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Spectral Graph Theory
via Higher Order Eigenvalues

and Applications to the Analysis
of Random Walks

Shayan Oveis Gharan(1)

RÉSUMÉ. — Un objectif primordial de la théorie spectrale est de faire le
lien entre les valeurs propres des matrices associées à un graphe, comme la
matrice d’adjacence, la matrice du laplacien, ou la matrice de transition
de la marche aléatoire, et des propriétés combinatoires de ce graphe. Les
résultats classiques dans ce domaine étudient surtout les propriétés de la
première, de la seconde ou de la dernière valeur propre de ces matrices [4,
3, 21, 2]. Ces dernières années, beaucoup de ces résultats ont été étendus
et les bornes correspondantes améliorées, par le biais des valeurs propres
d’ordre supérieur. Dans ce court monologue, nous donnons un aperçu
de ces progrès récents et nous décrivons l’un des outils fondamentaux
permettant d’y aboutir, le plongement spectral des graphes.

ABSTRACT. — A basic goal in the field of spectral theory is to relate eigen-
values of matrices associated to a graph, namely the adjacency matrix, the
Laplacian matrix or the random walk matrix, to the combinatorial proper-
ties of that graph. Classical results in this area mostly study the properties
of first, second or the last eigenvalues of these matrices [4, 3, 21, 2]. In
the last several years many of these results are extended and the bounds
are improved using higher order eigenvalues. In this short monologue we
overview several of these recent advances, and we describe one of the fun-
damental tools employed in these results, namely, the spectral embedding
of graphs.

(1) University of Washington
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1. Introduction

The basic goal in the field of spectral graph theory is to relate eigenvalues
of graphs, i.e., eigenvalues of the adjacency matrix or the Laplacian matrix
of a graph, to the combinatorial properties of graphs. These relations have
many applications in practice as well as several areas of mathematics and
computer science. Classical results in this area mostly study the properties
of first, second or the last eigenvalues, e.g., Cheeger type inequalities relate
the second eigenvalue of the normalized Laplacian matrix to the sparsity of
cuts.

In this short monologue we overview recent advances in spectral graph
theory regarding higher eigenvalues of graphs. We describe one of the fun-
damental tools employed in these results known as the spectral embedding
of graphs. Then, we will use this tool to analyze simple random walks on
graphs.

In the rest of this section we overview basic properties of the normalized
Laplacian matrix and the random walk matrix. Then we summarize several
fundamental classical results in spectral graph theory.

1.1. Background

Let G = (V,E) be an undirected graph with n vertices. Let d(v) be the
degree of a vertex v ∈ V . Let L be the normalized Laplacian of G defined
as follows:

L = I −D−1/2AD−1/2,

where A is the adjacency matrix of G, D is the diagonal matrix of vertex
degrees, i.e., D(v, v) = d(v) for all v, and I is the identity matrix. In the
special case where G is d-regular, we have L = I −A/d. We use

λ1 � λ2 � · · · � λn (1.1)

to denote the eigenvalues of L. It turns out that L is positive semidefi-
nite, and the first eigenvalue is always zero, λ1 = 0, and a corresponding
eigenfunction is D1/21, where 1 is the all-1s function. Note that D1/21 is
proportional to the all-1s function only if the graph is regular. In addition
the last eigenvalue of L is at most 2, λn � 2.

The normalized Laplacian matrix is closely related to the transition
probability matrix of the simple random walk on G. Let

P = D−1A
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be the transition probability matrix of the simple random walk on G and
let

P̄ =
1

2
(I + D−1A),

be the transition probability matrix of the simple lazy random walk on G,
where for any vertex u ∈ V , with probability 1/2 we stay at u, and with
probability A(u, v)/2d(u) we jump to a neighbor v of u. We can write the
eigenvalues of P̄ as follows,

0 � 1− λn/2 � · · · � 1− λ2/2 � 1− λ1/2 = 1, (1.2)

where λ1, . . . , λn are the eigenvalues of L defined in (1.1). Therefore, any
family of bounds on the eigenvalues of L can be translated to a correspond-
ing family of bounds on the eigenvalues of P̄ .

