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Basic nets in the projective plane

S. Yu. Orevkov(1)

ABSTRACT. — The notion of basic net (called also basic polyhedron) on
S2 plays a central role in Conway’s approach to enumeration of knots and
links in S3. Drobotukhina applied this approach for links in RP3

using
basic nets on RP2

. By a result of Nakamoto, all basic nets on S2 can
be obtained from a very explicit family of minimal basic nets (the nets
(2× n)∗, n � 3, in Conway’s notation) by two local transformations. We

prove a similar result for basic nets in RP2
. We prove also that a graph

on RP2
is uniquely determined by its pull-back on S2. The proof is based

on Lefschetz fixed point theorem.

RÉSUMÉ. — La notion de réseau basique (aussi appelé polyèdre basique)
dans S2 joue un rôle central dans l’approche de Conway à l’énumération
des nœuds et des entrelacs dans S3. Drobotukhina a appliqué cette ap-
proche aux entrelacs dans RP3

en utilisant les réseaux basiques dans
RP2

. D’après le résultat de Nakamoto, tout réseau basique dans S2 peut
être obtenu à partir d’une famille très explicite des réseaux basiques mini-
maux (les réseaux (2×n)∗, n � 3, selon la notation de Conway) à l’aide de
deux transformations locales. On démontre un résultat similaire pour les
réseaux basiques dans RP2

. On démontre aussi qu’un graphe dans RP2

est déterminé uniquement par son image reciproque sur S2. La preuve est
basée sur le théorème du point fixe de Lefschetz.
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1. Introduction and statement of main results

In this paper, a surface is a smooth compact 2-manifold without bounda-
ry. A net on a surface F is the image of a generic immersion of several circles.

A net Γ is called irreducible if for any embedded circle transversally
intersecting Γ at most at two points and dividing F into two components
F1 and F2, the following condition holds: one of F1, F2 is a disk whose
intersection with Γ is either a simple arc or empty.

A net Γ on F is called basic if it is irreducible and none of the components
of F \ Γ is a digon whose corners are at two distinct vertices.

Basic nets on S2 (called in [4] basic polyhedra) were introduced by Con-
way [4] as a tool for classification of links in S3. Drobotukhina [5] applied
Conway’s approach for links in RP3 using basic nets on RP2

Basic nets on S2 (resp. on RP2) with � 11 (resp. with � 8) crossings are
shown in Figure 1 (resp. in Figure 2). In all pictures, we represent RP2 as
a disk whose opposite boundary points are supposed to be identified. The
nets gni in Figure 2 are denoted as in [5] for n � 6 (except that g6

3 is missing
in [5]; note that the corresponding alternating link in RP3 also is missing in
[5]). For n � 7 we number them in the order they are produced by plantri

program [3] (see §6).

An algorithm to generate all basic nets on S2 with a given number of
crossings is obtained in [6], improved in [1], and implemented in [3]. The
main purpose of the present paper is to extend these results to RP2.

We prove also Theorem 4.1 which could be of independent interest. It
states that any cellular graph on RP2 (i. e. a graph whose complement is
a union of open disks) is uniquely determined by its covering on S2. The
proof is based on the Lefschetz fixed point theorem.

Figure 1. — Basic nets on S2 with � 11 nodes
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Basic nets in the projective plane

Figure 2. — Basic nets on RP2
with � 8 nodes

Given a basic net Γ of a surface F , one can obtain another net using the
following transformations:

1. Face splitting. Suppose that one of the faces of Γ is an n-gon f , n � 4.
Let γ be a simple arc inside f which connects two non-consecutive
sides of f represented by two distinct edges of Γ (see §2.2 for a defini-
tion of faces, sides and edges). Then a neighbourhood of γ is replaced
as in Figure 3.1.

2. Vertex surrounding. A neighbourhood of a vertex of Γ is replaced as
in Figure 3.2

We say that a face splitting is special if an n-gon splits into an (n− 1)-gon
and a triangle.

Figure 3.1. — Face splitting
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Figure 3.2. — Vertex surrounding

The nets 6∗, 8∗, and 10∗ (Figure 1) are the first three members of a series
denoted in [4] by (2× n)∗, n � 3. The net (2× n)∗ (up to homeomorphism
of S2) is the union of a regular n-gon with its inscribed and circumscribed
circles. In [6], [1], the dual graph of (2 × n)∗ is called pseudo-double wheel
and is denoted by Wn.

A result of Nakamoto [6; Theorem 1] improved in [1; Theorem 2] can be
reformulated as follows.

Theorem 1.1.— All basic nets on S2 except 0∗ and 1∗ can be obtained
from (2 × n)∗, n � 3, by successive special face splittings and vertex sur-
roundings.

In this paper, we generalize Theorem 1.1 for basic nets in RP2. For an
odd n � 3, let (2× n)∗ be the net in RP2 whose double covering is the net
(2×n)∗ on S2. Due to Theorem 4.1 in §4, (2× n)∗ is uniquely determined by
this condition. It can be described also as follows. Let P be a regular n-gon
inscribed in a circle S which bounds a disk D. Then, up to homeomorphism,
(2× n)∗ is the image of P ∪ S on the projective plane obtained from D by
identifying the opposite boundary points. For n = 3, 5, 7, these are the nets
g3, g5

1 , g
7
1 in Figure 2. The dual graph of the net (2× n)∗ is called in [6]

Möbius wheel and is denoted by W̃n (see Figure 4).

