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Graph classes and the switch
Markov chain for matchings
MARTIN DyER(") | HATKO MULLER()
RESUME. — Diaconis, Graham et Holmes [8] ont étudié les applications

statistiques du comptage et de I’échantillonnage des appariements parfaits
dans certaines classes de graphes. Ils ont proposé une chaine de Markov
simple, appelée ici la chaine “switch”, pour engendrer aléatoirement un
appariement presque uniforme pour les graphes appartenant a ces classes.
Nous étudions ces classes en détail en les justifiant du point de vue de la
théorie des graphes. Nous montrons que 'ergodicité des chaines des classes
de [8] se déduit de celle d’une classe plus large. Nous nous intéressons
également a la complexité calculatoire du temps de mélange de la chaine
switch et nous la déterminons pour toutes les classes de [8] sauf une, celle
correspondant aux graphes monotones de Diaconis, Graham et Holmes.
Nous ébauchons une approche pour montrer une convergence en temps
polynomial de la chaine switch pour les graphes monotones. Elle dépend
d’une conjecture intéressante mais non-prouvée concernant les cycles ha-
miltoniens des graphes monotones.

ABSTRACT. — Diaconis, Graham and Holmes [8] studied the statistical
applications of counting and sampling perfect matchings in certain classes
of graphs. They proposed a simple Markov chain, called the switch chain
here, to generate a matching almost uniformly at random for graphs in
these classes. We examine these graph classes in detail, and show that they
have a strong graph-theoretic rationale. We consider the ergodicity of the
switch chain, and show that all the classes in [8] inherit their ergodicity
from a larger class. We also study the computational complexity of the
mixing time of the switch chain, and show that this has already been
resolved for all but one of the classes in [8], that which Diaconis, Graham
and Holmes called monotone graphs. We outline an approach to showing
polynomial time convergence of the switch chain for monotone graphs.
This is shown to rely upon an interesting, though unproven, conjecture
concerning Hamilton cycles in monotone graphs.
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1. Introduction

The computational problems of (approximately or exactly) evaluating the
permanent, and sampling perfect matchings (almost) uniformly at random
from a graph, are well known in Computer Science, and elsewhere. In [8],
Diaconis, Graham and Holmes discussed the applications of the permanent
to Statistics. They studied permanents of 0-1 matrices arising naturally in
these applications, which they called truncated or interval-restricted.

These matrices can be viewed as the biadjacency matrices of bipartite
graphs. Then the truncated matrices are those which have the property
that their columns can be permuted to give the consecutive ones property
on rows. That is, no two ones in any row are separated by one or more zeros.
Diaconis, Graham and Holmes [8] considered two types of truncation : “one-
sided”, where the consecutive ones appear at the left of each row, and “two-
sided”, where the consecutive ones can appear at any position in each row.
Within the two-sided case, they considered two subcases. The first is where
the rows and columns can be permuted so that both rows and columns
have the consecutive ones property. The second is a subclass of this, where
the consecutive ones have a “staircase” presentation, which we will describe
later. In this case, they called the underlying graph monotone.

Diaconis, Graham and Holmes proposed a simple Markov chain for sam-
pling perfect matchings in a graph, which we will call the switch chain, and
they conjectured that it would mix rapidly for these truncated matrices. The
convergence of the switch chain for these cases was subsequently studied in
the PhD theses of Matthews [27] and Blumberg [3].

In this paper, we show that the matrices considered by Diaconis, Graham
and Holmes [8] correspond to an ascending sequence of natural graph classes,
in which the switch chain is ergodic, and we identify the largest class in this
sequence. We examine the mixing time behaviour of the switch chain for
graphs from these classes, extending the work of [8], [3] and [27].

For the necessary background information on Markov chains, see [1, 18,
24]. For the relevant graph-theoretic background, see [5, 14, 33, 37].

1.1. Notation and definitions

Let N = {1,2,...} denote the natural numbers, and Ny = N U {0}. If
n €N, let [n] = {1,2,...,n} and, if ny,ne € Ny, let [ny,no] = {n1,n1 +
1, N ,ng}.

We will use the notation [n]'={1',2',...,n'} and [n1, no) ={n}, (n1+1)’,
...,nb}. Here the prime serves only to distinguish ¢ from 4’. Ordering and
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arithmetic for [n]" elements follows that for [n]. Thus, for example, 1’ < 2
and 1’ + 2/ = 3.

A graph G = (V,E) is bipartite if its vertex set V' = [m] U [n]’ and
there is no (undirected) edge (v,w) € E such that v,w € [m] or v,w €
[n])’. Thus V' comprises two independent sets [m] and [n]’. Bipartite graphs
G1 = ([m] U [n], E1) and G2 = ([m] U [n)’, Es) are isomorphic if there are
permutations ¢ of [m] and 7 of [n]’ such that (j, k') € F; if and only if
(O’j/l’k/) € Es.

Let G = ([m] U [n]’, E) be a bipartite graph. We consider [m] and [n]
to have the usual linear ordering, and we will abuse notation by denoting
these ordered sets simply by [m] and [n])’. Then let A(G) denote the m x n
biadjacency matriz of G, with rows indexed by [m] and columns by [n]’,
such that A(i,j') = 1if (i,5') € E, and A(i, ") = 0 otherwise. We will use
the graph and matrix terminology interchangeably. For example, we refer
to rows and columns of G, or edges in A(G).

The neighbourhood in G of a vertex v € [m] U [n]’ will be denoted by
N (v). To avoid trivialities, we will assume that G has no isolated vertices,
unless explicitly stated otherwise.

A matching in a bipartite graph G = ([m] U [n]’) is a set of independent
edges, that is, no two edges in the set share an endpoint. A perfect matching
is a set of edges such that every vertex of G lies in exactly one edge. For a
bipartite graph G = ([m] U [n]’, E)) this requires m = n, and n independent
edges in E. In particular, G can have no isolated vertices. We will call a
bipartite graph with m = n balanced, though we may omit this restriction
when it is clear from the context.

Equivalently, a perfect matching may be viewed as n independent 1’s
in the n x n 0-1 matrix A(G). Thus a perfect matching M has edge set
{(i,7}) : i € [n]}, where 7 is a permutation of [n]. Equivalently, M has edge
set {(0;,7') : j € [n]}, where o is a permutation of [n]. Note that o = 71
as elements of the symmetric group S,,. We may identify the matching M
with the permutations 7 and o. An example is shown in Fig. 1 below.

The total number of perfect matchings in a bipartite graph G is the
permanent, which we denote by per(A) when A = A(G).
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1 4 3
G: 2 1

2 3 4

1/ 2/ 3’ 4

170 0 1

2 | 1 0 0

A :

@510 1 o

1 11 1

Figure 1. — Bipartite graph with perfect matching o = (3241), = = (4213).

We will also require the following graph-theoretic definition. The path-
width pw(G) of a graph G was introduced by Robertson and Seymour [29].
A pair (X, P) is a path decomposition of a graph G = (V, E) if P = ([l], F)
is a path, with F = {(¢,i+ 1) : 7 € [l — 1]}, and X maps nodes (vertices) of
P to subsets of V| called bags, such that

(a) for each vertex v € V there is a node i € [I] such that v is in the
bag X (i),

(b) for each edge (u,v) € E there is a node i € [I] such that v and v are
in the bag X (4),

(c) For each vertex v € V the set of nodes {i € [I] : v € X (i)} is
connected in P.

Note that, subject to (a) and (b), (c¢) is equivalent to : for all 4, j, k with
i < j <k wehave X(i)NX(k) C X(j).

The width of the path decomposition (X, P) is max{|X (i)| —1:¢ € [I]}
and the pathwidth of G, denoted by pw(G), is the minimum width of any
path decomposition of G.

An obvious, but useful, property of pathwidth is that if G* is any sub-
graph of G, then pw(G*) < pw(G).

There is an alternative view of this quantity, which is useful. Any linear
order of the vertices of a graph G is called a layout. Suppose we visit the
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vertices in the order of the layout. Then the maximum number of already-
visited vertices which have an unvisited neighbour is called the vertex se-
paration of the layout. The minimum value of the vertex separation over
all layouts is called the vertex separation number of G, vs(G). Formally, let
G = ([n], E) and let S,, be the symmetric group on [n]. Then
vs(G) = min max |{z <j:3k > j with (0;,0%) € E}‘ )
€Sy j€E[n]

Vertex separation was studied by Ellis, Sudborough and Turner [10] who
showed, in particular, that vs(T') = O(logn) for any n-vertex tree T. They
gave an O(n) time algorithm for determining vs(7'), and an O(nlogn) algo-

rithm for computing the optimal layout. Skodinis [30] improved the latter
to O(n).

Kinnersley [22] showed that vs(G) = pw(G) for any graph G. Hence
we will use pw(G) rather than vs(G) for this quantity. For graphs with a
constant degree bound, Makedon and Sudborough [26] showed that path-
width is related by a constant factor to other measures of graph width, such
as cutwidth and bandwidth.

1.2. Computing the permanent

The permanent has been studied extensively in Combinatorics and Com-
puter Science. Valiant showed that computing the permanent ezactly is
#P-complete for a general 0-1 matrix [36]. No algorithm running in sub-
exponential time is known for the exact evaluation of the permanent of 0-1
matrices.

Jerrum, Sinclair and Vigoda [20] showed that the permanent has a fully
polynomial randomised approximation scheme (FPRAS), using an algorithm
for randomly sampling perfect matchings. This improved a Markov chain
algorithm of Jerrum and Sinclair [19]. The algorithm of [20] is simple, but
involves polynomially many repetitions of a polynomial-length sequence of
related Markov chains. The best bound known for the running time of this
algorithm is O(n” log® n), due to Bezdkovi, Stefankovi¢, Vazirani and Vi-
goda [2].

Jerrum, Valiant and Vazirani [21] showed that sampling almost uniformly
at random and approximate counting have equivalent computational com-
plexity for many combinatorial problems, including the permanent.

From the viewpoint of theoretical Computer Science, these results en-
tirely settle the question of sampling and counting perfect matchings in
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bipartite graphs. However, simpler methods have been proposed for special
cases of this problem, and here we consider one such proposal.

1.3. The switch chain

Diaconis, Graham and Holmes [8] proposed the following Markov chain
for sampling perfect matchings from a balanced bipartite graph G = ([n] U
[n)', E) almost uniformly at random, which we will call the switch chain.
A transition of the chain will be called a switch. Diaconis, Graham and
Holmes [8] called this a “transposition”. The switch chain generalises the
transposition chain for generating random permutations.

