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Talking Across Fields:
A Physicist’s Presentation

of some Mathematical Aspects
of Quantum Monte Carlo Methods

Michel Caffarel(1)

RÉSUMÉ. — Dans cet article nous discutons quelques aspects mathémati-
ques des méthodes Monte Carlo quantique du point de vue du physi-
cien. Une liste (non-exhaustive) de techniques probabilistes utilisées et
développées en physique et de problèmes ouverts est présentée. Afin
d’illuster l’approche des physiciens, nous décrivons en détail une des vari-
antes des méthodes Monte Carlo quantique basée sur la formule de
Feynman-Kac. Le problème de l’efficacité numérique au cœur des ap-
plications physiques où l’espace de configuration est en général de très
grande dimension est présenté, ainsi que la solution adoptée. Finalement,
nous explicitons les contraintes spécifiques associées à la simulation des
systèmes de fermions et présentons le fameux “problème du signe” con-
sidéré comme un des problèmes les plus importants à résoudre en physique
numérique.

ABSTRACT. — This paper discusses some mathematical aspects related
to the use of probabilistic techniques in quantum Monte Carlo (QMC)
methods from a physicist’s point of view. A selected list of problems and
techniques employed in computational physics and of interest to the ap-
plied probability community is presented. One of the variants of QMC ap-
proaches based on the Feynman-Kac formula is described in some detail.
The problem of numerical efficiency at the heart of physical applications
defined in (very) high-dimensional space is discussed and the commonly
used solution through importance sampling is presented. Finally, the spe-
cific constraints related to fermion systems in QMC are presented and
the celebrated “fermion sign problem” (considered as one of the most
important open problem in computational physics) is discussed.

(1) Lab. de Chimie et Physique Quantiques, CNRS-Université de Toulouse, France.
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1. Introduction

Quantum Monte Carlo (QMC) is a broad family of numerical approaches
widely used in computational physics and aiming at solving the Schrödinger
equation using stochastic techniques. Ultimately, physical quantities are
written as expectation values of random variables taking values in a state
space ⊆ RD and admitting a density π(x) with respect to Lebesgue mea-
sure dx. A critical feature of applications considered in physics is the high-
dimensional nature of the state space (say, D greater at least than a few
thousands and most often much more). Tight constraints are thus imposed
on what kind of probabilistic techniques can be efficiently used in practice.
In Monte Carlo simulations of classical systems where π is typically the
Boltzmann distribution or some variation of it, the dimension is already
large, D = dN (or 2dN when velocities are considered), where N is the
number of particles and d the dimension of the space in which particles
live (usually d = 3). When the quantum character is considered, the space-
time formalism of quantum physics based on path-integrals [31], [32] can
be used to express once again the physical properties as expectation values
of random variables. However, in order to get a stochastic interpretation
of such path-integrals (leading to Feynman-Kac-type formulae), a so-called
Wick’s rotation must be first introduced, a transformation in the complex
plane that substitutes the physical real time t into a mathematical imagi-
nary time −it. As far as we are concerned with stationary solutions (that
is, independent on time), quantum averages of interest are insensitive to
this rotation. By using a path-integral formalism, the state space is now
made of all possible time-paths for the particles and thus becomes infinite-
dimensional (the interested reader may find a mathematical presentation of
all these aspects close to the physicists’view in Glimm and Jaffe [40]). In ac-
tual simulations, paths are discretized using a finite time-step and quantum
expectation values are then expressed back as ordinary finite-dimensional
integrals in RD where the new “quantum” dimension D is much increased.
Denoting P the number of time intervals along the paths (stochastic trajec-
tories), D is given as the product of the dN dimensions of the classical state
space times the “time” integer P . Exact quantum expectation values are
formally obtained for infinitely long trajectories (P = +∞) and infinitely
small time-steps. In practice, when P is chosen large enough but finite and
the time-step small enough, the bias on expectation values can be made
smaller than the statistical error.

To summarize, physical properties of a N -particle system can always be
written as an expectation value Eπ[f(X)] where X is a random variable
distributed according to π(x)dx and f a real-valued function defined over
RD. At the classical level, D is finite and is proportional to the number
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of particles. At the quantum level, D is formally infinite but can be made
finite at the price of a small and controlled error.

An important aspect to consider in quantum simulations is the bosonic
or fermionic nature of the particles. For bosons, QMC algorithms are par-
ticularly well suited (see, e.g. ref [23]) and are nowadays considered as
state-of-the-art approaches. Unfortunately, in the important case of fermions
(including all applications involving electrons, such as, among others, the
domains of material sciences, nano-sciences and chemistry) the situation
is different. Mathematically, dealing with fermions imposes to restrict the
set of all possible paths to a subset of “fermionic paths” compatible with
the Pauli exclusion principle (that is, leading to a wavefunction with the
suitable antisymmetry properties under the exchange of fermions). Despite
much effort and many proposals, it has not been possible so far to devise
a probabilistic algorithm allowing to compute fermionic expectation values,
that is both stable (bounded variance) and exact (unbiased estimators).
This problem -known under the name of “sign problem” is of uttermost
practical importance and is viewed as one of the most important problems
to be solved in computational many-body physics [63, 51, 71, 66]. To con-
tribute to its solution is an exciting challenge both for the physical and
mathematical communities.

The physical properties being ultimately expressed as expectation values
of random variables, virtually all probabilistic techniques and algorithms
employed in physics have also been considered in applied probability theory.
Making the bridge between both communities is therefore important. In
this spirit, we now present a list of probabilistic techniques and problems
addressed in many-body physics. In each case, some references from the
physics literature are given. Although this list is by no way exhaustive and
strongly reflects the author’s interests, we nevertheless hope that it will be
of some help to the interested mathematically minded reader.