Figure 4. — Möbius wheels W̃3 and W̃5 in RP2

We say that a net in RP2 is homologically trivial (resp. homologically non-
trivial) if it represents zero (resp. non-zero) homology class in H1(RP2;Z2);
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in this case the dual graph is bipartite (resp. non-bipartite). In Figure 2
we use the chess-board coloring for the homologically trivial nets. It is easy
to see that the face splittings and vertex surroundings do not change the
homology class.

Theorem 1.2. — (a) All homologically trivial basic nets on RP2 can
be obtained from g1 (see Figure 2 ) by successive special face splittings and
vertex surroundings.

(b) All homologically non-trivial basic nets on RP2 except g0 can be
obtained from (2× n)∗ with odd n � 3 by successive special face splittings
and vertex surroundings.

We prove this theorem in §5.

In Figure 5, we show all the possible special face splittings and vertex
surroundings on the basic nets in RP2 with � 8 crossings. The number of
different special face splittings which produce the same result is indicated
in parentheses near each arrow. Thus, the list in Figure 2 is exhaustive by
Theorem 1.2.

Figure 5. — Generating basic nets on RP2
with � 8 crossings
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Theorem 1.1 provides an algorithm to generate all basic nets in S2.
This algorithm is efficiently implemented in the program plantri [2, 3].
Theorem 1.2 provides a similar algorithm for RP2 but it is not implemented
yet. Instead, we used plantri with a simple additional filter [7] to generate
all basic nets on RP2 up to 18 crossings, see §6 for more details.

Acknowledgment. — I am grateful to the referee for indicating some
mistakes in the first version of this paper.

2. Definitions

2.1. Graphs

We shall use the following terminology. A graph G is a triple (V,E, ∂)
where V = V (G) and E = E(G) are two sets whose elements are called
vertices and edges respectively, and ∂ is a mapping from E(G) to the set of
unordered pairs of vertices. If ∂(e) = {a, b}, then a and b are called the ends
of e. A graph G is called finite if V (G) and E(G) are finite. In this paper
we always assume that all graphs are finite and have no isolated vertices.

An edge e is called a loop if ∂e = {v, v} for some vertex v. Two edges
e and e′ are called parallel if ∂e = ∂e′ = {a, b}, a �= b. A graph is called
loop-free if it has no loops. A graph is simple if it is loop-free and has no
parallel edges. A simple graph can be defined as a pair (V,E) where E is a
set of unordered pairs of distinct vertices.

The number of edges incident to a vertex v (loops counted twice) is
called the degree of v. We say that a graph is of minimum degree k if the
degree of each vertex is at least k. A graph is called k-regular if the degree
of every vertex is k.

To each graph we associate a CW-complex of dimension 1 in the standard
way. Usually we shall not distinguish between a graph and the corresponding
CW-complex. However, when speaking of graphs, removal of a vertex v
always means removal of v together with all the incident edges. So the result
is still a graph with one vertex less (not the non-compact space obtained by
deleting a vertex from the corresponding CW-complex).

A graph is called k-connected (resp. k-edge-connected) if the removal of
less than k vertices (resp. edges) cannot disconnect the graph.
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2.2. Graphs on surfaces

In this paper, a surface is a smooth compact 2-manifold without bound-
ary.

Let G be a graph embedded in a surface F . The connected components
of F \G are called regions. The pair (F,G) (or just G when it is clear which
surface F is considered) is called cellular if each region is homeomorphic to
an open disk. In this case the regions are called the faces of G. A pair (F,G)
is cellular if and only if F admits a structure of CW-complex such that G is
the 1-skeleton and V (G) is the 0-skeleton. It is easy to see that any cellular
embedded graph is connected and any connected graph in S2 is cellular.

To avoid any ambiguity between an edge (resp. vertex) and its occurrence
in the boundary of a given region r, we call the latter side (resp. corner)
of r. In other words, a side (resp. corner) of r is an edge (resp. vertex)
adjacent to r which is considered together with a small portion of r near it.
The number of sides of a face f is called the degree of f . A face of degree n
is called also an n-gon (unigon, digon, triangle, quadrangle, pentagon, etc.
for n = 1, 2, 3, 4, 5, . . . ).

A cellular graph is called 2-cell-embedded if all sides and corners of any
face are represented by pairwise distinct edges and vertices.

A graph G on a surface F is called simply embedded if it is loop-free and
for any two parallel edges α and β, the circle α ∪ β does not bound a disk
in F . In particular, a graph in S2 is simply embedded if and only if it is
simple.

If (F,G) is cellular, we define the dual graph of G and denote it by
Ǧ. It has exactly one vertex in each face of G and there is a bijection
between the edges of G and those of Ǧ such that each edge of Ǧ transversally
crosses the corresponding edge of G at a single point. According to the
previous definition, the degree of a face of G is equal to the degree of the
corresponding vertex of Ǧ and vice versa.