For a set S ⊆ V , the conductance of S is defined as follows

φ(S) :=
|E(S, S)|

d(S)
,

where E(S, S) = {(u, v) : u ∈ S, v /∈ S} is the set of edges connecting S to
V − S and d(S) =

∑
v∈S d(v) is the sum of the degrees of vertices in S. In

the language of random walks, φ(S) is the probability that a simple (non-
lazy) random walk started at a random vertex of S (where the probability
of being at a vertex v is proportional to d(v)) leaves S in one step. The
conductance of G is the minimum conductance of all nonempty sets with at
most half of the total volume,

φ(G) = min
S:d(S)�d(V )/2

φ(S).

We say a graph G is an ε-expander if φ(G) � ε.

For a function (or a vector) f : V → R, the Rayleigh quotient of f , R(f)
is defined as follows:

R(f) :=

∑
{u,v}∈E(f(u)− f(v))2

∑
v∈V d(v)f(v)2

. (1.3)

For a set S ⊆ V , let 1S be the indicator function of S, and let 1 be the
all-1s function. Observe that φ(S) = R(1S) and R(1) = 0. It follows by
the standard variational principles that if f is an eigenfunction of L with
corresponding eigenvalue, λ, then

R(D−1/2f) = λ. (1.4)

For two function f, g, we will use the notation f � g if there is a universal
constant C > 0 such that for any x in the support, f(x) � C · g(x).
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1.2. Classical Results in Spectral Graph Theory

Classical results in spectral graph theory mainly concern the first or
last eigenvalues of the normalized Laplacian matrix or the random walk
matrix. Perhaps, the most well-known result in the area is the Cheeger type
inequalities that relate the second eigenvalue of the normalized Laplacian
matrix, λ2, to the conductance of G.

It is easy to see that the second eigenvalue of L is equal to zero if and
only if G is disconnected. Discrete Cheeger inequalities are robust versions
of this fact.

Theorem 1.1 (Dodziuk [7], Alon, Milman [4, 3]).— For any graph G,

λ2/2 � φ(G) �
√

2λ2. (1.5)

The above theorem can be read as follows: i) If for a graph G, λ2 ≈ 0,
then G has a natural 2-partitioning, e.g., if G represents the friendships in a
social network, then we can partition G into two communities. ii) If λ2 ≈ 1,
then G is an expander, i.e., for every set S ⊆ V a constant fraction of edges
adjacent to S leaves this set. The left side of the above equation is known
as the easy direction and the right side is known as the hard side of Cheeger
inequalities.

Alon and Milman used the easy direction of Cheeger inequality to relate
λ2 to the diameter of G.

Theorem 1.2 (Alon, Milman [4]).— If G is a d-regular connected graph,
then the diameter of G is at most

√
8/λ2 · log2(n).

The following result due to Wilf [23] relates the chromatic number of a
graph to the maximum eigenvalue of the adjacency matrix.

Theorem 1.3 (Wilf [23]).— If λ̃1 is the maximum eigenvalue of of the
adjacency matrix of a graph G, then, G can be colored with at most 1 + λ̃1

many colors.

The rest of this manuscript is organized as follows. In Section 2 we
overview extensions of the above theorems to higher order eigenvalues of the
normalized Laplacian matrix. Then, in Section 3 we introduce the spectral
embedding of graphs and we use it to prove universal lower bounds on the
eigenvalues the normalized Laplacian matrix.
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2. Spectral Graph Theory via Higher Order Eigenvalues

In last couple of years many of the results that we mentioned in the
previous section are extended or improved using higher order eigenvalues of
the normalized Laplacian matrix. The basic intuition underlying these gen-
eralizations are as follows: i) If λk ≈ 0, then G has a natural k-partitioning
in the sense that the vertex set can be partitioned into k sets each with
conductance close to zero. ii) If λk ≈ 1, then G can be partitioned into at
most k − 1 expanders.