Metropolis-Hastings algorithm in QMC. As in most domains of natural
sciences, the Metropolis-Hastings (MH) algorithm [54],[44] is widely used in
computational physics and to give a fair account of its various applications is
just impossible. Here, we restrict ourselves to mention three important uses.
In variational Monte Carlo (VMC) it is employed to compute expectation
values with respect to the quantum-mechanical probability density associ-
ated with an approximate trial wavefunction [π(x) = Ψ2(x), assuming nor-
malized wavefunctions] as invariant distribution [24]. In applications VMC
is mostly used to explore the respective quality of approximate wavefunc-
tions with different physical contents and thus to get insight into the nature
of the quantum state studied. Another application is the calculation of ex-
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act ground-state properties expressed as path-integrals, the density sampled
being now the weight of each (Brownian) path, see for example the Repta-
tion Monte Carlo (RMC) approach [14]. A third important application is
the computation of quantum statistical averages at finite-temperature. The
inverse temperature (β = 1

kBT
, kB Boltzmann constant) playing now the

role of the imaginary time of ground-state applications (β = it), thermody-
namic averages can also be written as a sum of over paths. Such approaches
are usually referred to as Path-Integral Monte Carlo (PIMC) methods [23].
Let us emphasize that in each case (VMC, RMC, PIMC) the probability to
be sampled is known explicitly, thus making Metropolis a natural method.

Use of diffusion processes. Although in principle the Metropolis-Hastings
algorithm can always be employed to sample the quantum path density, the
use of continuous diffusion processes (in particle coordinates) may be pre-
ferred for a number of practical and theoretical reasons. This can done by
introducing a (forward) Fokker-Planck (FP) operator built from the orig-
inal Hamiltonian. In most implementations the FP operator consists of a
diagonal and constant diffusion matrix and a drift vector expressed as the
logarithmic derivative of some good-quality approximation of the density.
The sample paths of the process are built using an explict Euler scheme
for the associated Stochastic Differential Equation (SDE). Note also that
in practical implementations a Metropolis rule is added to get an unbiased
stationary density despite time-discretization. Important examples of QMC
approaches where a continuous diffusion processes is used are the popular
Diffusion Monte Carlo (DMC) methods [41, 2, 59] (a birth-death process is
also introduced, see below).

Langevin equation. In order to get a better sampling of the configuration
space alternative stochastic dynamics can be introduced. One such example
is the recent proposal [61] of extending the diffusion process defined in the
space of particle positions to the classical phase space including both particle
positions and momenta. In this case the equation governing the stochastic
evolution of the system is the Langevin equation with inertia derived from
the Newtonian classical mechanics. It can be shown that the detailed balance
condition can be imposed to the dynamics and thus a Metropolis algorithm
can be used.

Branching or birth-death processes. To enhance the convergence of es-
timators a branching process may be introduced. Its role is to kill sample
paths spending too much time in low-probability regions and to duplicate
trajectories in high-probability regions. To keep the population size reason-
able, a population control step must be introduced. The price to pay is then
the introduction of correlations between paths (interacting particles model).
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Non-trivial mathematical aspects are related to the way of imposing this
control, usually via a nonlinear feed-back term [59]. Widely employed Dif-
fusion Monte Carlo methods introduces such a branching process [41, 2, 59].

Feynman-Kac approaches. From a general perspective, all variants of
QMC approaches can actually be rewritten using Feynman-Kac-type for-
mulae expressed under various forms. However, in practice most of QMC
methods do not explicity mention such a relationship. Counterexamples are
[30, 60, 18]. An example of QMC method using explicitly Feynman-Kac
formalism is described below in some detail.

Reconfiguration process. To allow a better mathematical control of birth-
death-type events, a stochastic reconfiguration process may also be intro-
duced (a reconfiguration step is defined here as choosing N objects among N
objects according to some probabilities). In this process the population size
is kept fixed and the finite population bias is removed through the introduc-
tion of a global Feynman-Kac weight for the population. Such methods can
be viewed as a combination of DMC and Feynman-Kac approaches and are
known under the name of Stochastic Reconfiguration Monte Carlo (SRMC)
methods [45, 64, 4].

Correlating close stochastic processes. A great variety of important phys-
ical properties are expressed as a (very) small difference of two (very) close
expectation values

δε = Eπε [fε(X)]− Eπ[f(X)]

where ε is a small parameter connecting the distributions π and πε, and the
functions f and fε. Certainly, by far the most important example is the case
where E[f(X)] is the total energy of the system. To be able to compute effi-
ciently such small differences is an important issue of computational physics
(see, discussion in ref [10]). Most of the approaches proposed so far are based
on the natural idea of correlating the two close stochastic processes involved
in the difference (see, e.g. refs [33, 10, 46, 5]). However, much work remains
to be done and this important issue must still be considered as an open
problem in the general case.

Improved estimators. As in any Monte Carlo approach it is desirable
to build improved estimators (or control variates) with (much) lower vari-
ances. A number of proposals developed within the context of QMC ap-
proaches have been presented [6-9, 11]. Among them, let us point out the
Zero-Variance Monte Carlo approach described in [6] which turns out to
be of very broad applicability (see, applications in the applied probability
community [29, 55, 57, 37, 56]).
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Bayesian inference. Bayesian approaches and max-entropy methods have
been developed and adapted for modeling the noisy data of QMC, see e.g.
refs [42], [20].