Switch chain

Let the perfect matching M; at time t be the permutation 7 of [n].
(1) Set t + 0, and let My be any perfect matching of G.
(2) Choose i,j € [n], uniformly at random, so (i,7;), (j,7;) € M;.
(3) If i # j and (4,77}), (j, ;) are both in E,

set Myyy <= M\ {(i,m), (j,75)} U{(i, 75), (4, 7)) }-

(4) Otherwise, set M1 < M.
(5) Set t + t+ 1. If t < tiax, repeat from step (2). Otherwise, stop.

1 4 3’
Mt : 2 1
2’ 3 4’
1 4 3’
Miy1: 2 1
2’ 3 4’
Figure 2
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Note that the switch chain is invariant under isomorphisms of G, so
properties of the chain can be investigated from the viewpoint of graph
theory. An example of a switch is shown below, with the edges (4,1), (2,2')
being switched for (4,2'), (2,1')

2. Graph classes

Here we consider graph classes which are equivalent to the matrix classes
considered by Diaconis, Graham and Holmes. We examine other related
classes in sections 2.6 and 2.7. Many of these classes lead to certain orde-
rings of the rows and/or columns of the biadjacency matrix, which exhibit
particular properties. These orderings can always be found by a fast algo-
rithm, in most cases with O(n) time complexity. Unless stated otherwise, we
will assume that the biadjacency matrix is presented with this ordering. For
example, in section 2.1, we consider [ -free orderings, so we would assume
that the biadjacency matrix is presented with a [-free ordering.

2.1. Chordal bipartite graphs

The first question we might ask about the switch chain is : for which
class of graphs is it ergodic? We wish to have a graph-theoretic answer to
this question, so that we can recognise membership of graphs in the class.
Therefore, we restrict attention to hereditary graph classes, that is, those
for which all (vertex) induced subgraphs of every graph in the class are in
the class.

There is a further technical reason for preferring hereditary graph classes.
We then have self-reducibility for most problems in #P, including the perma-
nent. This property implies the equivalence between sampling and counting
referred to in Section 1.2. See [21].

To answer the ergodicity question, we will use the term “hereditary”
in a slightly weaker sense, where appropriate. Since the switch chain is
defined only for balanced bipartite graphs, we are not interested in induced
subgraphs which are not balanced. Therefore we will say that a class of
balanced bipartite graphs is hereditary if every balanced induced subgraph
of a graph in the class is also in the class.

Diaconis, Graham and Holmes [8] observed that the switch chain is not
ergodic for all balanced bipartite graphs. They gave the example :
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© o [=]*
OH@‘*‘L

Figure 3

This graph has two perfect matchings, but the switch chain cannot move
between them. This is because the graph is a chordless 6-cycle. In fact, this
property characterises the class of graphs for which the switch chain is not
ergodic, as we now show.

DEFINITION 2.1. — A graph G is chordal bipartite if and only if it has
no chordless cycle of length other than four.

The class of chordal bipartite graphs is clearly hereditary. Note that the
definition of chordal bipartite graphs is an “excluded subgraph” characte-
risation. To show that the switch chain is ergodic for this class, we require
the following “excluded submatrix” characterisation.

AT (Gamma) in a 0-1 matrix is an induced submatrix of the form
1 1
r. [ ! 0] .
A matrix is called [ -free if it has no such induced submatrix. Then Lu-
biw [25] gave the following characterisation.

THEOREM 2.2 (Lubiw). — A bipartite graph is chordal bipartite if and
only if it is isomorphic to a graph G such that A(G) is [ -free.

Moreover, Lubiw [25] showed that this characterisation can be used to
recognise chordal bipartite graphs in O(|E|log|E|) time. This was subse-
quently improved to O(|E|) time by Uehara [35]. For the switch chain we
then have the following characterisation of the bipartite graphs on which it
is ergodic :

LEMMA 2.3. — The largest hereditary class of bipartite graphs for which

the switch chain is ergodic is the class of balanced chordal bipartite graphs.
In this class, if G = ([n]U [n]', E), the diameter of the chain is at most n.
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Proof.— Clearly any graph with an induced cycle of length greater than 4
cannot be in the class, so we need only show ergodicity for chordal bipartite
graphs. The chain is aperiodic, since there is a loop probability at least 1/n
at each step, from choosing i = j in step (2). Thus we must show that the
chain is irreducible. From Theorem 2.2, we may suppose that A(G) is given
with a [-free presentation.

Let G = (2,€) be the transition graph of the switch chain, with Q the
set of perfect matchings in G, and £ the set of transitions. We must show
that G is connected, and has diameter n. Let m and o be any two perfect
matchings in G, and let dist(w, o) = |{i : 7} # o}}|. Note that dist(w, o) < n,
and dist(m, o) = 0 implies 7 = 0.

Let k be the smallest index such that n # o) and, without loss of
generality, suppose 7}, > o},. Then there exists ¢ > k such that 7, = o},
and hence 7, # oj. Then we have (k,oy,), (k,7.), ({,0;,) € E, £ > k and
T}, > 0.

r__ 1 /
Te=0} T

k 1 1
Y 1 ?

The [ -free property of A(G) then implies (¢,7,) € E. Thus we have
(k,m,), (¢,m)) € m and (k, 7)), (¢,7,) € E. Therefore 7 € Q and (7,7) € &,
where
T =m\{(k, mp), (¢, mp) } U{(k, ), (¢, ) }-

Note that 7/ = «] for i # k, (. However, ), # o}, but 7, = 7, = o},. Also
my # oy, but 7, = m}, = o, if ), = o}. Thus dist(7,0) — 2 < dist(r,0) <
dist(m,0) — 1. Hence there is a path of at most n edges in G between any
pair of matchings m, 0. Thus the diameter of G is at most n. O

Computing the permanent exactly is known to be #P-complete for the
class of chordal bipartite graphs [28], though this result does not even cover
the case of chordal bipartite graphs of bounded degree. The complexity of
exact computation of the permanent is unknown for all the subclasses of
chordal bipartite graphs considered below. That is, with the exception of
chain graphs, which we examine in Section 2.5.

2.2. Convex graphs

The largest class of graphs considered in Diaconis, Graham and Holmes [8]
were those with “two-sided restrictions”. These are bipartite graphs G for
which A(G) has the consecutive ones property. These have been called
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convex graphs in the graph theory literature. They were introduced by
Glover [13], who gave a simple greedy algorithm for finding a maximum
matching in such a graph. The consecutive ones property can be recognised
in O(|E|) time by the well-known algorithm of Booth and Lueker [4].

DEFINITION 2.4. — A bipartite graph is convex if it is isomorphic to a
graph G = ([m] U [n]', E) such that N (i) is an interval [, Bl] C [n]" for all
i€ [m].

Note that this property remains true under an arbitrary permutation of
[m]. Then

LEMMA 2.5. — Convex graphs are a proper hereditary subclass of chordal
bipartite graphs.

Proof.— Tt is easy to see that the class CONVEX is hereditary. To see that
it is a subclass of chordal bipartite graphs, we permute rows so that 3; < f3;
when i < j. Now we can show that A(G) is [-free. If not, there is a [ in
some rows 7, j and columns k', ¢'.
Ko

i 1 1

J [ 1 0 ]
We have i < j but, since the rows of A(G) have consecutive ones, 3} > ¢/ >
;. This contradicts our ordering of the rows of A(G). To see that it is a
proper subclass, note that there are at most n!(})" = 20(en) labelled
convex graphs with n rows and columns, whereas Spinrad [31] has shown
that there are 29(nlog*n) chordal bipartite graphs. (Spinrad also gives in

[31, Ex. 9.16(c)] an explicit example of a graph that is chordal bipartite but
not convex.) O

It is possible to give excluded subgraph and excluded submatrix charac-
terisations of convex graphs, but we will not explore this here, since they
are not easy to describe, and appear to have little algorithmic application.
See [34] for details.

Blumberg [3] gave an 7°("n* bound on the mixing time of the switch

chain for convex graphs with 7 = max;¢,) deg(i). This is a hereditary sub-
class of convex graphs, since it is easy to see that graphs with bounded row-
or column-degree form a hereditary subclass of any hereditary class. We will
give an algorithm for exact counting and sampling in this subclass of convex
graphs. First we will show that these graphs have bounded column degree.
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LEMMA 2.6. — Let G = ([n] U [n]', E) be a convex graph containing a
perfect matching. Let r = max;cp,) deg(i) and ¢ = max;c[, deg(j’). Then
we have ¢ < 2r — 1.

Proof.— Let M be any perfect matching of G. We first permute the rows of
A(G) so that M is the diagonal of A, i.e. M «+ {(i,4') : ¢ € [n]}. To bound
¢, consider any edge (i,j’) € E. Since G is convex, and (i,4') € E, we have
i',j €lal,B]and so |i —j| <r—1.Hencei € [j—r+1,54+r—1N|nl,

and so V(') C [j —r+ 1,5 +r — 1] N [n]. Therefore we have ¢ < 2r —1. 0O

It is known that there is an exact algorithm for computing the permanent
which is linear in n for all graphs of bounded treewidth [7, Theorem 1].
Convex graphs with r = max;¢[y deg(i) have treewidth at most 2r — 1.
Unfortunately, the general algorithm of Courcelle, Makowsky and Rotics [7]
is superexponential in the treewidth. An algorithm of Fiirer [12, Theorem 3],
for counting independent sets in graphs of bounded treewidth, could also
be applied, since the treewidth of the line graph of a convex graph can be
bounded by 872. (We will not prove these facts about treewidth here, since
we do not use them, but see [17], for example.) Combined with Fiirer’s
algorithm, this produces an algorithm for the permanent which is linear in
n, but exponential in 2.

However, we will not use either of these approaches, since the following
dynamic programming algorithm has better time complexity for the problem
at hand.

LEMMA 2.7. — Let G = ([n] U [n]', E) be a convex graph containing a
perfect matching, and let v = max;c[, deg(i). Then, for any subgraph G*
of G, the permanent of A(G*) can be evaluated ezactly in time O(r*"n).
Hence the permanent can be evaluated in polynomial time for all convex
graphs with degree bound O(logn/loglogn).