A graph G embedded in a surface F is called a quadrangulation of F if
all its regions are quadrangles. Note that we do not claim in this definition
that G is simple or 2-cell-embedded (as it is demanded in [6] and [1]). For
example, if p is a point on the circle S1, then (S1 × {p}) ∪ ({p} × S1) is a
quadrangulation of the torus T = S1 × S1 which has one vertex and two
loops. A 3-path (i. e. the graph •−−•−−•) on a 2-sphere or a non-contractible
2-cycle on RP2 are also examples of quadrangulations.
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2.3. Basic nets on surfaces

A net on a surface F is the image of a generic immersion of several circles.
In particular, a connected net is either a circle or it can be represented by
a connected 4-regular embedded graph.

Convention. If Γ is a connected net which is not an embedded circle,
then we consider Γ as a 4-regular graph (i. e., all vertices of Γ are crossing
points).

A net Γ is called irreducible if for any embedded circle transversally
intersecting Γ at most at two points and dividing F into two components
F1 and F2, the following condition holds: one of F1, F2 is a disk whose
intersection with Γ is either a simple arc or empty.

A net Γ on F is called basic if it is irreducible and none of the components
of F \ Γ is a digon whose corners are at two distinct vertices.

It is easy to check that in the case when F is S2 or RP2, our definition
of a basic net is equivalent to the definitions given in [4] and [5] respectively
(but our definition of an irreducible net differs from that in [5]). Following
Conway [4], basic nets on S2 are usually called basic polyhedra.

3. Basic properties of basic nets

3.1. Generalities

Proposition 3.1.— Let Γ be a basic net on a surface F . Then:

(a) Any region of Γ is planar, i. e., homeomorphic to a subset of R2.

(b) If F is a sphere or RP2, then Γ is cellular, in particular, Γ is con-
nected.

(c) If F = RP2 and Γ is an embedded circle, then Γ is a non-contractible
curve (a pseudoline).

Proof. — (a) Let r be a region of (F,Γ). It is an open surface of finite
type, thus r is a connected sum of a planar surface and a compact surface
without boundary. Thus means that there is an embedded circle γ which
cuts r into two parts r0 and r1 such that r0 is planar and ∂r1 = γ. Since
(F,Γ) is irreducible, r1 is a disk, hence r is planar.

(b) Let r be a region of (F,Γ). By (a), r is planar. Suppose that r has
more than one boundary component. Then r can be cut by an embedded
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circle γ into two parts such that each part is adjacent to Γ. Since γ divides
r, the normal bundle of γ is trivial, hence γ divides F which contradicts the
irreducibility of (F,Γ).

(c) Follows from (b).

Proposition 3.2.— Let F be either a sphere or a projective plane. Let
Γ be a basic net on F . Suppose that Γ is a 4-regular graph which is not loop-
free. Then it has one vertex and two edges (the edges are loops). Moreover, if
F is a sphere, then Γ is a “figure-eight” curve (1∗ in Figure 1 ); if F = RP2,
then Γ is a union of two pseudolines (g1 in Figure 2 ).

Proof. — Suppose that Γ has a loop α adjacent to a vertex v. Let N be a
tubular neighbourhood of α in F . It is either an annulus or a Möbius band.

If N is a Möbius band, then ∂N is an embedded circle intersecting Γ
at two points. Since Γ is irreducible, ∂N bounds a disk whose intersection
with Γ is a simple arc. Then the edge of Γ containing this arc is another
loop β adjacent to v. and the result follows (if β were not a pseudoline, then
Γ would be reducible).

Now suppose that N is an annulus. Since F is a sphere or a projective
plane, each of the two components of ∂N divides F and intersects Γ at most
at two points. Hence, the irreducibility of Γ implies that F \ N is a union
of two disjoint disks and Γ \N is a simple arc on one of them.

Lemma 3.3.— Let Γ be a net in a surface F and let α be a simple closed
curve transversal to Γ and null-homologous in F . Then α cuts Γ at an even
number of points.

3.2. Basic nets in S2

The following fact is well-known but we give a precise statement and a
proof for the sake of completeness.

Proposition 3.4.— Let Γ be a connected graph on S2 and G its dual.
The following conditions are equivalent:

1. Γ is a basic net which is neither a circle nor a figure-eight curve;

2. Γ is simple, 4-regular, and 4-edge-connected;

3. G is a simple quadrangulation of minimum degree 3;

4. G is a simple, 2-cell-embedded, 2-connected, and 3-edge-connected
quadrangulation of minimum degree 3.
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Proof. — Note that Γ is 4-regular if and only if G is a quadrangulation.
So, we assume from now on that Γ is 4-regular and G is a quadrangulation.

(1) =⇒ (2). Suppose that Condition (1) holds.

Simplicity. Γ is loop-free by Proposition 3.2. Let us prove that Γ cannot
have parallel edges. Suppose that α and β are two parallel edges. Then
α∪ β is a simple closed curve (not necessarily smooth). Let N be a tubular
neighbourhood of α∪β. It is an annulus and the pair (N,N ∩Γ) is as in one
of Figures 6.1(a–d). Case (d) is impossible by Lemma 3.3. In Cases (a–c),
the irreducibility condition implies that one of the components of ∂N (the
interior one in Figure 6.1) bounds a disk D such that D ∩ Γ is ∅ or an arc.
In Cases (a) and (c) this provides a digon and in Case (b) this contradicts
the irreducibility (see Figure 6.2). So, we proved that the graph Γ is simple.

