’Euler évanescente d’une
surface torique normale Xσ , nous donnons une formule pour la calculer, et
nous associons ce nombre avec la seconde multiplicité polaire de Xσ . Nous
présentons aussi une formule pour l’obstruction d’Euler d’une fonction
f : Xσ → C et pour la différence entre l’obstruction d’Euler de l’espace
Xσ et l’obstruction d’Euler d’une fonction f . Comme application de ce
résultat nous calculons l’obstruction d’Euler des polynômes d’un certain
type sur une famille de surfaces déterminantales.
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1. Introduction

One of the most appealing aspects of toric varieties is the way that many
questions that are difficult for general varieties, admit simple and concrete
solutions in the toric case. The problem of finding resolutions of singularities
is a perfect example [11].

We will work with the specific cases of toric surfaces and functions on
toric surfaces. Let Xσ be a toric surface with isolated singularity associated
to the cone σ ⊂ R2. This type of singular surface has many special prop-
erties, one of them, that we do not find in general, is that this singularity
admits a smoothing associated to its minimal resolution [23]. Let Y be the
generic fiber of this smoothing. Using continued fractions techniques, we
give a very simple formula to compute the vanishing Euler characteristic
of Xσ denoted by ν(Xσ) and we prove that ν(Xσ) is related to the polar
multiplicities.

Since that Xσ is a normal singularity, it follows from a result of Greuel
and Steenbrink [15] that β1(Y ) = 0, where β1 is the first Betti number, and
as Y has the homotopy type of a finite CW-complex of dimension � 2, one
has dimH2(Y ) = χ(Y )− 1. Therefore, the vanishing Euler characteristic of
Xσ equals the middle Betti number of Y , then in the case that Xσ has a
unique smoothing, this number coincides with the Milnor number.

The Milnor number was defined by Milnor in [19]. Initially this invariant
was associated to germs of analytic functions f : (X, 0) → (C, 0) with iso-
lated singularity, and to study isolated hypersurfaces singularities. However
this invariant is well defined in many others contexts, for instance curves
[8], isolated complete intersection singularities, or ICIS [16], [17] and deter-
minantal varieties with codimension two [22]. When f : (Cn, 0) → (C, 0) is
a germ of analytic function with isolated singularity at the origin the Milnor
number of f , that we denote by µ(f), coincides with the number of Morse
points of a Morsification of f .

Let us denote by (X, 0) a germ of analytic singular space embedded in Cn

and f : (X, 0)→ (C, 0) a germ of analytic function with isolated singularity
at the origin. In this situation, Brasselet, Massey, Parameswaran and Seade
introduced an invariant associated to f called the Euler obstruction of f
[5]. In [27] the authors proved that the Euler obstruction of f is, up to
sign, the number of Morse points of a Morsification of f on the regular part
of X. Hence this invariant can be seen as a generalization of the Milnor
number of f . In the last section, we give some formula to compute the
Euler obstruction of a function f : Xσ → C with isolated singularity at
0, and also for the difference between the Euler obstruction of the space

– 2 –



Toric surfaces, vanishing Euler characteristic and Euler obstruction of a function

Xσ and the Euler obstruction of a function f , that as noticed in [5, 9] has
interesting meanings, even if f has a non-isolated singularity.

2. Background Material

We present notions that we will use in the next sections. We recall first
some objects developed to study the structure of toric surfaces. We describe
their singularities and also present two examples.

2.1. Toric surfaces

For an overview about toric varieties see [11].

Definition 2.1.— Let σ ⊂ R2 be a rational, strongly convex, polyhedral
cone and let

σ̌ =
{
v ∈ R2; 〈a, v〉 � 0,∀a ∈ σ

}

be the dual cone. The corresponding lattices are denoted by N ⊂ R2 and
M ⊂ R2, respectively. Then the affine toric surface is defined as Xσ =
SpecC[σ̌ ∩M ].

Remark 2.2.— As generally known, the affine toric surfaces are exactly
those affine, normal surfaces admitting a (C∗)2-action with an open, dense
orbit.

A strongly convex cone in R2 has the following normal form that will
simplify our study of the singularities of toric surfaces.

Proposition 2.3. (See [11]). — Let σ ⊂ R2 be a strongly convex cone,
then σ is isomorphic to the cone generated by the vectors v1 = pe1 − qe2

and v2 = e2, for some positive integers p, q which are coprime.

Given a cone σ ⊂ R2, Riemenschneider proved in [23, 24] that the bino-
mials which generate the ideal Iσ are given by quasiminors of a quasimatrix,
where Xσ = V (Iσ). In the following we recall the definition of quasimatrix.