Proof.— Let A = A(G*). The algorithm uses triangular windows W; of
width 2r + 1 and height 27 + 1, with corners at A(i, (i — r)’"), A(Z, (i + 1))
and A(i + 2r, (i + r)"). Note, from Lemma 2.6, that W; cuts G as shown
below. Moreover, for every edge of G there is an index i such that the
corresponding entry of A appears in the window W;.

At iteration i of the algorithm, a subperfect matching @ will be a mat-
ching of G*, such that

(a) Every row j < i has a matching edge;
(b) Every column j° < min{(i + r)’,n’} has a matching edge;
(¢) No row j > i+ 2r has a matching edge;
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(d) No column j’ > (i + )" has a matching edge.

(i—7) i.' (iJr.r)'

2r —1

Figure 4. — The sliding window

Note that a any truncation of a perfect matching is subperfect, but a
subperfect matching cannot always be extended to a perfect matching of
G*. We consider the set

S; = {M: M =QnNW,; and Q is a subperfect matching } .

Note that |.S;| < (2r)!, since each column of W; is either empty or contains
a unique edge in any of positions 1,2,...,7, for j = 1,2,...,2r — 1. For
M e Si; let

Ni(M)=|{Q:QnW; =M},

be the number of subperfect matchings represented by M. Initially, ¢ = 1
and S; will be the set of all matchings in W; such that every vertex j' <
(r4+1)" has a matching edge. When ¢ = n — r, all the subperfect matchings
represented in W,,_,. will be perfect matchings, and so we will have

per(A) = Syyes, , Naor(M).
We must show how to update the M and N;(M) from W; to W,11. Let
Wr =W, NWi41.

First we remove row 7. We remove all M € S; such that row i contains
no matching edge, since they cannot correspond to a subperfect matching
at iteration (i 4+ 1). Then we delete the matching edge in row ¢ from M, for
all M € §;. This will produce a set S} of matchings in W,

SH = {M:M=QnW/ and Q is a subperfect matching } .

7
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column (i + 7+ 1)’

!

TOW § — ™.

Figure 5. — Moving the window

We must now add column (i +7r+1)" to W41. For all M* € Sf, we attempt
to augment each M* with a matching edge e in column (i + r + 1)’. Note
that e must be in W;11, and e can be in any row which has no matching
edge in M*. If no such row exists, we delete M* from S}, since it cannot
correspond to a subperfect matching at iteration ¢ + 1. Otherwise, for each

possible choice of e, we add M = M* U {e} to S;;1, and set
Ni+1(M) = Z{NZ(M*) T M* e Si, M* mWi+1 = MﬂWi}
This completes the description of the algorithm.

The operations in the update require O(r|S;|) time, except for the remo-
val of duplicates, which can be implemented in O(|S;|log|S;|) = O(r2|S;])
time. Therefore, since

28| < r2(2r)! ~ 2T r??(2r/e)? = O@(r?),

using Stirling’s formula, and O(n) updates must be performed, the overall
time complexity of the algorithm is O(r?"n). This is polynomial in n if
r = O(logn/loglogn). O

We can extend the algorithm of Lemma 2.7 to sample a matching uni-
formly at random. To do this, we must retain the sets S; and the counts
N;(M) (M € S;) used in the permanent evaluation. Then the sampling algo-
rithm is a standard dynamic programming traceback through S,,_,, ..., 5;
..., S1, using the N;(M) to select matchings with the correct probability.
See [9] for a more complete description of similar uses of traceback sam-
pling. The time complexity for sampling a single matching is O( Y, [Si|) =
O((2r)!n).
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Thus dynamic programming seems superior to any known method of

Markov chain sampling for convex graphs with small degree bound, at least
if the chain is to be run for its a guaranteed mixing time.

2.3. Biconvex graphs

Diaconis, Graham and Holmes [8] considered the following subclass of
convex graphs.

DEFINITION 2.8. — A graph G = ([m]|U[n]’, E) is biconvex if it is convex
and N(j') is an interval (o, 8] C [n] for all j' € [n]'.

Thus A(G) has the consecutive ones property for both rows and columns.
LEMMA 2.9. — Biconvex graphs are a proper hereditary subclass of convex
graphs.
Proof.— It is easy to see that the class BICONVEX is a hereditary subclass

of CONVEX. To see that it is a proper subclass, consider the example :

1/ 2! 3’ 4/

1 1 0 0 O
2 1 1 1 0
310 1 0 0
4 0 0 1 1

In a biconvex ordering, row 2 must be adjacent to row 1 and row 3, or
columns 1’ and 2’ cannot be convex. But row 4 must also be adjacent to
row 2, or column 3’ cannot be convex. These conditions clearly cannot be
satisfied simultaneously. O

As with convex graphs, it is possible to give excluded subgraph and ex-
cluded submatrix characterisations of biconvex graphs. Since these are a
little easier to describe than for convex graphs, we will give an excluded
subgraph characterisation. Tucker shows [34, Theorem 10] that a bipartite
graph is biconvex if and only if it does not contain the graphs I,, for n > 1,
114, Is, IT14, ITI5 and III5 as induced subgraph. Here I, is a chordless cycle
Cont4, I1; is the triomino and III; is the tripod.
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triomino tripod 11,

M1, 1M1,
Figure 6. — The triomino, the tripod and the graphs Ila, III3 and III3

We know that the switch chain converges eventually on biconvex graphs,
but how quickly is this guaranteed to occur ? Unfortunately, the convergence
may be exponentially slow. Both Matthews [27] and Blumberg [3] gave the
following examples G, = ([n] U [n]’, &), where n =2k — 1 :

1<i<kand ¥ <j <(k+1);
(i,j') € & = i=kand 1’ <j <n;
k<i<nand (i—k) <j <FK.

For example, G4 is

B3
Rt

1 20 3 4 5

,_.
O~ Rk O O O
_ = =0 O O
_ == O OO

1
1
1
1
0
0

= = s e e
O O = = = O
O OO = = OO

N O ks N

0 0 1 0 0

Let 7 be any perfect matching. Then choosing 7j, < k' forces n, = (k + 1)’
for i € [k —1], and similarly choosing 7}, > &’ forces 7 ; =4’ for i € [k —1].
Thus the set of perfect matchings of Gy, is S U Sy, where S; = {m : 7, < k'}
and So = {m: 7w, > Kk'}.

Clearly S1NSy = {7 : 7}, = k'} = {0}, for a single matching o. Moreover,
it is not difficult to show that there are 2¥~! ways to extend a partial
matching 7 with 7} = (k 4 4)’ for ¢ € [k — 1] to a perfect matching. One
way is to note that the submatrix induced by rows [k, n| and columns [k]
is a so-called chain graph, for which the permanent is easy to compute :
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see Section 2.5 and the formula presented there. Thus |S; N Se| = 1 and
|S1| = | 92| = 2571, and hence |S; U Sp| = 2F — 1.

Therefore, if the switch chain is started at a random matching in S7, it
will need ©(2") time before it reaches o, and it cannot enter Sy before this
occurs. This gives an Q(2") lower bound on the mixing time of the chain.
This argument can be made completely rigorous, see [3] or [27], but we will
not do so here.

2.4. Monotone graphs

Diaconis, Graham and Holmes [8] considered a subclass of biconvex graphs,
which they called monotone, and showed that the switch chain is ergodic
on monotone graphs. However, note that Lemma 2.3 gives a stronger re-
sult for the larger class of chordal bipartite graphs. Diaconis, Graham and
Holmes [8] conjectured further that the switch chain mixes rapidly for the
class MONOTONE.

DEFINITION 2.10. — A bipartite graph G = ([m] U [n]’, E) is monotone
if it is isomorphic to a convex graph such that o < o and B; < 3} for all
i, j € [m] withi < j.

First we show that, if G is row-monotone, it is also column-monotone.

LEMMA 2.11. — A monotone graph is biconves, and ay < s, By < By
ifi', j' € n] and i’ < j'.

Proof.— For j € [n], let s = min{i € N(j')} and ¢ = max{i € N(j')}. If
s <i<t,then j/ > o} > o} and j' < 8. < f, so j' € [a}, B]] = N (i) and
hence i € N(j'). Thus N(j') is the interval [s,t], so we may take a;r = s,
Bj = t. Hence oy = min{k : ¢’ € [a], 8]} and aj = min{k : j' € [a}, 8]},
so i < j' implies o < avjr. Similarly i’ < j’ implies 8;; < 8. O

Next we show a “forbidden submatrix” characterisation of monotone
graphs, extending that of Lubiw [25] for chordal bipartite graphs.

LEMMA 2.12. — A bipartite graph is monotone if and only if it is isomor-
phic to a graph G such that A(G) has none of the following as an induced
2 x 2 submatriz :

[ (Gamma) : F 1

. 0}, J (backwards L) : [O ﬂ / (slash) : {0 1].

1 1 0
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Proof.— Suppose G is monotone, but A contains [T or / in rows i and
J, with i < j. Then row-convexity implies 3] > 3}, a contradiction. Simi-
larly, if A(G) contains a -, then row-convexity implies o/ > o, again a

contradiction. Thus, if G' is a monotone graph, A(G) cannot contain [, A

OI‘/.

Now assume A(G) contains no I, 1 or /. Suppose N (i) is not an in-
terval, so there exist j* < k¥’ < I’ so that (¢, '), (i,I') € E, but (i,k') ¢ E.
Since N (k') # 0, there exists s € [n] such that (s,k’) € E. If s < i, then
A(G) contains the first configuration below, which is either a [" or a /, a
contradiction. If s > 4, then A(G) contains the second configuration below,

which is either a J or a /, also a contradiction.
j/ k/ k/ l/
s 71 i 0 1
i 1 0 s 1 7
Therefore suppose that i < j, but af > a;. Then A(G) contains the first

configuration below, which is a dor/ , a contradiction. Similarly, if 5] > B},

A(G) contains the second configuration below, which is a [ or /, again a
contradiction. Hence G is monotone.

af o B; B
i { 0 1 ] i { ?7 1 }
i1 7 i L1 0 O

A bipartite permutation graph is a permutation graph which is also bipar-
tite. A graph G = (V, E) is a permutation graph if there are permutations
m,0 of V so that (m;,n;) € E if and only if m; < m; and o; > ;. This
can be given a crossing presentation, where 7,0 are on parallel lines, and
connected by lines (v, v), for all v € V. Then (v, w) € FE if and only if corres-
ponding lines (v,v) and (w,w) cross. Spinrad, Brandstadt and Stewart [32]
studied this class of graphs, and gave O(|E|) time algorithms for recognising
membership in the class, and for constructing a crossing representation. An
example is shown in Figs. 7 and 8 below.
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2’ 3 4’

A(G) :

N
[
O = = =
_— == O
— =0 O

Figure 7. — A bipartite permutation graph

F—O—0F—0—0—O
Figure 8. — Crossing representation of the graph in Fig. 7

Our reason for introducing this class of graphs is that the bipartite per-
mutation graphs are precisely the monotone graphs.