Figure 6.1 Figure 6.2

4-edge-connectivity. Let e1, . . . , ek be a minimal set of edges which dis-
connects Γ. Then Γ \⋃

i ei has two connected components Γ1 and Γ2, and
each edge ei relates them. Hence there exists an embedded circle γ which
separates Γ1 from Γ2 and transversally crosses every edge ei at one point.
Hence k is even by Lemma 3.3. Since Γ is irreducible, k cannot be 0 or 2.
Thus, k � 4, i. e., Γ is 4-edge-connected.

(2) =⇒ (1). Indeed, the 4-edge-connectivity easily implies the irreducibil-
ity and the simplicity (the absence of parallel edges) implies the absence of
digons.

(2) =⇒ (3). Suppose that Γ is simple and 4-edge-connected.

A loop of G would cut Γ at one point which is impossible by Lemma 3.3,
hence G is loop-free. Suppose that α and β are parallel edges of G. Then
α ∪ β is a circle which cuts Γ at two points. Since Γ is irreducible, these
two points are connected by a simple arc of Γ, hence they belong to the
same edge of Γ which contradicts the definition of the dual graph. Thus, G
is simple.

Let us show that the minimum degree is 3. Indeed, let v ∈ V (G). If
deg(v) = 1, then the edge adjacent to v is dual to a loop of Γ. If deg(v) = 2,
then the face dual to v is a digon.
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(3) =⇒ (4). Suppose that G is simple of minimum degree 3. Let us show
that it is 2-cell-embedded. Indeed, let f be a face of G. Suppose that two
sides of f are represented by the same edge e. If they are consecutive, i. e.,
if they have a common corner at v, then deg(v) = 1. If they are opposite,
then each of the two other sides represents a loop. So, we conclude that
all sides of G are represented by pairwise distinct edges. Suppose that f
has two corners at the same vertex. If they are consecutive, then the side
between them is a loop (see Figure 7(a)). If they are opposite, then G has
parallel edges (see Figure 7(b)).

Figure 7

G is 2-connected because otherwise it would not be 2-cell-embedded.

Let us show that G is 3-edge-connected. Indeed, let e1, . . . , ek be a mini-
mal set of edges which disconnects G. Then there exists an embedded circle
γ which transversally crosses every edge ei at one point. We have k � 2 be-
cause G is 2-cell-embedded. Suppose that k = 2. Let f and f ′ be the faces of
G crossed by γ. If e1 and e2 have a common vertex v, then (since deg v > 2)
v represents two corners of one of the faces f or f ′. So, we conclude that e1
and e2 do not have a common vertex. Then e1 and e2 are opposite sides of
both faces f and f ′. Let u and v be the ends of e1 and e2 on the same side
of γ. Then G has an edge uv which is a common side of f and f ′. Hence
deg u = deg v = 2. Contradiction.

(4) =⇒ (2). Suppose that G is simple, 3-edge-connected of minimum
degree 3. If Γ has a loop, then the removal of its dual edge disconnects G.
If Γ has two parallel edges, then the removal of their duals disconnects G.
Thus, Γ is simple. The edge-connectivity of Γ is even by Lemma 3.3 and it
cannot be equal to 2 because G has no parallel edges.

3.3. Basic nets in RP2

Theorem 3.5.— Let Γ be a cellular graph in RP2 and G its dual. Let
ξ : S2 → RP2 be the universal covering and let Γ̃ = ξ−1(Γ). Then the
following conditions are equivalent:

1. Γ is a basic net which is neither a line nor a union of two lines;
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2. Γ is simply embedded, 4-regular, 4-edge-connected, and G is loop-free;

3. G is a simply embedded quadrangulation of minimum degree 3;

4. Γ̃ is a basic net in S2 which is not a circle.

Proof. — (1) =⇒ (2). Assume that Condition (1) holds. Let us show
that G is loop-free. Indeed, if α is a loop of G, then it cuts Γ at one point.
By Lemma 3.3, this implies that α is a pseudoline. Let N be a tubular
neighbourhood of α and let D = RP2 \ N . Then N is a Möbius band and
Γ ∩ N is a simple arc, in particular, ∂N is a circle which cuts Γ at two
points. Then D ∩ Γ is a also simple arc because Γ is irreducible, i. e., Γ is a
circle which is impossible by Condition (1). Thus, G is loop-free. The rest
of the proof is the same as in Proposition 3.4.

(2) =⇒ (3). The same proof as in Proposition 3.4 (note that G is already
loop-free by Condition (2)).

(3) =⇒ (4). It is immediate to check that if G is a simply embedded
quadrangulation of RP2 of minimum degree 3, then ξ−1(G) is a simple
quadrangulation of S2 of minimum degree 3. Thus, the result follows from
Proposition 3.4.