We start with families of graphs where λk is small. A basic fact in spectral
graph theory is that the number of connected components of G is equal to
the multiplicity of the eigenvalue zero in L. We describe a robust version of
this fact. For a collection of k disjoint nonempty sets S1, . . . , Sk ⊆ V , let

φk(S1, . . . , Sk) = max
1�i�k

φ(Si).

Let the order-k conductance of G be defined as follows:

φk(G) := min
S1,...,Sk disjoint

φk(S1, . . . , Sk).

Also, let φpk(G) be the minimum of φk(S1, . . . , Sk) over all k-partitionings
of G. Lee, Oveis Gharan and Trevisan showed that the above quantity is
closely related to λk.

Theorem 2.1 ([12]).— For any graph G and any k � 2,

λk/2 � φk(G) � k2
√

λk. (2.1)

λk/2 � φpk(G) � k3
√

λk. (2.2)

This proves a conjecture by Miclo [14]. The above theorem is also known
as higher order Cheeger inequalities. One can read the above result as fol-
lows: If λk ≈ 0, then G has a natural k partitioning. Miclo [15] has used
the above theorem as the key step in establishing a 40-year-old conjecture
of Simon and Høegh-Krohn [20].

Lee, Oveis Gharan, and Trevisan [12] and Louis, Raghavendra, Tetali,
and Vempala [13] show that the dependency to k in the above theorem
can be exponentially improved if we compare φk(G) with a slightly higher
eigenvalue.

Theorem 2.2 ([12, 13]).— For any graph G and any k � 2 and any
c > 1, there is a constant α(c) > 1 such that

φk(G) � α(c)
√

log(k)λck.
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The dependency on k in the above theorem is tight for a family of graphs
known as “noisy hypercube” and for k = Θ(log(n)). It remains an open
problem whether the dependency on k in equation (2.1) can be improved to
a poly-logarithmic function or not, i.e., if for all k, φk(G) = polylog(k)

√
λk.

Prior to the above results, Arora, Barak and Steurer [1] showed that if
k is a polynomial function of n, then a weaker version of Theorem 2.2 holds
without any dependency on k.

Theorem 2.3 ([1]).— For any graph G, there is a set S of size |S| �
n/k1/100 such that

φ(S) � logk n
√

λk.

Note that for a constant c < 1 and k = nc, the RHS of the above
inequality does not depend on k. This result was a key tool in their recent
advances on the computational complexity of the unique games problem [1].

Next, we overview recent results on families of graphs where λk is large.
These graphs also known as low threshold rank graphs in the computer
science literature have been studied extensively in the last several years. It
turns out that these families of graphs are easy instances of many families
of optimization problems [1, 5, 8, 9, 19].

The following theorem of Oveis Gharan and Trevisan [18] states that if
λk = Ω(1) then G can be partitioned into at most k − 1 expanders.

Theorem 2.4 ([18]).— For any graph G and k � 2, there is an integer
1 � � < k such that G can be partitioned into � sets S1, . . . , S� such that
each induced graph G[Si] is a ε-expander where

ε � λk/k
2.

In the light of the above result one can expect to improve the original
Cheeger inequalities when λk is large. Recall that, if λ2 = Ω(1), then φ(G) =
Θ(λ2), i.e., both of the inequalities of (1.5) are tight up to constants. Kwok,
Lee, Lau, Oveis Gharan, and Trevisan [10] show that the same statement
holds (up to a loss proportional to k) if λk = Ω(1).

Theorem 2.5 ([10]).— For any graph G and any k � 2,

φ(G) � kλ2/
√

λk.

Note that for k = 3 the above theorem improves Theorem 1.1 up to con-
stants, as λ2/

√
λ3 �

√
λ2. In addition, if λk = Ω(1) for a constant k, then
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φ(G) = Θ(λ2). A tight example for the above theorem is the simple cycle of
length n; in this case φ(G) = Θ(1/n), λ2 = Θ(1/n2), and λk = Θ(k2/n2).