Stochastic optimization. An important step in most QMC applications
is to optimize the parameters of an analytically known trial wavefunction
chosen to be a good approximation of the unknown eigenfunction. In gen-
eral it is done by minimizing the variational energy (Rayleigh quotient of
operator H) computed over a random sample. Such an optimization step
involving a large number of parameters whose majority are non-linear and
a noisy objective function to minimize is not easy to perform in the gen-
eral case. A number of techniques have been proposed and applied to make
this optimization step as efficient as possible within the framework of QMC
approaches [67, 43, 65, 68].

Diffusion processes in a functional space. The vast majority of diffusion
processes introduced in QMC are defined in the classical space of particle
positions (position representation of quantum mechanics). Alternative rep-
resentations more adapted to the quantum nature of particles may also be
considered. Along this line, a number of works have introduced diffusion
processes defined in a space of determinants. See e.g. the Auxiliary Field
QMC (AFQMC) method of Zhang et al. [70, 72, 1] and the recent FCIQMC
method of Alavi and collaborators [16], [28].

etc.

Of course, entering into the details of these various items is out of the
scope of the present account. Instead, we have chosen to focus on the im-
plementation of one of the variants of the QMC approaches based on the
Feynman-Kac formula. This well-known formula in the probabilistic commu-
nity will allow us to illustrate two of the most fundamental issues of QMC in
realistic applications, namely the need for efficiency in high-dimensions and
the challenging problem of imposing the fermionic nature of particles within
a stochastic framework, this latter problem being known as the “fermion
sign problem”. Before doing this we shall briefly present in Section II the
mathematical notations and properties used here. In section III the standard
Feynman-Kac formula is derived in the way it is usually done in physics. In
section IV, how to generalize this formula to make it efficient in high dimen-
sions is discussed. Finally, in section V the fermion sign problem and the
standard approximate solution employed in practical applications (fixed-
node approximation) are presented.
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2. A few definitions and notations

Quantum systems are described by a self-adjoint Hamiltonian operator,
H defined in the Hilbert space, L2(RdN , dx). Most Hamiltonians are written
as a sum of a kinetic operator (responsible for the delocalization of particles)
and a potential operator describing the interaction between particles. To
make things explicit, we shall consider the following standard form for H
(Schrödinger-type Hamiltonian)

H = −1

2
∇2

x + V (x) (2.1)

where x = (r1, r2, ..., rN ) denotes the position of each of the N particles
(x ∈ RdN ). The Laplacian operator is written as

∇2
x =

N∑

i=1

d∑

l=1

∂2

∂xli
2

(2.2)

where (x1
i , x

2
i , ..., x

d
i ) in the d-uplet giving the position ri of each particle i.

In QMC we are concerned with bound states (not scattering states, see
note [73]) that is, eigensolutions Ψ of the stationary Schrödinger equation
verifying

∫
dxΨ2 = 1 (2.3)

In such a case the spectrum of H consists entirely of isolated eigenvalues [47]
and the eigensolutions can be labeled by an integer i (traditionally, i = 0
for the ground-state). The stationary Schrödinger equation to be solved is
finally written as

HΨi(x) = EiΨi(x) (2.4)

with E0 � E1 � · · · . In QMC methods discussed here we are essentially
interested in evaluating (E0,Ψ0) and eventually the first low-lying eigenso-
lutions, not the entire spectrum of the Hamiltonian.

In most applications H∗ = H (with respect to L2(RdN , dx)). The reality
of H results from the fact that V is real-valued (an important exception
not considered here is in the presence of a magnetic field). H can thus be
restricted to acting on real valued functions in L2(RdN , dx) and thus no
complex conjugate asterisk on eigenstate will be introduced in the formulae
to follow.
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Let us denote K(x,y, t) the kernel of the linear operator e−tH defined
through

(e−tHΨ)(x) =

∫
dyK(x,y, t)Ψ(y) (2.5)

where Ψ is some test function.

In the physics literature, K is usually referred to as the imaginary-time
propagator (probability amplitude of evolving from x to y in a time interval
t). Using the spectral decomposition of the operator e−tH we have

K(x,y, t) =
∑

i

Ψi(x)Ψi(y)e−tEi (2.6)

where
∑

is a short-hand notation for representing the sum and integral
over the discrete and continuous parts of the eigenspectrum, respectively
(the series is supposed to converge). Using this relation, it is easy to show
that the kernel K obeys the Chapman-Kolmogorov [58] equation

K(x,y, t) =

∫
dzK(x, z, t− u)K(z,y, u) u ∈ (0, t) (2.7)

3. The Feynman-Kac formula

In physics the Feynman-Kac is generally derived in two steps as follows.
First, the Chapman-Kolmogov equation, Eq.(2.7), is iterated by breaking
the total time t into small pieces. Let τ be a small but finite time-step such
that t = Pτ , P integer. We can write

K(x0,xt, t) =

∫
dx1...dxP−1

P∏

k=1

K(xk−1,xk, τ) (3.1)

where the initial point at t = 0 is denoted as x0 and the final point at time
t, xt. Here, xP is identified to xt.