Definition 2.4.— Given Ai, Bi, Cl,l+1 ∈ C with i = 1, . . . , k and l =
1, . . . , k − 1, a quasimatrix with entries Ai, Bi, Cl,l+1 is written as

A =



A1 A2 · · · Ak−1 Ak

B1 B2 · · · Bk−1 Bk

C1,2 · · · Ck−1,k


 .
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The quasiminors of the quasimatrix A are defined by

AiBj −Bi(Ci,i+1 . . . Cj−1,j)Aj

for 1 � i < j � l.

Given a cone σ ⊂ R2 generated by the vectors v1 = pe1−qe2 and v2 = e2,
where 0 < q < p and p, q are coprime, let us consider the Hirzebruch-Jung
continued fraction

p

p− q
= a2 −

1

a3 − 1
···− 1

an−1

= [[a2, a3, . . . , an−1]]

where the integers a2, . . . , an−1 satisfy ai � 2, for i = 2, . . . , n− 1. Riemen-
schneider proved the following:

Proposition 2.5. (See [24]). — The ideal Iσ is generated by the quasimi-
nors of the quasimatrix



z1 z2 z3 · · · zn−2 zn−1

z2 z3 z4 · · · zn−1 zn
za2−2
2 za3−2

3 · · · z
an−1−2
n−1


 .

Where the ai are given by the Hirzebruch-Jung continued fraction of p
p−q .

Moreover, this set of generators is minimal.

Then, if ai = 2 for i = 3, . . . , n− 2, we have that Xσ is a determinantal
surface [22], in particular if the minimal dimension of embedding of Xσ is
4, i. e., if

p

p− q
= a2 −

1

a3

then Xσ is always determinantal and the ideal Iσ is generated by the 2× 2
minors of the matrix

(
z1 z2 za3−1

3

za2−1
2 z3 z4

)
.

Example 2.6.— Let Xσ ⊂ C4 be the toric surface associated to the cone
σ ⊂ R2 generated by the vectors v1 = e2 and v2 = 14e1 − 11e2. From the
Hirzebruch-Jung continued fraction process we have

14

3
= 5− 1

3
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then Xσ = V (Iσ) where Iσ is the ideal generated by the 2× 2 minors of the
matrix (

z1 z2 z2
3

z4
2 z3 z4

)
,

i.e., Xσ is a codimension 2 determinantal surface.

Example 2.7.— Let Xσ ⊂ C5 be the toric surface associated to the cone
σ ⊂ R2 generated by the vectors v1 = e2 and v2 = 4e1 − e2. From the
Hirzebruch-Jung continued fraction process we have

4

3
= 2− 1

2− 1
2

then Xσ = V (Iσ) where Iσ is the ideal generated by the 2× 2 minors of the
matrix (

z1 z2 z3 z4

z2 z3 z4 z5

)
,

i.e., Xσ is a codimension 3 determinantal surface.

2.2. The Euler obstruction and Applications

An important invariant of singular varieties is the Euler obstruction, that
was defined by MacPherson in [18] as a tool to prove the conjecture about
existence and unicity of the Chern classes in the singular case. The Euler
obstruction was deeply investigated by many authors, and for an overview
about it see [2]. Let us now introduce some concepts in order to define the
Euler obstruction.

Let (X, 0) ⊂ (Cn, 0) be an equidimensional reduced complex analytic
germ of dimension d in an open subset U ⊂ Cn. We consider a complex
analytic Whitney stratification V = {Vi} of U adapted to X and we assume
that {0} is a 0-dimensional stratum. We choose a small representative of
(X, 0) such that 0 belongs to the closure of all the strata. We still denote it
by X and we will write X = ∪qi=0Vi where V0 = {0} and Vq = Xreg is the
set of regular points of X. We will assume that the strata V0, . . . , Vq−1 are
connected and that the analytic sets V0, . . . , Vq−1 are reduced.

Let G(d, n) denote the Grassmanian of complex d-planes in Cn. On the
regular part Xreg of X the Gauss map φ : Xreg → U×G(d, n) is well defined
by φ(x) = (x, Tx(Xreg)).

Definition 2.8.— The Nash transformation (or Nash blow up) X̃ of X
is the closure of the image Im(φ) in U ×G(d, n). It is a (usually singular)

– 5 –



Tháıs Maria Dalbelo, Nivaldo de Góes Grulha Jr., Miriam Silva Pereira

complex analytic space endowed with an analytic projection map ν : X̃ → X
which is a biholomorphism away from ν−1(Sing(X)) .

