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Geometry of curves with application
to aircraft trajectories analysis

Stéphane Puechmorel(1)

RÉSUMÉ. — Cet article fait un état de l’art des métriques pouvant être
utilisées sur les espaces de courbes que celles-ci soient définies à par-
tir de points de référence ou comme immersions ou plongements. Dans
ce dernier cas, l’espace final est obtenu en quotientant par l’action d’un
groupe de difféomorphismes afin d’assurer l’invariance par changement de
paramètrage. La détermination de la métrique adéquate pour une classe
de problèmes est un sujet de recherche actif, spécialement dans les do-
maines de la vision par ordinateur ou de la reconnaissance de formes. Des
questions similaires se posent dans l’analyse des trajectoires d’avions dans
le cadre de la gestion du trafic. En dépit de son importance, peu d’études
ont été menées sur ce sujet, en grande partie par absence d’un cadre
théorique adapté. L’utilisation des espaces de courbes ou de formes pour
représenter les vols ainsi qu’un exemple d’application à la classification
des trajectoires seront présentés en seconde partie de l’article.

ABSTRACT. — This article presents a survey of some metrics that can be
used on geometric curve spaces which can be defined using samples points,
known as landmarks, or by taking a space of immersions or embeddings
and quotienting out by a group of diffeomorphisms in order to get rid
of the influence of the parametrization. Finding the right metric for a
class of problems is an active topic of research, with a special emphasis
on applications related to computer vision or shape recognition. Similar
problems arise in the field of air traffic management where the analysis of
aircraft trajectories is one of the most basic issues. Despite its importance,
only a few studies have been conducted on the subject, mainly due to the
lack of suitable frameworks. The use of some of the shape spaces for
representing aircraft flight paths, along with an example of trajectory
classification will be given in the second part of the article.
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1. Introduction

Based on recent studies [4], traffic in Europe is expected to grow on an
average yearly rate of 2.6%, yielding a net increase of 2 million flights per
year at the 2020 horizon. Long term forecast gives a two fold increase in 2050
over the current traffic, pointing out the need for a paradigm change in the
way flights are managed. Two major framework programs, SESAR (Single
European Sky Air traffic management Research) in Europe and Nextgen in
the US have been launched in order to first investigate potential solutions
and then to deploy them in a second phase. One of the main changes that the
air traffic management (ATM) system will undergo is a switch from airspace
based to trajectory based operations with a delegation of the separation task
to the crews. Within this framework, trajectories become the basic object
of ATM, changing the way air traffic controllers will be working. At the
same time, present performance indicators will be partly obsoleted: as an
example, aircraft density, used today to dimension controllers teams, is a
point measure and will become irrelevant in a trajectory based system.

The purpose of the article is to present an application of the geometry
of curves to the context of trajectory based ATM. In order to get a feeling
of the complexity of aircraft trajectories, radar tracks recorded on one day
(12th February 2011) over france is pictured on figure 6 at the end of the
text. 15030 flights took place on this day, that is quite a standard one,
with half of them being commercial airliners (the other are general aviation
aircraft, generally used for leisure or aerial work and fly at comparatively
low altitude). The traffic pattern undergoes seasonal changes due to people
travelling to holidays destinations and long term reshapes when companies
create or drop routes, but major flows are quite stable and are reproduced
from day to day. Understanding the way the traffic is organized is a key point
in airspace structure and will also be critical when switching to trajectory
based operations.

A second important application within the frame of ATM is trajectory
prediction, that forecast aircraft positions based on past observations and
intended flight path. The major interest in knowing where aircraft will be
in the future is for early detection of situations where the distance between
mobiles will fall below the minimum allowed (such an encounter is referred to
as a conflict, not to be confused with a collision). When a potential conflict
is detected, avoidance maneuvers are undertaken, that divert the aircraft
from their original routes. Since this kind of action has an adverse effect on
controllers workload and on fuel consumption, it must be decided only when
the probability of real conflict occurrence is high. In the context of nowadays
airspace based design, routes are predefined and well known by controllers.
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Furthermore, flight management systems (FMSs) are efficient enough to
limit cross-track deviation to tight bounds, letting only the longitudinal
uncertainty (that is time of arrival at a given point) remaining. The classical
way humans are acting in such a situation is to let things evolve as long as
possible, in order to reduce uncertainties before starting conflict resolution
maneuvers. In many cases, the anticipated conflict will in fact not take place.
When switching to trajectory based operations, aircraft will no longer be
bound to predefined routes, only to a reference business trajectory (RBT)
that is published before taking off and may be revised during flight (although
this is expected to be a rare event). In nominal situations, the FMS will
do its job keeping the aircraft on the RBT, the trajectory prediction in
such a case boiling down to a trajectory broadcast. However, meteorological
conditions are not known accurately at the time RBT is designed and it may
be advisable or even mandatory for the aircraft to update its initial route.
Although the FMS will broadcast its new flight path, the pertinence of the
information becomes lower. In such a case, an efficient trajectory predictor
will help ATC controllers or even automated systems to anticipate conflicts
with a sufficient level of confidence.