The second step consists in introducing a short-time approximation for
the propagator K(xk−1,xk, τ). Using the Baker-Campbell-Hausdorff for-
mula [13] allowing to split the exponential operator of a sum of two general
operators into a product of two exponentials

e−τ(A+B) = e−τAe−τB +O(τ2) (3.2)

the short-time propagator can be written

K(xk−1,xk, τ) = K0(xk−1,xk, τ)e
−τV (xk) +O(τ2) (3.3)
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where K0 is the free diffusion kernel of the kinetic (Laplacian) operator

K0(xk−1,xk, τ) = (
1√
2πτ

)
dN

e−
(xk−xk−1)2

2τ (3.4)

Finally, the exact kernel K(x0,xt, t) can be written in the limit τ goes to
zero and P to infinity with t = Pτ finite as

K(x0,xt, t) = lim
P→+∞

∫
dx1...dxP−1

P∏

k=1

K0(xk−1,xk, τ)e
−τ ∑P

k=1 V (xk)

(3.5)
which is formally written as

K(x0,xt, t) = K0(x0,xt, t)EX(0)=x0,X(t)=xt [e
−

∫ t
0
dsV [X(s)]] (3.6)

where the expectation value is defined over the set of the Brownian trajec-
tories X(s) starting at x0 and ending at xt at time t. More rigorously, for
any bounded test function φ(x) we can write

∫
φ(xt)K(x0,xt, t)dxt = EX(0)=x0

[φ(Xt)K0(x0,Xt, t)e
−

∫ t
0
dsV [Xs]] (3.7)

where t �→ Xt is a standard Brownian motion. This equation is the Feynman-
Kac (FK) formula for the kernel.

As a consequence of Eq.(2.6) the long-time behavior of the kernel reads

K(x0,xt, t) ∼ e−tE0Ψ0(x0)Ψ0(xt) at large t (3.8)

up to some exponentially small corrections O[e−t(E1−E0)]. From this rela-
tion, expressions for the exact ground-state wavefunction and energy can
be derived. In the case of the exact wavefunction the value of Ψ0 at point
x can be obtained as (see, note [74])

Ψ0(x)∫
dxΨ0(x)

= lim
t→+∞

∫
dyK(x,y, t)∫
dxdyK(x,y, t)

(3.9)

which leads to the expression

Ψ0(x)∫
dxΨ0(x)

= lim
t→+∞

EX(0)=x[e−
∫ t
0
dsV [X(s)]]

∫
dx EX(0)=x[e−

∫ t
0
dsV [X(s)]]

. (3.10)

In the case of the ground-state energy, E0 may be obtained as

E0 = − lim
t→+∞

1

t
ln

[ ∫
dx EX(0)=x[e−

∫ t
0
dsV [X(s)]]

]
. (3.11)
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From a computational point of view FK-type formulae are particularly
attractive since they provide a simple and constructive way of obtaining
the lowest eigensolutions of H in any dimension just by constructing dN -
dimensional Brownian trajectories, by computing the exponential of the
time-integral of the potential function along each trajectory (a simple one-
dimensional integral) and, finally, by averaging contributions coming from a
large enough number of trajectories. Furthermore, calculations on different
trajectories being independent, it may lead to massively parallel simulations
(for example, one trajectory built on each compute core).

However, at this point it should be clear that such a scheme cannot
work in practice since there is no hope to get converged estimators in high-
dimension using a naive uniform sampling of the configuration space. To
get realistic estimators with reasonably small variances requires some sort
of “clever” sampling taking into account the magnitude of the potential
function (regions of low V must be preferentially sampled). A practical
solution to this problem is presented in the next section.

4. A computationally realistic Feynman-Kac formula
through importance sampling

To allow a realistic sampling of the configuration space, an approxi-
mation ΨT (called the trial wavefunction) of the unknown exact solution
Ψ0 is introduced. A well-known property of Schrödinger operators is that
the ground-state wavefunction has a constant sign (say, positive) and van-
ishes only at infinity [Krein-Rutman theorem, generalization of the Perron-
Frobenius theorem to operators [50]. Note that the positivity of the ground-
state wavefunction can be directly seen from Eq.(3.10). As a consequence,
ΨT is chosen here strictly positive at any finite distance. In the following sec-
tion we shall see that this condition must be released for fermionic systems
and that some specific treatment will be required.

Let us now define a generalized (similarity-transformed) kernel as follows

K̃(x,y, t) ≡ ΨT (y)

ΨT (x)
K(x,y, t) (4.1)

It is easy to check that this new kernel also verifies the Chapman-Kolmogorov
relation, Eq.(2.7), and thus a FK-type representation for it can be built as
in Eq.(3.1). The second step consists in getting a short-time approximation
of the generalized kernel, similarly to Eq.(3.3). Recalling that K was the
kernel of the operator e−tH

(
e−tHΨ

)
(x) =

∫
dyK(x,y, t)Ψ(y)
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and using definition, Eq.(4.1), K̃ is easily found to be the kernel of the
exponential operator etL

(
etLΨ

)
(x) =

∫
dyK̃(x,y, t)Ψ(y) (4.2)

where L is given through the following similarity transformation

L = − 1

ΨT
HΨT . (4.3)

This transformation is the unitary transformation of the ambient Hilbert
space L2(RdN ) obtained by multiplication with respect to the function ΨT .
Note that the spectrum of H is left unmodified.

