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A note on exit time for anchored isoperimetry

Thierry Delmotte(1), Clément Rau(2)

RÉSUMÉ. — Soit (Xn)n�0 une marche aléatoire réversible sur un graphe
G vérifiant une inégalité isopérimétrique ancrée. Nous obtenons une ma-
joration du temps de sortie de tout ensemble connexe contenant un point
ancre (et du temps de passage dans le cas transient) de la marche X.

ABSTRACT. — Let (Xn)n�0 be a reversible random walk on a graph G
satisfying an anchored isoperimetric inequality. We give upper bounds for
exit time (and occupation time in transient case) by X of any set which
contains the root. This article covers many results of [11].
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1. Introduction

Among many connections linking the geometry of a graph and the be-
haviour of its simple random walk, one important tool is isoperimetry. A
graph G satisfies the (uniform) isoperimetric inequality if there exists a
constant C > 0 such that for any finite set A, we have:

|∂A|
F(|A|) � C,

where ∂A is the set {(x, y) edge of G, such that x ∈ A and y /∈ A}, |B|
stands for the cardinal of B and F is a non decreasing positive function.

Already present in the celebrated work of Nash [20], the idea was made
clear since the seminal work of Varopoulos [26]. A discrete version for graphs
is in [9]. The isoperimetry conditions are various, geometric or functional.
For instance the inequality above yields a L2 type of Faber-Krahn inequality
proposed by Grigor’yan in [14], and Coulhon has shown in [8] that it gives
an upper bound of the iterated transition probabilities of the random walk.

The problem with uniform isoperimetric inequality is its unstability un-
der random perturbations like percolation. For example, in the super-critical
percolation of Zd (d � 2), if G is the infinite cluster assuming it contains
the origin, you can find some linear piece as long as you want, if you go
far enough from the origin. And then classical isoperimetry inequality fails,
although it holds in Zd. If one studies the ”ant in the labyrinth” of de
Gennes [10], one needs a weaker version of isoperimetry which can be ro-
bust, as introduced in the two last decades by Thomassen in [25] and next
by Benjamini, Lyons and Schramm in [4]. It is called anchored or rooted
isoperimetric inequality. Here is the definition.

For a graph G, we denote V (G) the set of vertices and E(G) the set of
edges.

Definition 1.1.— Let F a positive increasing function defined on R+.
Let G a graph and o ∈ G. We say that G satisfies an anchored (or rooted)
F-isoperimetric inequality at o if there exists a constant CIS > 0 such that
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for any connected set A which contains o we have:

|∂A|
F(|A|) � CIS. (1.1)

∂A is the set {(x, y) ∈ E(G); x ∈ A and y /∈ A}.

Under this anchored isoperimetric inequality, our main result is Theorem
1.4 with upper bounds for exit and local times.

The introduction of this kind of inequalities can be justified as follows.
In order to overlook the isoperimetric holes that may appear, you restrict
only on connected sets that contain a fixed point. The effect would be a
kind of average that makes these holes negligible. This is precisely what we
expect for super-critical percolation.

When F(x) = x1−1/d, we will say that G satisfies a d−dimensional
isoperimetric inequality. When F = id and G has bounded degree there is
an equivalent version of this definition which reads as follows:
G satisfies a strong anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{ |∂S||S| ; S connected, v ∈ S and |S| � n} := i(G)

is positive (non zero).

This definition does not depend on the choice of the fixed vertex whereas
in the previous definition, the constant CIS depends on the point o.

Our object here is to examine what anchored isoperimetric inequality
implies for random walk. Our hope is that it could be useful for instance in
the still very open problem about spectral dimension of the critical incipient
infinite cluster (IIC) which could not be 4/3 in low dimensions as stated by
the Alexander-Orbach conjecture [1]. See the lecture of Barlow [3] for an
introduction to these questions. Note that it should not be useful in high
dimension. A recent discussion with Gady Kozma tells us that there is no
hope to prove an anchored isoperimetric inequality. The main reason is the
existence of a backbone in the IIC (see [16]). The backbone of the IIC is
analogous to the unique infinite line of descent. Roughly speaking, the IIC
can be seen as as a single path embedded into Zd (the backbone) with some
finite trees attached at some points of the backbone. This picture shows
you that no (anchored) isoperimetric inequality may be satisfied. For low
dimension, the question stays open and isoperimetry is perhaps a relevant
tool.
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1.1. Overview about rooted isoperimetric inequality

The first result known for rooted F-isoperimetric inequality is due to
Thomassen. In [25], it is proved that the simple random walk on a graph
G is transient if G satisfies a rooted F-isoperimetric inequality such that∑

k F(k)−2 < ∞ . The main step of the proof is to extract a subdivision
of the dyadic tree from the initial graph. Then, thanks to hypothesis, it is
possible to construct a finite flow on the tree, which proves that the tree is
transient.