The fiber of the tautological bundle T over G(d, n), at point P ∈ G(d, n),
is the set of vectors v in the d-plane P . We still denote by T the correspond-
ing trivial extension bundle over U ×G(d, n). Let T̃ be the restriction of T
to X̃, with projection map π. The bundle T̃ on X̃ is called the Nash bundle
of X.

An element of T̃ is written (x, P, v) where x ∈ U , P is a d-plane in Cn

based at x and v is a vector in P . We have the following diagram:

T̃ ↪→ T
π ↓ ↓
X̃ ↪→ U ×G(d, n)
ν ↓ ↓
X ↪→ U.

Let us denote by TU |X the restriction to X of the tangent bundle of U .
A stratified vector field v on X means a continuous section of TU |X such
that if x ∈ Vα ∩X then v(x) ∈ Tx(Vα). By Whitney condition (a) one has
the following:

Lemma 2.9. (See [6]). — Every stratified vector field v without zeros on
a subset A ⊂ X has a canonical lifting to a section ṽ, of the Nash bundle
T̃ , without zeros on ν−1(A) ⊂ X̃.

Now consider a stratified radial vector field v(x) in a neighborhood of
{0} in X, i.e., there is ε0 such that for every 0 < ε � ε0, v(x) is pointing
outwards the ball Bε over the boundary Sε := ∂Bε.

The following interpretation of the local Euler obstruction has been given
by Brasselet and Schwartz in [6].

Definition 2.10.— Let v be a radial vector field on X ∩ Sε and ṽ the
lifting of v on ν−1(X ∩Sε) to a section of the Nash bundle. The local Euler
obstruction (or simply the Euler obstruction) EuX(0) is defined to be the
obstruction to extending ṽ as a nowhere zero section of T̃ over ν−1(X∩Bε).

More precisely, letO(ṽ) ∈ H2d(ν−1(X∩Bε), ν
−1(X∩Sε)) be the obstruc-

tion cocycle to extending ṽ as a nowhere zero section of T̃ inside ν−1(X∩Bε).
The Euler obstruction EuX(0) is defined as the evaluation of the cocycle
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O(ṽ) on the fundamental class of the pair (ν−1(X ∩Bε), ν
−1(X ∩Sε)). The

Euler obstruction is an integer.

A Lefschetz type formula for the Euler obstruction was given by Bras-
selet, Lê and Seade. The formula shows that the Euler obstruction, as a
constructible function, satisfies the Euler condition relatively to generic lin-
ear forms.

Theorem 2.11. (See [4]). — Let (X, 0) and {Vi} be given as before,
then for each generic linear form l, there is ε0 such that for any ε with
0 < ε < ε0 and t0 �= 0 sufficiently small, the Euler obstruction of (X, 0) is
equal to:

EuX(0) =

q∑

i=1

χ
(
Vi ∩Bε ∩ l−1(δ)

)
· EuX(Vi),

where χ denotes the Euler-Poincaré characteristic, EuX(Vi) is the value of
the Euler obstruction of X at any point of Vi, i = 1, . . . , q, and 0 < |δ| �
ε� 1.

In the last section we will study two generalizations of the Euler obstruc-
tion, the Euler obstruction of a function, defined in [5], and the Brasselet
number, defined in [9]. Let us recall these two definitions.

Introduced by Brasselet, Massey, Parameswaran and Seade in [5], the
Euler obstruction of a function measures how far the equality given in The-
orem 2.11 is from being true if we replace the generic linear form l with
some other function on X with at most an isolated stratified critical point
at 0. Let f : X → C be a holomorphic function which is the restriction of
a holomorphic function F : U → C. A point x in X is a critical point of
f if it is a critical point of F|V (x), where V (x) is the stratum containing x.
We assume that f has an isolated singularity (or an isolated critical point)
at 0, i.e., that f has no critical point in a punctured neighborhood of 0 in
X. In order to define the new invariant the authors constructed a stratified
vector field on X, denoted by ∇Xf . This vector field is homotopic to ∇F |X
and one has ∇Xf(x) �= 0 unless x = 0.

Let ζ̃ be the lifting of ∇Xf as a section of the Nash bundle T̃ over X̃
without singularity over ν−1(X∩Sε). Let O(ζ̃) ∈ H2d

(
ν−1(X∩Bε), ν

−1(X∩
Sε)

)
be the obstruction cocycle to the extension of ζ̃ as a nowhere zero

section of T̃ inside ν−1(X ∩Bε).

