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Annales de la Faculté des Sciences de Toulouse Vol. XXIV, n◦ 3, 2015
pp. 625-639

On the ergodicity of geodesic flows on surfaces
of nonpositive curvature

Weisheng Wu(1)

RÉSUMÉ. — Soit M une surface lisse compacte de courbure négative ou
nulle, de genre � 2. Nous prouvons l’ergodicité du flot géodésique sur le
fibré tangent unitaire de M par rapport à la mesure de Liouville, en sup-
posant que l’ensemble des points où la courbure est strictement négative
a un nombre fini de composantes connexes. Sous la même hypothèse, nous
prouvons qu’il n’existe pas de géodésique « plate » non-fermée. De plus,
il existe au plus un nombre fini de bandes plates, et au plus un nombre
fini de géodésiques fermées « plates » isolées.

ABSTRACT. — Let M be a smooth compact surface of nonpositive curva-
ture, with genus � 2. We prove the ergodicity of the geodesic flow on the
unit tangent bundle of M with respect to the Liouville measure under the
condition that the set of points with negative curvature on M has finitely
many connected components. Under the same condition, we prove that a
non-closed ”flat” geodesic doesn’t exist, and moreover, there are at most
finitely many flat strips, and at most finitely many isolated closed ”flat”
geodesics.

1. Introduction

Let M be a smooth, connected and compact surface without boundary,
with genus g � 2, and of nonpositive curvature. The geodesic flow Φt is
defined on the unit tangent bundle T 1M . It is well known that the geodesic
flow is Anosov when the curvature of the surface is strictly negative, and
its ergodicity with respect to the Liouville measure ν can be proved by the
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Hopf argument (cf., for example [2]). However, for surfaces of nonpositive
curvature, the ergodicity of the geodesic flow is not known yet. The dynam-
ical behavior of the flow gets more complicated because of the existence of
the ”flat geodesics” defined as follows. We define:

Λ := {x ∈ T 1M : K(γx(t)) ≡ 0, ∀t ∈ R}
where K denotes the curvature of the point, and γx(t) denotes the unique
geodesic on M with an initial velocity x ∈ T 1M . We call γx a flat geodesic
if x ∈ Λ, i.e., the curvature along the geodesic is always zero. It is proved
that the geodesic flow is Anosov if and only if Λ = ∅ (cf. [6]), and in this
case the ergodicity follows from the Hopf argument.

By Pesin’s well-known result (cf. [1]), the geodesic flow is ergodic on the
following set:

∆ := {x ∈ T 1M : lim sup
t→∞

1

t

∫ t

0

K(γx(s))ds < 0}. (1.1)

Clearly ∆ ⊂ Λc. It is stated in [4] that the geodesic flow is also ergodic on
Λc. Indeed, we have

Lemma 1.1.— ν(Λc \∆) = 0.

Proof. — Assume ν(Λc \∆) > 0. Let π : T 1M →M be the natural projec-
tion. Denote f(x) := χΛc\∆(x) ·K(π(x)). Note that f(x) � 0. By Birkhoff
ergodic theorem, for ν-a.e. x ∈ T 1M ,

lim
t→∞

1

t

∫ t

0

f(Φs(x))ds := f̃(x)

and ∫

T 1M

f̃(x)dν(x) =

∫

T 1M

f(x)dν(x) � 0. (1.2)

By the definition of ∆ in (1.1), f̃(x) = 0 for ν-a.e. x ∈ T 1M . Then by (1.2),∫
T 1M

f(x)dν(x) = 0, so f(x) = 0 for ν-a.e. x ∈ T 1M . Hence, K(π(x)) = 0
for ν-a.e. x ∈ Λc \ ∆. Since the orbit foliation of Φt is smooth, for ν-a.e.
x ∈ Λc \∆, one has K(Φt(x)) = 0 for a.e. t. By continuity of the curvature
function K, we have K(Φt(x)) ≡ 0 for ∀t ∈ R, i.e., x ∈ Λ, a contradiction
to x ∈ Λc \∆. Therefore, ν(Λc \∆) = 0.