(4) =⇒ (1). Assume that Γ̃ is a basic net in S2 and let us prove that
Γ is a basic net in RP2. If D is a digon of Γ, then ξ−1(D) is a digon of Γ̃,
thus it remains to prove that Γ is irreducible. Indeed, let γ be an embedded
circle transversally intersecting Γ at i � 2 points and dividing RP2 into two
components (i = 0 or 2 by Lemma 3.3). One of the components is an open
disk D. Let ξ−1(D) = D̃1 � D̃2 and γ̃1 = ∂D̃1. If i = 0, then D ∩ Γ = ∅
because Γ̃ is connected. Let i = 2. Since Γ̃ is irreducible, D̃ ∩ Γ̃ is a simple
arc where D̃ is one of the two components of S2 \ γ̃1. If D̃ = D̃1, then
D ∩ Γ = ξ(D̃ ∩ Γ̃) is a simple arc and we are done. Otherwise Γ̃ \ D̃1 is
a simple arc, hence its subset Γ̃ ∩ D̃2 is a priori a disjoint union of simple
arcs, but the total number of their boundary points is 2, hence it is a simple
arc.

4. Uniqueness of a planar projective quotient of a planar graph

Theorem 4.1. — Let G1 and G2 be embedded graphs in RP2 without
vertices of degree 2. Let ξ1 and ξ2 be two unramified coverings S2 → RP2

and let σj : S2 → S2, j = 1, 2, be the corresponding deck transformations,
i. e., for any x ∈ S2, σj(x) = y where y �= x and ξj(x) = ξj(y). Suppose that
ξ−1
1 (G1) = ξ−1

2 (G2) and that it is a connected graph (we denote it by G).
Then σ1|G and σ2|G are combinatorially equivalent, i. e., σ1|V (G) = σ2|V (G)

and for any e ∈ E(G) we have σ1(e) = σ2(e).

– 216 –



Basic nets in the projective plane

Proof. — Without loss of generality we may assume that S2 is glued out
of regular polygons (G being represented by their sides) and the mappings
σj are linear on each of them. Then σ1 and σ2 are combinatorially equivalent
if and only if σ1 = σ2.

We set τ = σ1 ◦ σ2. Since σ2
1 = σ2

2 = idS2 , it is enough to prove that
τ = idS2 . Note that τ is an orientation preserving homeomorphism S2 → S2.
We suppose that τ �= id and we shall obtain a contradiction in several steps.

Step 1. There do not exist v ∈ V (G) and an edge e adjacent to v such
that τ(v) = v and τ(e) = e. Indeed, τ is the identity map on the faces
adjacent to v. The same is true for faces adjacent to them etc. Since the
graph G is connected, we exhaust all its vertices and edges by this process.

Step 2. τ has exactly two fix points. Indeed, let L(τ) be the Lefschetz
number of τ , i. e., L(τ) =

∑
q(−1)qtrace(τ∗ : Hq(S

2) → Hq(S
2)). Since

τ is an orientation preserving homeomorphism, we have L(τ) = 2. It is
well-known that L(τ) is equal to the intersection number of the diagonal of
S2 × S2 with the graph of τ . We deduce from the result of Step 1 that the
number of fix points of τ is finite. Moreover, at any fix point, τ is locally
conjugated to a rotation, hence the local intersection of the diagonal with
the graph at any fix point is equal to +1.

Step 3. We denote the fix points of τ by x and y. Then σ1(x) = σ2(x) =
y and σ1(y) = σ2(y) = x. Indeed, let z = σ2(x). By the definition of τ we
have τ(z) = σ1(σ2(σ2(x))) = σ1(x). Since x is a fix point of τ , we have
σ1(x) = σ1(τ(x)) = σ1(σ1(σ2(x))) = σ2(x) = z. Thus τ(z) = σ1(x) = z,
i. e., z is a fix point of τ . Hence z = y. The other equalities are obtained
similarly.

Step 4. Subdividing if necessary the faces containing x and y we may
assume without loss of generality that x and y are vertices of G. Let γ be
a shortest path on G from x to y (a path with the minimum number of
edges). Let x = x0, x1, . . . , xn = y be the successive vertices on γ. Then
σ1(γ) ∩ σ2(γ) = {x, y}. Indeed, suppose that σ1(xi) = σ2(xj). If i �= j,
say, i < j, then γ is not a shortest path from x to y because in this case
the path x = τ(x0), τ(x1), . . . , τ(xi) = xj , xj+1, . . . , xn = y is yet shorter.
Hence i = j and so xi is a fix point of τ , hence xi = xj ∈ {x, y}.

Thus, σ2(γ) is contained in one of the two disks bounded by the circle
γ ∪ σ1(γ). This contradicts the fact that each of the circles γ ∪ σ1(γ) and
γ ∪ σ2(γ) divides the sphere into two halves containing the same number of
2-faces.
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5. Generating basic nets

In this section we prove Theorem 1.2. By the duality (see Theorem 3.5),
it follows easily from Theorem 5.4 combined with Theorem 1.1.

5.1. Face contraction/removal

We recall here some definitions from [6], [1]. Let G be a quadrangulation
of a surface F which has more than one face and let f = abcd be a face of G
such that a �= c. In this case we say that the face f is contractible at {a, c}
and the contraction of f at {a, c} consists in the removal of the interior of f
and glueing the edges ba with bc and da with dc (see Figure 8). The inverse
operation to a face contraction is called a vertex splitting.

