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Representing Analytic Cohomology Groups
of Complex Manifolds

László Lempert(1)

ABSTRACT. — Consider a holomorphic vector bundle L → X and an
open cover U = {Ua : a ∈ A} of X, parametrized by a complex manifold
A. We prove that the sheaf cohomology groupsHq(X,L) can be computed
from the complex C•hol (U, L) of cochains (fa0...aq )a0,...,aq∈A that depend
holomorphically on the aj , provided S = {(a, x) ∈ A × X : x ∈ Ua} is a
Stein open subset of A×X. The result is proved in the setting of Banach
manifolds, and is applied to study representations on cohomology groups
induced by a holomorphic action of a complex reductive Lie group on L.

RÉSUMÉ. — On considère un fibré vectoriel holomorphe L → X et un
recouvrement ouvert U = {Ua : a ∈ A} de X, où A est une variété com-
plexe non singulière. On démontre alors que les groupes de cohomologie
Hq(X,L) sont isomorphes aux groupes de cohomologie du complexe C•hol
(U, L) des cochâınes (fa0...aq )a0,...,aq∈A qui dépendent d’une façon holo-
morphe des aj , à condition que S = {(a, x) ∈ A ×X : x ∈ Ua} ⊂ A ×X
soit un ouvert de Stein. Ce résultat est démontré dans le cadre des variétés
de Banach. On finit en donnant une application à l’étude des opérations
holomorphes d’un groupe réductif complexe sur L.
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Article proposé par Vincent Guedj.

– 21 –



László Lempert

1. Introduction

Consider a holomorphic vector bundle L → X. Its cohomology groups
Hq(X,L) are often represented in terms of open covers U = {Ua : a ∈ A} of
X and the associated Čech complex C•(U, L), whose elements are collections
(fa0...aq )aj∈A, with each fa0...aq ∈ Γ(

⋂q
j=0 Uaj , L), a holomorphic section of

L. If each Ua is Stein, by Cartan’s Theorem B and by Leray’s theorem
Hq(X,L) ≈ Hq(C•(U, L)), see [6, 4].

The notion of Čech cochains (fa0...aq ) is very natural if the cover U is in-
dexed by a set A without any structure. However, as noted in [10, 1, 2, 3, 9],
if A has some structure, then it makes sense to consider cochains that, in
their dependence on aj , reflect this structure. For example, if A is a differ-
ential or complex manifold, or a measure space, one can work with the sub-
spaces C•smooth(U, L), C•hol(U, L), or C•meas(U, L) of cochains (fa0...aq ) that
depend smoothly, holomorphically, or measurably on a0, . . . , aq. In this pa-
per we prove that under a certain condition the holomorphic Čech complex
C•hol(U, L) and C•(U, L) have isomorphic cohomology groups.

Theorem 1.1.— Let A,X be complex manifolds, L→ X a holomorphic
vector bundle, and U = {Ua : a ∈ A} an open cover of X. If

S = {(a, x) ∈ A×X : x ∈ Ua} ⊂ A×X

is a Stein open subset, then inclusion C•hol(U, L) ⊂ C•(U, L) induces an
isomorphism of cohomology groups.

Covers parametrized by complex manifolds occur in many situations. A
natural Stein cover of projective space P is by complements of hyperplanes.
This cover is parametrized by the hyperplanes, i.e., by points of the dual
projective space P∗. By restriction, we also obtain a Stein cover of any
projective manifold X ⊂ P, parametrized by P∗. These covers satisfy the
assumptions of Theorem 1.1.

The theorem is related to [9, Theorem 1.1], see also [10]. There it is
assumed additionally that the sets {a ∈ A : x ∈ Ua} are contractible, and the
conclusion is that Hq(U, L), or Hq(X,L), is isomorphic to a certain relative
holomorphic De Rham cohomology group. As in [9, 10], the motivation to
represent cohomology groups through holomorphic objects comes from the
study of bundles on which a complex reductive group acts holomorphically,
see Theorem 5.5.

So far we have been vague about the sort of complex manifolds and
vector bundles covered by Theorem 1.1. In fact, while the theorem is new
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even for finite dimensional L, it holds for a large class of Banach manifolds
A,X and Banach bundles L → X; and the isomorphism in the theorem is
that of topological vector spaces. In Section 2 we will explain the necessary
background in infinite dimensional complex geometry and in Sections 3 and
4 we formulate and prove the infinite dimensional version of Theorem 1.1
(Theorem 3.1). Establishing a very special case of this theorem was the first
step in [13] of the computation of the first cohomology group of various
loop spaces LP1 of the Riemann sphere (in guise of the Dolbeault group
H0,1(LP1)). Finally, in Section 5 we apply Theorem 3.1 to the study of
holomorphic group actions. We hope these results will pave the way to the
computation of higher cohomology groups of loop spaces of projective spaces
Pn and more generally, of projective manifolds.

2. Complex Banach manifolds

In this section we recall basic notions of infinite dimensional complex
geometry as well as key vanishing and isomorphism theorems. The main
references are [8, 11, 12, 14].