So the geodesic flow is ergodic on the set Λc. Therefore, the geodesic
flow is ergodic on T 1M if ν(Λ) = 0. It is not known in general if ν(Λ) = 0,
but this is the case for all the known examples so far. Moreover, in all these
examples, the flat geodesics are always closed. This motivates the following
conjecture whose statement is stronger than ergodicity:
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Conjecture 1.2. (cf.[10]). — All flat geodesics are closed and there
are only finitely many homotopy classes of such geodesics. In particular,
ν(Λ) = 0 and hence the geodesic flow is ergodic.

In this paper we prove the following two theorems according to the
dichotomy: (1) Λ ⊂ Per(Φ); (2)Λ ∩ (Per (Φ))c �= ∅. Here Per(Φ) denotes
the set of periodic points of the geodesic flow, and O(z) denotes the orbit
of z under the geodesic flow.

Theorem 1.3.— If Λ ⊂ Per(Φ), then

Λ = O1 ∪ O2 ∪ . . .Ok ∪ F1 ∪ F2 ∪ . . . ∪ Fl,

where each Oi, 1 � i � k is an isolated periodic orbit and each Fj , 1 � j � l
consists of vectors tangent to a flat strip. Here k or l are allowed to be 0 if
there is no isolated closed flat geodesic or no flat strip.

Theorem 1.4.— If Λ ∩ (Per (Φ))c �= ∅, then there exist y, z ∈ Λ, y /∈
O(z), such that

d(Φt(y),Φt(z))→ 0, as t→ +∞.

In the process of proving the above two theorems, we also obtain a result
of independent importance:

Theorem 1.5.— Λ ∩ (Per (Φ))c is a closed set in Λ.

Theorem 1.5 says that if we count vectors tangent to a flat strip as a
single orbit, then closed flat orbits must be isolated from non-closed flat
orbits.

Let {p ∈ M : K(p) < 0} be the set of points with negative curvature
on M . As a consequence of Theorem 1.3 and 1.4, we can prove Conjecture
1.2 in the case when {p ∈M : K(p) < 0} has only finitely many connected
components:

Theorem 1.6. — If the set {p ∈ M : K(p) < 0} has finitely many
connected components, then Λ ⊂ Per(Φ). In particular, the geodesic flow is
ergodic.

Theorem 1.6 gives a negative answer to Question 6.2.1 asked by Burns
in a recent survey [4], for the case when {p ∈ M : K(p) < 0} has only
finitely many connected components. Furthermore, by Theorem 1.3 there
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are at most finitely many flat strips and isolated closed flat geodesics in this
case. But we don’t know the answer to Question 6.2.1 in [4] for the general
case.

The paper is organized as follows. In section 2, we present some pre-
liminaries and well known results. The proofs of Theorems 1.3, 1.4 and 1.5
will occupy Section 3. In Section 4, we prove Theorem 1.6 and ask a further
related question.

2. Preliminaries

2.1. Universal Cover

Consider the universal covering space M̃ of M , which can be identified
with the unit disk in the plane. The lifting of a geodesic γ from M to M̃ is
denoted by γ̃. All the geodesics are supposed to have unit speed. It is well
known that M̃ is a Hadamard manifold with many nice properties. For any
two given points in M̃ , there exists a unique geodesic joining them. Two
geodesics γ̃1 and γ̃2 are said to be asymptotes if d(γ̃1(t), γ̃2(t)) � C for some
C > 0 and ∀t > 0. This relation is an equivalence relation. Denote by M̃(∞)
the set of all equivalence classes, which can be identified with the boundary
of the unit disk. We denote by γ̃(+∞) the class of the geodesic γ̃, and by
γ̃(−∞) the one of the reversed geodesic to γ̃.

Any closed geodesic γ in M can be lifted to a geodesic γ̃ on M̃ , such
that

γ̃(t + t0) = φ(γ̃(t)), ∀t ∈ R
for some t0 > 0 and φ ∈ π1(M). In this case, we say that φ fixes γ̃ , i.e.,
φ(γ̃) = γ̃. Then φ acts on M̃(∞) in the natural way and fixes exactly two
points γ̃(±∞). Moreover for any x ∈ M̃(∞) and x �= γ̃(±∞), we have
limn→+∞ φn(x) = γ̃(+∞) and limn→−∞ φn(x) = γ̃(−∞).