After a survey on the approaches introduced to compute geodesic dis-
tances, a tool dedicated to the clustering of recorded aircraft flight paths
will be presented. The results obtained in this context are the best known
to date. The problem of trajectory prediction starts with a good clustering,
and will benefit from new means of performing it. Using spaces of curves to
get a sound prediction is a promising axis of research, that is expected to
be investigated in a near future.

2. The shape manifold

One of the main issues arising for aircraft trajectory analysis is how
to define a notion of similarity or distance between flight paths. A recent
work [3] conducted for the US Federal Aviation Administration (FAA) by
the MITRE corporation addresses the question of clustering arrivals and
between trajectories. A conclusion of the study is the fact that the perfor-
mance of the algorithm depends critically on the distance chosen, and there
is some clues indicating that the usual L2 norm is not adequate in many
situations.

Starting with this remark, more relevant distances have been investi-
gated. A quite overlooked fact is that the shape of the trajectory is more
important than the velocity law along it. It is thus advisable to use frame-
works related to the geometry of flight paths.
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2.1. Definition and first properties

One of the first attempts to give a mathematically sound description
of the notion of shape is due to Kendall [7] with an approach based on
landmarks, which are sampled points on a curve. As his primary goal was to
classify shapes of similar appearance, two paths that are related by scaling,
translation or rotation must be considered equivalent. Taking Rp as the
ambient space for shapes, a path γ : [0, 1] → Rp will be represented as
a finite sequence of n points (γ(ti)), 0 = t1 < t2 < tn = 1, where the
ti, i = 1 . . . n are assumed to be fixed once for all. It is convenient to use a
matrix notation for the sampled curve:

Γ =
(
γ(t1), . . . , γ(tn)

)
.

with Γ ∈ Rn×p viewed as representing a linear mapping through the natural
identification:

Rn×p � hom(Rn,Rp).

Two transformations are applied to Γ in order to get rid of the effects of
translations and scalings. First of all, the center of mass is placed at the
origin. In matrix notation:

Γ← ΓT.

with:

T =

(
Id− 1

n
1

)
.

and 1 the matrix with all elements equal to 1. It is easily checked that
T 2 = T, T t = T . Let ek,l be the elementary n × n matrix with entries
ek,li,j = δk,iδl,j . The matrix Id+ ek,l, k �= l is invertible and:

ΓT (Id+ e2,1) . . . (Id+ e(n−1),1) = Γ




0 − 1
n − 1

n . . . − 1
n

0 n−1
n − 1

n . . . − 1
n

...
...

...
...

...
0 − 1

n . . . − 1
n

n−1
n


 .

has vanishing first column. Keeping only the remaining ones gives a matrix
Γ0, that is non zero except in the degenerate case when the points γ(ti), i =
1 . . . n are all located at the same place. Such a situation is not representative
of a shape and will not be taken into account in the sequel. Γ0 is further
normalized to get the so-called pre-shape matrix Γ̃:

Γ̃ = Γ0

(
tr

(
Γ0Γ

t
0

))−1/2
.
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The space of the pre-shape matrices obtained after the previous two nor-
malization stages is referred to as the pre-shape space and can be identi-
fied with Sp(n−1)−1. Finally, taking the quotient by the left action of the
rotation group SO(p) yields the shape space Σnp and the quotient map

πnp : Sp(n−1)−1 → Σnp . When p = 1, it is clear that:

Σn1 = Sn−2.

The p = 2 case can be dealt with using complex representation of points.
The matrix Γ̃ will be thus written as a sequence of n− 1 complex numbers:

Γ̃ =
(
z1, . . . , zn−1

)
.

with
∑n−1
i=1 |zi|2 = 1. The action of SO(2) is just a product element-wise by

a unit complex number, thus is proper and free, showing that all the spaces
Σn2 are smooth manifolds (with the special case Σ2

2 reduced to a point).
Proceeding a little bit further, starting with a pre-shape:

(
z1, . . . , zn−1

)
.

one can take a non-zero component zk and apply the rotation u = z−1
k |zk|

yielding an equivalent shape:
(
uz1, . . . , |zk|, . . . , uzn−1

)
.

Up to a scaling transform that can be absorbed in the pre-shape construc-
tion, it comes that:

Σp2 ∼ CPn−2.