Let E,F be Hausdorff, locally convex topological vector spaces over
C, F sequentially complete, and Ω ⊂ E open. A function f : Ω → F is
holomorphic if at every x ∈ Ω the directional derivatives

df(x; v) = lim
C�t→0

f(x + tv)− f(x)

t

exist, and define a continuous map df : Ω× E = TΩ→ F .

A complex manifold in this paper will be a Hausdorff space sewn together
from open subsets of Banach spaces with holomorphic sewing maps. A closed
subset Y of a complex manifold X is a direct submanifold if for every x ∈
Y there are neighborhoods U ⊂ X, a Banach space E, a complemented
subspace F ⊂ E, and a neighborhood V ⊂ E of 0 ∈ E such that the pair
(U,U ∩Y ) is biholomorphic to (V, V ∩F ). Such a Y has a natural structure
of a complex manifold. A holomorphic Banach bundle is a holomorphic map
π : L→ X of complex manifolds, each fiber Lx = π−1(x) endowed with the
structure of a complex vector space. It is required that for each x ∈ X
there be a neighborhood U ⊂ X, a Banach space E, and a biholomorphism
LU = π−1U → U ×E that for y ∈ U maps the fiber Ly linearly on {y}×E.
We denote by Γ(X,L) the vector space of holomorphic sections of L.

An open subset Ω of a Banach space E is pseudoconvex if Ω ∩ E′ ⊂ E′

is pseudoconvex for all finite dimensional subspaces E′ ⊂ E. A connected
complex manifold is Stein if it is biholomorphic to a direct submanifold of
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a pseudoconvex subset Ω ⊂ E, where E is a Banach space with a Schauder
basis. A general complex manifold is Stein if its connected components are.

As we shall see, on Stein manifolds generalizations of Cartan’s Theorems
A and B hold. More generally, we shall consider locally Stein manifolds X in
which every point has a Stein neighborhood. This is equivalent to X being
modeled on complemented subspaces of Banach spaces with a Schauder
basis.

The sheaf of germs of holomorphic sections of a holomorphic Banach
bundle L → X is a cohesive sheaf, (see [11, Definition 3.5]), whose theory
was developed in [12, 11]. We now review this theory in the simpler context
of bundles.

Definition 2.1. — A homomorphism ϕ between holomorphic Banach
bundles L→ X and L′ → X is a complete epimorphism if for every trivial
bundle T → X and for every Stein open U ⊂ X the induced map

ϕ∗ : Γ(U,Hom(T,L))→ Γ(U,Hom(T,L′))

is surjective.

Lemma 2.2. — Let Λ, L → X be holomorphic Banach bundles over a
Stein manifold X. A homomorphism ϕ : Λ→ L is a complete epimorphism
if and only if there is a homomorphism ψ : L → Λ such that ϕψ = idL. In
this case ψ(L), Kerϕ ⊂ Λ are subbundles, and Λ = ψ(L)⊕Kerϕ.

We shall derive the lemma from

Theorem 2.3. — If L → X is a holomorphic Banach bundle over a
Stein manifold, then

(a) Some trivial Banach bundle has a complete epimorphism on L;

(b) Hq(X,L) = 0 for q � 1.

This is a special case of the sheaf theoretic [11, Theorem 3.7 and Lemma
3.8], which, in turn, depended on [12, 16]. Accepting Lemma 2.2, part (a)
above means there is a holomorphic Banach bundle L′ → X such that L⊕L′
is trivial.

Proof of Lemma 2.2. — The “if” part being obvious, we only prove the
“only if” direction. Suppose first that Λ = X × E → X and L = X ×
F → X are trivial. We choose ψ ∈ Γ(X,Hom(L,Λ)) to have image idL ∈
Γ(X,Hom(L,L)) under the surjective map

ϕ∗ : Γ(X,Hom(L,Λ))→ Γ(X,Hom(L,L)).
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This ψ determines a homomorphism L → Λ, also denoted ψ; clearly ϕψ =
idL. This implies

Λx = ψ(Lx)⊕Kerϕ(x) for x ∈ X. (2.1)

Next we show ψ(L) and Kerϕ are subbundles of Λ. Fix x0 ∈ X, let
K = Kerϕ(x0) ⊂ E, write

ψ(x, u) = (x,Ψ(x, u)), x ∈ X,u ∈ F,Ψ(x, u) ∈ E,

and define a homomorphism of trivial bundles

ϑ : X × (F ⊕K) � (x, u, v) �→ (x,Ψ(x, u) + v) ∈ X × E.

The inverse function theorem implies ϑ is an isomorphism of Banach bundles
over a neighborhood of x0, and it follows from (2.1) that

ψ(L) = ϑ(X × (F ⊕ 0)) and Kerϕ = ϑ(X × (0⊕K))

are complementary subbundles of Λ, near x0. Since x0 was arbitrary, this
holds over all of X.

To complete the proof, consider general Banach bundles Λ, L. Since lo-
cally Λ, L are trivial, Kerϕ ⊂ Λ is a subbundle that is locally complemented,
whence ϕ gives rise to an exact sequence

0→ Hom(L,Kerϕ)→ Hom(L,Λ)→ Hom(L,L)→ 0

of Banach bundles. As H1(X,Hom(L,Kerϕ)) = 0 by Theorem 2.3, the
associated long exact sequence gives that ϕ∗ : Γ(X,Hom(L,Λ)) → Γ(X,
Hom(L,L)) is surjective, and we can proceed as above when L,Λ were
trivial.