It was long afterwards that other results did appear for anchored isoperi-
metry. In 2000 Virag has studied the case of strong anchored isoperimetric
inequality. In [27], it is proved that strong anchored isoperimetric inequality
on graphs with bounded geometry, implies a positive lim inf speed. Moreover
Virag proves that in this case, transitions probabilities at time n of the

random walk are bounded by e−n
1/3

.

Later, still when F = id, Chen and Peres have proved that if G satisfies a
strong anchored isoperimetric inequality then so does every infinite cluster of
independant percolation with parameter p sufficiently closed to 1. Next, they
have shown that strong anchored isoperimetry is preserved under a random
stretch if, and only if, the stretching law has an exponential tail. They also
proved that for a supercritical Galton Watson tree T given nonextinction,
we have i(T) > 0 a.s.

There is an important collection of conjectures relating to anchored ex-
pansion. One of them is to know if anchored isoperimetric inequality is a
good tool to prove an invariance principle in random environment of Zd.
Another challenge is to understand if a general anchored isoperimetric in-
equality may imply an upper bound of pn(x, y). From uniform isoperimetric
inequality, the standard proof is to show that a Nash inequality holds for
all finitely supported functions f defined on graph G (see [21] for instance).
For this aim, we apply isoperimetric inequality to the level sets {f � t}.
To get only upper bounds for the transition kernel, a careful reading of the
proof, shows you that it is sufficient to prove Nash inequality restricted to
functions f of the form f(.) = (Pn1{a})(.), where a belongs to G and n is
an integer (to avoid parity problems, you can work with the lazy random
walk that stays where it is with probability 1/2, and jumps uniformly on
one his neighbors otherway). Now, assume that only a rooted isoperimetric
inequality at the origin o holds on G. One may hope that it implies upper
bounds for pn(o, o). To have the proof work, you see that the level sets of
Pn1{o} must be connected and must contain the origin o. It turns out that
this fact is wrong in general, as you can easily check by drawing some graph.
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As n grows, when the unit mass at the origin o spreads out on the graph,
Pn1{o} may accumulate in some part of it and become bigger than at the
origin.

In a recent work of Morris and Peres [19], they introduce a new proba-
bilistic technique linking isoperimetry and transition kernel, but the same
problem occurs.

1.2. Continuous space setting

The paper is written in the discrete space setting of graphs. The reason
is that anchored isoperimetric inequality is a natural tool in random media
and is therefore more associated with this setting. In fact the continuous
setting (of Riemannian manifolds for instance) works as well, and may be,
the proofs are far more readable. As both an introduction to our technique
and an illustration of what the continuous setting results would look like,
we begin with a key result written in this setting. Details, especially from
potential theory, will only appear later in the paper for graphs.

Let M be a Riemannian manifold with an anchored isoperimetric in-
equality at root o, that is (1.1) for finite volume smooth connected domains
A containing o. Precisely, |A| = m(A) for the Riemannian volume element
m and |∂A| = µ(∂A) for the Riemannian volume element µ on the smooth
submanifold ∂A.
Now let fix some A and consider the Brownian motion on M starting at
o and killed when hitting ∂A at time τA. We denote pAt its submarkovian
kernel, As the level sets of Green function and u(s) their measures.

As =

{
x ∈ A,GA(x) =

∫ ∞

0

pAt (x) dt � s

}
, u(s) = m(As).

Thanks to harmonic properties of GA, these level sets are connected and
contain the root. Thus, they will also satisfy (1.1). In the following we use
µ for any s and also ν denoting the inward unit normal vector field on ∂As.
The inward direction is chosen to have GA increasing.

Theorem 1.2.— The anchored isoperimetric inequality yields a differ-
ential inequation

u′(s) � −
(
CISF(u(s))

)2

.