To explicit the operator L, we shall first define a trial Hamiltonian HT

defined as the Schrödinger Hamiltonian admitting ΨT as ground-state wave-
function. The trial Hamiltonian is easily built and reads

HT = H − [EL(x)− ET ] (4.4)

where ET is some arbitrary reference energy and EL(x) a multiplicative
operator known in QMC under the name of “local energy”

EL(x) =
HΨT (x)

ΨT (x)
. (4.5)

Finally, ΨT obeys the following Schrödinger equation

HTΨT (x) = ETΨT (x). (4.6)

Using the trial Hamiltonian the operator L can be decomposed as

L = − 1

ΨT
(HT − ET )ΨT − EL(x). (4.7)

Simple algebra shows that the first operator,− 1
ΨT

(HT − ET )ΨT , in the
right-hand-side of this equation is a Fokker-Planck operator written as

LT =
1

2
∇2

x + b.∇x (4.8)

where the drift vector b is given by

b(x) =
∇xΨT

ΨT
. (4.9)

Approximations for the solution of the Fokker-Planck equation at short
time are well-known. They are simple generalizations of the Gaussian free
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diffusion kernel, Eq.(3.4) in presence of a drift term. At the lowest order we
have

K̃T (xk−1,xk, τ) � (
1√
2πτ

)
dN

e−
(xk−xk−1−b(xk−1)τ)2

2τ (4.10)

Using as previously the Baker-Campbell-Hausdorff formula, Eq.(3.3) gener-
alizes as follows

K̃(xk−1,xk, τ) = K̃T (xk−1,xk, τ)e
−τEL(xk) +O(τ2) (4.11)

A generalized version of the Feynman-Kac formula now follows by iterat-
ing the Chapman-Kolmogorov equation and using the previous short-time
expression

K̃(x0,xt, t) = lim
P→+∞

∫
dx1...dxP−1

P∏

k=1

K̃T (xk−1,xk, τ)e
−τ ∑P

k=1 EL(xk)

(4.12)
which is formally written as

K̃(x0,xt, t) = K̃T (x0,xt, t)ẼX(0)=x0,X(t)=xt [e
−

∫ t
0
dsEL[X(s)]] (4.13)

where the new expectation value Ẽ is defined now over the sample paths of
the continuous diffusion process described by the FP operator. The trajec-
tories can be generated using the associated stochastic differential equation
(SDE)

dX(t) = b[X(t)]dt+ dWt (4.14)

where Wt is the dN -dimensional Wiener process. In practice, some dis-
cretized version of the SDE is employed, for example

Xk+1 = Xk + b(Xk)τ +
√
τη, (4.15)

where η is a random vector whose each independent component has a normal
distribution. It should be noted that formula (4.15) is just a practical way of
realizing the Gaussian distribution given in Eq.(4.10). In QMC simulations
it is common usage to call ”walker” the representative point Xk of each
trajectory. In contrast with some other fields (e.g. use of particle methods for
the simulation of continuous systems of fluid mechanics) the term “particle”
is not employed here to avoid confusion with the physical particles.

A new estimator for the wavefunction using the FK formula can be
obtained from (recall that ΨT (x) is a known computable function)
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ΨT (x)Ψ0(x)∫
dxΨT (x)Ψ0(x)

= lim
t→+∞

∫
dyΨT (x)K(x,y, t)ΨT (y)∫
dxdyΨT (x)K(x,y, t)ΨT (y)

= Ψ2
T (x) lim

t→+∞
ẼX(0)=x

[
e−

∫ t
0
dsEL[X(s)]

]
∫
dx Ψ2

T (x)ẼX(0)=x

[
e−

∫ t
0
dsEL[X(s)]

] (4.16)

and E0 can be computed as

E0 = − lim
t→+∞

1

t
ln

[ ∫
dx Ψ2

T (x)ẼX(0)=x[e−
∫ t
0
dsEL[X(s)]]

]
. (4.17)

The free diffusion process introduced in the preceding section is a special
case of the more general process considered here. All formulas can be re-
covered by taking ΨT = 1, b = 0, and EL = V . The introduction of a
trial wavefunction ΨT has two important practical consequences. Instead
of the uniform sampling resulting from Brownian paths, the configuration
space is now sampled through drifted Brownian paths realizing a stationary
(invariant) distribution close to the exact quantum-mechanical one. The in-
variant distribution π (verifying

∫
πK̃T = π, that is L∗π = 0, where L∗ is

the adjoint of operator L) is given as (normalized distribution)

π(x) = Ψ2
T . (4.18)

In practice, because of the drift term walkers are pushed into regions where
the trial wavefunction is large. Second, the fluctuations of the exponen-
tial Feynman-Kac weight are considerably reduced. The variations are no
longer determined by the “bare” potential V but by the new “renormalized”
(screened) potential, EL. The magnitude of the fluctuations is directly re-
lated to the quality of the trial wavefunction, the better it is the smaller the
fluctuations of the local energy are. In the limit of an exact trial wavefunc-
tion the statistical fluctuations entirely vanish (zero-variance property, see
ref [35]).

A number of applications using the approach presented (or some equiv-
alent version of it) have shown that in practice “good” enough trial wave-
functions can be built to make this scheme work with the accuracy needed,
even in very high dimensions.

5. The sign problem

In the preceding sections the FK formulas have been elaborated with-
out taking care of the eventual fermionic nature of particles. As it is, this
algorithm can be directly employed for quantum systems with no Fermi con-
straints (bosonic systems, quantum oscillators, ensemble of distinguishable
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particles, etc.). In such cases, the ground-state eigenfunction is nodeless (say,
positive) and may be obtained from Eq.(4.16). Unfortunately, for fermionic
systems such an eigenstate is physically forbidden by the Pauli exclusion
principle [69].

For fermions the functional space of wave functions is divided into two
orthogonal spaces

L2(RdN ) = B ⊕ F (5.1)

where F is the vector space of “fermionic” wavefunctions defined as follows:

Ψ ∈ F if and only if Ψ[σ(x)] = sgn(σ)Ψ[(x)] (5.2)

where σ ranges in some permutation subgroup of the symmetric group
SN leaving invariant some 2-subsets partition of {1, ..., N} (correspond-
ing to “spin up” or “spin down” electrons). In particular, all totally skew-
symmetric functions are in this case. B, the vector space of “bosonic” wave-
functions, is then simply the orthogonal of F . In particular, all totally sym-
metric functions are in B.