Recall that expander graphs have the smallest diameter among all degree
d-graphs, as observed in Theorem 1.2. It turns out that if G is not an
expander but a union of at most k expanders, then the diameter of G is at
most k times the diameter of an expander. A robust version of this fact is
proved by Oveis Gharan and Trevisan [17].

Theorem 2.6 ([17]).— For any graph G and any k � 2, the diameter
of G is at most

O(k log(n)/λk).

Similar to Theorem 1.2, the proof of the above theorem follows by an
application of the easy direction of higher order Cheeger inequalities (2.1).

3. Applications to Analysis of Random Walks

In this section we introduce the main tool, that is used in many of the
recent advances in analyzing higher eigenvalues of graphs, known as the
spectral embedding. We use this to provide a unifying framework for bound-
ing all the eigenvalues of normalized Laplacian matrix and the random walk
matrix. Consequently, using the entire spectrum, we can provide (improved)
upper bounds on the return probabilities and mixing time of random walks
with shorter and more direct proofs.

In this section we prove that for any d-regular connected graph λk �
k2/n2. This implies that the average of the return probabilities of t step
random walks in d-regular graphs is O(1/

√
t). We refer interested readers

to [11] for applications of this technique in bounding eigenvalues of gen-
eral (irregular) graphs or vertex transitive graphs. Using this technique it
is possible to replicate several breakthrough results in the analysis of ran-
dom walks including Varopoulos results on the return probability of random
walks in infinite Cayley graphs [6].

The following is the main theorem that we prove in this section.

Theorem 3.1.— For any connected regular graph G, and any 2 � k �
n,

λk �
k2

n2
.

Note that the above result is evidently sharp, since if G is a cycle, λk =
Θ(k2/n2). In the rest of this section we assume that G is d-regular; this

– 807 –



Shayan Oveis Gharan

is despite the fact that all of our statements have natural analogues for
irregular graphs.

In the following corollary we use the above theorem to bound the average
of the return probability of t-step lazy random walks in regular graphs.

Corollary 3.2.— For any connected d-regular graph G, and any inte-
ger t > 0,

1

n

(∑

v∈V
P̄ t(v, v)− 1

)
� 1/

√
t.

Proof. — By (1.2),

∑

v∈V
P̄ t(v, v) = Tr(P̄ t) =

n∑

i=1

(1− λi/2)t,

Since λi � 2 for all 2 � i � n, by Theorem 3.1, we have

0 � 1− λi/2 � 1− i2

C · n2
,

for a universal constant C > 0. Therefore, using λ1 = 0,

∑

v∈V
P̄ t(v, v)− 1 =

n∑

i=2

(1− λi/2)t �
n∑

i=2

(
1− i2

C · n2

)t

�
n∑

i=2

exp
(
− t · i2

C · n2

)
�

∫ n

s=1

exp
(
− t · s2

C · n2

)
ds

�
√
Cn√
t

∫ ∞

s=0

e−s
2

ds �
√
C · n√
t

.

3.1. Spectral Embedding

Spectral embedding of graphs uses the bottom k eigenfunctions of the
normalized Laplacian matrix to embed the graph into Rk. The primary
use of this embedding has been in practical spectral clustering algorithms
[22, 16].

For functions f, g ∈ Rn we write

〈f, g〉 =

n∑

i=1

f(i)g(i).
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We also write ‖f‖ =
√
〈f, f〉. Spectral embedding for finite graphs is easy to

describe. Let f1, . . . , fk be orthonormal eigenfunctions of L corresponding
to the bottom k eigenvalues λ1, . . . , λk. Then the spectral embedding is the
function F : V → R� defined by

F (v) :=
(
f1(v), f2(v), . . . , fk(v)

)
. (3.1)

In Figure 1 we plotted the spectral embedding of a cycle based on its first 3
eigenfunctions. Note that although the spectral embedding doesn’t know the
labeling of the vertices of the cycle, it can re-construct it in a 3 dimensional
space.

f2

f3

f1

Figure 1. — The Spectral Embedding of a cycle with respect to the first 3 eigenfunctions

of the normalized Laplacian matrix. Note that f1(v) = 1/
√
n for any vertex v.