This naturally leads to upper estimates of u(s) and E(τA) =
∫∞
0

u(s) ds.

For instance if F(u) = u1−1/d, E(τA) � Cm(A)2/d,
and if F(u) = u, E(τA) � C lnm(A).
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Proof. — Schwarz inequality

(
CISF(u(s))

)2

� µ(∂As)
2 =

(∫

∂As

dµ

)2

�
∫

∂As

∂GA

∂ν
dµ

∫

∂As

dµ

∂GA/∂ν

involves the flow ∫

∂As

∂GA

∂ν
dµ = 1

and the derivative of u since whith the co-area formula,

u(s) =

∫

GA�s
dm =

∫ ∞

s

(∫

GA=t

dµ

∂GA/∂ν

)
dt.

This yields the differential inequation.

For F(u) = u1−1/d, computations may be avoided if we compare with
the case when A is a ball of radius R in Rd. Then ∂GA/∂ν is constant, all
inequalities are equalities and the result should be that E(τA) is like R2.

Application of this Schwarz inequality is already apparent in [13], [23]
or [17] to establish a recurrence criterion or estimate resistance.

1.3. Results in discrete setting

Let G be a graph and o one particular vertex. Consider a random walk
(Xn)n�0 on G with transition probability p(., .) and assume there exists
a reversible measure m for X. We use the symmetric kernel µ(x, y) :=
m(x)p(x, y) to measure surfaces:

∀A ⊂ G, µ(∂A) =
∑

x∈A,y �∈A
µ(x, y).

In this setting the anchored isoperimetric inequality reads:

Definition 1.3. — We say G satisfies the anchored isoperimetric in-
equality at root o with increasing function F when for any connected o ∈
A ⊂ G,

µ(∂A)

F(m(A))
� CIS . (1.2)

“Connected” means that one can find a discrete path in A between any two
points for which p(xi, xi+1) is positive when xi, xi+1 are following points.

No distance will play a role here and the graph is not assumed to be
locally finite.
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We denote Px [resp Ex] the law of the walk starting from point x [resp
the expectation], τA the exit time and lA the occupation time (which may
be infinite if X is not transient):

τA = inf{k � 0 ; Xk /∈ A}, lA = card{k ∈ N ; Xk ∈ A}.

Theorem 1.4.— If G satisfies (1.2), then for any subset A we have:

Eo(τA) � 2

∫ ∞

0

vA+(s) ds (1.3)

and Eo(lA) � 2

∫ ∞

0

v+A(s) ds, (1.4)

where vA, v are solutions of
{
vA(0) = m(A)

(vA)′ = −(CISF(vA))2,
and

{
v(0) = +∞
v′ = −(CISF(v))2.

The truncations in indices mean

vA+(s) =

{
0 if vA(s) � 0

vA(s) otherwise.
and v+A(s) =





0 if v(s) � 0

m(A) if v(s) � m(A)

v(s) otherwise.

For comparison when X is transient, note that

∫ ∞

0

vA+(s) ds =

∫ ∞

v−1(m(A))

v+(s) ds.

We consider usual functions F in Section 2.4. It is sometimes useful to
precise the values F(x) = F(m(o)) for x � m(o), which is justified in
Proposition 2.4.

The paper is constructed as follows: in section 2, we establish a few
properties of Green functions, that allow us to apply anchored isoperimetric
inequality for its levels sets. This gives us a differential inequation for the
size of the level sets. We then deduce an upper bound for exit time. In the
last section, we give some applications of Theorem 1.4. We firt retrieve some
results of Virag and Thomassen. Then, we investigate random environments
(and super-critical percolation).
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2. Green functions properties and exit time

2.1. Definitions and harmonicity

The submarkovian kernel of the killed random walk is

pA(x, y) =

{
p(x, y) if x ∈ A,

0 otherwise.

Although Theorem 1.4 is true for A non connected, we have in this section
to assume A is connected. When X is transient, Green function may be
defined for the non-killed random walk and we can consider A = G (or the
connected component of o if G was not connected, which would have little
interest). This leads to the result for lA in next section.

The discrete Laplacian is


Af = (Id− PA)f,

where PA is the operator defined on functions which are zero outside A by

PAf(x) = Ex(f(X1) 1{x,X1∈A})

=
∑

y∈A
pA(x, y)f(y).