Figure 8. — Examples of face contraction

Let G be a quadrangulation of a surface F and let f = abcd be a face
of G. We say that f is removable if a, b, c, d are pairwise distinct vertices
of degree 3 and, if we denote their outcoming edges (not being the sides of
f) by aa1, bb1, cc1, dd1, then {a, b, c, d} ∩ {a1, b1, c1, d1} = ∅. In this case,
the removal of f consists just in the removal of the vertices a, b, c, d and all
the edges incident to them (see Figure 9). The inverse operation to a face
removal is called a face addition.

Figure 9. — Examples of face removal

It is easy to see that the result of a face contraction/removal is again a
quadrangulation of the same surface.
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Let Q (resp. Q̄) be the class of simple (resp. simply embedded) quad-
rangulations of S2 (resp. of RP2) of minimal degree 3. By Proposition 3.4
(resp. by Theorem 3.5), it is the dual of the class of basic nets on S2 (resp.
on RP2) with more than one crossing.

Given G ∈ Q, we say that a face abcd of G is Q-removable (resp. Q-
contractible at {a, c}) if it is removable (resp. contractible at {a, c}) and
the result of the removal (resp. contraction) belongs to Q. We say that a
Q-contraction of a face abcd at {a, c} is special if deg a = 3 or deg c = 3.

If G ∈ Q does not have any special Q-contractible or Q-removable face,
then we say that G is Q-minimal.

In the same way we define (special) Q̄-contractible/removable faces (of
quadrangulations belonging to Q̄) and Q̄-minimal quadrangulations. Let

Qmin = {G ∈ Q | G is Q-minimal}, Q̄min = {G ∈ Q̄ | G is Q̄-minimal},
It is clear that (special)Q- or Q̄-vertex-splittings andQ- or Q̄-face-additions
are dual to (special) face splittings and vertex surroundings on basic nets
respectively.

5.2. Double covering and minimality

Let ξ : S2 → RP2 be the double covering and σ : S2 → S2 its deck
transformation, i. e., ξ ◦ σ = ξ and σ �= id. For a ∈ S2 or a ⊂ S2, we denote
σ(a) by a′ and ξ(a) by ā.

Lemma 5.1.— Let Ḡ ∈ Q̄ and G = ξ−1(Ḡ). Suppose that a face f = abcd
of G is Q-contractible at {a, c}. Then:

(a) The vertices a, a′, c, c′ are pairwise distinct.

(b) f̄ is not Q̄-contractible at {ā, c̄} if and only if one of the following
two conditions holds: (i) G has an edge ac′ or (ii) b = d′ and deg b = 4.

(c) Assume, moreover, that f is special Q-contractible at {a, c}. Then f̄
is special Q̄-contractible at {ā, c̄} if and only if ac′ �∈ E(G).

Proof. — (a) We have a �= c because G ∈ Q by Theorem 3.5, hence G
is 2-cell-embedded by Proposition 3.4. We have a �= c′ because otherwise
we have f ′ = a′b′c′d′ = cb′ad′ and the result of the contraction of f is not
2-cell-embedded at the face f ′ which contradicts Proposition 3.4.

(b) By (a) we have ā �= c̄, i. e., the face f̄ is contractible at {ā, c̄}. Let
Ḡ1 be the result of the contraction.
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If (i) holds, then the image of the edge ac′ on Ḡ1 would be a loop; if (ii)
holds, then degḠ1

b̄ = 2. In both cases we have Ḡ1 �∈ Q̄.

Suppose that none of Conditions (i), (ii) holds. Let us show that Ḡ1 ∈ Q̄.
It is clear that Ḡ1 is a quadrangulation. Since f is Q-contractible, we have
deg b̄ = deg b > 3 and deg d̄ = deg d > 3. Since Condition (ii) does not hold,
it follows that Ḡ1 is a quadrangulation of minimum degree 3. So, it remains
to prove that Ḡ1 is simply embedded. Since Ḡ is loop-free and a �= c′, it
follows that Ḡ1 is loop-free also. Suppose that there are two parallel edges
on Ḡ1 which bound a disk D∗ on RP2. Let π : RP2 → RP2 be a continuous
mapping which extends the contraction of f̄ so that π|f̄ is constant on each
segment parallel to the diagonal āc̄ and π|RP2\f̄ is a homeomorphism onto

its image. Then D̄ = π−1(D∗) is a disk bounded by two edges of Ḡ and,
maybe, by the diagonal of f̄ if π(ā) = π(c̄) ∈ ∂D∗. Thus, ξ−1(D̄) is a disjoint
union of two disks D ∪D′ on S2 such that D is bounded by two edges of G
and, maybe, by the diagonal ac of the face f . Thus either G or the result of
the contraction of f at {a, c} is not simple. Contradiction.

(c) Since f is special Q-contractible at {a, c}, without loss of generality
we may assume that deg(a) = 3. By (b), it is enough to show that Condition
(ii) does not hold. Suppose that it does hold. Then, by (a), G contains a
subgraph depicted in Figure 10.1. Here we denote the third outcoming edge
from a by ax. It is clear that x should be in the quadrangle q = abc′d. It
cannot be on the boundary of q. Indeed, x �∈ {a, b, d} because G is simple
and x �= c′ because G is bipartite (see the colors in Figure 10.1). We have
deg(b) = deg(d) = 4 and deg(a) = 3, hence all outcoming edges from a, b,
and d are already present in Figure 10.1. Therefore, the path xabc′ follows
the boundary of the same face (we denote it by f1). Hence G has an edge
xc′ adjacent to f1. Similarly, xc′ is adjacent to the face f2 = xadc′. Since
f1 ∪ f2 = q, we conclude that deg(x) = 2. Contradiction.