The Pauli principle can then be summarized by saying that the “fermionic”
eigensolutions of H physically admissible are those obtained by restricting
the Hamiltonian to the vector space F . In particular, the totally symmet-
ric nodeless lowest eigenstate of H is forbidden for fermions (the so-called
“bosonic” ground-state).

Note that in contrast with standard presentations of the Pauli exclu-
sion principle, no spin coordinates have been introduced here. Actually, at
the non-relativistic level such coordinates are not needed, see e.g. [69], [53].
However, they are of common use since within a spin-space representation
the Pauli exclusion principle is particularly simple to express. The eigen-
states are written as a combination of space and spin functions and only
those that are totally antisymmetric under the exchange of space-spin coor-
dinates of any pair of particles are physically allowed. In a spin-free (space-
only) formalism as used here, the spatial wavefunctions Ψ(x) just need to
be antisymmetric under permutations within two subsets of particles that
can be formally associated with spin “up” and “down” particles.

Because the Schrödinger Hamiltonian is spin-independent and the dif-
fusion processes introduced are defined in a pure space representation, the
use of spin coordinates is not adapted and is thus avoided in QMC.

Finally, the problem to solve in QMC is to design an efficient algorithm
allowing to converge to the ground-state fermionic eigenfunction (lowest
eigenstate of H restricted to vector space F ). Unfortunately, up to now it
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has not been possible to define a computationally tractable (polynomial)
algorithm implementing exactly such a property for a general fermionic
system (”sign problem”). This problem is addressed in the two following
sections.

5.1. Exact Feynman-Kac formula for fermions

To go further it is convenient to distinguish the fermionic and bosonic
parts of the spectral decomposition of the kernel, eq (2.6).

K(x,y, t) =
∑

i

ΨB
i (x)ΨB

i (y)e−tE
B
i +

∑

i

ΨF
i (x)ΨF

i (y)e−tE
F
i (5.3)

where the superscripts F (Fermion) and B (Boson) refer to eigensolutions
that belong to vector space F or B, respectively.

The objective now is to evaluate EF0 and ΨF
0 . As in the preceding section

[see, eq.(4.1)] we introduce a similarity-transformed kernel K̃ using a posi-
tive and totally symmetric wavefunction ΨG (bosonic-type wave function).

K̃(x,y, t) =
ΨG(y)

ΨG(x)
K(x,y, t). (5.4)

Here, ΨG will be referred to as the “guiding” wavefunction. Note that, in
contrast with the preceding section 4 where the Feynman-Kac formula was
derived without considering any type of symmetry, the positive bosonic
guiding function is now distinguished from the fermionic trial wavefunction
ΨF
T that will be chosen to be a good approximation of the fermionic ground-

state, ΨF
0 .

By filtering out the bosonic components of the generalized kernel, the
unknown fermionic ground-state ΨF

0 can be extracted from the large-time
limit

ΨF
T (x)ΨF

0 (x)∫
dxΨF

T (x)ΨF
0 (x)

= lim
t→+∞

∫
dyΨF

T (x)K(x,y, t)ΨF
T (y)∫

dxdyΨF
T (x)K(x,y, t)ΨF

T (y)
. (5.5)

Using the Feynman-Kac formula, ΨF
0 can be obtained as (up to the known

and computable trial wavefunction ΨF
T )

ΨF
T (x)ΨF

0 (x)∫
dxΨF

T (x)ΨF
0 (x)

=

Ψ2
G(x) lim

t→+∞
ẼX(0)=x

[
σ[X(0)]σ[X(t)]w[X(0)]w[X(t)]e−

∫ t
0
dsEGL [X(s)]

]
∫
dxΨ2

G(x)ẼX(0)=x

[
σ[X(0)]σ[X(t)]w[X(0)]w[X(t)]e−

∫ t
0
dsEGL [X(s)]

]

(5.6)
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where σ is the sign of the fermionic trial wavefunction

σ(x) = sgn[ΨF
T (x)], (5.7)

w some positive weight

w(x) =
|ΨF
T (x)|

ΨG(x)
, (5.8)

and EGL the local energy associated with ΨG

EGL (x) =
HΨG(x)

ΨG(x)
. (5.9)

As usual [see, Eqs.(3.11),(4.17)] the ground-state energy can be computed
from the long-time behavior of the logarithm of the denominator of the
right-hand-side of eq.(5.6).

To get an efficient sampling of the configuration space, the nodeless
wavefunction ΨG that determines the sampled distribution (π = Ψ2

G) must
be chosen close to the modulus of the fermionic trial wavefunction ΨF

T , for
example

ΨG(x) =

√
(ΨF

T )
2
(x) + ε(x) (5.10)

where ε(x) is some “small” strictly positive function decaying sufficiently
rapidly at large distances. Note that with such a choice w(x) is a positive
function close to 1. From formula (5.6) we can see that the fermion ground-
state is expressed as the expectation value of the (weighted) time auto-
correlation function of the fermionic sign, σ[X(0)]σ[X(t)], at very large time.