Next we turn to defining a locally convex topology on the space of sec-
tions of a holomorphic Banach bundle L → X and on its cohomology
groups, following [11]. By a weight on a complex manifold X we mean a
locally bounded function w : X → (0,∞), and we denote by W (X) the set
of all weights. This is a directed set with the partial order w > w′ meaning
w(x) > w′(x) for all x ∈ X. If (E, ‖ ‖) is a Banach space, we write OE(X)
for the space of holomorphic functions X → E, and if w ∈W (X),

OE(w) = {f ∈ OE(X) : ‖f‖w = sup
x∈X
‖f(x)‖/w(x) <∞}.

Thus (OE(w), ‖ ‖w) is a Banach space. The τδ topology on OE(X) is the
locally convex direct limit topology of the OE(w), see [11, Proposition 5.1].
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Basic neighborhoods of 0 ∈ OE(X), parametrized by functions ε : W (X)→
(0,∞), are the convex hulls of sets of form

⋃
w∈W (X){f ∈ OE(w) : ‖f‖w <

ε(w)}. From this description it is clear that τδ is finer than the topology
of pointwise convergence, hence it is Hausdorff. The τδ topology was first
introduced by Nachbin in [15]; a variant, that often agrees with it, was
studied by Coeuré in [7]. When X is finite dimensional and second countable,
τδ is the same as the compact–open topology, but in general τδ is finer.

As sections of a trivial bundle T = X × E → X are in one to one
correspondence with functions X → E, we obtain a topology on Γ(X,T ),
also denoted τδ. Suppose now L → X is a holomorphic Banach bundle
over a Stein manifold. By Theorem 2.3 and by Lemma 2.2 we can choose a
trivial bundle T → X in which L is a direct summand. Projection p : T → L
induces a surjection p∗ : Γ(X,T )→ Γ(X,L), and we define the τδ topology
on Γ(X,L) as the finest topology for which p∗ is continuous. As discussed
in [11, Section 4], this topology is independent of the choice of T and of the
complete epimorphism p. A homomorphism ϕ : L→ L′ induces a continuous
map Γ(X,L)→ Γ(X,L′), see [11, Proposition 4.3]. Hence:

Proposition 2.4.— The map

Γ(X,L)⊕ Γ(X,L′) � (f, f ′) �→ f ⊕ f ′ ∈ Γ(X,L⊕ L′)

is a topological isomorphism. In particular, Γ(X,L) � f �→ f⊕0 ∈ Γ(X,L⊕
L′) is a topological embedding.

We apply this when L′ is chosen so that L ⊕ L′ = T is trivial. Now
Γ(X,T ) is Hausdorff and sequentially complete. For a proof, and back-
ground, see [11, Theorem 7.1]. Hence we obtain:

Proposition 2.5.— The τδ topology on Γ(X,L) is Hausdorff and se-
quentially complete.

[11] also introduces a so called τ δ topology on Γ(X,L) when X is just
locally Stein, but we will not need it here. Next let L→ X be a holomorphic
Banach bundle over a locally Stein manifold and U = {Ua : a ∈ A} a cover
of X by Stein open subsets. As usual, if q � 0 and a = (a0, . . . , aq) ∈ Aq+1

is a q–simplex, we write Ua = Ua0 ∩ . . . ∩ Uaq ; by [L, Proposition 3.1] Ua is
Stein. We also introduce a (−1) simplex a = ∅, which constitutes A0, and
set U∅ = X. The disjoint union Uq =

∐
a∈Aq+1 Ua is a Stein manifold when

q � 0. We denote by ρq : Uq → X the local biholomorphism for which ρq|Ua

is the embedding Ua ↪→ X. There is a natural vector space isomorphism
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between Γ(Uq, ρ
∗
qL) and the space

Cq(U, L) =
∏

a∈Aq+1

Γ(Ua, L)

of not necessarily alternating cochains

Γ(Uq, ρ
∗
qL) � f �→ (f |Ua)a∈Aq+1 ∈ Cq(U, L),

and we define the topology on Cq(U, L) as the image of the topology on
Γ(Uq, ρ

∗
qL). Čech coboundary δ = δq : Cq(U, L) → Cq+1(U, L) is contin-

uous, and the cohomology groups Hq(U, L) = Ker δq/Im δq−1 are given
the subquotient topology. This is a locally convex topology but not nec-
essarily Hausdorff. The topology on Čech cohomology groups Ȟq(X,L) =
lim
−→

Hq(U, L) is the direct limit topology, the finest locally convex topology

for which the canonical maps

Hq(U, L)→ Ȟq(X,L) (2.2)

are continuous. According to the main theorem of [11], Theorem 4.5 there,
(2.2) is in fact a topological isomorphism. ([11, Theorem 4.5] applies only
to so–called separated cohesive sheaves, [11, Definition 4.1], but the sheaf of
holomorphic sections of a Banach bundle is separated by [11, Lemma 4.2],
as separation is a local property.)