When p � 3, rotations will fix points on the unit sphere, and the Σkp will
no longer be smooth manifolds. This phenomenon occurs when the matrix
Γ has a rank less than p − 1, meaning that samples all belong to a low
dimensional subspace. Away from this set of singular points, the map πnp is
a submersion.

A riemannian metric may be defined on the non-singular part of Σnp
(globally when p = 1, 2). The pre-shape space may be endowed with the

ambient inner product 〈Γ̃1, Γ̃2〉 = tr
(
Γ̃1Γ̃2

t
)
, that induces in turn a met-

ric on Σnp . The pre-shape space is identified with Sp(n−1)−1, for which the
aforementioned metric yields the geodesic great circle distance:

d
(
Γ̃1, Γ̃2

)
= arccos tr

(
Γ̃1Γ̃2

t
)
.

passing to the quotient, a classical argument [2] shows that on the shape
space Σnp :

d
(
πnp Γ̃1, π

n
p Γ̃2

)
= inf
U∈SO(p)

{d(U Γ̃1, Γ̃2)}.
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This special distance is referred to as the “procrustes distance” in [15, 7] ,
a term chosen with the famous (or infamous) Greek character of the same
name in mind. An explicit computation of the distance is possible using
the singular value decomposition. Let two pre-shapes Γ̃1, Γ̃2 be given. The

singular value decomposition of Γ̃1Γ̃2
t
is written as V ΛW t with Λ a diagonal

matrix and V,W ∈ SO(p). Please note that it is different from the usual
definition where the matrices V,W are assumed in O(p). As a consequence,

the diagonal λp of Λ = diag(λ1, . . . λp) will be negative if det(Γ̃1Γ̃2
t
) < 0.

Since the diagonal elements of Λ are the eigenvalues of Γ̃1Γ̃2
t
, they will

be preserved if Γ̃1 (resp. Γ̃2) is multiplied to the left by a rotation matrix,
showing that Λ depends only on the equivalence classes πnp Γ̃1, π

n
p Γ̃2.

For any U ∈ SO(p):

d
(
U Γ̃1, Γ̃2

)
= arccos tr

(
UWΛV t

)
.

One can find the minimum of the distance (dropping the arccos) with respect
to U using the lagrangian:

L(U,Θ) = tr
(
UWΛV t

)
+ tr

(
Θ

(
UU t − Id

))
.

where the multiplier Θ is symmetric. Taking the derivative with respect to
U and applying the first order optimality condition yields:

WΛV t + U tΘ = 0.

or equivalently:
Λ + (UW )tΘV = 0.

using the fact that Θ is real symmetric, it admits a orthonormal basis of
eigenvectors and thus:

UW = V ⇔ U = VW t.

As a byproduct, the Lagrange multiplier appears to be similar to −Λ. The
minimal distance is thus:

d
(
πnp Γ̃1, π

n
p Γ̃2

)
= arccos

(
p∑

i=1

λi

)
.

where the λi, i = 1 . . . p are the diagonals entries of Λ. The optimal matrix

U may not be unique when the rank of Γ̃1Γ̃2
t

is strictly less than p− 1 . In
fact, it is proved in [9] that the cut locus on Σnp for a non singular πnp Γ̃1 is
the set:

{πnp Γ̃, rank(Γ̃1Γ̃
t) < p− 1 and λp = −λp−1).
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A nice property of such a distance, that makes it so interesting for shape
recognition applications, is that some usual properties of the standard eu-
clidean distance can be readily transposed to shape spaces. As an example,

defining a mean shape πnpΓ from a finite set of shapes
(
πnp Γ̃1, . . . , π

n
p Γ̃N

)

can be done following as:

πnpΓ = argmax
πnpX

N∑

i=1

d
(
πnp Γ̃i, π

n
pX

)
.

πnpΓ is called the Karcher mean of the set
(
πnp Γ̃1, . . . , π

n
p Γ̃N

)
.

Using the procedure described in [8] for sphere ”centroids” gives an-
other way to compute centroids of shapes on Σnp , allowing in turn clustering
algorithms like k-means or mean shift to be applied.

For aircraft trajectory applications, the setting must be adapted as the
translation and scaling invariance is not relevant. Instead, the centroid move
and normalization scaling will be incorporated into the computation of the
distance, along with the SO(2) part. Namely, this amounts to split the
metric into orthogonal parts, the first one being related to trajectory regis-
tration and the second one to shape deformation. The corresponding terms
that need to be added to shape distance are the euclidean distance between
centroids, the absolute value of the difference between the logarithms of the
scaling factors and the absolute value of the angles between the angles repre-
senting the SO(2) rotation part. Geodesics produced that way are obtained
as a combination of four independent moves:

• Translation at constant speed of the centroids.