There are two continuous one dimensional distributions Es and Eu on
T 1M which are invariant under the derivative of Φt (cf. [7]). Their integral
manifolds form foliations W s and Wu of T 1M respectively which are invari-
ant under Φt, known as the stable and unstable horocycle foliations. The
lifting of W s and Wu to T 1M̃ are denoted by W̃ s and W̃u respectively. If
w ∈ W̃ s(v), then geodesics γ̃v(t) and γ̃w(t) are asymptotic.

2.2. Area of ideal triangles

Given x, y, z ∈ M̃(∞), an ideal triangle with vertices x, y, z means the
region in M̃ bounded by the three geodesics joining x and y, y and z, z and
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x. It is an interesting topic to study the area of ideal triangles. We have the
following theorem due to R. Ruggiero:

Theorem 2.1. (cf. [11]). — If K(γ̃(t)) ≡ 0 for ∀t ∈ R, then every ideal
triangle having γ̃(t) as an edge has infinite area.

In fact, if we have a triangle with vertices x, a, b, where x = γ̃1(+∞) =
γ̃2(+∞), a ∈ γ̃1, b ∈ γ̃2, and γ̃1 is a flat geodesic, then the triangle has
infinite area. The proof follows from the fact that the length of a stable
Jacobi fields decreases slowly along a geodesic with curvature close to zero
(cf. [11]).

2.3. Flat strips

A flat strip means a totally geodesic isometric imbedding r : R× [0, c]→
M̃ , where R× [0, c] is a strip in an Euclidean plane. We have the following
flat strip lemma due to P. Eberlein and B. O’Neill:

Lemma 2.2. (cf. [8]). — If two distinct geodesics α̃ and β̃ satisfy
d(α̃(t), β̃(t)) < C for some C > 0 and ∀t ∈ R, then they are the bound-
ary curves of a flat strip in M̃ .

We also call the projection of a flat strip onto M a flat strip. An impor-
tant progress toward Conjecture 1.2 was made by J. Cao and F. Xavier on
the flat geodesics inside flat strips:

Theorem 2.3. (cf. [5]). — A flat strip on M consists of closed flat
geodesics in the same homotopy type.

3. Main Construction

In this section, we mainly carry out two constructions based on a similar
idea. First, we prove Theorem 1.4 by constructing two points y, z with the
required property in the theorem starting from an aperiodic orbit of x ∈ Λ.
Second, assume the contrary for Theorem 1.3, i.e., there exist infinitely many
periodic orbits, then we can construct an aperiodic orbit starting from them.
Both constructions are based on the expansivity property:

Definition 3.1. (cf. Definition 3.2.11 in [9]). — x ∈ T 1M has the expan-
sivity property if there exists a small δ0 > 0, such that if d(Φt(x),Φt(y) < δ0
for ∀t ∈ R, then y = Φt0(x) for some t0 with |t0| < δ0.

Lemma 3.2.— If x is not tangent to a flat strip, it has the expansivity
property.
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Proof. — Assume not. Then for an arbitrarily small ε > 0 less than the injec-
tivity radius of M , there exists y such that y /∈ O(x) and d(γx(t), γy(t)) < ε
for ∀t ∈ R. By the choice of ε, we can lift γx(t) and γy(t) to the universal

cover M̃ such that

d(γ̃x(t), γ̃y(t)) < ε for ∀t ∈ R.

Thus by Lemma 2.2, γ̃x(t) and γ̃y(t) bound a flat strip. Hence x is tangent
to a flat strip, a contradiction.

We prove Theorem 1.4 and Theorem 1.5 in the next subsection. After
that we prove Theorem 1.3.

3.1. Proof of Theorem 1.4 and 1.5

Now we assume that Λ ∩ (Per Φ)c �= ∅, in other words, there exists an
aperiodic orbit O(x) in Λ. We will construct y, z as in Theorem 1.4 starting
from O(x). First we can always find two arbitrarily close points on the orbit
O(x):

Lemma 3.3.— For any k ∈ N, there exist two sequences tk → +∞, and
t′k → +∞ such that t′k − tk → +∞ and

d(xk, x
′
k) <

1

k
, where xk = Φtk(x), x′k = Φt

′
k(x).