Definition 2.12.— The Euler obstruction Euf,X(0) is the evaluation

of O(ζ̃) on the fundamental class of the pair (ν−1(X ∩Bε), ν
−1(X ∩ Sε)).
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The following result compares the Euler obstruction of the space X with
the Euler obstruction of a function on X.

Theorem 2.13. (See [5]). — Let (X, 0) and {Vi} given as before and
let f : (X, 0) → (C, 0) be a function with an isolated singularity at 0. For
0 < |δ| � ε� 1 we have:

Euf,X(0) = EuX(0) −
(

q∑

i=1

χ
(
Vi ∩Bε ∩ f−1(δ)

)
· EuX(Vi)

)
.

For an overview about Euler obstruction of a function see [3, 5].

In [9] Dutertre and Grulha defined the Brasselet number Bf,X(0). In
the general case this definition involves some technical elements, however
when f has an isolated singularity, this number is equal to the difference
EuX(0)− Euf,X(0).

2.3. The Generic Fiber

In this section we remember the definition of smoothing of an analytic
variety and some results related to it.

Let X0 ⊂ Cn be a germ of an analytic d-dimensional variety, in some
open subset of Cn with isolated singularity at the origin.

Definition 2.14.— We say that a germ of analytic variety (X0, 0) with
isolated singularity of complex dimension d � 1 has a smoothing, if there
exist an open ball Bε(0) ⊂ Cn centered at the origin, a closed subspace
X ⊂ Bε(0) × D, where D ⊂ C is an open disc with center at zero and a
proper analytic map F : X −→ D, with the restriction to X of the projection
p : Bε(0)×D −→ D such that

a) F is flat;

b) (F−1(0), 0) is isomorphic to (X0, 0);

c) F−1(t) is non singular for t �= 0.

It follows from the above definition that X has isolated singularity at
the origin and it is a normal variety if X0 is normal at zero. Moreover,

F |F−1(D−{0}): F
−1(D − {0}) −→ D − {0}

is a fiber bundle whose fibers Xt = F−1(t) are non singular.
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The topology of the generic fiber has been intensively studied. For de-
terminantal varieties, for instance, the following result was proved by Wahl.

Theorem 2.15. (See [29]). — Let (X, 0) be a determinantal variety with
isolated singularity at the origin defined by t× t minors of an s× p matrix
M , whose entries are on the ring of convergent power series on Cn, and
2 � t � s � p. If dim(X) < s + p− 2t + 3, then X has a smoothing.

Remark 2.16.— In particular, it follows from Theorem 2.15 that if (X, 0)
is Cohen-Macaulay with dim(X, 0) = 2, 3 and codim(X, 0) � 2, then (X, 0)
admits a smoothing. This remark can be also found in ([15], p. 537).

The following result was proved by Greuel and Steenbrink.

Theorem 2.17. ( See [15]). — Let Xt be the Milnor fiber of a smoothing
of a normal singularity, then β1(Xt) = 0.

In [10] Ebeling and Gusein-Zade introduced the notion of a determi-
nantal variety with an essentially isolated determinantal singularity (EIDS)
([10], Section 1), and they observed that, if an EIDS X ⊂ Cn is defined by
t× t minors of an s× p matrix M , then X has an isolated singularity at the
origin if, and only if, n � (s− t + 2)(p− t + 2). Moreover, according to the
Thom transversality theorem an EIDS always admits an essential smooth-
ing ([10], Section 1), and in the specific case that n < (s− t + 2)(p− t + 2)
the essential smoothing is a genuine smoothing. The topology of the general
fiber of a smoothing of an isolated determinantal variety was also studied
by Ballesteros, Okamoto and Tomazella in [21].

Remark 2.18.— A very important fact is that varieties such as X do not
admit all a smoothing. For examples about nonsmoothable singularities see
[15].

3. The vanishing Euler characteristic of a toric surface

Throughout this section we denote by Xσ ⊂ Cn a toric surface. Con-
sidering σ into standard form (generated by e2, pe1 − qe2, 0 � q < p with
gcd(p, q) = 1) we obtain a refinament ∆ of σ adding r new vertices v1, . . . , vr
between the given vertices v0 = e2, vr+1 = pe1 − qe2, where the number r
came from the Hirzebruch-Jung continued fraction

p

q
= b1 −

1

b2 − 1
···− 1

br

= [[b1, b2, . . . , br]].