3. Holomorphic cochains

Let L→ X be a holomorphic Banach bundle, U = {Ua : a ∈ A} an open
cover of X as before, but suppose now that A itself is a complex manifold
and that

S = {(a, x) ∈ A×X : x ∈ Ua}
is a Stein open subset of A ×X. It follows that Ua = {x ∈ X : (a, x) ∈ S}
are Stein, hence X is locally Stein. It also follows that for p = 0, 1, . . . the
fiber product

S[p+1] = {(a0, . . . , ap, x) ∈ Ap+1 ×X : x ∈ Ua0 ∩ . . . ∩ Uaq} (3.1)

is a Stein submanifold of Sp+1, and in fact a Stein open subset of Ap+1×X.
We put S[0] = X. Let πp : S[p+1] → X denote the projection. The space
Cp

hol(U, L) ⊂ Cp(U, L) of cochains (fa0...ap) depending holomorphically on

a0, . . . , ap can be identified with Γ(S[p+1], π∗pL), where to (fa0...ap) corre-
sponds f defined by f(a0, . . . , ap, x) = fa0...ap(x).

There are two natural topologies on Cp
hol(U, L): the one inherited as a

subspace of Cp(U, L), and the one coming from identification with Γ(S[p+1],
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π∗pL), the latter being the finer. Accordingly, there are two ways to induce
topology on Hp

hol(U, L) = Hp(C•hol(U, L)), to which we refer as the coarser
and finer topologies. In fact, the two coincide:

Theorem 3.1. — Inclusion C•hol(U, L) ↪→ C•(U, L) induces topological
isomorphisms of cohomology groups Hn

hol(U, L) → Hn(U, L), n = 0, 1, . . .,
whether the former is endowed with the finer or the coarser topology. The
same holds if the cochain complexes are replaced by the complexes of alter-
nating cochains.

In other words, inclusion C•hol(U, L) → C•(U, L) is a topological quasi–
isomorphism.

4. The proof of Theorem 3.1

Predictably, Theorem 3.1 will follow from the study of double complexes.
For p, q � 0 let

Kpq = Cq(π−1
p U, π∗pL) ⊃ Jpq = Cq

hol(π
−1
p U, π∗pL) (4.1)

be spaces of cochains on S[p+1],K = (Kpq)p,q�0, J = (Jpq)p,q�0. There are
differentials

δpq : Kpq → Kp,q+1 and ∂pq : Kpq → Kp+1,q,

the first Čech coboundary, the second fiberwise Alexander–Spanier cobound-
ary. That is, if f = (fa) ∈ Kpq then

(δf)a0...aq+1 =

q+1∑

0

(−1)ifa0...âi...aq+1 , (4.2)

(∂f)a(x, b0, . . . , bp+1) =

p+1∑

0

(−1)ifa(x, b0, . . . , b̂i, . . . , bp+1), (4.3)

(x, b0, . . . , bp+1) ∈ π−1
p Ua. The terms in (4.3) are all in different Banach

spaces
(π∗p+1L)(x,b0,...,bp+1) and (π∗pL)(x,b0,...,b̂i,...,bp+1)

,

and the equality of the two sides is understood after the canonical identifi-
cation of these fibers with Lx. Clearly, ∂δ = δ∂, and J is a subcomplex.

If Kpq are endowed with the topology described in Section 2, and Jpq

with the topology induced by its identification with Γ(S[p+1], π∗pL), then
the embeddings Jpq → Kpq are continuous, as are the differentials δ, ∂ on
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K and J . We write δJ , ∂J for the differentials restricted to the topological
double complex J .

We can augment K and J by the columns

K−1,• = C•(U, L), J−1,• = C•hol(U, L),

or by the rows K•,−1 = J•,−1, still defined by (4.1), which ∂−1,• or δ•,−1

maps bijectively onto Ker ∂0,•, Ker ∂0,•
J , resp. Ker δ•,0 = Ker δ•,0J .

Proposition 4.1.— For p, q � 0 the augmented complexes K•q, J•q and
Jp• are exact. Even better, for n � −1

∂nq : Knq → Ker ∂n+1,q, ∂nqJ : Jnq → Ker ∂n+1,q
J , and

δpnJ : Jpn → Ker δp,n+1
J

have continuous linear right inverses, hence they are open maps.

Proof. — If f = (fa) ∈ Kn+1,q, g = (ga) ∈ Jp,n+1, define λ(f) ∈ Knq,
µ(g) ∈ Jpn by

(λf)a0...aq (x, b0, . . . , bn) =

q∑

i=0

fa(x, ai, b0, . . . , bn)/(q + 1),

(µg)a0...an(x, b0, . . . , bp) =

p∑

i=0

gbia0...an(x, b0, . . . , bp)/(p + 1).

Then λ|Ker ∂, λ|Ker ∂J , and µ|Ker δJ are the required right inverses.

This proof has little to do with the assumption that S is Stein. By
contrast, the assumption is crucial in the next claim, which is [11, Theorem
4.6].