The Green function is

GA(x, y) =
1

m(y)

∑

k�0

PAx (Xk = y).

In particular we denote GA(x) = GA(o, x). Note that GA(x) = 0 if x �∈ A.
Recall that reversibility means p(x, y)/m(y) = p(y, x)/m(x). In other words
p(x, y)/m(y) is the precise analog of a density kernel in y starting from x
and is symmetric. This explains the factor 1/m(y) in the definition of GA

which is symmetric for x, y ∈ A.

Proposition 2.1.— 
AGA = δ0
m(0)
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Proof. — For all x ∈ A we have :


AGA(x) = [(Id− PA)(GA)](x)

=
1

m(x)

∑

k�0

PAo (Xk = x)−
∑

k�0

∑

y∈A

pA(x, y)

m(y)
PAo (Xk = y)

=
1

m(x)

∑

k�0

PAo (Xk = x)−
∑

k�0

∑

y∈A

pA(y, x)

m(x)
PAo (Xk = y)

=
1

m(x)

∑

k�0

PAo (Xk = x)−
∑

k�0

1

m(x)
PAo (Xk+1 = x)

=
PAo (X0 = x)

m(x)

=
δ0(x)

m(0)

And for x �∈ A, we have 
AGA(x) = 0.

Corollary 2.2.— GA is harmonic on A�o. As a consequence the level
sets As = {x ∈ A ;GA(x) � s} are connected and contain o. Moreover the
inward flow through any ∂As is 1 or more generally for any B ⊂ A:

∑

(x,y)∈∂B
µ(x, y)∇(y,x)G

A = 1{o∈B}. (2.1)

The surface notations are ∂B = {(x, y) ;x ∈ B, y �∈ B} and ∇(y,x)f =
f(x)− f(y).

Proof. — For all x ∈ A, Propostion 2.1 may be written

∑

y∈G
pA(x, y)(GA(x)−GA(y)) =

δ0(x)

m(0)
.

Summing over x in B with respect to m we get
∑

x∈B

∑

y∈G
m(x)pA(x, y)(GA(x)−GA(y)) = 1{o∈B}.

Now the usual integration by parts becomes in this discrete summation a
cancellation of terms by symmetry when y also belongs to B. Only (2.1)
remains.

Maximum principle and properties of level sets As may be extracted
from this result when o �∈ B. In this case the flow is 0 so there must be an
edge x, y with GA(y) � GA(x). This leads to a contradiction if there was a
connected component of As not containing o.
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2.2. Differential inequation for the size of Green functions level
sets

We use a linearized version of m(As), namely

u(s) =
∑

x∈As,y∈G
µ(x, y)

GA(x)−max{s,GA(y)}
GA(x)−GA(y)

.

For x ∈ As such that µ(x, y) > 0⇒ y ∈ As, the contribution of x is indeed
m(x). Furthermore u(s) � m(As). The reason for this definition is to have:

Lemma 2.3.— Piecewise linear function u has left derivative

u′(s) = −
∑

(x,y)∈∂As

µ(x, y)

∇(y,x)GA
.

Proof. — Variation in s in the definition of u(s) comes from the y’s such
that GA(y) < s, that is y �∈ As. This is clear but note that it uses GA ≡ 0
outside A and this would not be correct for small values of s and the ũ at
page 828 when occupation time is considered.

Proposition 2.4.— If G satisfies (1.2), then:

u′ � −(CIS F(u))2.

Proof. — Same Schwarz inequality as for Theorem 1.2:

(
CISF(u(s))

)2

�
(
CISF(m(As))

)2

� µ(∂As)
2

�


 ∑

(x,y)∈As
µ(x, y)∇(y,x)G

A





 ∑

(x,y)∈∂As

µ(x, y)

∇(y,x)GA




= −u′(s).

This is of course correct when u > 0, that is when As is not empty and
contains o. It works therefore with F(x) = F(m(o)) for x � m(o).

2.3. Upper bound for exit time, proof of Theorem 1.4

Exit time (or occupation time in transient case) is linked from Green
functions by the following lemma.
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Lemma 2.5.— For any set A we have:

(i) Eo(τA) =
∑

x∈Am(x)GA(x),

(ii) Eo(lA) =
∑

x∈Am(x)G(x) in the transient case.