Figure 10.1
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Figure 10.2. — ǧ85

Remark 5.2.— Condition (ii) of Lemma 10(b) holds for the quadrangu-
lation Ḡ = ǧ8

5 depicted in Figure 10.2 which is dual to the basic net g8
5 in

Figure 2. In this case f is (non-special) Q-contractible at {a, c} but f̄ is not
Q̄-contractible at {ā, c̄}.

Lemma 5.3.— Let Ḡ ∈ Q̄ and let G = ξ−1(Ḡ). Suppose that a face f0

of G is removable. Let f1, f2, f3, f4 be the faces which have a common edge
with f0. If fi �= f ′j for any i, j ∈ {0, . . . , 4}, then f̄0 is removable.

Proof. — Suppose that f̄0 is not removable. Than x̄ = ȳ for a vertex x
of f0 and for a vertex y �= x of one of f0, . . . , f4. Since x �= y and x̄ = ȳ, it
follows that y′ = x. One of the faces adjacent to y is fi for some i = 0, . . . , 4.
Then f ′i is adjacent to y′ = x. Since any face adjacent to x is one f0, . . . , f4,
it follows that f ′i = fj for some j = 0, . . . , 4.

Figure 11. — The covering of ǧ52

Theorem 5.4.— Let Ḡ ∈ Q̄min and G = ξ−1(Ḡ). Then either G ∈ Qmin

or G is as in Figure 11 (and then Ḡ = ǧ5
2 – the dual of the basic net g5

2 in
Figure 2 ).
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Proof. — Suppose that G �∈ Qmin. Then it admits either a special Q-
face-contraction or a Q-face-removal.

Case 1. G admits a special Q-contraction of a face f = abcd at {a, c}.
We may assume that deg(a) = 3. Since Ḡ ∈ Q̄min, the face f̄ is not Q̄-
contractible at {ā, c̄}. By Lemma 5.1(c), this implies that G has edges ac′

and ca′ (note that a �= c′ by Lemma 5.1(a)). Then b′ �= d because G is
bipartite, hence G contains a subgraph H shown in Figure 12.1.

Figure 12.1

Figure 12.2

Subcase 1.1. deg(c) = 3. In this case the paths bac′d′, dac′b′, dca′b′,
and bca′d′ belong to the boundaries of some faces. Hence there are edges
bd′ and b′d and when we add them to H, we complete the graph G. Then
deg(b) = deg(d) = 3 which contradicts the condition that f isQ-contractible
at {a, c}.

Subcase 1.2. deg(c) > 3. Let e = cx be an edge adjacent to c which is
not in H and which is next to ca′ in the natural cyclic order on the set
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of edges outcoming from c. Since H is symmetric, we may assume that e
sits in the hexagon h = abca′d′c′ (the exterior region in Figure 12.1). The
vertex x is not on the boundary of h. Indeed, x �∈ {a, d′} because G is
bipartite (see the colors in Figure 12.1), x �∈ {b, a′} because G is simple,
and x �= c′ because Ḡ is loop-free. Thus, xca′d′ is a path in G. Moreover, by
the assumption that deg(a) = 3, this path belongs to the boundary of some
face f1 (see Figure 12.2). Then f̄1 is Q̄-contractible at {ā, x̄} by Lemma 5.1.
Indeed, we have deg(c) > 3 by hypothesis, deg(d′) = deg(d) > 3 because
f is Q-contractible at {a, c}, and there is no edge xa because deg(a) = 3
and we have already three outcoming edges from a. Moreover, f̄1 is special
Q̄-contractible at {ā, x̄} because deg ā = deg a = 3.

Case 2. G has a Q-removable face f = abcd. Let a1, b1, c1, d1 be as in
the definition of the face removal (see §5.1) and let G1 be the result of the
removal of the face f . Since G1 is in Q, it is 2-cell-embedded by Proposition
3.4, hence a1, b1, c1, d1 are pairwise distinct. Since f is Q-removable, we have

deg x > 3 for x ∈ {a1, b1, c1, d1}. (5.1)

Let us prove that f̄ is removable. By Lemma 5.3 and by symmetry, it suf-
fices to check that a′ �∈ {a, b, c, d, a1, b1, c1, d1}. We have a′ �∈ {a1, b1, c1, d1}
by (5.1), a′ �= a because σ has no fix point, and a′ �= b because Ḡ is loop-free.
Suppose that a′ = c. Then b′ is connected to c by an edge. i. e., b′ ∈ {b, d, c1}.
We have b′ �= b (no fix point of σ) and b �= c1 by (5.1), hence b′ = d. Thus,
σ maps the edge ab to the edge cd. If follows that the face f ′ is incident
to cd. This is impossible because f ′ �= f (otherwise σ has a fix point) and
f ′ �= cdd1c1 by (5.1). So, we proved that f̄ is removable.