• Scaling with an exponential factor of the form exp(at) with a a fixed
real number.

• Rotation at constant speed around the centroid.

• Geodesic move in shape space.

2.2. Implementation

The shape space based approach works fine on synthetic examples but
cannot be applied as is to real traffic due to its high computational cost.
Since a SVD is needed for each pair of trajectories and the size of the matrix
involved is n × n with n the number of landmarks used on each curve,
the amount of elementary operations needed scales as o(n3) for the SVD
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part and o(N2) for the pairwise distance, with N the number of curves. A
trajectory is well represented using around 20 landmarks, apart from some
exceptional cases already mentioned in the introduction where the flight
path is self crossing. A practical limit for a crude implementation will be
around 100 trajectories, depending on the hardware available.

A better approach is to split the task into two parts. Since the distance
as several independent components, it is advisable to first clusterize traffics
using centroids translations, scalings and SO(2) action. In fact, is not even
needed to use exact expressions: taking only the endpoints on the trajec-
tory and letting the centroid be the middle point of the segment, the scaling
the inverse of the length and the rotation the one between the normalized
segment and the x-axis is enough to segregate efficiently. Using this proce-
dure, a coarse clustering may be produced in less than 1s even on a set of
thousands of trajectories. Once obtained, the shape part will be used only
within an upper level cluster in order to refine it. The time needed to fully
clusterize a complete day of traffic over France (8000 flights when keeping
only airliners) is less than 1 minute. A work is conducted so as to use the
capabilities of modern graphics hardware in order to be able to get it with a
latency compatibly with human interaction (less than 1s). Completing this
program will provide stakeholders with the first tool allowing trajectory
design in real time.

3. Metrics on spaces of curves

As in the case of shapes manifolds, the studies in the geometry of curves
were initiated for dealing with questions in computer vision. Basically, one
wants to obtain a sound mean of saying that two objects are similar and
a possible answer is to compare the curves bounding them. It turns out
that the convenient settings is the space of planar closed curves, that are
assumed to be smooth, even if some sharp edges may be encountered in
applications: it enough to approximate them smoothly without spoiling the
overall aspect of the shape. For aircraft trajectories analysis, flight path
are non closed curves, so an adaptation of the general framework has to be
done.

3.1. Spaces of planar curves

For shape recognition applications, smooth simple planar closed curves
are adequately modeled as embeddings from the unit circle to R2, the set
of which will be referred to as Emb

(
S2,R2

)
. It is sometimes convenient to

allow self-intersections in the considered curves, and this becomes manda-
tory for applications in air traffic: some aircraft waiting for availability of
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runways will be bound to follow closed round paths known as racetracks.
and sketched in figure 1. Furthermore, while uncommon, some trajectories

Figure 1. — A standard racetrack holding pattern

generated during radio navaids calibration or special flights, like sport event
coverage, may exhibit intricate patterns with many self-crossings. The set
of immersions Imm

(
S1,R2

)
will thus be considered also. Going back to

the original problem of shape classification or recognition, it is clear that
changing the way a curve is parametrized will not influence its appear-
ance. Translating this into mathematical language amounts of quotienting
out the space Emb

(
S1,R2

)
(resp. Imm

(
S1,R2

)
) by the group of smooth

diffeomorphisms of S1 to itself, so as to get:

Emb
(
S1,R2

)
→ Emb

(
S1,R2

)
/Diff

(
S1

)
� Be

Imm
(
S1,R2

)
→ Imm

(
S1,R2

)
/Diff

(
S1

)
� Bi (3.1)

The notation Be, Bi used for the quotient space is borrowed from [13] and
will be used in the sequel. A riemannian metric will be introduce on either
Emb

(
S1,R2

)
or Imm

(
S1,R2

)
in such a way that the quotient map turns

into a Riemannian sumbersion [14]. In the general case, given a mapping:

π : M → B.

such that the tangent map dπ to π at any point is onto, it will be a Rie-
mannian submersion if it preserves length of horizontal vectors. In more
detail, if the tangent space to M is split into a sub-bundle tangent to
to fibers π−1(b), b ∈ B and an orthogonal one (with respect to the given
metric G on TM), then there is an induced metric GB on TB such that
for any two tangent vectors u, v in TB, G(dπ−1(u), dπ−1(v)) does not de-
pend on the particular choice the representatives dπ−1(u), dπ−1(v) and
GB(u, v) = G(dπ−1(u), dπ−1(v)). The situations depicted in the diagrams
3.1 give rise to Riemannian submersion, so that the metric in the top space
can be propagated to the quotient.