This embedding satisfies several properties, namely average norm, isotropy
and energy. The first property is that the average squared norm of the ver-
tices of G is k/n.

Fact 3.3.— The expected norm of the vectors in the spectral embedding,
with respect to the uniform distribution, is

√
k/n,

Ev ‖F (v)‖2 = k/n.

The above simply follows from

∑

v∈V
‖F (v)‖2 =

k∑

i=1

‖fi‖2 = k.

Isotropy. For a map F : V → Rk, we say F is isotropic if for any unit
vector x ∈ Rk, ∑

v∈V
〈x, F (v)〉2 = 1 . (3.2)
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In the next lemma we show that the spectral embedding is isotropic.
This property shows that the mass after projection on a unit vector is 1.
Consequently, since the sum of the squared norm of all vertices in the spec-
tral embedding is exactly k, each direction in the space contributes exactly
the same amount to the overall �2 mass. In other words, it is impossible for
the �2 mass of F to “concentrate” along fewer than k directions.

Lemma 3.4 (Isotropy). — The spectral embedding F : V → Rk is
isotropic.

Proof. — The proof simply follows from the fact that the functions f1, . . . , fk
are orthonormal. Let x ∈ Rk be a unit vector. Then,

∑

v∈V
〈x, F (v)〉2 =

∑

v∈V

( k∑

i=1

x(i)fi(v)
)2

=
∑

1�i,j�k

x(i)x(j)〈fi, fj〉

=
∑

1�i�v
x2(i) ‖fi‖2 = ‖x‖2 = 1.

The second equality uses the orthonormality of fi’s.

Energy. The energy of a map F : V → Rk is defined as follows

EF :=
∑

(u,v)∈E
‖F (u)− F (v)‖2 .

It turns out that if F is the spectral embedding, then EF = d ·∑k
i=1 λi.

In fact, by variational principle, it is not hard to see that the spectral em-
bedding is an embedding that minimizes the energy among all isotropic
embeddings of G in Rk.

Lemma 3.5.— Let F : V → Rk be the spectral embedding. For any unit
vector x ∈ Rk, the function f(v) := 〈x, F (v)〉 satisfies

Ef � d · λk.

Proof. — First, observe that f =
∑k
i=1 x(i)fi. Therefore, f ∈ span{f1, . . . , fk}.

It follows that
R(f) � max

1�i�k
R(fi) = max

1�i�k
λi = λk.

The first identity uses (1.4).

Now, since ‖x‖ = 1, by Lemma 3.4, ‖f‖ = 1. Hence,

λk � R(f) =
Ef

d ‖f‖2
= Ef/d.
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3.2. Proof of Theorem 3.1

In this part we will prove Theorem 3.1. For a unit vector x ∈ Rk, let

fx(v) = 〈x, F (v)〉.

By Lemma 3.5, all we need to do is to construct a unit vector x such that
fx has a large energy. We will choose the appropriate vector x later.

First, we describe a simple path argument to lower-bound the energy of
an arbitrary mapping f : V → R.

Lemma 3.6.— For any function f : V → R and any pair of vertices
u, v ∈ V , if � is the length of the shortest path from u to v, then

Ef �
|f(u)− f(v)|2

�
.

Proof. — Let P = (v0, v1, v2, . . . , v�−1, v�) be the shortest path from u to v
where v0 = u and v� = v. Then by the Cauchy-Schwarz inequality,

Ef �
�−1∑

i=0

|f(vi)− f(vi+1)|2 �
1

�

(
�−1∑

i=0

|f(vi)− f(vi+1)|
)2

� |f(u)− f(v)|2
�

,

Now, all we need to do is to find a pair of vertices that are far with
respect to f while they are close in the shortest path distance.