The fan ∆ provides a new smooth toric surface X(∆). Using this construc-
tion Fulton provides the following result.
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Proposition 3.1. (See [11]). — If ∆ is the subdivision of σ given as
above then X(∆) is the minimal equivariant resolution of singularities of
Xσ.

Remark 3.2.— A toric surface Xσ, which is a cyclic quotient singularity,
always possesses a smoothing which is locally diffeomorphic to its resolution
X(∆) (see [23], Satz 10). The problem is that this smoothing needs not be
unique. For instance, in [29] Wahl gives an example of a smoothing for the
toric surface Xσ ⊂ C5 associated to the cone σ ⊂ R2 generated by the
vectors v1 = e2 and v2 = 4e1 − e2, whose fiber Xt has Euler characteristic
equal to 1. But in [21] the authors gave an example of a smoothing of the
same Xσ such that χ(Xt) = 2 = χ(X(∆)).

If Xσ ⊂ Cn is an ICIS (when p = q + 1), X(∆) can be seen as the
Milnor fiber of Xσ. In this case, X(∆) has the homotopy type of a bouquet
of spheres and the Milnor number of Xσ is the number of such spheres (see
[16]). In this case, the Milnor number coincides with the so-called vanishing
Euler characteristic, that is

µ(Xσ) = β2(X(∆)) = χ(X(∆))− 1

where β2(X(∆)) denotes the second Betti number of X(∆). Based on [21]
and supported by the previous remark, we give the following definition now
in the general case of a toric surface.

Definition 3.3.— The vanishing Euler characteristic of a toric surface
Xσ is defined by

ν(Xσ) := χ(X(∆))− 1.

Theorem 3.4. — Let σ ⊂ R2 be the cone generated by v1 = e2 and
v2 = pe1 − qe2, where 0 < q < p and p, q are coprimes, then

ν(Xσ) = (a2 − 2) + · · ·+ (an−2 − 2) + (an−1 − 1),

where a2, . . . , an−1 are the integers coming from the Hirzebruch-Jung con-
tinued fraction of p

p−q .

Proof. — We know that

χ(X(∆)) = β0(X(∆))−β1(X(∆))+β2(X(∆)) = 1−β1(X(∆))+β2(X(∆)).

Since Xσ is normal, by Theorem 2.17, β1(X(∆)) = 0, then

β2(X(∆)) = χ(X(∆))− 1 = ν(Xσ).

– 10 –



Toric surfaces, vanishing Euler characteristic and Euler obstruction of a function

By [1], we have
dimHcld

2 (X(∆)) = d1 − 2,

where d1 denotes the number of 1-dimensional cones in ∆. But, X(∆) is a
smooth surface, then

Hcld
2 (X(∆)) = H2(X(∆)),

i.e., β2(X(∆)) = d1 − 2 = r. As a consequence of [23, 24], we have

r∑

i=1

(bi − 1) =

n−1∑

j=2

(aj − 1),

so
r = (a2 − 2) + · · ·+ (an−2 − 2) + (an−1 − 1).

�

In particular, if a variety X of dimension d has a unique smoothing, then
the Milnor number of X is defined as the dth Betti number βd(Xt) of the
generic fiber Xt of a smoothing of X, whenever Xt has homology only in
the middle dimension, that is

µ(X) := βd(Xt).

Thus, we have the following consequence.

Corollary 3.5.— If Xσ is a toric surface that admits a unique smooth-
ing, then

ν(Xσ) = β2(X(∆)) = µ(Xσ).

Example 3.6. — Let σ ⊂ R2 be the cone generated by v1 = e2 and
v2 = pe1 − qe2, where 0 < q < p and p, q are coprime, such that

p

p− q
= a− 1

b
.

Then by Theorem 3.4 one has

ν(Xσ) = (a− 2) + (b− 1).

But, from [23, 24] we know that Xσ is a determinantal surface in C4 given
by the 2× 2 minors of the matrix

(
z1 z2 zb−1

3

za−1
2 z3 z4

)
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and in [22] Pereira and Ruas proved that when X ⊂ C4 is a determinantal
surface X has a unique smoothing. The authors also present a formula to
compute the Milnor number in this case, that coincides with our formula to
compute ν.

Given X a smoothable isolated singularity we know that χ(Xt) does
not depend on t. When we consider a radial continuous vector field v on
X with isolated singularity at 0, we can relate the number χ(Xt) with the
GSV index of v in X. The GSV index was introduced by Gómez-Mont,
Seade and Verjovsky in [13, 25] for hypersurface germs, and extended in
[26] to complete intersections. In Section 3 of [7] we can find the definition
of this index for the case that X admits a smoothing, which depends on the
smoothing given by F . They also proved that IndGSV (v,X, F ) = χ(Xt),
then we have the following.