Proposition 4.2. — For p � 0 the augmented complex Kp• is exact.
Even better, δpn : Kpn → Ker δp,n+1 is open for n � −1.

Proof of Theorem 3.1. — The total complexes K• ⊃ J• of K,J are given
by

Kn =

n⊕

p=0

Kp,n−p, Jn =

n⊕

p=0

Jp,n−p,

on which the differentials are d = ∂′+ δ, dJ = d|J•, where ∂
′pq = (−1)p∂pq.

In light of Propositions 4.1 and 4.2, the embeddings

K−1,• = C•(U, L)
∂−1,•
−→ K•, J−1,• = C•hol(U, L)

∂−1,•
J−→ J•, (4.4)

K•,−1 δ•,−1

−→K•, J•,−1 = K•,−1 δ•,−1
J−→ J• (4.5)
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are quasi–isomorphisms of complexes of vector spaces, see e.g. [17, Proposi-
tion 1, page 220]. Since the first map in (4.5) is the composition of the second
with the inclusion J• ↪→ K•, it follows that the latter is quasi–isomorphic.
As the diagram

C•(U, L)
∂−1,•
−→K•

∪ ∪

C•hol(U, L)
∂−1,•
J−→ J•

(4.6)

commutes, we deduce that the embedding C•hol(U, L)→ C•(U, L) is a quasi–
isomorphism of complexes of vector spaces.

The induced vector space isomorphism on cohomology is clearly con-
tinuous. To show it is a topological isomorphism we need to verify it is
open. This follows by the same analysis as above, except that instead of
[17, Proposition 1, page 220] we use [11, Proposition 2.4], in conjunction
with the openness parts of Propositions 4.1, 4.2, to conclude (4.4) and (4.5)
induce open maps in cohomology. Hence, passing to cohomology in (4.6) we
obtain a diagram in which three maps are topological isomorphisms, and
therefore Hn

hol(U, L)→ Hn(U, L) must also be.

This finishes the proof of Theorem 3.1 when Hn
hol(U, L) is endowed with

the finer topology. But since the coarser topology is sandwiched between
the finer one and the topology inherited from Hn(U, L), the result follows
for the coarser topology as well.

Finally, it is routine to check that the same argument works for coho-
mology groups that are defined in terms of alternating cochains.

5. Application: holomorphic group actions

Suppose on a holomorphic Banach bundle L → X a complex reductive
group G acts holomorphically. In this section we show how to decompose
the cohomology groups Hq(X,L) into isotypical subspaces, under certain
assumptions on X and the action. The assumption will imply that G acts
on the cohomology groups, but the general theory of locally convex repre-
sentations of reductive groups does not apply, because Hq(X,L) is not guar-
anteed to be complete or Hausdorff. This is not an issue when X is compact
and L is of finite rank; but even line bundles over finite dimensional non-
compact X and Hilbert bundles over compact X can exhibit non–Hausdorff
cohomology groups. Instead, we shall work with a G–invariant Stein cover
U = {Ua : a ∈ A}, and decompose the cochain groups of this cover. The
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advantage is that the cochain groups are at least Hausdorff; however, on
Cq(U, L) the action is not holomorphic. At this point enter the holomorphic
cochains: on Cq

hol(U, L) the action is (often) holomorphic, and its isotypi-
cal decomposition will descend to a decomposition of cohomology groups
because of Theorem 3.1.

We start with a Banach bundle L → X over a Stein manifold, and
investigate the induced action on the locally convex space Γ(X,L). It will
be convenient to consider actions not just of groups G but of arbitrary sets,
perhaps endowed with a topology or a manifold structure.

Definition 5.1. — An action of a set G on L means a collection of
holomorphic, resp. biholomorphic maps αg : L → L, ξg : X → X, g ∈ G,
such that αg maps Lξgx linearly in Lx for x ∈ X. If G is a topological space
or a complex manifold, we say the action is continuous, resp. holomorphic,
if the maps

α : G× L � (g, l) �→ αg(l) ∈ L, ξ : G×X � (g, x) �→ ξg(x) ∈ X

are continuous, resp. holomorphic. A continuous action is locally uniformly
continuous if each (g0, x0) ∈ G × X has a neighborhood G0 × U such that
for any g ∈ G0 we have ξg → ξg uniformly on U and αg → αg uniformly
on a neighborhood of the zero section in LU , as g → g.

The notion of uniform convergence for maps with values in a manifold
is understood after the target manifold is locally identified with a Banach
space, so that for small enough G0 and U the maps in question can be
thought to take values in a Banach space.

Thus a left action of a group is an action that respects the group struc-
ture in the sense that αe = idL and αgh = αgαh (which implies ξgh = ξhξg,
so ξ is a right action). Clearly, in general αg determines ξg uniquely, and
one can talk of α as the action.