Proof. — Given a path γ = (γ0, γ1, . . . , γn) from γ0 = o to Ac, that is only
γn /∈ A, we denote its probability P(γ) = p(γ0, γ1) . . . p(γn−1, γn). Its length
l(γ) = n =

∑
x∈ANx(γ) where Nx(γ) is the number of indices i such that

γi = x. This yields (i) since

Eo(τA) =
∑

γ

l(γ)P(γ) and GA(x) =
1

m(x)

∑

γ

Nx(γ)P(γ).

We adapt this argument to prove (ii). We keep γn /∈ A and γn−1 ∈ A but
we may have γi �∈ A for i < n − 1. The probability of the path is not easy
to compute but denotes

P(γ) = P0(∀i � n,Xi = γi and ∀i � n,Xi �∈ A).

We also replace the length l(γ) by the natural occupation time NA(γ).

Now we could use
∑

x∈Am(x)GA(x) =
∫∞
0

m(As) ds. It is a little more
intricate since we have control on u which is a linearized version of m(As).

Lemma 2.6.— For any set A we have:

∫ ∞

0

u(s) ds =
∑

x∈A,y∈G
µ(x, y) min

{
GA(x),

GA(x) + GA(y)

2

}
.

Proof. — From the definition of u we just have to compute carefully

∫ ∞

0

GA(x)−max{s,GA(y)}
GA(x)−GA(y)

1x∈As ds.

We now have completed the proof of (1.3) in Theorem 1.4. Factor 2 in
the righthand sides comes from

∑

x∈A
m(x)GA(x) =

∑

x∈A,y∈G
µ(x, y)GA(x)

� 2
∑

x∈A,y∈G
µ(x, y) min

{
GA(x),

GA(x) + GA(y)

2

}
.
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As far as (1.3) is concerned, the result first for A connected is clearly suffi-
cient.

To prove (1.4), we first use the differential inequation with A = G, that
is we obtain u(s) � v(s) for

u(s) =
∑

G(x)�s,y∈G
µ(x, y)

G(x)−max{s,G(y)}
G(x)−G(y)

.

Then we argue (here A is not necessarly connected)

Eo(lA) � 2
∑

x∈A,y∈G
µ(x, y) min

{
G(x),

G(x) + G(y)

2

}
� 2

∫ ∞

0

ũ(s) ds,

where

ũ(s) =
∑

x∈As,y∈G
µ(x, y)

G(x)−max{s,G(y)}
G(x)−G(y)

.

It is clear that ũ(s) � u(s) � v(s) and ũ(s) � m(A). That ends up proof of
Theorem 1.4.

2.4. Examples of F functions

As a complement to Theorem 1.4, we give upper bounds for exit time
for classical functions F . If F(x) = x1−1/d as in Zd then Theorem 1.4 gives

E(τA) � d

C2
IS

m(A)2/d

and E(lA) � d2

C2
IS(d− 2)

m(A)2/d for d > 2.

Indeed for d > 2 the Thomassen criterium implies the transience, see below.
The computations involve

vA(s) =

(
m(A)

2−d
d − C2

IS

2− d

d
s

) d
2−d

for d �= 2,

v(s) =

(
C2

IS

d− 2

d
s

) −d
d−2

for d > 2

and vA(s) = m(A)e−C
2
ISs for d = 2.
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If F(x) = x as in a non-amenable graph then Theorem 1.4 gives

E(τA) � 1

C2
IS

(
1 + 2 ln

m(A)

m(o)

)

and E(lA) � 1

C2
IS

(
3 + 2 ln

m(A)

m(o)

)
.

Here we need the precision F(x) = m(o) for x � m(o) so that

1

vA(s)
=

1

m(A)
+ C2

ISs

does not arise any issue of integration for s→∞.

We can summarize these computations in:

Proposition 2.7.— Let G a graph satisfying a weighted anchored isoperi-
metric inequality with function F and anchored expansion constant CIS (see
(1.2)). Then, there exists constants c(d) and c such that:

• if F(x) = x1− 1
d (d � 3) we have: Eo(lA) � c(d) m(A)

2
d ,

• if F(x) = x
1
2 (d = 2) we have: Eo(τA) � c(d) m(A),

• if F(x) = x we have: Eo(τA) � Eo(lA) � c ln(m(A)).