Corollary 3.7.— Let σ ⊂ R2 be the cone generated by v1 = e2 and
v2 = pe1 − qe2, where 0 < q < p and p, q are coprimes, and consider v a
radial continuous vector field on Xσ with isolated singularity at 0. Let us
consider the smoothing defined by FRes, whose the fiber is the resolution of
Xσ. Then,

IndGSV (v,Xσ, FRes) = (a2 − 2) + · · ·+ (an−2 − 2) + (an−1),

where a2, . . . , an−1 are the integers coming from the Hirzebruch-Jung con-
tinued fraction of p

p−q and IndGSV (v,Xσ, FRes) is the GSV index of v at 0

relative to the smoothing whose fiber is X(∆).

In [21] the authors defined the Milnor number of a function f with
isolated singularity defined on Isolated Determinantal Singularity X, as

µ(f |X) = #Σ(f̃ |Xt),

where Xt is a fiber of an smoothing of X and f̃ |Xt is a morsefication of f
and #Σ(f̃ |Xt) denote the number of Morse points of f̃ on Xt.

Proposition 3.8. — Let f : X → C be a function with isolated sin-
gularity defined in a smoothable Isolated Determinantal Singularity X, and
consider v the vector field given by the gradient of the function f , then

µ(f |X) = IndGSV (v,X, F ),

where F is the flat map associated to the smoothing of X.

Proof. — Follows directly from the definition of the GSV index in the
general case of smoothable varieties (see [7]). �
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Based on this last result we can extend the Milnor number of Ballesteros,
Okamoto and Tomazella to the case of toric surfaces.

4. Relation with polar multiplicities and Euler obstruction

Let (X, 0) ⊂ (Cn, 0) be a d-dimensional variety with isolated singularity
at the origin. Suppose that X has a smoothing, that is, there exists a family
Π : X→ D ⊂ C, restriction of the projection Φ : Bε(0)×D → D, such that
Xt = Π−1(t) is smooth for all t �= 0 and X0 = X.

The variety X also has an isolated singularity at the origin. Let p be
a complex analytic function defined in X with isolated singularity at the
origin. Let us define

p̃ : X ⊂ Cn × C −→ C
(x, t) �−→ p̃(x, t)

such that p̃(x, 0) = p(x) and for all t �= 0, p̃(., t) = pt is a Morse function in
Xt. Thus we have the following diagram:

Xt ⊂ X ⊂ Cn × C
↓pt ↓(Π,p)

C× {t} C× C
(4.1)

Notice that the number of critical points of pt is finite. In fact, x is a critical
point of pt if and only if x is a critical point of the real part of pt. Since
Re(pt) : Xt → R is an analytic function on Xt, the number of critical points
of Re(pt) and, hence of pt, is finite. Pereira and Ruas proved the following:

Proposition 4.1. (See [22]). — Let X be a d-dimensional variety with
isolated singularity at the origin admitting a smoothing and pt : Xt → C,
pt = p̃(., t) as above. Then,

χ(Xt) = χ(p−1
t (0)) + (−1)dnσ

where nσ is the number of critical points of pt and χ(Xt) denotes the Euler
characteristic of Xt.

The above formula can also be expressed replacing nσ by md(X) the d-
th polar multiplicity of X. We refer to [28] for the definition and properties
of polar varieties and to [12] for the definition of the d-th polar multiplicity.

Let X ⊂ Cn × Cs be a complex analytic variety of complex dimension
d + s and Π : X → Cs an analytic function such that Π−1(0) = X. Let
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p̃ : X ⊂ Cn × Cs, 0→ Cs, 0 be such that p̃|X has isolated singularity at the
origin. Then, we can define md(X, p̃,Π) = m0(Pd(Π, p̃)), where Pd(Π, p̃) is
the polar variety of X with respect to (Π, p̃).

In general, md(X, p̃,Π) depends on the choices of X and p̃, but when X is
a versal deformation of X or in the case that X has a unique smoothing, md

depends only on X and p̃. Furthermore, if p̃ is a generic linear projection,
md is an invariant of the analytic variety X, which we denote by md(X).

When s = 1 and p̃ is a generic linear projection, we have a diagram
similar to (4.1) and we can relate nσ and md(X). In fact, the following
result is a direct consequence of the definitions of these two invariants.