Proof. — For any fixed k ∈ N, let ε < 1
2k be sufficiently small. We choose

a segment [zk, wk] along the orbit O(x) from zk to wk with length Tk. Let
X be the vector field tangent to the geodesic flow on T 1M , and X⊥ be the
orthogonal complement of X, i.e. a two dimensional smooth distribution
on T 1M . For any y ∈ [zk, wk] define Dε(y) := expy(X

⊥
ε (y)), where X⊥ε (y)

denotes the ε-ball centered at origin in the subspace X⊥(y).

Assume Dε(z)∩Dε(w) = ∅ for any z, w ∈ [zk, wk]. Since T 1M is compact
and its curvature is bounded, we have the following estimates on the volume:

C0ε
2Tk � Vol(

⋃

y∈[zk,wk]

Dε(y)) � Vol(T 1M).

But the above inequalities don’t hold if we choose Tk large enough. So there
are two points in [zk, wk], say, xk, x

′
k such that Dε(xk) ∩ Dε(x

′
k) �= ∅, and

hence d(xk, x
′
k) < 2ε < 1

k . Let xk = Φtk(x), x′k = Φt
′
k(x) where we can make

t′k − tk → +∞ as k → +∞.

For any pair of xk, x
′
k with large enough k, we claim the expansivity in

the positive direction of the flow:
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Proposition 3.4.— Fix an arbitrarily small ε0 > 0. There exists sk →
+∞, such that

d(Φsk(xk),Φ
sk(x′k)) = ε0,

and d(Φs(xk),Φ
s(x′k)) < ε0 for ∀ 0 � s < sk.

Remark 3.5.— In fact for the purpose of our construction, it is enough
to have the expansivity in either positive or negative direction. And this is
easily known since x is not periodic and hence not tangent to a flat strip
by Theorem 2.3. But in Proposition 3.4, we have a stronger statement that
the flow is expansive in the positive direction. To prove it, we will make use
of several lemmas which seem to be of independent interest.

The following lemma was proved in [3] and stated in [5]:

Lemma 3.6. (cf. [3], [5]). — If w′ ∈W s(w) and limt→+∞ d(γw(t), γw′(t)) =
δ > 0, then γw(t) and γw′(t) converge to the boundaries of a flat strip of
width δ.

Proof. — Suppose that limsi→+∞Φsi(w) = v and limsi→+∞Φsi(w′) = v′,
then v′ ∈W s(v) and for any t ∈ R:

d(γv(t), γv′(t)) = lim
si→+∞

d(γw(t + si), γw′(t + si)) = δ.

Hence we can lift the geodesics to M̃ such that v′ ∈ W̃ s(v) and

d(γ̃v(t), γ̃v′(t)) = δ for ∀t ∈ R.

By Lemma 2.2, γ̃v(t) and γ̃v′(t) are the boundaries of a flat strip of width
δ.

The next lemma says that a flat geodesic converges to a closed geodesic
(no matter flat or not), then the former must be closed as well and coincide
with the latter.

Lemma 3.7. — Suppose that y ∈ Λ, and the ω-limit set ω(y) = O(z)
where O(z) is periodic. Then O(y) = O(z). In particular, O(y) is periodic.

Proof. — First we prove that we can lift geodesics γz(t), γy(t) to the univer-

sal cover M̃ , denoted by γ̃0(t) and γ̃(t) respectively, such that γ̃0(+∞) =
γ̃(+∞). But this is guaranteed by the assumption ω(y) = O(z). Moreover,
limt→+∞ d(γ̃0(t), γ̃(t)) = 0.

Since γz(t) is a closed geodesic, there exists an isometry φ of M̃ such
that φ(γ̃0(t)) = γ̃0(t + t0). Moreover, on the boundary of the disk M̃(∞),
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φ fixes exactly two points γ̃0(±∞), and for any other point a ∈ M̃(∞),
limn→+∞ φn(a) = γ̃0(+∞).