An action (α, ξ) on L determines an action β on Γ(X,L) by

(βgf)(x) = αg(f(ξgx)), g ∈ G, f ∈ Γ(X,L), x ∈ X. (5.1)

Lemma 5.2.— Suppose X is second countable and G is a locally compact
topological space, resp. a finite dimensional complex manifold. If a G–action
α on L is locally uniformly continuous, resp. holomorphic, then the induced
action on Γ(X,L),

β : G× Γ(X,L) � (g, f) �→ (βgf) ∈ Γ(X,L) (5.2)

is continuous, resp. holomophic.
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By Theorem 2.3 and Lemma 2.2 we can assume that L is a direct sum-
mand in a trivial bundle T = X × E → X, where (E, ‖ ‖E) is a Banach
space. We denote by ‖ ‖ : L → [0,∞) the restriction of ‖ ‖E to the fibers
Lx ⊂ {x} ×E. According to Proposition 2.4 the topology on Γ(X,L) is in-
duced from the embedding Γ(X,L) ⊂ Γ(X,T ). Concretely, this means that
with weights w ∈W (X) if we define Banach spaces (Γ(w,L), ‖ ‖w),

Γ(w,L) = {f ∈ Γ(X,L) : ‖f‖w = sup
x∈X
‖f(x)‖/w(x) <∞},

then Γ(X,L) = lim
−→

Γ(w,L) as locally convex spaces. To prove Lemma 5.2

we need

Lemma 5.3.— If X is second countable, a compact space G acts locally
uniformly on L, and β is the induced action on Γ(X,L), then for every
w ∈W (X) there is a w′ ∈W (X) such that

G× Γ(w,L) � (g, f) �→ βgf ∈ Γ(w′, L) (5.3)

is continuous with respect to the ‖ ‖w, ‖ ‖w′ topologies on Γ(w,L), Γ(w′, L).

Proof. — The action α on L can be extended to an action α̃ on the trivial
bundle T = L⊕L′ by letting α̃g send L′x to the zero vector in L′

ξ−1
g x

. Hence

it suffices to prove the lemma for T instead of L, or to put it differently, we
can assume L = X × E → X is trivial.

First we claim there is a w1 ∈W (X) such that

‖α(g, l)‖ � w1(x)‖l‖, g ∈ G, l ∈ Lx, x ∈ X. (5.4)

Indeed, by continuity of α, for any (g0, x0) ∈ G×X there are a neighborhood
G0 × U and an ε > 0 such that

‖α(g, l)‖ � 1, (g, l) ∈ G0 × LU , ‖l‖ � ε.

Hence ‖α(g, l)‖ � ‖l‖/ε for (g, l) ∈ LU . Since G can be covered by finitely
many such G0, we obtain for every x0 ∈ X a neighborhood U ⊂ X and a
positive number cU such that ‖α(g, l)‖ � cU‖l‖ for l ∈ LU . Denoting by U a
cover of X by such neighborhoods, the weight w1(x) = inf{cU : x ∈ U ∈ U}
will do.

Set w2(x) = supg∈G w(ξgx)w1(ξgx), a locally bounded positive function.
(5.4) implies for f ∈ Γ(w,L)

‖βgf(x)‖ =‖αg(f(ξgx))‖ �
‖f(ξgx)‖
w(ξgx)

w(ξgx)w1(ξgx) � ‖f‖ww2(x), and

‖βgf‖w′ � ‖f‖w,

(5.5)
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provided w′ � w2. In particular, βg is continuous for fixed g.

Next we claim that every x0 ∈ X has a neighborhood U such that with
g ∈ G and f ∈ Γ(w,L)

‖(βgf)(x)− (βgf)(x)‖ → 0 uniformly for x ∈ U, as g → g. (5.6)

At first we prove a weaker version when a g0 ∈ G is also fixed, and (5.6) is
claimed only for g in some neighborhood G0 ⊂ G of g0.

Since L = X × E → X is trivial, we can write f ∈ Γ(w,L) as f(x) =
(x, e(x)), where e ∈ OE(X). Similarly,

αg(l) = (ξ−1
g x, a(g, l)), g ∈ G, l ∈ Lx, (5.7)

where a : G × L → E. As α is locally uniformly continuous, we can choose
neighborhoods U1 ⊂ X of x0, V1 of ξg0x0, and G1 ⊂ G of g0 such that for
g → g ∈ G1

ξg → ξg uniformly on U1,

a(g, l)→ a(g, l) uniformly for l ∈ V1 ×B,
(5.8)

where B is a neighborhood of 0 ∈ E. By homogeneity, the same holds for
any bounded set B ⊂ E. We arrange that

sup
V1

w = s1 <∞, and sup
G×V1×B′

‖a‖E <∞,

with some neighborhood B′ of 0 ∈ E. As a is linear on the fibers of L, the
latter implies ‖a(g, l)‖E � s2‖l‖ for g ∈ G, l ∈ LV1

, with s2 < ∞. Since
a neighborhood of x0 ∈ X can be identified with a ball in some Banach
space F , we can also arrange that V1 is identified with the unit ball of F ,
the center corresponding to ξg0x0. Let V ⊂ V1 denote the concentric ball of
radius 1/2, and choose G0 ⊂ G1, U ⊂ U1 so that G0U ⊂ V . The operator
norm of ∂a/∂l can then be estimated à la Cauchy:

∥∥∥∥
∂a(g, l)

∂l

∥∥∥∥
op

� 2s2(‖l‖+ 1), g ∈ G, l ∈ LV . (5.9)