Proposition 4.2. (See [22]). — Under the conditions of Proposition
4.1, nσ = md(X).

Theorem 4.3. — Let σ ⊂ R2 be the cone generated by v1 = e2 and
v2 = pe1 − qe2, where 0 < q < p and p, q are coprime, then

m2(Xσ) = (a2 − 1) + · · ·+ (an−2 − 1) + (an−1),

where a2, . . . , an−1 are the integers coming from the Hirzebruch-Jung con-
tinued fraction of p

p−q .

Proof. — Let p : Xσ → C be a generic linear function, then by Proposi-
tions 4.1 and 4.2

χ(X(∆)) = χ(p−1
t (0)) + (−1)dnσ = χ(X(∆) ∩ p−1

t (0)) + m2(Xσ),

but X(∆) ∩ p−1
t (0) is homeomorphic to X ∩ p−1(c), since

f := (Π, p̃) : X ⊂ Cn × C→ C× C

is a bundle in the punctured disk and

X(∆) ∩ p−1
t (0) = f−1(t, 0) and X ∩ p−1(c) = f−1(0, c)

are fibers of this fibration. Then

χ(X(∆)) = χ(X ∩ p−1(c)) + m2(Xσ)

but by [4] we have χ(X ∩ p−1(c)) = EuXσ (0). In [14] Gonzalez-Sprinberg
proved that EuXσ (0) = 3− n, then by Theorem 3.4 we have

m2(Xσ) = (a2 − 1) + · · ·+ (an−2 − 1) + (an−1).

�
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Next, we give an illustration, with an example, of the computation of
m2 using Theorem 4.3. The next example was also computed in [10, 21, 22],
but we provide this computation in an easier way. For instance, in [21]
a software was used to compute this invariant and here we use only the
continued fractions.

Example 4.4.— Let Xσ ⊂ C4 be the toric surface associated to the cone
σ ⊂ R2 generated by the vectors v1 = e2 and v2 = 3e1 − e2. From the
Hirzebruch-Jung continued fraction process we have

3

2
= 2− 1

2
,

then Xσ = V (Iσ) where Iσ is the ideal generated by the 2× 2 minors of the
matrix (

z1 z2 z3

z2 z3 z4

)

i.e., Xσ is a codimension 2 determinantal surface. Then,

m2(Xσ) = (a2 − 1) + a3 = 3.

In a more general way, we have the following.

Corollary 4.5.— Consider Y ⊂ Cn+1 the determinantal surface given
by the 2× 2 minors of the matrix

A =

(
z1 z2 . . . zn−1 zbn
za2 z3 . . . zn zn+1

)
,

where n � 2 and a, b are positive integers. Then, m2(Y ) = a + b + n− 2.

Proof. — In [23, 24] Riemenschneider proved that Y = Xσ, where σ ⊂ R2

is the cone generated by the vectors v1 = e2 and v2 = wn+1e1−un+1e2 with

u1e1 + w1e2 = e1,
u2e1 + w2e2 = e1 + e2,
u3e1 + w3e2 = ((a + 1)u2 − u1)e1 + ((a + 1)w2 − w1)e2,
u4e1 + w4e2 = (2u3 − u2)e1 + (2w3 − w2)e2,
u5e1 + w5e2 = (2u4 − u3)e1 + (2w4 − w3)e2,

...
une1 + wne2 = (2un−1 − un−2)e1 + (2wn−1 − wn−2)e2,

un+1e1 + wn+1e2 = ((b + 1)un − un−1)e1 + ((b + 1)wn − wn−1)e2.
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i.e., the integers coming from the Hirzebruch-Jung continued fraction of
wn+1

wn+1−un+1
are

a2 = a + 1, a3 = 2, . . . , an−1 = 2, an = b + 1.

Therefore, from Theorem 4.3 we have that m2(Y ) = a + b + n− 2. �

5. The Euler obstruction of a function on a toric surface

Let (X, 0) ⊂ (Cn, 0) be an algebraic variety and let f : (X, 0) → (C, 0)
be a function with isolated singularity at the origin. The Euler obstruction
of f can be viewed as a generalization of the Milnor number of the function
f , that usually is denoted by µ(f). In this section, we compute the Euler
obstruction of f on a toric surface Xσ.

From now on we will consider the following setup.