LEMMA 2.13. — A graph is monotone if and only if it is a bipartite
permutation graph.

Proof.— The condition of Lemma 2.12 is equivalent to the following. If
(i,K"),(j,0) € E with i < j and k' > ¢, then (i,¢), (j,k') € E. The
conclusion now follows from the characterisation of bipartite permutation
graphs given in [32], in particular Definition 3 and Theorem 1. ([

Note that Lemma 2.12 is not a “forbidden subgraph” characterisation in
the usual graph-theoretic sense. However, such a characterisation is known.

LEMMA 2.14. [23, Lemma 1.46]. — A graph is monotone if and only if
it is chordal bipartite (i.e. it has no chordless cycle of length other than
4), and it contains none of the three graphs shown in Fig. 9 as an induced
subgraph.
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[ 4 O O L [ 4 O O

tripod pellet drum stirrer

Figure 9. — The tripod, the pellet drum and the stirrer

For example, the graph G given in Fig. 10 contains the pellet drum as a
subgraph.

=
N
«
"
b

1700 0 1 0 o 1
2001l induced 2|1 1 1
AG)=3]0 1 1 1 0 subgraph : 3 | 1 1 0
411 1 1 0 0 11 0 o
5 01 1 0 O
4
3 3
1 4 2 5
Figure 10. — A biconvex graph containing a pellet drum

LEMMA 2.15. — Monotone graphs are a proper hereditary subclass of
biconver graphs.

Proof.— The hereditary property follows easily from the definitions. The
inclusion follows from Lemma 2.11, and strict inclusion follows from the
example of Fig. 10. O

To apply the switch chain to a monotone graph, we need to know whe-
ther it contains any perfect matching. If it does, we need to identify one
efficiently, in order to start the chain. However, these are easy questions.

LEMMA 2.16. — A monotone graph G = ([n]U[n]’, E) contains a perfect
matching if and only if it contains the diagonal matching 6 = {(¢,7') : i €

[n]}-

Proof.— We prove this by induction on n. If n = 1, E = {(1,1)}, and
there is nothing to prove. So, suppose n > 1. Clearly (1,1’) € E, or else
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either 1 or 1’ is an isolated vertex, and hence G has no perfect matching.
We will show that there is a perfect matching M* which contains (1,1).
Therefore, suppose that M is any perfect matching in G, with (1,1’) ¢ M.
Then (1,5"),(i,1') € M for some i > 2, 7/ > 2’ and we have (1,1) € E.
Hence (i, j') € E, or else A(G) would contain a [".

1 j’
1 1

)

Thus M* = M\{(1,5), (¢,1")}U{(1,1'), (¢,5')} is a perfect matching contai-
ning the edge (1,1"). Now we use induction on the graph G* given by deleting
1 and 1’ from G, which contains the perfect matching M*\ {(1,1)}. O

i

We will be particularly interested in Hamiltonian monotone graphs. To-
wards that end, we consider the graph illustrated below, the ladder L,.

2’ 3 4 n

= ¢———0o —
4

Figure 11. — The ladder
LEMMA 2.17. — L, is a Hamiltonian monotone graph.
Proof.— Clearly L, is bipartite, and N(1), N (2), N(3), ..., N(n — 1),
N (n) are, respectively,
1,2}, {17,283}, {2/,3",4'}, ... {A(n—2),(n—1),n'}, {(n—1),n'},
so are non-empty intervals satisfying the required ordering conditions. Fi-

nally, L, has the Hamilton cycle 1’ -2 -3 — --- > n' > n = --- —
322 511" O

We have the following easy criterion for Hamiltonicity of a monotone
graph.

LEMMA 2.18. — A monotone graph G is Hamiltonian if and only if it
contains the ladder as a spanning subgraph.

Proof.— If G has a spanning ladder, the Hamilton cycle in the ladder is
also a Hamilton cycle in GG, and so G is Hamiltonian.
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If G = ([m]U[n])’, E) is Hamiltonian, it has a perfect matching, so m =n
and G contains the diagonal matching §, from Lemma 2.16. We will show
by induction that G contains L,,, and so has a spanning ladder. The base
case is n = 2. Then G must be a 4-cycle, so G = Ls.

If n > 2, consider any Hamilton cycle H in G. Vertices 1 and 1’ lie on
this cycle. There are two cases :

(a) The cycle H contains the edge (1,1’). Let j/ # 1’ be adjacent on H

to 1, and 7 # 1 be adjacent on H to 1’. Since 4,5 > 2, biconvexity
implies (1,2') € E and (2,1’) € E. Thus the three edges (1,1),
(1,2), (2,1") of L,, are in E. Also (i,j') € E, since G is [ -free.
Hence i — j' — .-+ — ¢ is a Hamilton cycle H* in the monotone
graph G* obtained by deleting 1 and 1’ from G.

—————

Figure 12

The cycle H does not contain the edge (1,1’) € E. Let j',I’ be the
vertices of H adjacent to 1, and i, k the vertices of H adjacent to 1/,
so that H contains paths i — j' and k — I’, avoiding 1 and 1’. Now,
since G is [ -free, (i,5'), (i,1), (k,7"), (k,I') € E. Since (1,1') €
E, and (1,5') € E for j > 2, convexity implies that (1,2') € FE.
Similarly, since (1,1’), (¢,1’) € E, with ¢ > 2, convexity implies that
(2,1") € E. Thus the three edges (1,1'), (1,2), (2,1') of L,, are
in E. Also ¢ — j - k — I’ — i is a Hamilton cycle H* in the
monotone graph G* obtained by deleting 1 and 1’ from G.

g
1 j/ v
1 1 1
i 1 1 1 1
k 1 1 1
R
Figure 13
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In both cases, the edges (1,1'), (1,2), (2,1’) of L, are in E, and we have
a Hamiltonian monotone graph G* with bipartition [2,n] U [2,n]". Tt now
follows by induction that G contains L,,. O

2.5. Chain graphs

Diaconis, Graham and Holmes called the simplest class of graphs they
considered “one-sided restriction” graphs. These are usually called chain
graphs in the graph theory literature [38]. They are a proper subclass of
monotone graphs, which we consider in Section 2.4, and hence of chordal
bipartite graphs.

DEFINITION 2.19. — A graph G = ([m] U [n]’, E) is a chain graph if it
is isomorphic to a monotone graph with N'(i) = [a;]" for all i € [m], and
ay < ag < -0 S Q-

Hence chain graphs are a subclass of monotone graphs, given by taking
af =1, B = a;, for all i € [n]. The following easy fact is then true.

LEMMA 2.20. — N (j') = [bj,m] for all j’ € [n]" with by > by > --- > b,,.
Proof.— Since a; < a;41, (1,7') € E implies (i+1, ') € E. Let b; = min{i :
ai > j}. U

Chain graphs have a simple excluded subgraph characterisation. A graph
is a chain graph if and only if it does not contain 2K5, the graph comprising
two disjoint edges shown in Fig. 14, as an induced subgraph.

[]

Figure 14. — The graph 2Ks

Note that the three excluded subgraphs of Fig. 9 contain 2K, as an
induced subgraph, giving another proof that all chain graphs are monotone
graphs.

Diaconis, Graham and Holmes [8] observed that there is a “classical”
explicit formula for the permanent of a chain graph G. Of course, we must
have m = n. Then, if A = A(G),

per(4) = {

0, if a; < i for any i € [n];
[T (a;i —i+1), otherwise.

For example, if
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then per(A) = 2(3—-1)(3—-2)(4—-3) = 4.

1
1
1 0|’
1

=
—_ == O
(an)

1
2
3
4

After noting that the first a; columns of A are all 1’s, and hence identical,
this formula can be proved by an easy induction on the row order. The proof
method can also be used to sample a perfect matching uniformly at random
in O(n) time.

It is also possible to count and sample matchings of any given size in a
chain graph in polynomial time. For positive integers m and n let G = (V, E)
be a chain graph, as defined above, with with V' = [m]U[n]’". Let M (i, s) be
the number of matchings of size exactly s in the subgraph of G; induced by
[i] U[n]’. Then

M(i,s) = 0for all s> 1,
1, ifs=0,
ai, ifSZl,

M(i,s) = M(i—1,8)4+(a; —s+1)M@GE—1,s—1). (2.1)

M(1,s)

and we have

The first term on the right counts matchings of size s in G; with ¢ unmat-
ched. The second term counts all matchings of size s in G; with ¢ is matched,
as follows. Since G; is a chain graph, each matching of size (s — 1) in G;_;
can be extended to a matching of size s in G;, with ¢ matched, in exactly
(a; — s+ 1) ways. Clearly we can compute M (i, s) for all 4, j € [n] in O(n?)
time using (2.1).

As an example, we can recover the formula above for the permanent of
a chain graph :
M(s,s) = M(s—1,8)+ (as—s+1)M(s—1,s—1)
= (as—s+1)M(s—1,s—1), since M(s—1,s) =0,
= (as—s+1)(as—1 —s+2)---(ag — 1)a; using induction and
M(1,1) = ay.

Matthews [27] showed, using a coupling argument, that the mixing time
of the switch chain for chain graphs is bounded by O(n?logn). Blumberg [3]
gave a detailed study of the eigenvalues of the transition matrix of the switch
chain for this class, based on earlier work of Hanlon [16].

- 907 —



Martin Dyer, Haiko Miiller

These results clearly have little computational application, but establi-
shing the mixing time of the switch chain for graphs in the the class CHAIN
is far from trivial. For example, there are chain graphs for which the ori-
ginal Jerrum and Sinclair [19] Markov chain has exponential mixing time.
Consider the graph G for which A(G) is lower triangular, so A(4,j) = 1 if
i <j, A(i,j) = 0 otherwise. Then per(A4) = 1, from the formula above, but
the graph G* given by deleting vertices 1 and n’ has per(A*) = 2"~3 by
the same formula, where A* = A(G*). Thus G has one perfect matching,
but an exponential number of near-perfect matchings. Therefore the algo-
rithm of [19] will need exponential time to sample a perfect matching almost
uniformly.