Let us now decompose the expectation values into their positive and
negative contributions. We can write

ΨF
T (x)ΨF

0 (x)∫
dxΨF

T (x)ΨF
0 (x)

=

Ψ2
G(x) lim

t→+∞
ẼX(0)=x,σ0σt=1[Ft]− ẼX(0)=x,σ0σt=−1[Ft]∫

dxΨ2
G(x)

[
ẼX(0)=x,σ0σt=1[Ft]− ẼX(0)=x,σ0σt=−1[Ft]

]

(5.11)
where the positive functional Ft is defined as

Ft[X(s)] = w[X(0)]w[X(t)]e−
∫ t
0
dsEGL [X(s)] (5.12)

and the new expectation values, ẼX(0)=x,σ0σt=±1 are introduced by making
a distinction between the set of all trajectories verifying σ0σt = 1 and those
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verifying σ0σt = −1. Both expectation values can be obtained from eq.(4.16)
by applying the kernel to the positive and negative part of ΨT

Ψ±T = Max(0,±ΨF
T ) (5.13)

instead of ΨF
T itself. Ψ±T being positive, the long-time behavior of the ex-

pectation values of the denominator of (5.11) is governed by the bosonic
ground-state

ẼX(0)=x,σ0σt=±1[Ft] ∼ e−tE
B
0 at large t, (5.14)

with the same behavior for the expectations value of the denominator. In
contrast, the fermionic expectation value we are interested in behaves as

ẼX(0)=x[σ0σtFt] ∼ e−tE
F
0 at large t. (5.15)

The fermionic wavefunction is thus obtained as the ratio of the difference
of two bosonic-type expectation values, each of them increasing in time as

e−tE
B
0 (by convention, the energy of bound-states for a coulombic poten-

tial is negative), that is exponentially large with respect to the fermionic

contribution by a factor of et(E
F
0 −EB0 ) (recall that EF0 > EB0 ). In practice,

this situation is particularly unfavorable since the statistical error related
to the expectation value of the square (variance) of the weighted sign will
also increase in a bosonic way. Finally, the signal-to-noise ratio (SNR) of
fermionic QMC calculations is found to vanish exponentially at large times

SNR ∼ e−t∆ at large t (5.16)

where ∆ = EF0 − EB0 > 0 is the so-called Fermi-Bose gap. For systems
having a small enough gap, converged fermionic expectation values can be
obtained. It is the case, for example, for very small molecules [25] or for
sufficiently uniform systems such as the electron gas [27]. However, in the
general case the gap is large and increases polynomially with the number
of fermions. In this situation to get converged QMC calculations becomes
exponentially difficult and impossible in practice, this is the fermion sign-
problem.

5.2. Approximate Feynman-Kac formula for fermions: The Fixed-
Node approximation

In the exact fermionic QMC algorithm just presented, the stochastic
trajectories are able to reach any point in the configuration space (ergodic
property). It is true because the invariant distribution, π = Ψ2

G, is integrable
and strictly positive at finite distances [48]. In practice, ΨG being chosen
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close to |ΨT | [see, eq.(5.10)] the trajectories remain trapped some time in a
given nodal domain (around some maximum of |ΨT |) and then, from time
to time, leave the domain for a neighboring one, and so on. The fixed-node
approach consists in forcing the trajectories to stay in the nodal domain
where they started from. This is easily realized by imposing the positive
guiding function ΨG to vanish at the boundaries of the nodal cells, for
example by taking ε = 0 in (5.10)

ΨG = |ΨT |. (5.17)

With such a choice the drift vector guiding the walkers diverges at the nodes
and the nodal boundaries play now the role of infinitely repulsive barriers;
the stochastic trajectories are trapped forever within their nodal domain.

Under such circonstances, we have

σ[X(0)]σ[X(t)] = 1 ∀ t and w = 1 (5.18)

for each trapped trajectory and the Feynman-Kac formula, eq.(5.6), be-
comes

ΨT (x)ΨFN
0 (x)∫

dxΨT (x)ΨFN
0 (x)

= Ψ2
T (x) lim

t→+∞
ẼX(0)=x

[
e−

∫ t
0
dsEL[X(s)]

]
∫
dxΨ2

T (x)ẼX(0)=x

[
e−

∫ t
0
dsEL[X(s)]

]

(5.19)
for all point x lying in the nodal domain considered. Here, ΨFN

0 denotes
the Fixed-Node (FN) ground-state eigenfunction obtained by imposing the
nodal boundaries to ΨG. Due to its very construction the fixed-node so-
lution has the same sign as the trial wavefunction (ΨT (x)ΨFN

0 (x) � 0).
The fermionic problem defined over the entire configuration space RdN is
thus recast in a sum of independent bosonic-type problems defined in each
nodal volume cut by the nodes of the approximate trial wavefunction. In-
stead of defining a unique Fokker-Planck operator with a non-divergent drift
vector over all space, a set of independent FP operators restricted to each
nodal cell domain is considered. Transposed into the original Hamiltonian
problem, it means that the Schrödinger equation is solved independently
in each nodal cell (mathematically, the N -body Schrödinger ground-state
is computed with additional Dirichlet boundary condition on the nodal set
N where ΨF

T vanishes, N = {x ∈ RdN : ΨF
T (x) = 0}. In the general case,

the zeroes of the trial wavefunction do not coincide with those of the un-
known fermionic eigensolution and we are thus left with a systematic bias,
the fixed-node error.

At this point, several important theoretical and practical aspects of the
fixed-node approximation must be discussed.
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Mathematical foundation of the fixed-node approach. A mathematical
analysis of the fixed-node approach and the justification of the statements
given above can be found in Cancès et al. [22] and Rousset [60]. A convenient
framework to analyze the fixed-node approach is to express it as a varia-
tional problem in the functional space of anti(skew)-symmetric functions
with Dirichlet-type boundary conditions.