Let σ ⊂ R2 be the cone generated by v1 = e2 and v2 = pe1 − qe2, where
0 < q < p and p, q are coprimes, and consider a2, . . . , an−1 the integers
coming from the Hirzebruch-Jung continued fraction of p

p−q . We will denote
by O(0,...,0), O(1,0,...,0), O(0,...,0,1) and O(1,...,1) the four orbits of the action
ϕ̃ : (C∗)2 ×Xσ −→ Xσ given by

ϕ̃((t1, t2), (x1, . . . , xn)) = (t1x1, t1t2x2, t
u3
1 tv3

2 x3, . . . , t
un
1 tvn2 xn)

where {(1, 0), (1, 1), (u3, v3), . . . , (un, vn)} is the minimal basis of the monoid
σ̌ ∩ Z2. Using Theorem 2.13 we will prove the following.

Theorem 5.1. — Let f : (Xσ, 0) → (C, 0) be a function with isolated
singularity at the origin, then

Euf,Xσ (0) = 3− n− χ(γ)−#B,

where γ is the curve whose trace is the solution of equation

f(t1, t1t2, t
u3
1 tv3

2 , . . . , tun1 tvn2 )− t0

and B = Xreg
σ ∩Bε∩ f−1(t0)∩O(0,...,0,1), with Xreg

σ = Xσ \{0} and t0 �= 0.

Proof. — Since Xσ has isolated singularity at the origin, by Theorem
2.13

Euf,Xσ (0) = EuXσ (0)− χ
(
Xreg

σ ∩Bε ∩ f−1(t0)
)
.

We know that the orbit O(1,...,1) of the action ϕ̃ is homeomorphic to
(C∗)2. Now, consider the application

ϕ : C2 → Xσ
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given by ϕ(t1, t2) = (t1, t1t2, t
u3
1 tv3

2 , . . . , tun1 tvn2 ), then ϕ(C2) = Xσ\O(0,...,0,1).
Furthermore,

ϕ|C∗×C : C∗ × C→ Xσ \
{
O(0,...,0,1) ∪ O(0,...,0)

}

is a bijection. Then, consider the curve γ : C2 → C given by

γ(t1, t2) = f(t1, t1t2, t
u3
1 tv3

2 , . . . , tun1 tvn2 )− t0

we have that
χ
(
Xreg

σ ∩Bε ∩ f−1(t0)
)

= χ(γ) + #B,

where B = Xreg
σ ∩Bε∩f−1(t0)∩O(0,...,0,1). By [14] we know that EuXσ (0) =

3− n, therefore Euf,Xσ (0) = 3− n− χ(γ)−#B. �

Example 5.2. — Let σ ⊂ R2 be the cone generated by v1 = e2 and
v2 = ne1 − e2, where n > 1, i.e., Xσ is the determinantal surface given by
the 2× 2 minors of the matrix

(
z1 z2 z3 · · · zn−1 zn
z2 z3 z4 · · · zn zn+1

)

and consider f : (Xσ, 0) → (C, 0) the polynomial with isolated singularity
at the origin given by

f(x1, . . . , xn+1) = xn+1
1 + xn+1 +

k∑

l=1

alx
dl2
2 . . . x

dln
n

where di2, . . . , d
i
n satisfy the condition

n + 1 =

n∑

j=2

d1
j (uj + vj) = · · · =

n∑

j=2

dkj (uj + vj)

and al ∈ C∗ for l = 1, . . . , k. In this case, we know that

(u3, v3) = (1, 2), (u4, v4) = (1, 3), . . . , (un+1, vn+1) = (1, n)

then the curve in C2

γ̃(t1, t2) = f(t1, t1t2, t
u3
1 tv3

2 , . . . , tun1 tvn2 )

is given by

γ̃(t1, t2) = tn+1
1 + t1t

n
2 +

k∑

l=1

al(t1t2)
dl2 . . . (t1t

n−1
2 )d

l
n
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that is a homogeneous polynomial of degree n+1 with isolated singularity at
the origin. Now, recall that the curve γ is the fiber of a smoothing of curve
γ̃, then by [20] µ(γ̃) = n2. Since χ(γ) = 1−µ(γ̃), we have that χ(γ) = 1−n2.
Note that, #B = 1, then by Theorem 5.1

Euf,Xσ (0) = n2 − n.

Corollary 5.3.— Let f : Xσ → C be a function with isolated singu-
larity at the origin, then

EuXσ (0)− Euf,Xσ (0) = χ(γ) + #B

where γ and B are as above.

Corollary 5.3 concern the difference between the Euler obstruction of a
space and the Euler obstruction of a function, that as noticed in [5, 9] has
interesting meanings, even if f has a non-isolated singularity.
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