γ̃0 γ̃

φ(γ̃)
α̃

φ(α̃)

A B

C D E

F

Figure 1. — Proof of Lemma 3.7

Assume γ̃ is not fixed by φ. Then γ̃ and φ(γ̃) don’t intersect since
φ(γ̃)(+∞) = γ̃(+∞). We pick another geodesic α̃ as shown in Figure 1.
The image of infinite triangle ABF under φ is the infinite triangle CEF .
Since φ is an isometry, it preserves area. With a limit process, it is easy to
show that Area of ABCD � Area of DEF . But since γ̃ is a flat geodesic,
Area of DEF is infinite by Theorem 2.1, which is a contradiction to the
fact that ABCD has finite area. So φ(γ̃) and γ̃ must coincide.

Hence γ̃(±∞) = γ̃0(±∞). Then either γ̃(t) and γ̃0(t) bound a flat strip
by Lemma 2.2 or γ̃(t) = γ̃0(t). Since limt→+∞ d(γ̃(t), γ̃0(t)) = 0, we have
γ̃(t) = γ̃0(t). Hence O(y) = O(z).

We improve Lemma 3.7 as follows.

Lemma 3.8.— Suppose that y ∈ Λ and z ∈ ω(y) where z is periodic.
Then O(y) = O(z). In particular, y is periodic.

Proof. — Suppose that there exist sk → +∞ such that Φsk(y) → z. If
Φsk(y) ∈ W s(z) for some k then we must have ω(y) = O(z). Then by
Lemma 3.7, we have O(Φsk(y)) = O(z). So we are done.

Suppose that Φsk(y) /∈ W s(z) for any k. Note that if y �= z then y and
z can not be tangent to a same flat strip. Therefore, for any small ε0 > 0
and any large k, there exists a lk with lk → +∞ such that

d(Φlk(Φsk(y)),Φlk(z)) = ε0,

where we take lk to be the smallest positive number to satisfy the above
equality. By taking a subsequence but still using the same notation for

– 632 –



On the ergodicity of geodesic flows on surfaces of nonpositive curvature

simplicity, we assume that

Φlk(Φsk(y))→ y+, and Φlk(z)→ z+ (3.1)

as k → +∞. Then z+ is periodic and d(y+, z+) = ε0. For any t > 0, since
0 < −t + lk < lk for large enough k, one has

d(Φ−t(y+),Φ−t(z+)) = lim
k→+∞

d(Φ−t+lk+sk(y)),Φ−t+lk(z)) � ε0.

So −y+ ∈W s(−z+). Replacing y, z by −y,−z respectively and applying the
same argument, we can obtain two points y−, z− such that −y− ∈W s(−z−)
and d(y−, z−) = ε0, y

− ∈ ω(−y) and z− is periodic. Then we have the
following three cases:

1. limt→∞ d(Φt(−y+),Φt(−z+)) = 0. By Lemma 3.7, −y+ is periodic
and in fact −y+ = −z+ as limt→∞ d(Φt(−y+),Φt(−z+)) = 0. This
contradicts to d(y+, z+) = ε0.

2. limt→∞ d(Φt(−y−),Φt(−z−)) = 0. By Lemma 3.7, −y− is periodic
and in fact −y− = −z− as limt→∞ d(Φt(−y−),Φt(−z−)) = 0. This
contradicts to d(y−, z−) = ε0.

3. limt→∞ d(Φt(−y+),Φt(−z+)) = δ1 and limt→∞ d(Φt(y−),Φt(z−)) =
δ2 for some δ1, δ2 > 0. By Lemma 3.6 −y+ converges to a closed flat
geodesic. Then by Lemma 3.7 γy+ and γz are boundaries of a flat
strip of width δ1. By the same argument γy− and γz are boundaries
of a flat strip of width δ2. We claim that these two flat strips lie
on the different sides of γz. Indeed, we choose ε0 small enough and
consider the ε0 neighborhood of the closed geodesic γz which contains
two regions lying on the different sides of γz. We can choose the
sequences in (3.1) for y and −y respectively such that y+ and y− lie
in different regions as above. This implies the claim. So we get a flat
strip of width δ1 + δ2 and z is tangent to the interior of the flat strip.
Now recall that y+ ∈ ω(y) and y+ is periodic, so we can apply all
the arguments above to y+ instead of z. Either we are arriving at a
contradiction as in case (1) or case (2) and we are done, or we get a
flat strip of width greater than δ1 + δ2. But we can not enlarge a flat
strip again and again in a compact surface M . So we are done.