Remark 2.8. — These inequalities are sharp. Take the particular case
where G satisfies a not anchored isoperimetric inequality.

Remark 2.9.— Notice that the constant c(d) is proportional to 1/C2
IS .

There exists a constant c1(d) > 0 such that:

c(d) =
c1(d)

C2
IS

.

3. Applications

3.1. Transience

We retrieve Thomassen result’s cited in the introduction. Indeed, propo-
sition 2.4 provides a new proof of the transience of the random walk under
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the summability assumption on F without introducing the complex con-
struction of dyadic subtrees by Thomassen. Assume

∫ +∞

1

1

F(n)2
< +∞, (3.1)

for F : R+ → R�+, not decreasing, with F(0) = 0 and let us prove tran-
sience with the help of proposition 2.4.

Let A a connected subset of G containing the origin and consider random
walk killed whenever it leaves A and the associated Green function GA.
Integrating the differential inequation between time 0 and t yields:

∫ u(0)

u(t)

ds

F(s)2
� C2

IS t. (3.2)

∫ u(0)

1
ds
F(s)2 is bounded by a constant independant of A. Indeed, thanks to

hypothesis (3.1), for all subset A we have:
∫ u(0)

1
ds
F(s)2 =

∫m(A)

1
1

F(s)2 ds �∫ +∞
1

ds
F(s)2 < +∞. So for large enough t which depends only on CIS and F ,

inequality (3.2) turns into:

∫ 1

u(t)

ds

F(s)2
� 1

2
C2
IS t.

Then, we deduce that:

lim
t→+∞

u(t) = 0 uniformly in A.

In particular, there exists t0 independant of A such that for all t � t0, u(t) <
infGm. Therefore by definition of u we get that for all set A, GA � t0. Now
we can make A growing and finally we deduce that G < +∞ so the walk is
transient.

3.2. Speed

When F = id, the upper bound of the exit time gives us that the speed
of the random walk is positive. We retrieve a weak version of Virag’s result.
We assume in this subsection that the graph has uniformly localy bounded
valency. Let d(a, b) denote the graph distance between point a and b.

Proposition 3.1.— Let G be a graph satisfying (1.1) with F = id and
let (Xn)n be a simple random walk on G. Then we have:

P
(

lim
n

d(o,Xn)

n
= 0

)
= 0.
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Proof. — Assume there exists ε > 0 such that P(limn
d(o,Xn)

n = 0) > ε. So,
we have:

∀α > 0 P(∃Nα ∀n � Nα
d(o,Xn)

n
� α) > ε

By considering the event Eq = {∃Nα < q, ∀n � Nα
d(o,Xn)

n � α} and by
continuity of measure P, we get:

∃Nα � 0 P
(
∀n � Nα

d(o,Xn)

n
� α

)
>

ε

2
. (3.3)

Take now R > 0, we have:

P
(
∀n ∈ [Nα;

R

α
] d(o,Xn) < αn

)
>

ε

2
.

On this event we have: lB(o,R) � R
α − Nα, where lA is the local time of X

in the set A, which is well defined in this case since when F = id the walk
is transient by Thomassen result. Therefore, by using (3.3), we get

Eo(lB(o,R)) �
ε

2

(
R

α
−Nα

)
. (3.4)

By Proposition 2.7 and since strong anchored isoperimetric inequality im-
plies a subexponential volume growth, there exists c > 0 such that:

Eo(lB(o,R)) � ln(|B(o,R)|) � cR (3.5)

Choose now α such that ε
2α > c. Gathering (3.4)and (3.5), we get:

ε

2

(
R

α
−Nα

)
� cR

Letting R goes to infinity in this last expression, we get a contradiction.

3.3. Random environment on Zd, including supercritical percola-
tion

After a presentation of random environment, we state an anchored isoperi-
metric inequality for big sets under super-critical exponentially integrable
conductances (see below), which leads to occupation time estimate for big
sets.

Consider the graph Ld = (Zd, Ed) where Ed contains non-oriented nearest-
neighbor pairs. We write x ∼ y if {x, y} ∈ Ed. An environment is a random
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function µω : Ed → [0; +∞[. It is implicit in the definition of Ed that it
is symetric. The value µω(x, y) is called the conductance of edge x, y. To
enlighten the notations, we will sometimes write µ instead of µω when there
is no ambiguity.