It turns out to be quite easy to obtain a metric on Imm
(
S1,R2

)
that is

invariant to re-parametrization of the curves. Starting with Imm
(
S1,R2

)
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as the top manifold, a tangent vector at the curve γ is simply a smooth
mapping from γ(S1) to R2, represented by an element of C∞(S1,R2). Verti-
cal tangent vectors are elements sent by the derivative of the quotient map
to 0 and are of the form t ∈ S1 �→ α(t)γ′(t) with α a nowhere vanishing real
valued smooth mapping. A metric G on Imm

(
S1,R2

)
will give rise to a

Riemannian submersion if given any base curve γ, and any couple (h, k) of
tangent vectors with k vertical, Gγ(h, k) = 0 or equivalently Gγ(h, γ

′) = 0
for any tangent vector h.

A quite general form for suitable metrics is:

GLγ (h, k) =

∫

S1
〈Lγh(t), k(t)〉‖γ′‖(t)dt.

where γ is the base point. L is a field of a positive definite pseudo-differential
operators on C∞(S1,R2) in the following sense:

L : T Imm(S1,R2)→ T Imm(S1,R2).

is a smooth bundle isomorphism and for any base point γ, Lγ is a pseudo-
differenial operator, symmetric and positive for the L2 metric. Invariance
by the action of Diff(S1) is due to the ‖γ′(t)‖ factor for if φ ∈ Diff(S1):

‖γ ◦ φ′(t)‖ = |φ′(t)|‖γ′(φ(t))‖.
so that:

Gγ◦φ(h, k) =

∫

S1
〈Lh(t), k(t)〉|φ′(t)|‖γ′(φ(t))‖dt

=

∫

S1
〈Lh(t), k(t)〉‖γ′‖(t)dt

= Gγ(h, k)

The simplest of member of this family is obtained with L = Id:

G0
γ(h, k) =

∫

S1
〈h(t), k(t)〉‖γ′‖(t)dt.

The metric induced in the quotient space is expressed easily by noting that
any tangent vector at base point γ orthogonal to the vertical space can be
written as a mapping:

t ∈ S1 �→ α(t)N(t).

with α a real valued smooth mapping and N(t) the unit normal vector to
γ at t. Given any couple (α, β) of smooth real mappings on S1, it comes:

GBiγ (αN, βN) =

∫

S
α(t)β(t)‖γ′(t)‖dt.
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Unfortunately, it turns out to be of no interest as geodesic distance vanishes
everywhere.

An other classical metric is obtained using Sobolev inner products:

GNγ (h, k) =

∫

S1

N∑

j=0

〈Djh(t), Djk(t)〉‖γ′(t)‖dt.

with D the parametrization insensitive operator acting on a tangent vector
h at base point γ as:

Dh(t) = ‖γ′(t)‖−1h′(t).

which does not induces degenerate geodesic distance. As mentioned in [13],
the Sobolev metric of order N can be simplified to:

GNγ (h, k) =

∫

S1
〈h(t), k(t)〉+ λ〈DNh(t), Dnk(t)‖γ′(t)‖dt.

where λ > 0 acts as a weight between the two terms. Once again, no degen-
eracy occurs, but it turns out that if the metric is expressed as:

GNγ (h, k) =

∫

S1
〈Lh(t), k(t)〉dt.

with:
L = Id + (−1)NλD2N .

the inverse operator L−1 admits a simple closed form expression as an in-
tegral operator. When using Sobolev metrics, the splitting into vertical and
horizontal spaces has to be changed accordingly. In fact, the horizontal tan-
gent vectors at γ for the general metric GL is the set :

{h ∈ T Imm(S1,R2) | Lγh = αN}.

where N is the unit normal vector to γ and α is a mapping in C∞(S2,R2).
The description of the horizontal space is thus implicit unless L−1 is known,
which makes the simplified Sobolev metric easier to manipulate than the full
one.

Finally, it is worth to mention the curvature based metric introduced in
[11]:

Gcγ(h, k) =

∫

S1
〈h(t), k(t)〉

(
1 + λκ2(t)

)
‖γ′(t)‖dt.

where κ is the curvature of γ. Since it is a weighted version of the G0
γ , the

splitting into horizontal and vertical space is the same as in the simple case.
However, no degeneracy occurs for the geodesic distance. Here again the
tuning parameter λ > 0 controls the influence of the curvature term.
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3.2. Geodesic computation

For the simplest metric G0, the geodesic equation can be obtained read-
ily, and gives some insights for more complex cases. To begin with, a smooth
path in Imm(S1,R2) is a smooth mapping:

φ : [a, b]× S2 → R2.

such that for any t ∈ [a, b], the mapping φ(t, •) belongs to Imm(S1,R2).
The energy of a path is thus:

E(φ) =

∫ b

a

∫

S1
〈∂tφ(t, s), ∂tφ(t, s)〉‖∂sφ(t, s)‖dsdt.