For a function f : V → R, u ∈ U , and r > 0, a ball Bf (u, r) is the set of
vertices at distance, with respect to f , less than r from u:

Bf (u, r) := {v ∈ V : |f(u)− f(v)| < r}.

To prove the theorem we will show that there is a large ball that contains a
small number of vertices of G (only O(n/k) many vertices). Then, as we will
show next, by the connectivity and regularity of G there is a short path (in
graph distance) that connect a pair of vertices which are far with respect
to f . This is a certificate that Ef and λk are large.

Lemma 3.7.— If for a function f : V → R, a vertex u ∈ V , and a ball
B = Bf (u, r), B �= V , then

Ef �
d · r2

|B|
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Proof. — Since G is connected there is a path from u to vertices outside of
B. Let P be the shortest path from u to the outside of B. Let v be the other
endpoint of P and let � be the length of P . Note that by definition v is the
only vertex of P that is not in B, so the length of P is at most � � |B|.
Since G is d-regular, and P is the shortest path it is not hard to see that
� � 3|B|/d + 1. We leave this as an exercise and we refer interested readers
to [11] for the proof. Therefore, by Lemma 3.6,

Ef �
|f(u)− f(v)|2

�
� r2

�
� d · r2

|B| ,

were the second inequality uses that v /∈ B and the radius of B is r.

Now, all we need to do is to construct a function f and a ball B of large
radius that contains a small number of vertices. This is easy to do if there
is a vertex of G with large value in f .

Lemma 3.8. — For any unit vector x ∈ Rk, if for a vertex u ∈ V ,
fx(u) � ε for some ε � 2/

√
n, then

Efx � d · ε4

Proof. — Let B = Bfx(u, ε/2). Recall that by the isotropy property (Lemma
3.4), ‖fx‖ = 1. Therefore,

1 �
∑

v∈B
fx(v)2 >

|B| · ε2
4

,

where we used that for any v ∈ B,

fx(v) > fx(u)− ε/2 � ε/2.

Since ε � 2/
√
n,

|B| < 4

ε2
� n,

i.e., B �= V . Therefore, by Lemma 3.7,

Efx �
d · (ε/2)2

|B| � d · ε2/4
4/ε2

=
d · ε4
16

.

So, we just need to choose the vector x such that for a vertex u ∈ V ,
fx(u) is large. The simplest option for the vector x is to let x = F (u) for
some appropriate choice of u ∈ V . Using the above lemma, this gives a
bound on the energy of fx.
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Lemma 3.9.— If for a vertex u ∈ V , ‖F (u)‖ � 2/
√
n, then, for x =

F (u)/ ‖F (u)‖,
λk � ‖F (u)‖4 .

Proof. — By the definition of fx,

fx(u) =
〈
F (u),

F (u)

‖F (u)‖
〉

= ‖F (u)‖

Since ‖F (u)‖ � 2/
√
n, by Lemma 3.8,

Ef � d · ‖F (u)‖4 .

Therefore, by Lemma 3.5,

λk � ‖F (u)‖4 .

Therefore, the best choice of u is the vertices with maximum norm in the
spectral embedding, i.e., the farthest vertex from the origin. Consequently,
to get the best lower-bound on λk we need to lower-bound maxu∈V ‖F (u)‖.
The worst case is when the norm of all vertices are equal. So, we may as
well lower-bound the average norm. By Fact 3.3, the average squared norm
is equal to k/n. So, there is a vertex u ∈ V such that

‖F (u)‖2 � k/n,

whence,
‖F (u)‖ �

√
k/n.

Since, k � 2, ‖F (u)‖ � 2/
√
n. Therefore, by the above lemma,

λk � k2/n2.

This completes the proof of Theorem 3.1.
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