2.6. Other graph classes

We have seen that the hereditary graph classes considered by Diaconis,
Graham and Holmes [8] form an ascending sequence :

CHAIN C MONOTONE C BICONVEX C CONVEX C CHORDAL BIPARTITE.

The question arises as to whether this sequence is in any sense complete, or
whether there are other intermediate classes. Unfortunately, the answer is
that we can define an infinite number of intermediate classes by considering
a suitable set of forbidden subgraphs. The following construction is quite
general.

Let C be a hereditary graph class characterised by a set of minimal for-
bidden subgraphs Forb(C). It is well known, and easy to show, that any
hereditary graph class has such a characterisation. However, Forb(C) may
be infinite. For example Forb(CHORDAL BIPARTITE) is the set CYCLES of
odd cycles, and even cycles of length greater than 4. For the subclasses
of CHORDAL BIPARTITE considered here, we will have CYCLES C Forb(C).
However, this need not be the case. For example COMPLETE BIPARTITE C
CHORDAL BIPARTITE, but Forb(COMPLETE BIPARTITE) = {K; + K3, Cs},
where Kj + K> is an isolated vertex plus a disjoint edge, and C5 is a triangle.

Suppose we have classes C1, Co with C; C Cy. Choose two graphs Fi, Fs €
Co \ C;1 such that Fj is a proper induced subgraph of Fs. Consider the
(unique) maximal class C with Forb(C) € Forb(Cy) U {F»}. Then C C Ca,
since Fy € C2\C, and C; C C, since F; € C\C;. By iterating this construction,
we can create an infinite chain of different classes between any two graph
classes such that C; C Ca.

We might ask where the boundary for polynomial time exact computa-
tion of the permanent, or for polynomial time mixing of the switch chain,
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occur in this sequence. Unfortunately, graph classes constructed simply by
giving forbidden subgraphs do not usually seem to define graphs with useful
structure. And, without exploitable structure, establishing boundaries for
computational properties seems very difficult.

However, some of these classes do possess structure. We will illustrate
with a class which lies strictly in the gap between CHAIN and MONOTONE.
Since exact counting is in polynomial time for CHAIN, but apparently is
not for MONOTONE, we might ask where this new class lies with respect to
this dichotomy. We consider this question below, and hence show that the
boundary for polynomial time exact counting lies strictly above CHAIN.

Suppose we choose F; to be the path P5 of length 4, and F5 to be the
graph E given by adding a pendant edge to the middle vertex of Ps.

e 1]

Ps E
Figure 15

Clearly P5; ¢ CHAIN, since deleting the middle vertex gives 2K5, but
E € MONOTONE, since it does not contain any of the subgraphs in Fig. 9.

DEFINITION 2.21. — A monotone graph G = ([n] U [n], E) is E-FREE if
and only if it does not contain the graph E, shown in Fig. 15, as an induced
subgraph.

So Forb(E-FREE) C {E} U Forb(MONOTONE) and hence we have
CHAIN C E-FREE C MONOTONE C ---.

Note that E is, in fact, an induced subgraph of all three graphs in Fig. 9, as
indicated below in Fig. 16, where the isolated vertex in each graph is consi-
dered as having been deleted. Consequently, we can take Forb(E-FREE) =
{E} U CycLEs. We will consider the class E-FREE below.

[ J
°
.—O—I—O—. [ J
tripod pellet drum stirrer

Figure 16. — Induced E’s

- 909 —



Martin Dyer, Haiko Miiller
2.7. E-free graphs

We will first consider the structure of graphs in the class E-FREE.

Let S; (i € [l]) be disjoint independent sets. Form a graph G = (V, E),
with V.= '_, S; and E = {(u,v) : u € S;, v € Siyy (i € [l —1])}. We will
call G a complete layered graph, with layers S; (i € [l]).

Let G(V, E) be a monotone graph with V' = [m] U [n]’. We say that G is
aligned if every ¢ € [m] is adjacent to 1’ or n’, and every j' € [n]" is adjacent
to 1 or m.

LEMMA 2.22. — Every connected E-free graph that contains an induced
path on 7 vertices is a complete layered graph.

Proof.— Two vertices v and v are false twins if they have the same neigh-
bourhood N (u) = M(v). A connected graph is a complete layered graph if
and only if it can be reduced to a path by identifying false twins. This ope-
ration preserves E-freeness. Hence it suffices to show that every connected
E-free graph without false twins is indeed a path.

Let G be a connected E-free chordal bipartite graph that contains an
induced path P = (xg,x1,x2, x3, 24, Ts5,26). We consider a vertex v of G
that does not belong to P but is adjacent to at least one vertex of P. If v
has 3 or 4 neighbours on P then we may observe that G contains an E, see
Figure 17. Thus every vertex of G has at most two neighbours on P.

oo —@ o
o 1 T2 XT3 T4 XI5 T o 1 T2 XT3 T4 XI5 g

v

o T1 T2 X3 T4 Ty Tg
Figure 17. — The vertex v has three or four neighbours on the path P

Next we assume that v has exactly two neighbours z; and x; on P with
i < j. In this case (v, %, it1,...,2;) is a cycle, and we conclude j = i + 2
since G is monotone. By symmetry we may assume ¢ € {0,1,2}. Since
v and ;41 are not false twins, one of them has a private neighbour, say
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u € N(ziq1) \ N(v). If ;41 is the only neighbour of u on P then u, v,
Tit+1, Tit2, Tits and z;44 induce an E in G. Otherwise u has exactly two
neighbours on P. If u is adjacent to x;_; then again u, v, ;11, Ti12, Tit3
and x;44 induce an E in G, otherwise we swap the roles of u and v and find
an E in G, see Figure 18. Consequently no vertex outside P has two or more
neighbours on the path P.

Li Tit2  Ti+3  Titd

Ti—1 Tiy2 Ti43  Tit4

u

Figure 18. — The vertex v has exactly two neighbours on the path P

In the remaining case v has exactly one neighbour x; on P. For i €
{2,3,4} we have an E. If { = 1 then v and z¢ cannot be false twins, so there
is a private neighbour, say u € N'(zg) \ W (v). Since zg is the only neighbour
of u on P we can replace P by the path (u,xq, 21,22, x3, x4, x5) to handle
this case. A symmetric argument deals with the case i = 5.

Thus the neighbour of v on P must be an endpoint of P. Since this is
the case for every path P on 7 vertices and every vertex v with a neighbour
on P, the entire graph G is a path. (]

LEMMA 2.23. — Every connected E-free graph that does mot contain an
induced path on 7 vertices is an aligned graph.

Proof.— First we show that all i € [m] are adjacent to 1’ or n’. Otherwise let
j1 = min N(i) —1 and 54 = max N (i) + 1. Next let i1 = max N (j]) and i3 =
min N (74). If 41 and i3 have a common neighbour 5’ then {i1,1,1%3,71,5, 74}
induces an E in G, see the left hand matrix below.

If N(i1) NN (i3) = 0 then vertices j € N(iy) NN (i) and 55 € N (i) N
N (i3) exist by connectivity, and (51,41, 7', %, j4, 43, %) is an induced path on
7 vertices in G.

A symmetric argument implies that every j' € [n]’ is adjacent to 1 or m.
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. U1y n

i 1 1 0 Lot 1 0 0

: ko1 11 0

! O 1 0 k41 | 0 oo 1 1 .1

" O ! ! m |0 0 1 1
O

LEMMA 2.24. — For every aligned graph G = ([m] U [n]', E) vertices
k€ [m] and " € [n]’ exist such that the subgraphs induced by [k] U [l]" and
[k + 1,m] Ul + 1,n] are complete bipartite and the subgraphs induced by
[1,kJU[l+1,n]) and [k +1,m|U[1,1]" are chain graphs.

Proof.— Let k = maxN(1') and I’ = maxAN(1). Since A, the bipartite
adjacency matrix of G, is [-free the vertices k and I’ are adjacent as well.
That is, [k] U [I'] induces a complete bipartite subgraph of G, see the right
matrix above.

Furthermore A(k + 1,1’) = 0, therefore A(k + 1,n’) = 1. Similarly,
A(1,(I+1)) = 0 and therefore A(m, (I14+1)") =1 and A(m,n’) = 1. Since A
does not contain a I, A(k+1, (1+1)") = 1, which means [k+1,n]U[l+1,m]’
also induces a complete bipartite subgraph of G.

Finally, the subgraphs of G induced by [1, k|U[l+1, n)" and [k+1,n]U[1,1)’
are chain graphs, since G is monotone. (Il

Thus all E-free graphs are complete layered graphs or aligned graphs.

We will now show that the permanent of an E-free graph can be compu-
ted exactly in polynomial time. First, we show that there is a formula for
complete layered graphs.

LEMMA 2.25. — Let G be a complete layered graph with layers of sizes
ni, Na,...ny, and let mg =0 and m; =n; —m;_1 fori=1,2,...,1. If there
is an index i < | such that m; is negative or m; # 0 then G has no perfect
matching. Otherwise G has exactly Hi:2 ""'i!! perfect matchings.

m

Proof.— If G has a perfect matching then each layer S; splits into parts L;
and R; of vertices matched to vertices in S;_; and S;1, respectively. Now
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Ly = 0 and |R;—1| = |L;i| imply m; = |R;| for all ¢, and R; = () implies
m; = 0. Therefore our conditions are necessary.

On the other hand, if, for all 4, m; > 0 and m; = 0 then the the layers
S; split consistently into L; and R;, that is, such that |R;_1| = |L;|. There
are (:h) different sets R; C S; with |R;| = m;. The choice of R; fixes
L; = S; \ R;. The subgraph of G induced by R;_1 U L; has m;_;! perfect
matchings because it is complete bipartite with m;_; = n; — m;. Hence G
has Hi:z il herfect matchings in total. O

m;!

Finally, we show that the permanent can be computed for aligned graphs.

LEMMA 2.26. — Let G = ([n] U [n]', E) be an aligned graph, with biad-
jacency matriz A, then per(A) can be computed in O(n?) arithmetic opera-
tions on numbers of size O(nlogn).