Proof of Theorem 1.5. — Assume that there exists a sequence yk ∈ Λ ∩
(Per (Φ))c such that limk→+∞ yk = z for some z ∈ Λ ∩ Per (Φ). We can
apply the same argument in the proof of Lemma 3.8 replacing Φsk(y) by yk
to get a contradiction.
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Proof of Proposition 3.4. — Assume the contrary, i.e. d(Φs(xk),Φ
s(x′k)) �

ε0 for ∀s > 0. Then the two geodesics γxk and γx′k are asymptotic.
Without loss of generality, we suppose that x′k ∈ W s(xk). By the con-
vexity of d(γxk(t), γx′k(t)), we have either limt→+∞ d(γxk(t), γx′k(t)) = 0 or
limt→+∞ d(γxk(t), γx′k(t)) = δ > 0.

• If limt→+∞ d(γxk(t), γx′k(t)) = 0, then we can choose a subsequence
si → +∞, and z such that

lim
si→+∞

Φsi(xk) = z

and
lim

si→+∞
Φsi(x′k) = z.

Since xk = Φtk(x) and x′k = Φt
′
k(x) with t′k − tk → +∞ as k → ∞,

we have limsi→+∞Φsi(x′k) = limsi→+∞Φt
′
k−tk ◦Φsi(xk) = Φt

′
k−tk(z).

Hence Φt
′
k−tk(z) = z, i.e., z is a periodic point in Λ. As z ∈ ω(xk), xk

is periodic by Lemma 3.8. Hence x is periodic as well. But we assume
x is aperiodic at the beginning. A contradiction.

• If limt→+∞ d(γxk(t), γx′k(t)) = δ > 0, then ω(xk) = O(w) where w is
tangent to a boundary of a flat strip by Lemma 3.6. Then w is periodic
by Theorem 2.3. Hence xk is periodic by Lemma 3.7. A contradiction.

In each case we arrive at a contradiction, so we are done.

Now we continue with our construction.

Proposition 3.9. — For arbitrarily small ε0 > 0, there exist a, b ∈
Λ ∩ (Per (Φ))c such that

d(a, b) = ε0, (3.2)

d(Φt(a),Φt(b)) � ε0 ∀t < 0, (3.3)

a /∈ O(b), (3.4)

a ∈Wu(b). (3.5)

Proof. — We apply Proposition 3.4. We can pick a subsequence ki → +∞,
such that

lim
ki→+∞

Φski (xki) = a,

and
lim

ki→+∞
Φski (x′ki) = b.

Then d(a, b) = limki→+∞ d(Φski (xki),Φ
ski (x′ki)) = ε0. We get (3.2).

– 634 –



On the ergodicity of geodesic flows on surfaces of nonpositive curvature

For any t < 0, since 0 < ski + t < ski for large ki, we have:

d(Φt(a),Φt(b)) = lim
ki→+∞

(d(Φski+t(xki),Φ
ski+t(x′ki))) � ε0.

Hence we get (3.3).

Next assume that a is periodic. Since

lim
ki→+∞

Φtki+ski (x) = lim
ki→+∞

Φski (xki) = a,

then x is periodic by Lemma 3.8. A contradiction. So a ∈ (Per (Φ))c. Simi-
larly b ∈ (Per (Φ))c. Thus a, b ∈ Λ ∩ (Per (Φ))c.

Now we prove (3.4), i.e., a /∈ O(b). For a simpler notation, we assume

lim
k→+∞

Φsk(xk) = a,

and
lim

k→+∞
Φsk(x′k) = b.