Let Ḡ1 be the result of the removal of the face f̄ . Then Ḡ1 is a sim-
ply embedded quadrangulation and degḠ1

(x) � 3 for x �∈ {ā1, b̄1, c̄1, d̄1}.
Since Ḡ ∈ Q̄min, we know that Ḡ1 �∈ Q̄. Hence the degree in Ḡ1 of one of
ā1, b̄1, c̄1, d̄1, (say, ā1) is less that 3. Since degḠ(ā1) = degG(a1) > 3 (see
(5.1)), this means that ā1 is incident in Ḡ to at least two edges which
are removed in Ḡ1. This may happen only if a′1 ∈ {a1, b1, c1, d1}. We
have a′1 �= a1 (since σ has no fix point) and a′1 �∈ {b1, d1} (since Ḡ is
loop-free), hence a′1 = c1. We have degG(a1) > 3, degḠ1

(ā1) < 3, and
degḠ1

(ā1) = degG(a1) − 2, hence degG(a1) = 4 and degḠ1
(ā1) = 2. This

means that the only vertices connected to a1 are a, c′, b1, d1. Since a′1 = c1,
we have degG(c1) = 4, hence the vertices connected to c1 are c, a′, b1, d1.
Thus, σ({a, c′, b1, d1}) = {c, a′, b1, d1}. Since a �→ a′, c′ �→ c, and b1 ��→ b1,
we have b′1 = d1 and we conclude that G is as in Figure 11.

Theorem 1.2 easily follows from Theorem 5.4 combined with Theorem
1.1. Indeed, by Theorem 3.5, any basic net Γ on RP2 with more than one
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crossing is dual to a quadrangulation from Q̄. Hence Γ can be obtained by
successive special face splittings and vertex surroundings starting from a net
dual to a Q̄-minimal quadrangulation of RP2. By Theorem 5.4, Q̄min consists
of ǧ5

2 and the quotients of those Q-minimal quadrangulations of S2 which
admit a fix point free involution. By Theorem 1.1, Qmin = {Wn | n � 3}
(double wheels). It is easy to check that Wn admits a fix point free involution

if and only if n is odd. Thus, Q̄min = {ǧ5
2} ∪ {W̃n | n is odd, n � 3}. It

remains to note that g5
2 is obtained from g1 by a vertex surrounding and

that the nets (2× n)∗ are dual to W̃n.

6. Computations

Of course, the best way to generate basic nets in RP2 is to write a
program based on Theorem 1.2 and similar to plantri [2, 3] or, maybe, just
to modify plantri. However, it takes too much efforts for somebody (like
me) who is not familiar with plantri internal structure, so, I used a more
lazy approach: I wrote a simple filter ppf for plantri (see [7]). It reads
the output of plantri and selects only those planar graphs which admit
an orientation reversing involution without fix points and fix edges. Since
plantri called with -c2q option generates all simple quadrangulations of
S2, Theorem 3.5 ensures that we obtain in this way all simply embedded
quadrangulations of RP2 (the dual graphs of basic nets with � 3 crossings)
without repetitions and omissions.

This method is very slow, for example, we need to treat 5.45 ·1013 simple
quadrangulations of S2 with 38 vertices to select only 1735808 simply em-
bedded quadrangulations of RP2. Fortunately, plantri is so efficient that
this can be done.

The program ppf can be used in pipe with plantri, for example:

plantri -c2q 18 | ppf (6.1)

The output is almost the same as the plantri’s ascii output but:

• The names of vertices are changed from a, b, c, . . . to a, b, c, . . . ,
A,B,C, . . . so that the involution maps a �→ A, b �→ B, etc.
• We list the neighbourhoods of the lowercase vertices only.

For example, the first output line produced by the command (6.1) is

9 bcdef,aDg,agF,aFBH,aHI,aICD,bhic,DEg,gEF

which corresponds to the net g8
1 in Figure 2. The corresponding net in S2

is depicted in Figure 13 where S2 is supposed to be glued out of the two
disks so that the region names match each other.
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Figure 13

In Table 1, q̄(ň) is the number of simply embedded quadrangulations of
RP2 with ň = n+ 1 vertices (the same as the number of basic nets on RP2

with n vertices), q̄bip(ň) is the number of those of them which are bipartite
(the number of homologically trivial basic nets on RP2 with n vertices),
and q2(2ň) is the number of simple quadrangulations of S2 with 2ň vertices
(the same as in [1; Table 2]), so, q2(2ň) is the number of quadrangulations
needed to be checked in our computation of q̄(ň).

n ň q̄(ň) q̄bip(ň) q2(2ň)

3 4 1 0 1

4 5 0 0 1

5 6 2 1 3

6 7 3 2 12

7 8 6 3 64

8 9 12 7 510

9 10 37 22 5146

10 11 95 57 58782

11 12 293 174 716607

12 13 923 554 9062402

13 14 3086 1848 117498072

14 15 10504 6291 1553048548

15 16 36954 22052 20858998805

16 17 131590 78361 284057538480

17 18 475793 282420 3915683667721

18 19 1735808 1027336 54565824458485

Table 1. Basic nets on RP2
with n vertices and on S2 with 2n vertices
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