Proof.— Let G have the biadjacency matrix A as shown below. The edges
of G split into four sets Fy1, E12, Fo1 and Fos, that are the edge sets of
four subgraphs of G induced by Vi1 = [k]U[l], Vio = [k]U [l + 1,n]’, Va1 =
[k+1,m]U[l]" and Vag = [k+1,m]U[l+1,n]". The graphs G11 = (V11, E11)
and Gag = (Vag, Eag) are complete bipartite graphs, and Gi2 = (Via, F12)
and Ga1 = (Va1, F21) are chain graphs.

U (41 n’
v 1 -1 0 -0
A k|1 11
Tkt | O 11 1
cloo0 1
Let P be a perfect matching of G. Then

|P0E11|+|PQE12|:k |PﬂE12|+|PﬂE22|=n—l
|PﬂE11|+|PﬂE21|:l |PﬂE21|+|PﬂE22|=n—k

Let |PﬁE11‘ = s. Then ‘PﬁElz‘ =k—s, |PﬂE21| =[l—sand |POE22| =
n—k—1+s,s0max(0,k+1—n) < s < min(k,!). Denote the number of
matchings of size s in a chain graph G by M(G,s). We say in section 2.5
that M (G, s) can be computed for all s in O(n?) time. Then we can form
perfect matchings in G by independently choosing a matching of size k — s
in G2, a matching of size [ — s in G231, and completing these by choosing
arbitrary matchings in complete bipartite subgraphs of the appropriate size
in G117 G22.
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Hence the number of perfect matchings of G is

min(k,l)
per(A) = Z M(Gha,k—38) - M(Ga1,l—3s)-s!-(n—k—1+3s)!,
s=max(0,k+l—n)

It is easy to see that the sum can be computed in the claimed number of
arithmetic operations, with numbers which are at most n!. ([l

Thus we have shown that E-FREE is a strict superclass of CHAIN for
which exact evaluation of the permanent remains polynomial time.

3. Analysis of the switch chain

‘We have shown that

CHAIN C E-FREE C MONOTONE C BICONVEX

C CONVEX C CHORDAL BIPARTITE.

We know from Lemma 2.3 that the switch chain is ergodic for graphs in all
these classes, and has diameter at most n. Note that we consider the switch
chain to be ergodic on any bipartite graph for which the set of perfect
matchings is empty, and this can be recognised in polynomial time.

Here we will consider the mixing time of the chain for these classes. We
have seen that the switch chain may have exponential mixing time in the
class BICONVEX, and that the permanent can evaluated easily in the classes
CHAIN and E-FREE. Therefore, it remains only to analyse the mixing time
of the chain for the class MONOTONE.

3.1. Canonical paths and flows

Although there are other approaches to bounding the mixing time of
Markov chains, here we will attempt only to apply the canonical paths
approach of Jerrum and Sinclair [19]. For any symmetric Markov chain,
this may be described briefly as follows.

Suppose the problem size is n. The method requires constructing a path
of transitions of the chain X = Z; —» Zy — --- — Z; = Y, between every
pair of states X and Y in the state space € of the chain, such that the path
length ¢ is at most polynomial in n, and every such path has the following,
much more demanding, canonical property.
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For any transition Z; — Z;;1 on the path from X to Y, there must exist
an encoding W € §, such that, given W and g other bits of additional infor-
mation, we can identify X and Y uniquely. We will refer to the additional
information as “guesses”.

Then the mixing time T}y, of the chain can be bounded by 209 poly(n).
Ideally, we seek g = O(logn), to give a polynomial bound on the mixing
time.

3.2. Quadrangulations

We seek a canonical path of transitions of the switch chain between per-
fect matchings X and Y in a graph G in some hereditary subclass of CHOR-
DAL BIPARTITE. Since X &Y can be partitioned into alternating cycles, the
canonical path from X to Y will be constructed by processing the indivi-
dual cycles in X @Y one by one, with cycles being treated in increasing
order of the value of their minimum vertex ¢ in the [n] ordering. If H is
any individual cycle in this decomposition, we need only consider the case
where X UY is a Hamilton cycle H in a smaller graph G[H] in the same
hereditary class. In the remainder of this section, we will simply write G
rather than G[H].

We wish to transform (X,Y’) through successive pairs of perfect mat-
chings

(va) - (leyl)7 (X27Y2)a (X3>Y3)7 SRR (kayk) - (KX)a

where X; 1 is obtained from X; using a single move of the switch chain.
Thus Y; may be regarded as the encoding for X;, or vice versa. We will make
these switches in some subgraph @ of G such that X UY = H C Q C G.
Then the guesses we require are all edges of H which are not edges of X;UY;.
To ensure that X and Y are connected by the switch chain, @ should be a
chordal bipartite graph, by Lemma 2.3. Subject to this restriction, we will
also require that @ has as few edges as necessary.

Let H be a spanning subgraph of a chordal bipartite graph G, formally
H C G. A chordal bipartite graph @ is a G-quadrangulation of H if H C
@ C G. This quadrangulation is minimal if, for every G-quadrangulation
Q' of H, Q' C @ implies Q' = Q. In what follows H is a Hamiltonian
cycle of G, and “quadrangulation” means “minimal G-quadrangulation”. A
quadrangle is any cycle of length 4 in G.

We will interchange, in some order, edges of the quadrangles of @ between
the two matchings X and Y. To avoid confusion, we use the term “switch”
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for the transformation interchanging two matching edges of a quadrangle for
two non-matching edges. The term “exchange” will be used for interchanging
the edges of any alternating cycle between the two matchings X and Y. Our
objective is to exchange the entire Hamilton cycle H.

During this process, X; UY; will essentially be a set of alternating cycles,
inheriting quadrangulations from @. Some will have already been exchanged
and some remain to be exchanged. Thus the guesses will include an edge of
H for every quadrangle of Q which is not in the quadrangulations of these
alternating cycles. Using Lemma 3.1 below, it is easy to prove that only one
edge of such each quadrangle must be guessed, since the other can then be
deduced easily. Then we can use the matchings X;, Y; and the guesses to
reconstruct the original Hamilton cycle H = X UY.

Exchanging a quadrangulation simultaneously gives a (canonical) path
from X to Y and a path from Y to X. We will denote these two paths by
X — Y and Y — X. Thus exchanging a quadrangle involves switching it
twice, once for X — Y and once for Y — X. A quadrangle which has been
switched only once will be called open. Our first attempt at an encoding
will be to perform the X — Y switch on each quadrangle in pathwidth
order, and then perform the ¥ — X switch on each quadrangle as soon as
possible, in order to minimise the number of open quadrangles. Then X;
and Y; will be the current states of the X and Y matchings. The guesses
will be one edge of each open quadrangle.

First we prove an important property of quadrangulations.

LEMMA 3.1. — Let H be a Hamiltonian cycle of a chordal bipartite graph
G = ([n]U[n], E). Every quadrangulation Q of H is an outerplanar graph
with the edges of H on the outer face.

Proof.— We apply induction on n. If n = 2, then H is a quadrangle, so
@ = H, and we are done. Otherwise, since G is chordal bipartite, H has
a chord e = (i,5') in E. So H U {e} is a planar graph with two internal
faces. Let H; and Hsy be their bounding cycles, and let Q; and Q- be the
restrictions of () to the vertex sets of H; and Hs. Since () is a minimal
quadrangulation of H, (); and ()2 are minimal too, and no edge of () has
endpoints both in H; and in Hs, unless one of these endpoints is ¢ or j'.
That is, @ is the union of Q; and Q2. By induction hypothesis, both Q;
are outerplanar graphs with the edges of H; on the outer face. Since e is an
edge of both H; and Hs, @ is outerplanar with the edges of H on its outer
face. O
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Figure 19. — A Hamilton cycle with a quadrangulation
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A quadrangulation @ of H is a 2-connected outerplanar graph, so its weak
dual is a tree T, which we call the dual tree of Q. (See, for example, [11,
Observation 2].) Then T has (n — 1) vertices, which correspond to the qua-
drangles of @, and its (n — 2) edges correspond to the internal edges of Q.
A simple example is given in Fig. 19.

We apply terminology for quadrangles of @ to vertices of T', and vice
versa. Thus, for example, we call a quadrangulation linear if T is a path.

If we switch the quadrangles of @) in some order, this order corresponds
to a layout of the dual tree T, as described in section 1.1. The maximum
number of quadrangles separating the exchanged part of @ from the remai-
ning part is the vertex separation of the layout, and the minimum value of
this quantity over all layouts is the pathwidth of T, pw(T). It follows that
an optimum order in which to exchange the quadrangles is a layout which
determines pw(7T'). For brevity, we will usually write pw(Q) rather than
pw(T), though these quantities may differ. However, this abuse of notation
causes no difficulties, since

LeMMA 3.2. —pw(T) +1 < pw(Q) < 2pw(T) + 1.

Proof.— @ is a 2-connected outerplanar graph, and T is its weak dual.
The conclusion now follows using Lemma 1 and Theorem 1 from [11], and
Theorem 4 from [6]. O

Thus, if we can find an encoding that guesses only g = O(pw(Q)) edges,
the mixing time of the switch chain can be bounded by O(n?). Since we
know that pw(T") = O(logn) for any n-vertex tree T', this will immediately
give an n?1°6™) bound on the mixing time, as obtained by Matthews [27].

However, we might achieve a better bound on mixing time by using a
different quadrangulation and/or layout from that used by Matthews [27].
In fact, Matthews chose a fixed layout with vertex separation Q(logn),
independent of Q. Since any tree has pathwidth O(logn), this choice is
clearly the worst case.

Therefore, the central issue is to establish the worst possible pathwidth
for a quadrangulation of a Hamilton cycle in a monotone graph. However,
there is a difficulty that we must resolve first. We need to be able to exchange
a quadrangulation @ using only O(pw(Q)) guesses. The solution to this
problem is not completely straightforward.
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3.3. Exchanging a quadrangulation

Given that we switch quadrangles in pathwidth order, we need an enco-
ding which needs only O(pw(Q)) guesses, in order to reconstruct H. Ho-
wever, we know from Lemma 3.1 that all chordal bipartite graphs allow
quadrangulations of H. Since pw(Q) = O(logn), if such an encoding always
exists, there would be an n©(°8™) mixing time for chordal bipartite graphs.
But there is an exponential lower bound on mixing time for the smaller
class of biconvex graphs. This apparent contradiction implies, of course,
that the necessary encoding cannot always exist. So we must investigate
when a suitable encoding can be guaranteed to exist.