Given any two curves γ1, γ2, a smooth homotopy φ between them in
Imm(S1,R2), φ will be critical for the energy if giving an admissible vari-
ation ε the first order term in ε in the expression of E(φ + ε) vanishes. By
direct computation this term is:

∫ 1

0

∫

S1
2〈∂tφ, ∂tε〉‖∂sφ‖dsdt+

∫ 1

0

∫

S1
2〈∂tφ, ∂tφ〉〈∂sφ, ∂sε〉‖∂tφ‖2dsdt =

(3.1)

−
∫ 1

0

∫

S1
2 〈∂t (∂tφ‖∂sφ‖) , ε〉 dsdt−

∫ 1

0

∫

S1

〈
∂s

(
‖∂tφ‖2

∂sφ

‖∂sφ‖

)
, ε

〉
dsdt

(3.2)

yielding the geodesic equation in Imm(S1,R2):

∂s

(
‖∂tφ‖2

∂sφ

‖∂sφ‖

)
= −2∂t (∂tφ‖∂sφ‖) .

Passing to the quotient amounts to write ∂tφ as a normal component only,
∂tφ = αN with α a smooth real valued mapping and N the unit normal
vector for the curve φ(t, •). Keeping only the normal contribution yields the
quotient (or horizontal) geodesic equation as:

α2κ = 2∂tα.

where an arclength parametrization is assumed. As mentioned before, geodesic
distance for the metric G0 is vanishing using the following theorem:

Theorem 3.1.— Let γ1 and γ2 be elements of Imm(S1,R2). For any
ε > 0 it exists a smooth homotopy φ in Bi between πγ1 and πγ2 such that
E(φ) < ε.
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Proof. — The main idea behind the proof is to select a family of paths with
steep slopes. Since the normal component is inversely proportional to the
length of the path, and is squared in the computation of the energy, its
product with the length can be made as close to 0 as wanted. For the sake
of simplicity, the re-parametrization ψ that will be used for the proof is
only piecewise continuous, being piecewise linear, but can be approximated
arbitrary well by smooth ones. The domain of ψ is selected to be [0, 1]×[0, 1].
Let N be a fixed integer. ψ is defined to be:

ψ(t, s) �→





4t(sN − k), if s ∈
[
k
N ,

k+1/2
N

]

4t(sN − k), if s ∈
]
k+1/2
N , k+1

N

] .

when t < 1/2 and for t � 1/2:

ψ(t, s) �→





2t− 1 + 4(1− t)(sN − k), if s ∈
[
k
N ,

k+1/2
N

]

2t− 1 + 4(1− t)(sN − k), if s ∈
]
k+1/2
N , k+1

N

] .

Let φ be an homotopy between γ1, γ2. Since ψ(0, •) = 0, ψ(1, •) = 1, the
mapping:

ψ̃ : (t, s) �→ φ(ψ(t, s), s).

is still an homotopy between the same curves. The partial derivatives with
respect to t, s are given by:

∂tψ̃ = ∂tφ∂tψ, ∂sψ̃ = ∂tφ∂sψ + ∂sφ.

Since only the horizontal part of the vector is of interest, it may be assumed
that ∂tφ and ∂sφ are orthogonal, so that:

‖∂sφ̃‖2 = ‖∂sφ‖2 + ∂sψ
2‖∂tφ‖2.

To compute the normal component of ∂tφ̃, using again he orthogonality of
∂tφ and ∂sφ, a normal vector to ∂sφ̃ is obtained easily as:

‖∂φs‖2∂tφ− ∂sψ‖∂tφ‖2∂sφ.

that can be normalized to:

‖∂sφ‖
‖∂tφ‖∂tφ−

‖∂tφ‖
‖∂sφ‖∂sφ√

‖∂sφ‖2 + (∂ψs)2‖∂tφ‖2
.

The horizontal part of ∂tφ̃ is then:

∂tψ‖∂tφ‖‖∂sφ‖
‖∂sφ̃‖

.
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The length of the path φ̃ is:

∫ 1

0

(∫ 1

0

(∂tψ)2‖∂tφ‖2‖∂sφ‖2
‖∂sφ̃‖

ds

)1/2

dt = (3.3)

∫ 1

0




∫ 1

0

(∂tψ)2‖∂tφ‖2‖∂sφ‖√
1 + (∂sψ)2 ‖∂tφ‖

2

‖∂sφ‖2
ds




1/2

dt (3.4)

without going into complete computation that can be found in [12], it is
enough to note first that being continuous mappings on the the compact
[0, 1]2, ‖∂sφ‖, ‖∂tφ‖ are bounded, the fist one being also bounded away
from 0. Assuming large N , the inner integral will behave roughly as N−1

and thus goes to 0 as N →∞.