We can lift γxk(t), γx′k(t) on M to geodesics γ̃k, γ̃
′
k respectively on M̃ in

the way such that d(xk, x
′
k) < 1

k , d(yk, y
′
k) = ε0, where yk = Φsk(xk),

y′k = Φsk(x′k), and moreover yk → a, y′k → b. Then γ̃k converges to γ̃ = γ̃a,
γ̃′k converges to γ̃′ = γ̃b and d(a, b) = ε0. See Figure 2 (we use same notation
for a vector and its footpoint).

γ̃k γ̃′k

xk x′k

yk
y′kzk

ε0

Figure 2. — Proof of γ̃ �= γ̃′

First we show that d(yk, γ̃
′
k) is bounded away from 0. Write dk :=

d(yk, γ̃
′
k) = d(yk, zk), lk := d(yk, x

′
k), bk := d(x′k, zk), and b′k := d(zk, y

′
k).

And we already know that d(x′k, y
′
k) = sk. Suppose that dk → 0 as k → +∞.

By triangle inequality, limk→+∞(lk−bk) = 0. But since limk→+∞(lk−sk) �
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limk→+∞ d(xk, x
′
k) = 0, we have that limk→+∞ b′k = limk→+∞ |(lk − bk) −

(lk−sk)| = 0. But by triangle inequality, ε0 � dk+b′k → 0. A contradiction.
Now γ̃ �= γ̃′ follows from d(a, γ̃′) = limk→+∞ d(yk, γ̃

′
k) � d0 for some d0 > 0.

Next we suppose there exists a φ ∈ π1(M) such that φ(γ̃) = γ̃′. See
Figure 3. Observe that γ̃(−∞) = γ̃′(−∞) since d(Φt(a),Φt(b)) � ε0, for
∀t < 0. Let γ̃0 be the closed geodesic such that φ(γ̃0) = γ̃0. Then γ̃(−∞) =
γ̃0(−∞). By Lemma 3.7, γ̃ is a closed geodesic, i.e., a is a periodic point. We
arrive at a contradiction. Hence for any φ ∈ π1(M), φ(γ̃) �= γ̃′. So a /∈ O(b),
and we get (3.4).

At last, if a /∈ Wu(b), we can replace a by some a′ ∈ O(a), b by some
b′ ∈ O(b) such that a′ ∈ Wu(b′) and the above three properties still hold
for a different ε0. We get (3.5).

γ̃ γ̃′ = φ(γ̃)

γ̃0

a b

Figure 3. — Proof of φ(γ̃) �= γ̃′

Proof of Theorem 1.4. — We apply Proposition 3.9. Let y = −a, z = −b,
then y, z ∈ Λ ∩ (Per (Φ))c, d(Φt(y),Φt(z)) � ε0, ∀t > 0, z /∈ O(y) and
y ∈W s(z).

If ε0 is small enough, we can lift geodesics γy(t) and γz(t) to γ̃y(t) and

γ̃z(t) respectively on M̃ such that d(γ̃y(t), γ̃z(t)) � ε0 for any t > 0 and

y ∈ W̃ s(z). Suppose limt→+∞ d(γ̃y(t), γ̃z(t)) = δ > 0. Then by Lemma 3.6,
γ̃y(t) and γ̃z(t) converge to the boundaries of a flat strip. Hence y and z are
periodic by Lemma 3.7. A contradiction. So limt→+∞ d(γ̃y(t), γ̃z(t)) = 0.
Hence d(Φt(y),Φt(z))→ 0, as t→ +∞.

3.2. Proof of Theorem 1.3

Part of the proof of Theorem 1.3 is a verbatim repetition of the one of
Proposition 3.9, so we omit it.
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Proof of Theorem 1.3. — Suppose that Λ ⊂ Per (Φ). If x ∈ Λ, then x is
tangent to an isolated closed flat geodesic or a flat strip.