Define a good quadrangle of a quadrangulation to be one having exactly
two non-adjacent edges in H, and a leaf quadrangle to be one having three
edges in H. A leaf quadrangle corresponds to a leaf of the dual tree. Any
other quadrangle will be called bad. Bad quadrangles are of two types :
junction quadrangles, which have at most one edge in H, and skew qua-
drangles, which have exactly two adjacent edges in H. Junction quadrangles
correspond to vertices in the dual tree with degree three or four.

— — P o
0—0 ............ Oeererererenes Py Oeererererenes @ O &
Good Leaf Junction Skew
Figure 20

A good or leaf quadrangle in a quadrangulation can always be switched,
in view of Lemma 3.3 below. A bad quadrangle can be switched only if at
least one of its neighbouring quadrangles has been switched.

LEMMA 3.3. — Let H be an alternating cycle in a chordal bipartite graph
G = ([n]U [n]', E). If two non-adjacent edges of H are edges of a good or
leaf quadrangle in a quadrangulation of H, then they belong to the same
matching.

Proof.— From Lemma 3.1, a quadrangulation is outerplanar with bounding
cycle H. Suppose H is either orientation of H. If H is traversed in the direc-
tion of its orientation, every row vertex is preceded by an edge of the first
matching and followed by an edge of the second. Also, since G is bipartite,
all its edges connect a row vertex to a column vertex. So, if any good qua-
drangle has one edge in each matching, the edges of the quadrangle, together
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with H, form a subdivision of K, as illustrated below. Since an outerplanar
graph cannot contain a subdivision of Ky [5, p.117], the quadrangulation
cannot be outerplanar, a contradiction :

< PR

Y ~ Ky
[ i
o------ o

Figure 21

We must ensure that the number of guesses does not become large at
any point during the exchange of the quadrangulation. The pathwidth of
the quadrangulation is the principal obstruction to achieving this, but un-
fortunately there is another : any long path of bad quadrangles in the dual
tree T'.

A bad l-path in T is a path (u,...,u;) such that every vertex wu; is a
bad quadrangle, for ¢ € [l]. To exchange a bad path, we must switch every
quadrangle in the path twice, but we can only switch u; when either u;_
or u;4+1 has been switched. Hence, in exchanging a bad [-path, there is a
stage at which at least [ quadrangles are open.

Define an ¢-good quadrangulation to be one such that there is no such
bad [-path in T for any [ > £. Note that the ladder is the only 0-good qua-
drangulation, since it is the only quadrangulation with no bad quadrangles.
An /-bad vertex v will be such that any /-path with endpoint v in 7" is a
bad path.

LEMMA 3.4. — An £-good dual tree T with pathwidth p can be exchanged
so that there are never more than (£ + 2)p open quadrangles. If T contains

an £-bad vertex v, then there are at least £ open vertices immediately after
the first switch of v.

Proof.— We assume the vertex order determining the pathwidth of 7', and
we switch quadrangles in this order. At any point in this numbering, we
have at most p separating vertices ki,ks,...,k,. Each separating vertex
k; (i € [p]) is the endpoint of a path of vertices numbered at most k;,
though these paths are not necessarily disjoint. There are at most £ + 2
open vertices in each of these paths, and so there can be at most (£ + 2)p
in total. (The additional 2 is because switching a path requires having two
open quadrangles.) If v is ¢-bad, we must switch all vertices along some bad
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{-path before we can switch v. When v is switched, all vertices in this /-path
are open. 0

Unfortunately, ¢-good quadrangulations are not sufficient if we wish to
have £ = O(pw(Q)), even for chain graphs. Consider the minimal chain
graph F' containing the Hamilton cycle :

H: "51-2>52-23—>--nh-1)>Mn0-1)—>n—>n-—>1.

We will call this the standard fan. The biadjacency matrix A(F) of F is :

20 3 4 .

=

1 [1 1 0 0 0 0]
2|1 11 0 0 0
3 1 11 1 0 0
a1 11 1 0 0
111 o101
nl1 1 1 1 -~ 1 1

where the Hamilton cycle H is is shown in heavy bold font. Then H has
linear quadrangulations (where the dual tree is a path), for example :

Figure 22. — Quadrangulation of the standard fan

All quadrangles are bad except for the two leaves, and the quadrangu-
lation is not ¢-good for any ¢ = o(n). Moreover, there are {(n)-bad qua-
drangles, so the quadrangulation cannot be exchanged without having Q(n)
open quadrangles at some stage.

Note that it is not simply the large degree of vertex n in the quadran-
gulation that gives rise to this problem. The Hamilton cycle H has a linear
quadrangulation with all vertex degrees at most four :
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Figure 23. — Alternative quadrangulation of the standard fan

But again all quadrangles are bad except for the two leaves, the quadran-
gulation is not ¢-good for any ¢ = o(n), and there are Q(n)-bad quadrangles.
We can improve these bounds if we allow quadrangulations with larger pa-
thwidth, but we cannot achieve £ = O(1) .

LEMMA 3.5. — The standard fan has no £-good quadrangulation, for any
¢ = o(logn), and this bound is tight.

Proof.— A good quadrangle corresponds to a submatrix of A(G) of the

form :
o [ = o [

Clearly A has no submatrix of type (a), and its only submatrices of type
(b) are

1/ j/
k 1 1 . .
{ 11 } (max{2,k} < j <min{k +1,n}, k € [n—1]).

Since all these quadrangles share the edge (n,1’), and this is an edge of H,
at most one of them can appear in a quadrangulation. Therefore there can
be at most one good quadrangle in a quadrangulation. The remaining (n—2)
quadrangles are either leaves or bad. If we switch the good quadrangle, we
will have a dual forest with two components. Each of these components
contains only leaves and bad quadrangles and one of them, T" say, has size
at least n/2.

The tree 7" has maximum degree 4, and at least n/2 vertices, so it must
have diameter at least Q(logn), using the Moore bound [15, p.311]. Thus
there must be a path of length Q(logn) in 7”, and hence in T, containing
only bad quadrangles.

However, there is always an O(log n)-good quadrangulation of any mono-
tone graph, using Matthews’ “binary tree” construction [27]. Since the dia-
meter of the binary tree is O(logn), all bad paths have length O(logn). O
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In particular, Lemma 3.5 implies that Matthews’ approach [27] to analy-
sing the mixing time of the switch chain on monotone graphs cannot yield
a bound better than n®°€™)  even for chain graphs.

3.4. Exchanging the standard fan

Since there is no O(1)-good quadrangulation of a standard fan, we must
find a different encoding. For any matching on the canonical path, we need
the encoding to be a matching which allows us to reconstruct the original
fan, using a small number of guesses. The encoding must be a perfect mat-
ching, since there can be exponentially more near-perfect matchings than
perfect matchings. The method we will use has some similarities to that
used by Blumberg [3] for bounded-degree convex graphs.

The fan has a natural ordering on the row and columns vertices, 1/, 1, 2/,
2, ..., n/,n. Let us suppose that X = {(1,1), (2,2"), ..., (n,n')} and Y =
{(1,2), (2,3'), ..., (n,1)}. In the canonical path construction, X C Xg
and Y C Yg, for matchings X¢g, Yo of the whole graph G. If we switch
from X to Y in the natural order (the left-to-right order in Fig. 24), we
generate a sequence of isolated 2-cycles. Since there may be many other
2-cycle components in the cycle decomposition of X U Yy, there may be
ambiguity as to which of them are in X UY. So reconstructing X UY may
require guessing many edges.

A solution is to construct the path X — Y by switching in the natural
linear order and to construct the path Y <— X by switching in the reverse
linear order. Then the state Y; in the Y < X path which contains the
edge (i',n) will be the encoding for the state X; in the X — Y path which
contains the edge (1’,4). Thus X; contains the edges from Y on vertices
1,2/,...,4, the edges from X on vertices (i+1), (i+1),...,n, and the edge
(1',4). Similarly Y; contains the edges from X on vertices 1’,1,...,(i — 1),
the edges from Y on vertices 4, (i + 1)’,...,n’, and the edge (n,i’). Thus
all the edges of X UY appear in X; UY;, with the exception of (i,i’) and
(I',n). We can regard Y; as the encoding for X;, or vice versa. Hence we
can reconstruct X UY by guessing only the two edges (i,7") and (1',n). In
fact, we need only guess the edge (4,4'). Then 7 is matched by 1’ in X, and
i’ is matched by n in Y;, so we can deduce the edge (1, n).

In fact, even guessing (4,4') can be simplified. In the canonical path argu-
ment, we can identify the switch which led to X;. This switched the edges
(i,7), (¢ — 1,1") with the edges (i — 1,4’), (¢,1’) in the matching X, ;1. So
we need only guess one bit, to determine which of the two switched edges
was (i,1).
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Y3 @ switching YV < X

Figure 24

Note that the exchange involves switching two different quadrangulations
of the fan. This is necessary, since we know that the exchange cannot be
done with a single quadrangulation.

Once we know that this encoding exists, we can return to the single
quadrangulation viewpoint. The canonical path simply switches X — Y
from left to right, and then restores the quadrangulation by switching Y «+
X from right to left. The encodings for the Y switches are constructed
analogously to those for the X switches. The case n = 5 is shown in Fig. 25.
Note that, after switching X — Y, there are 2(n) open quadrangles. The
revised method of encoding deals successfully this undesirable property of
the quadrangulation.

To generalise this construction, let us define a cycle H in a bipartite
graph G = ([n] U [n]', E) to be a good fan if there is an edge (p,q') € H
such that (p,j') € E for all j/ € HN [n)', and (i,¢') € E for all i € HN [n].
The edge (p,q’) will be called the pivot edge. A good fan can be doubly
quadrangulated in the same fashion as the standard fan, and exchanged
using the same encoding.
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1 22 9 3 3 4 4 5 5

After switching X < Y

Figure 25. — Exchanging a standard fan

If a quadrangulation contains more than one good fan, they can be ex-
changed provided that the path between them in the dual tree T contains
at least one good quadrangle. This enables us to “isolate” each good fan,
so that it can be dealt with independently of the others. Such a good qua-

drangle will be called a separating quadrangle.

Thus, to switch a good fan in a quadrangulation, we must switch two
separating quadrangles to isolate it, then switch the fan as described above.
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The encoding is the union of the encodings for the three fragments. Then,
given this encoding, we need to guess two edges in addition to the guesses
for switching the fan.