The shape of the mapping ψ along with its effect on a linear homotopy
on two circles is given on figures 2, 3.

Figure 2. — The φ mapping with N = 10. White is 1, and 0 is black

The degeneracy of G0 precludes its use for curve distance computation.
Even when using numerical approximation, geodesics will tend to pinch and
will not yield interesting results. Looking at the above proof, the degener-
acy can be avoided by introducing second order terms. As invariance with
respect to diffeomorphic reparametrization is needed to have a metric yield-
ing a Riemannian submersion when passing to the quotient, it is natural to
introduce curvature. The energy of an homotopy φ between two immersions
is defined to be:

E(φ) =

∫ 1

0

∫ 1

0

(
1 + λκ2

)
〈∂tφ, ∂tφ〉‖∂sφ‖dsdt.
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Figure 3. — Vanishing length path between circles

where λ > 0 is a tuning parameter and κ(t, s) is, for fixed t, the curvature
of the path:

s �→ φ(t, s).

As previously mentioned, passing to the quotient Bi simply amounts to re-
strict to horizontal components. The method used for G0 can be reproduced
verbatim to obtain (after much more computations !) the geodesic equation
in Imm(S1,R2):

∂t
(
(1 + λκ2)‖∂sφ‖∂tφ

)
= ∂s

(−1 + λκ2

2

‖∂tφ‖2
‖∂sφ‖

+ λ
∂s(κ‖∂tφ‖2)
‖∂sφ‖

N

)
.

with N being, for any fixed t, the unit normal vector to the curve sφ(t, s)).
The expression is significantly more intricate than with the metric G0 and
in turn yields to non straightforward numerical implementations.

For application to aircraft trajectories, the original energy has to be
modified so as to reflect the fact that they are not closed curves. An extra
term: ∫ 1

0

‖∂tφ(t, 0)‖2 + ‖∂tφ(t, 1)‖2dt.

is added to the energy in order to include boundary effects. Solving the
geodesic equation is a computationally intensive process that makes difficult
the integration with a clustering algorithm. The choice was made not to solve
the partial differential equation giving φ but to directly minimize the energy
after discretization. Partial derivatives are approximated using a standard
centered finite difference scheme, except at the boundaries of the domain,
and the curvature is obtained from:

κ =
|det(∂sφ, ∂ssφ)|
‖∂sφ‖3

.
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with again finite difference approximations of the partial derivatives. Please
note that no special effort has been made on the numerical implementa-
tion itself, that may be clearly improved a lot. A limited memory BFGS
algorithm was used in final to get the optimal values for the discretization
points.

Since curvature is non-linear and somewhat hard to obtain from a nu-
merical point of view, it is advisable to switch to a Sobolev metric. Unfortu-
nately, as mentioned above, the splitting of the tangent bundle is dependant
on the differential operator used. A clever approach presented first in [16]
for a special case and generalized later in [1] is used to split the Sobolev
metric into a tangential and a normal part. For a base curve γ and tangent
vectors h, k it is expressed as:

Gsrvt(h, k) =

∫

S1
λ〈∂th(t), N(t)〉〈∂tk(t), N(t)〉+µ〈∂th(t), T (t)〉〈∂tk(t), T (t)〉dt.

where λ, µ are positive real numbers and N(t), T (t) are respectively the
unit normal and tangent vector to γ at t. Since h, k contribute only with
their first derivative, the metric is translation invariant and must be used on
the quotient space Imm(S1,R2)/T with T the group of translations. The
choice λ = 1, µ = 1/

√
2 made in [16] allows to use a trick referred to as the

Square Root Velocity Transform (SRVT). A element γ in Imm(S1,R2)/T
is mapped to a smooth curve by:

γ �→
√
‖∂tγ‖T.

with T (t) the unit tangent vector to γ at t. The transform is invertible:

φ �→
(
t �→

∫ t

0

‖φ(s)‖φ(s)ds
)
.

furthermore, it turns out that the metric Gsrvt is the pullback of the L2

metric by the SRVT transform. This fact allows an easy and efficient com-
putation of geodesics, but also of Karcher means. Here again, underlying
objects are closed curves, and it is not possible to plug the method as-is in
the context of aircraft trajectories. However, a simple workaround, similar
to the geometric-Sobolev metric of [10], may be applied. The main idea is to
write a path γ : [0, 1] → R2 as a curve γ̃ : [0, 1] → R2 with γ̃(0) = γ̃(1) = 0
that is submitted to a centroid translation, scaling and rotation as in the
case of shape spaces based on landmarks.
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4. Application to major flows identification