Further, if f ∈ Γ(w,L) and f(x) = (x, e(x)), then

sup
V1

‖e‖E � s1‖f‖w and sup
V

∥∥∥∥
∂e

∂x

∥∥∥∥
op

� 2s1‖f‖w. (5.10)

With g, g ∈ G0, x ∈ U

‖(βgf)(x)− (βgf)(x)‖ �
‖αg(f(ξgx))− αg(f(ξgx))‖+ ‖αg(f(ξgx))− αg(f(ξgx))‖,
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and the first term on the right is

‖a(g, ξgx, e(ξgx))− a(g, ξgx, e(ξgx))‖E
� 2s2(s1‖f‖w + 1)(2s1‖f‖w + 1)‖ξgx− ξgx‖F

by (5.9), (5.10). Hence (5.8) implies this term tends to 0 uniformly as g → g.
The second term, or ‖a(g, ξgx, e(ξgx)) − a(g, ξgx, e(ξgx))‖E , also tends to
0 uniformly, by the second part of (5.8) and by (5.10). Therefore indeed
‖βgf − βgf‖ → 0 uniformly on U as g → g ∈ G0.

Since G can be covered by finitely many such G0, the intersection of the
corresponding U ’s provides the neighborhood U for which (5.6) holds for all
g ∈ G and f ∈ Γ(w,L).

Now we cover X by a locally finite family of such open sets U . The
family must be countable, let us denote its elements U1, U2, . . ., and define
w′ ∈W (X) by

w′(x) = max{nw2(x) : x ∈ Un}.
For x ∈ Un ∪ Un+1 ∪ . . . (5.5) implies

‖(βgf)(x)‖/w′(x) � ‖f‖w/n,

so that it follows from (5.6) with U = U1, . . . , Un−1 that ‖βgf−βgf‖w′ → 0.
Putting this and (5.5) together

‖βgf − βgf‖w′ � ‖βg(f − f)‖w′ + ‖βgf − βgf‖w′ → 0

as g → g and f, f ∈ Γ(w,L), f → f ; the induced action is indeed continuous.

Proof of Lemma 5.2. — (a) Since continuity is a local property, we might as
well assume G is compact, and then continuity follows from Lemma 5.3.

(b) Holomorphy is also a local property, so now we can assume G is
an open subset in some Cm. Cauchy estimates imply that a holomorphic
action is locally uniformly continuous, hence β is continuous. To prove
it is holomorphic as well, we need to compute its directional derivatives
dβ(γ, ϕ) ∈ TΓ(X,L) for γ ∈ TG, ϕ ∈ TΓ(X,L), and prove dβ is continuous.
The action (α, ξ) of G on L defines a holomorphic action (α′, ξ′) = (dα, dξ)
of TG on the bundle TL→ TX and an action β′ on Γ(TX, TL),

β′(g′, f ′)(x′) = α′
(
g′, f ′(ξ′(g′, x′))

)
, (5.11)

where g′ ∈ TG, f ′ ∈ Γ(TX, TL), and x′ ∈ TX, see (5.1), (5.2). By part (a),
β′ is continuous.

– 34 –



Representing Analytic Cohomology Groups of Complex Manifolds

Let V =
⋃

x∈X TLx ⊂ TL denote the subbundle of vertical vectors. If
f ∈ Γ(X,L), there are natural topological isomorphisms among Γ(X,L),
Γ(X, f∗V ), and TfΓ(X,L). Indeed, if ϕ ∈ Γ(X,L), for every x ∈ X the
tangent vector to the curve t �→ f(x) + tϕ(x), at t = 0, is in f∗Vx, and so
ϕ determines a holomorphic section of f∗V . Similarly, the tangent vector
to the curve t �→ f + tϕ is in TfΓ(X,L). In what follows, we shall not
distinguish between TfΓ(X,L) and T (X, f∗V ). Similarly, TΓ(X,L) will be
identified with Γ(X,V ) ⊂ Γ(X,TL).

For fixed x the map G×Γ(X,L) � (g, f) �→ (βgf)(x) ∈ L is differentiable
and by the chain rule its derivative in the direction (γ, ϕ) ∈ TgG×TfΓ(X,L)
is

dα
(
γ, df(dξ(γ, 0x)) + ϕ(ξ(g, x))

)
, (5.12)

where 0x ∈ TxX stands for the zero vector. In fact, the directional difference
quotients converge locally uniformly in x ∈ X, whence the difference quo-
tients of β converge in the topology of Γ(X,L). We conclude that dβ(γ, ϕ) ∈
TΓ(X,L) ≈ T (X,V ) exists, and dβ(γ, ϕ)(x) is given by (5.12). Now, if with
each ϕ ∈ TfΓ(X,L) ≈ Γ(X, f∗V ) we associate ϕ′ ∈ Γ(TX, TL),

ϕ′(x′) = df(x′) + ϕ(x), x′ ∈ TxX,

then by (5.11), (5.12) we see that dβ(γ, ϕ) is the restriction of β′(γ, ϕ′) ∈
Γ(TX, TL) to the zero section X ⊂ TX. Since both β′ and the map ϕ �→ ϕ′

are continuous, it follows that so is dβ, and β is indeed holomorphic.