3.5. Good quadrangulations

In the light of the discussion above, we make the following definition. A
quadrangulation ) of a Hamilton cycle H in a monotone graph G is a good
quadrangulation if it has the following properties.

(a) It comprises only good quadrangles, good fans and junction qua-
drangles.

(b) Every good fan and junction quadrangle is adjacent only to good
quadrangles.

Thus the quadrangulation of the standard fan in Fig. 22 is a good quadran-
gulation, whereas that of Fig. 23 is not.

A good quadrangulation @ of H allows us to isolate good fans and junc-
tion quadrangles so that they can be exchanged. If there is such a good
quadrangulation, then there exists an encoding such that H can be exchan-
ged in pathwidth order, using O(pw(Q)) guesses. If pw(Q) = O(1), then we
will have polynomial mixing time for the switch chain in chain graphs.

The construction of Matthews [27] gives a good quadrangulation with
pathwidth O(logn) for any Hamilton cycle in a monotone graph. We are
currently not able to prove a better general bound in general. However, our
approach gives, for example, good quadrangulations with pathwidth 1 for
the ladder and the standard fan, whereas Matthews’ approach always gives
Q(logn).

3.6. An example with pathwidth 2

We are unable to produce examples where the best quadrangulation of
a Hamilton cycle in a monotone graph has large pathwidth. In fact, we
have no evidence that the best quadrangulation has pathwidth more than
2. However, we can give an example where the pathwidth of the dual tree
is 2.
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The example is an E-free graph G = (V, E), a complete layered graph
with vertex set V' = [21]U[21]’, partitioned into layers S; fori =1,2,...,15:

Sy = {1} Sy = {1,2} Sy = {23}
Sy = {3,4,5} Ss={4.5.6/,7}  Sg=1{6,7,8,9}
S, ={8,9,10/, 11"}  Sg = {10,11,12,13} Sy = {12/,13',14',15'}
Sio = {14,15,16,17} Sy = {16/,17,18'} Sy = {18,19}
Sis = {19',20'} Sys = {20,21} Sis = {21}
and edges between consecutive layers such that F = {(u,v) | i € [14],u €

Si,v € Siy1}. For clarity we sometimes suffix vertices by the number of
their layer.

The graph G has the biadjacency matrix A is shown in Fig. 26. We
consider the Hamilton cycle H given by the entries 1, and 1}, in the matrix
and solid and dashed edges in Fig. 27 As above, we denote both the Hamilton
cycle and its edge set by H.

A =

12 3 4 5 e 7 8 9 10 11 127 13 14" 15 16’ 17" 18 19" 20 21
1[4, 1, 1. 0 0 O O O O O O O O O O O O O O 0 O
2 1 1, 0 o0 0O O o o o o o o o o o o o0 o0 o0 o0
3 o 1, 1 1, 1 1 1 O O O O O O O O O 0 0 0 0 O
4 o 1 1%, 1 1, 1 1 O O O O O O O O O 0O 0o 0 0 O
5 o 1 1 1 1 1 1, O O O o O O O O O 0 o0 0 0 o0
6 o o0 o0 1, 1 1 1 1, 1 1 1 0 0 0 0 O 0O O 0 0 O
7 o o0 o0 1 1, 1 1 1 1, 1 1 0 0 0 O O 0 0O 0 0 O
8 o o0 o6 1 11, 1 1 1 1, 1 O O O O O O O O 0 O
9 o o0 o0 1 1 1 1, 1 1 1 1 0 o0 O O o o o0 0 0 O
10 o o0 o0 o o o 0 1 1 1 1 1y 1 1 1 0 0 O 0 0 O
11 o o0 o0 0 o0 0 0 1 1, 1 1 1 1, 1 1 0 0 O 0 0 O
12 o o0 o0 o o o o 1 1 1, 1 1 1 1, 1.0 O O O 0 O
13 o o0 o0 o o o 0 1 1 1 1y 1 1 1 1 0 0 0 0 0 O
14 o o o0 o o o o o o o o 1 1 1 1 1y 1 0 0 O
15 o o0 o0 o0 o o0 o0 o o0 0o o0 1 1, 1 1 1 1 1 0 0 O
16 o o0 o o o o0 o o o0 o0 o0 1 1 1, 1 1 1, 1 0 0 O
17 o o0 o o o o0 o o o0 o0 o0 1 1 1 1y 1 1 1, 0 0 O
18 o o0 o0 o o o o0 o o o o o o0 o0 0 1 1 1 1, 1 0
19 o o o0 o o o o o o0 o o o o0 o0 O 1 1 1y, 1 1, O
20 o o0 o o o o o o o o o o o o o o0 0 0 1, 1 1y
2,0 0 0 0 0 0O 0O 0O o o0 0 o O O O O 0 O 1 1y 1

Figure 26. — The biadjacency matrix of G

We know that each (minimal) quadrangulation @ of H is an outerplanar
graph with the edges in H on the outer face. All the inner faces of @ are
quadrangles, and the dual graph of @ is a tree T. A chord of H is an edge
e€ F\ H.
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Figure 27. — The graph G, showing the edges of H

Here we are interested in the minimum pathwidth of T taken over all
quadrangulations ). The pathwidth of a tree T' is at most one if and only
if T is a caterpillar. That is, if removing all leaves from T results in a path,
called the body of the caterpillar. In this case the edges that attach the
leaves of T (the feet) to the body are called legs.

The Hamilton cycle (V, H) of G has several quadrangulations of path-
width 2. Two of them are given in Fig. 28. The chords added to H in the
left hand graph obviously give a good quadrangulation. This is less obvious
for the chords in the right hand graph. Since we have to argue over all qua-
drangulations @ of G we use a circular layout of the vertices in Figs. 29(a)
and 29(b).

O\—O---O—O---O—O---O—O---O—Q

b—o--o—o--o—o--o—o-<\<\>

--0—0~ - -0—0~ - - O—O0---O0—0O~ 'O—O
O\—O---O—O---O—O---O—O---O—Q

b—o—-o—o—-o—o--o—o-<\<\>

-O—O--O—O-'O—O-'O—O-'O—O

Figure 28. — Two quadrangulations of H

We want to show that all quadrangulations of H have pathwidth at least
2. We say the hamiltonian cycle turns in vertex v € V' if the two neighbours
of v in H belong to the same layer. Our graph G has four turning vertices,
namely 14, 2115, 54 and 17/;.
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First we observe that every leaf of the dual tree of a quadrangulation @
contains a turning vertex of H. Therefore, every such tree has at most 4
leaves. The vertices 1} and 21/ are leaves in every dual tree T'. No chord of Q
is incident to 1§ or 21}5. Hence both vertices belong to only one quadrangle
of any Q. This cannot be a skew quadrangle because the only vertices v
with V' (1}) € N (v) are v = 24 and v = 3%. Similarly, only vertices v with
N (21}5) € N (v) are v = 205 and v = 19]3.

Now we consider a quadrangulation @) of H such that the dual tree T
of @ is a caterpillar. The vertices 1] and 215 belong to leaf quadrangles
of @, and their neighbours in T are good quadrangles. Therefore the path
between these neighbours is the body of the caterpillar. All other possible
feet (there are at most two of them containing the vertices 54 and 17/,
respectively) must be adjacent to junction quadrangles on the body. Hence
the endpoints of every chord of @, except of those who cut off the two
possible remaining feet of the caterpillar, are separated by 1} and 21} on
the hamiltonian cycle.

We consider the quadrangle of @ containing the edge (12s,10%) € H.
This quadrangle contains either the vertex 8/, or the vertex 10g. We handle
these cases separately.

In the former case (12g,8%) is a chord of @, see Fig. 29(a). It divides
H in two shorter cycles. The one containing 21}, can be quadrangula-
ted caterpillar-like. But if we start at 1] with a quadrangulation of the
shorter cycle containing this vertex we get stuck with the chord (11g, 8%).
This creates a cycle (8%, 11s, 13,1519, 1711, 1610, 144, 12g) of length eight.
Its potential chords are (1619, 133) and (1519, 144). Only one of these can
be present in @, leaving a chordless cycle of length 6. This contradicts the
fact that @ is a quadrangulation. Hence no quadrangulation of H contains
the chord (12s,8%), unless its pathwidth exceeds 1.

In the latter case (10g,10%) is a chord of @, see Fig. 29(b). It divides
H into two shorter cycles. The one containing 1} can be quadrangulated
caterpillar-like. But if we start at 21} with a quadrangulation of the shor-
ter cycle containing this vertex we get stuck with the chord (10g,11%).
This creates a cycle (10g,11%,9¢, 75, 54, 65, 86, 10%) of length 8. Its poten-
tial chords are (96, 65) and (86, 7). Only one of them can be present in @
which leaves us with a chordless cycle of length 6. This contradicts the fact
that @ is a quadrangulation. Hence no quadrangulation of H contains the
chord (10g,10%), unless its pathwidth exceeds one.

Consequently, every quadrangulation @ of H must have pw(Q) > 2.
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4. Conjectures and conclusions

From Section 3.3, the mixing time of the switch chain will be polynomial
for monotone graphs if the following conjecture is true.

CONJECTURE 1. — For any Hamilton cycle H in a monotone graph G =
(Il U[n]', E), there exists a good quadrangulation Q with pw(Q) = O(1).

A weaker conjecture is

CONJECTURE 2. — For any Hamilton cycle H in a monotone graph G =
([n)U[n]', E), there exists a quadrangulation Q with pw(Q) = O(1).

We can show the following :

(a) Conjecture 1 is true for the subclass CHAIN.
(b) Conjecture 1 is a consequence of Conjecture 2 and (a).

Thus Conjecture 2 is an interesting graph-theoretic question, and we have
no evidence that it is untrue. We have shown in Section 3.6 that we may
have ming pw(Q) > 2 for every quadrangulation, but we are unable to give
any example where ming pw(Q) > 2.

We omit the proofs of (a) and (b) above, since they are lengthy, and we
have recently developed a different, though related, approach to bounding
the mixing time of the switch chain on monotone graphs. Using this alterna-
tive approach, we can show polynomial mixing time for the switch Markov
chain. This analysis will appear elsewhere. The result clearly reduces the
significance of Conjecture 2, but does not imply it, so we believe that it
remains an interesting graph-theoretic question. And a proof of polynomial
time mixing for monotone graphs increases the likelihood that it is true.

Acknowledgements. — We thank Mary Cryan and Mark Jerrum for
useful discussions.
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