The tiling theorem. By solving the Schrödinger equation as a juxtaposi-
tion of independent problems, there is no reason why ground-state energies
computed separately in each domain should be identical. The fixed-node
energy is defined as the minimum of such energies. Unfortunately, in QMC
calculations for non-trivial systems, the minimum found may depend on
the initial conditions in the case where not all nodal domains are sampled,
a situation that may arise since the number and localization of such do-
mains in high dimension is in general not known. Hopefully, for fermionic
ground-states Ceperley [26] has proved under physically reasonable condi-
tions the existence of a tiling theorem for the exact ground-state: There
is only one distinct kind of nodal regions. All others are related to it by
permutational symmetry (with same energy). Unfortunately, in practice we
need that ΨT satisfies the tiling property, not just the unknown ground-
state. In actual simulations, it is generally assumed that Hartree-Fock or
Kohn-Sham-type wavefunctions satisfy the tiling property. Results seem to
validate such a statement. However, some (mathematical) work is needed
to clarify this point.

Minimization of the fixed-node error. In a great variety of applications it
has been found that -although small- the fixed-node error is still too large. To
define an efficient and systematic approach to reduce it, is thus an important
practical aspect. Up to now the best strategy involves two steps. A first one
concerns the choice of the functional form for the trial wavefunction. To get
accurate nodes the trial wavefunction must be built so as to incorporate as
much as possible the main physical and mathematical features of the exact
wavefunction. An intense activity has thus been developed to introduce
and test various functional forms for ΨT taking into account important
aspects of the wavefunction (e.g. refs [62, 34, 21, 12, 52, 3, 17, 15, 36, 39]).
Once the trial wavefunction form has been chosen the next step consists
in optimizing the many parameters (both linear and non-linear) of ΨT . It
is usually done by minimizing the variational energy (or Rayleigh quotient,∫

ΨTHΨT∫
Ψ2
T

) computed stochastically using a finite random sample. As already

noticed in the introduction, a number of methods have been developed to
make this difficult step as efficient as possible [67, 43, 65, 68]. Of course,
it would be much more satisfactory to directly minimize the fixed-node
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energy instead of miminizing the variational one. However, how to do that
efficiently is still an open problem (see, for example, the proposal in [60]).

Nodal properties. Very little is known about the nodes of exact eigen-
functions (see, references cited in [26] and [19]). If exact nodes were known
exact fermionic simulations would be possible and the sign problem would
be solved. Unfortunately, to have a complete knowledge of the zeroes of a
general antisymmetric wavefunction defined in RdN is an unsolved problem.
In particular, we emphasize that the constraints resulting from the Pauli
exclusion principle (the exact wavefunction must vanish when ri = rj for
spin-like electrons) are not sufficient to determine the (dN −1)-dimensional
nodal variety [49].

Acknowledgments. — This article is dedicated to Persi Diaconis as a
souvenir of our weekly discussions in Toulouse that were so friendly and
fruitful. I would like to thank Laurent Miclo for his careful reading of the
manuscript and his useful suggestions. I also thank the referee for his/her
invaluable comments which significantly contributed to improve the article.
Finally, I acknowledge support by the Agence Nationale pour la Recherche
(ANR) of our QMC project through Grant No ANR 2011 BS08 004 01.

Bibliography

[1] Al-Saidi (W. A.), Zhang (S.), and Krakauer (H.). — Auxiliary-field quantum
Monte Carlo calculations of molecular systems with a Gaussian basis J. Chem.
Phys. 124, 224101 (2006).

[2] Anderson (J.). — A Random-Walk Simulation of the Schrödinger Equation: H+
3 ,

J. Chem. Phys. 63, 1499 (1975).

[3] Anderson (A. G.) and Goddard III (W.A.) . — Generalized valence bond wave
functions in quantum Monte Carlo J. Chem. Phys. 132 164110, (2010).

[4] Assaraf (R.), Caffarel (M.), and Khelif (A.). — Diffusion Monte Carlo meth-
ods with a fixed number of walkers Phys. Rev. E 61 4566 (2000).

[5] Assaraf (R.), Caffarel (M.), and Khelif (A.). — The Fermion Monte Carlo
Revisited J. Phys. A : Math. Theor. 40, 1181 (2007).

[6] Assaraf (R.) and Caffarel (M.). — Zero-variance principle for Monte Carlo
algorithms Phys. Rev. Lett. 83, 4682 (1999).

[7] Assaraf (R.) and Caffarel (M.). — Computing forces with quantum Monte
Carlo J. Chem. Phys. 113,4028 (2000).

[8] Assaraf (R.) and Caffarel (M.). — Zero-Variance Zero-Bias Principle for Ob-
servables in quantum Monte Carlo: Application to Forces J. Chem. Phys. 119,
10536 (2003).

[9] Assaraf (R.), Caffarel (M.), and Scemama (A.). — Improved Monte Carlo es-
timators for the one-body density Phys. Rev. E 75, 035701 (2007).

[10] Assaraf (R.), Caffarel (M.), and Kollias (A.). — Chaotic versus Nonchaotic
Stochastic Dynamics in Monte Carlo Simulations: A Route for Accurate Energy
Differences of N-body systems Phys. Rev. Letters 106, 150601 (2011).

– 968 –



Talking Across Fields

[11] Badinski (A.), Trail (J. R.) and Needs (R. J.). — Energy derivatives in quantum
Monte Carlo involving the zero-variance property J. Chem. Phys. 129, 224101
(2008).
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