Assume the contrary. Then there exists a sequence of different vectors
x′k ∈ Λ such that limk→+∞ x′k = x for some x ∈ Λ. Here different x′k
are tangent to different isolated closed geodesics or to different flat strips,
and x is tangent to an isolated flat closed geodesic or to a flat strip. For
large enough k, we suppose that d(x′k, x) < 1

k . Fix any small ε0 > 0. It is
impossible that d(Φt(x′k),Φ

t(x)) � ε0 for ∀t > 0. Otherwise, γ̃x′k(t), γ̃x(t) are
positively asymptotic closed geodesics so they must tangent to a common
flat strip by Lemma 3.6 and Lemma 3.7. This is impossible since different
x′k are tangent to different isolated closed flat geodesics or to different flat
strips. Hence there exists a sequence sk → +∞ such that

d(Φsk(x′k),Φ
sk(x)) = ε0,

and

d(Φs(x′k),Φ
s(x)) � ε0 ∀0 � s < sk.

Write yk := Φsk(x) and y′k := Φsk(x′k). Without loss of generality, sup-
pose that yk → a and y′k → b. A similar proof as in Proposition 3.9 gives
d(a, b) = ε and d(Φt(a),Φt(b)) � ε0 for ∀t � 0. If we lift the geodesics to
M̃ (using the same notation as in the proof of Proposition 3.9), we can
prove γ̃ �= γ̃′ similarly. But then we have two closed flat geodesics γ̃ and
γ̃′ that are negatively asymptotic, so they must coincide by Lemma 3.7. A
contradiction.

4. Proof of Theorem 1.6

We shall prove Theorem 1.6 by arguing that the second of the dichotomy
cannot happen if {p ∈ M : K(p) < 0} has only finitely many connected
components.

Proof of Theorem 1.6. — Suppose Λ ∩ (Per (Φ))c �= ∅. Consider the two
points y and z given by Theorem 1.4. We lift the geodesics γy(t) and γz(t)

to the geodesics in the universal cover M̃ , which are denoted by γ̃1 and γ̃2

respectively.

Consider the connected components of {p ∈ M̃ : K(p) < 0} on M̃ and
we want to see how they distribute inside the ideal triangle bounded by γ̃1

and γ̃2. Since γ̃1 and γ̃2 are flat geodesics, any connected component doesn’t
intersect γ̃1 or γ̃2. We also claim that the radii of inscribed circles inside
these connected components are bounded away from 0. Indeed, if we assume
the contrary, then there exists an isometry between a connected component
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with very small radius of inscribed circle and a connected component of
{p ∈ M : K(p) < 0} on M . This is impossible because the number of the
connected components of {p ∈ M : K(p) < 0} is finite and the radii of
their inscribed circles are bounded away from 0. The claim follows. Since
d(γ̃1(t), γ̃2(t)) → 0 as t → +∞, it is clear that the connected components
of {p ∈ M̃ : K(p) < 0} cannot approach w inside of the ideal triangle. See
Figure 4.

yt0
zt0

w

γ̃1

γ̃2

Figure 4. — Proof of Theorem 1.6

So there exist a t0 > 0, yt0 = Φt0(y), zt0 = Φt0(z), such that the infinite
triangle zt0yt0w is a flat region. Then d(Φt(y),Φt(z)) ≡ d(yt0 , zt0) for all
t � t0. Indeed, if we construct a geodesic variation between γ̃1 and γ̃2, then
Jacobi fields are constant for t � t0 since K ≡ 0. Thus d(γ̃1(t), γ̃2(t)) is
constant when t � t0. We get a contradiction since d(Φt(y),Φt(z)) → 0 as
t→ +∞ by Theorem 1.4.

Finally we can conclude that Λ ⊂ Per (Φ). In particular the geodesic
flow is ergodic by Theorem 1.3.

At last, let us suppose that {p ∈ M : K(p) < 0} has infinitely many
connected components. In the argument in the proof of Theorem 1.6, we
cannot claim any more that the radii of inscribed circles inside connected
components of {p ∈ M̃ : K(p) < 0} are bounded away from 0, as the radii
of inscribed circles inside connected components of {p ∈ M : K(p) < 0}
could be arbitrarily small.

Question 4.1.— If {p ∈ M : K(p) < 0} has infinitely many connected
components, is it possible that limt→+∞ d(Φt(y),Φt(z)) = 0 for some y, z ∈
Λ, y /∈ O(z)?
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A negative answer to Question 4.1 together with Theorem 1.3 will imply
Conjecture 1.2, and in particular the ergodicity of the geodesic flow.
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