A classical problem in air traffic management is to extract from trajec-
tories databases the most probable paths that a flight is prone to follow.
Most of the work done on the subject amounts to compute aircraft density
maps and goes back to the eighties [5]. An example of such a map, com-
puted using modern graphics hardware, is given in figure 4 One approach to

Figure 4. — A density map produced by the visualization software “FromDady”

major flows identification is to start with pixels as seeds and to grow path
by connecting neighboring points with highest density. However, it is quite
easy to construct counter-examples where the tracks produced are in fact
followed by no aircraft. Using the geometric-Sobolev metric and a simple
k-means algorithm, no such oddities occur. The result presented on figure 5
was obtained on a set of 1700 landing trajectories at Blagnac airport with a
pre-selected number of clusters of 4. Mean trajectory in each cluster is plot-
ted in black for the highest density ones and in red for the remaining two.
It has be noted that all mean trajectories are sound from an operational
point of view and are related to standard procedures. Some atypic paths can
be seen on the picture, with no apparent effect on the mean trajectories.
Among them, one can identify clearly outliers and perhaps aberrant mea-
sures: when using density maps, the net effect of such curves is to distort
the computed mean track, sometimes moving it away from the real areas of
interest. One the picture 5, no such method was able to separate the two
clusters to the right as their differ only by the final turn. Without careful
tuning, even the two clusters to the left were merged at the end. On the
complete french airspace, the recorded flight path over one day looks like
the picture 6. Different behaviours are observed depending on the altitude.
Lower airspace flights are mostly general aviation using visual flying rules
(VFR) and are color-coded blue while the upper airspace is dedicated to

– 499 –
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Figure 5. — Landing trajectories at Blagnac Airport

commercial airliners appearing in green on the figure. Due to the high num-
ber of displayed trajectories (18000), a special visual trick was used: the
luminance of a pixel is computed according to the number of tracks above
it, so that areas with low density fade. Applying a classification procedure
similar to the one used for landing trajectories yields the picture 7. A visual-
ization technique referred to as “bundling” [6] was adapted and used in the
display in order to get some thickness around the cluster mean trajectories.
In this special view, trajectories are gathered around the cluster center, but
endpoints are kept fixed. Furthermore, in order to have a usable view, all
tracks have a transparency factor close to the maximum so that only paths
with a sufficient number of neighboring trajectories are apparent.

The algorithm not only allows to pick up the major flows, but also
extracts some uncommon trajectories (that must be flown however by a
significant number of aircraft): some transversal routes between national
airports are made apparent, that were masked on the original picture.

Day to day variations can be spotted on the pictures. Looking at the two
images in figures 8, 9 shows globally similar traffic patterns, but noticeable
differences from point to point. It turns out that the two days used in the
study have differences that can be explained: the first one is a Monday, at
the the beginning of the All Saints Holidays while the second is located at
the middle of the week: destinations are mainly leisure in the first case and
business in the second.

Pictures are produced in less than 1 minute with a i7 quad core unit,
equipped with 32Go of RAM. As for the landmarks based approach, the use
of modern graphics hardware computational capabilities is under investiga-
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Figure 6. — One day of traffic over France.

Figure 7. — One day of traffic after bundling procedure.
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Figure 8. — Bundled traffic on the 21-10-2013

Figure 9. — Bundled traffic on the 24-10-2013
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tion and it is expected that an integrated environment will be made available
under open source licence, freely downloadable from the Ecole Nationale de
l’Aviation Civile (ENAC) website.

5. Conclusion and future work

Finding metrics in geometric spaces of curves is an active area of re-
search, mainly with applications to shape recognition and computer vision
in mind. Within the frame of air traffic management, a similar problem
arises, that is the analysis of aircraft trajectories. As ATM will gradually
shift from airspace to trajectory based operations, it will become a central
question in the context of future systems. Only a few studies have been
conducted on the subject, as a suitable framework has yet to be introduced.
However, the potential applications are numerous and have all a very high
impact on the performance of the system. Using geometric measures similar
to those designed for computer vision allows a new approach to be taken in
order to overcome the limitations of sample based ones. It has been success-
fully applied to the problem of flight path classification, yielding the first
usable analyzing system.

Future works on the topic will make use of descriptions of trajectories as
currents, for which a notion of geodesic distance can be defined. The main
idea will be to get rid of the curve parametrization, in the spirit of landmark
based approaches.

Finally, developments are under progress in order to make use of modern
hardware computational abilities so as to leverage the computation power
of desktop computers. It is expected that a new tool will be soon released
that can be applied to days of traffic in an interactive fashion, allowing the
operator to generate and tune clusterings on the fly.
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