We are interested in actions of finite dimensional complex Lie groups G
on Banach bundles. We assume that G is reductive in the sense that there
is a compact real subgroup GR ⊂ G which is maximally real and intersects
each component of G. Recall that a real submanifold N ⊂M of a complex
manifold is maximally real if TxN ⊕ iTxN = TxM for all x ∈ N . When
dimM < ∞, this amounts to requiring that locally the pair (M,N) is bi-
holomorphic to (Cn,Rn). Let Irr = IrrGR denote the set of irreducible char-
acters of GR. Any holomorphic irreducible representation G → GL(k,C)
restricts to an irreducible representation of GR, and the representation of
G can be recovered from its restriction. Hence isomorphism classes of irre-
ducible representations of G can be labeled by (certain) characters χ ∈ Irr.
Given an arbitrary representation of G on a complex vector space V , the
χ–isotypical subspace Vχ ⊂ V is the linear span of the subrepresentations
labeled by χ.

Theorem 5.4.— Suppose X is a second countable Stein manifold and
a complex reductive group G ⊃ GR acts holomorphically on a holomorphic
Banach bundle L → X. Then the isotypical subspaces Γχ(X,L) ⊂ Γ(X,L)
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of the induced representation β are closed for χ ∈ Irr, there are surjective,
continuous, G–equivariant operators Pχ : Γ(X,L)→ Γχ(X,L),

PχPψ =

{
Pχ if χ = ψ

0 if χ �= ψ,

and
⊕

χ Γχ(X,L) ⊂ Γ(X,L) is dense.

Proof. — Recall that given two holomorphic G–representations on Hausdorff
locally convex spaces V and Z, any GR equivariant continuous operator
P : V → Z is automatically G–equivariant. Indeed, if v ∈ V then the map
ϕ : G � g �→ g−1Pgv ∈ Z is holomorphic, and ϕ(g) = Pv if g ∈ GR. As
GR is maximally real and intersects each component of G, any holomorphic
function on G is uniquely determined by its restriction to GR, whence ϕ ≡
Pv, i.e. P is G–equivariant. Similarly, if Y ⊂ V is a finite dimensional
(hence closed) GR–invariant subspace, then it is also G–invariant; for if π
denotes projection V → V/Y , then for v ∈ Y the holomorphic function
g �→ π(gv) vanishes for g ∈ GR, hence vanishes for all g ∈ G. This shows
that in the theorem we can forget about representations of G and deal with
representations of GR only.

In light of this, the theorem follows from general representation theory,
see [5, III.5]. The operators Pχ are defined by a Haar integral:

Pχf = dimχ

∫

GR
χ(g−1)(βgf)dg ∈ Γ(X,L), f ∈ Γ(X,L), (5.13)

which makes sense since Γ(X,L) is sequentially complete, see Proposition
2.5. From (5.13) one proves that Γχ(X,L) = PχΓ(X,L) and the other claims
in our Theorem as in [5, III.5]. Theorem 5.10 there is formulated for Hilbert
representations only, but the relevant parts of its proof give what we need
in our Theorem 5.4.

This has a consequence for the isotypical decomposition of cohomol-
ogy groups. Suppose A,X are second countable complex manifolds, U =
{Ua : a ∈ A} an open cover of X, and

S = {(a, x) ∈ A×X : x ∈ Ua} ⊂ A×X

is a Stein open subset (necessarily second countable). Let L → X be a
holomorphic Banach bundle. Assume a complex reductive Lie group G ⊃ GR
acts holomorphically on the right on A and on the left on L. We write
(g, a) �→ ag for the action on A, while retain the notation α, ξ for the actions
on L and X. Finally assume that the actions on A and X are compatible:
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ξgUa = Uag. Then, in the notation of Section 3, the diagonal action on
Ap+1 × X restricts to a holomorphic action ξp on S[p+1], and the action
on L can be lifted to a holomorphic group action αp on π∗pL, p = 0, 1, . . ..
The upshot is that there is an induced holomorphic representation βp on
Γ(S[p+1], π∗pL) ≈ Cp

hol(U, L). Clearly, Čech coboundary is G–equivariant.

Theorem 5.5.— With notation and assumptions as above, the isotypical
subspaces V p

χ ⊂ Cp
hol(U, L) are closed for χ ∈ Irr, there are surjective,

continuous, G–equivariant operators P p
χ : Cp

hol(U, L)→ V p
χ ,

P p
χP

p
ψ =

{
P p
χ if χ = ψ

0 if χ �= ψ,

and
⊕

χ V
p
χ ⊂ Cp(X,L) is dense. The same holds if the space Cp

hol(U, L) of
cochains is replaced by the subspace of cocyles or by the cohomology groups
Hp(X,L).

Proof. — The first part is an immediate consequence of Theorem 5.4. The
second part follows because the projections

P p
χ = dimχ

∫

GR
χ(g−1)βp

gdg,

cf. (5.13), respect Čech coboundary: δpP p
χ = P p+1

χ δp, and because Hp
hol(U, L) ≈

Hp(X,L), cf. Theorem 3.1 and [11, Theorem 4.5].
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