Let Q be a product probability measure on [0; +∞[Ed . A walker or an
electric current can cross only edges with strictly positive conductances. So
we call cluster a connected component of the graph (Zd, {e ∈ Ed ; ω(e) > 0})
and we use Q-connectedness refering to this graph. In fact Q induces a
Bernoulli percolation PQ of parameter q = Q(µ(e) > 0) (here and in the
following, e is any edge since Q is a product measure). We assume q > pc
critical parameter of edge percolation on Zd.

Definition 3.2.— For q > pc, the law Q is said to be a super-critical
exponentially integrable random environment if there exists β > 0 such that

EQ(exp(βµ(e))) <∞.

For quenched results on the random walk, we consider measure P0 =
P0,µω (· | C0 infinite). That is, we start the random walk from the origin 0 of
Zd, µ induces m and p(·, ·) so that we are in the setting defined in Section
1.3, and we assume the cluster C0 of 0 is infinite.

In order to apply our results, we need an anchored isoperimetric inequal-
ity with respect to random weight µω. Differents forms of strong isoperimet-
ric inequality have been established by many authors (see [18], [22] [12] and
[5]) in the percolation context.

We may only have a control for big sets. The form which seems adapted
to our exit time results is the following:

Proposition 3.3.— Let Q be a super-critical exponentially integrable
random environment on Zd.
There exist β0(Q) > 0 and a random integer N0(ω) such that,
for all Q-connected sets A ⊂ Zd containing 0,

|A| � N0(ω) =⇒ µω(∂A)

mω(A)1−1/d
� β0. (3.6)

The details of the proof can be found in [11]. We use standard exponen-
tial Bienaymee Tchebytchef inequality and renormalization technique (see
[2]).

Remark 3.4.— In [6], it is proved that we can build environments where
the return probability is greater than 1/n2. By our Proposition 3.3, the
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d-dimensional anchored isoperimetric inequality is satisfied on these envi-
ronments and so in dimension higher than 4, no one can hope to prove that
in this case, the return probability is in n−d/2.

We can now apply result of Theorem 1.4 in the particular case of random
walk in random environment withQ a super-critical exponentially integrable
random environment. We get,

Proposition 3.5.— There exists constant C = C(Q, d) such that Q a.s.
for all environment ω, Q super-critical exponentially integrable environment:
for any connected subset B which contains the origin and with volume |B|
large enough,

{
E0(lB) � Cmω(B) in dimension d � 3

E0(τB) � Cmω(B) for dimension d = 2

For transient case, the proof consists in solving the differential inequa-
tion:

{
u(0) = mω(B)

u′ � −(β0 u1− 1
d )2, until #{x ∈ B; G(0, x) � t} � N0(ω),

satisfied by u(t) = mω({x ∈ B; G(0, x) � t}). Then, using Corollary 3.2,
you get the expectation of the occupation time. The argument is similarly
for d = 2. The complete proof is in [11].

Percolation is a particular case of Q super-critical exponentially inte-
grable random environment. So, theses results hold for percolation super-
critical cluster.

Proposition 3.6.— Let p > pc(d) and d � 2. There exists constant
C = C(p, d) such that Q a.s. on the event {#C = +∞}:
for any connected subset B of C which contains the origin and with volume
large enough, {

E0(lB) � C|B|2/d if d � 3,
E0(τB) � C|B| if d = 2.

(3.7)

These estimates have the right behaviour, since we retrieve a conse-
quence of results of Barlow. Indeed, in [3], Barlow gives a precise control of
the kernel transitions of the random walk. It is proved that:

Theorem 3.7.— There exists Ω1 with Q(Ω1) = 1 and random variables
Sx;x ∈ Zd such that for each x ∈ C and for all ω ∈ Ω1, Sx(ω) < ∞ and
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there exist constants ci = ci(d; p) > 0 such that for all x, y ∈ C and t � 1
with

k � Sx(ω) ∨ |x− y|1
the transition density Px(Xk = y) of X satisfies:

ν(y)c1k
−d/2e−c2

|x−y|21
k � Px(Xk = y) � ν(y)c3k

−d/2e
−c4|x−y|21

k .

As the expectation of exit time can be expressed with the kernel transi-
tions, these estimates give us a bound of the exit time of the correct order.
(see [11] for details)

Acknowledgments. — The authors would like to thank Noam Berger,
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