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On quantitative convergence to quasi-stationarity

Persi Diaconis(1), Laurent Miclo(2)

RÉSUMÉ. — On cherche à quantifier le comportement en temps long des
processus de Markov finis, absorbés et supposés irréductibles en dehors du
point absorbant. Par le biais de transformations de Doob, on montre qu’il
est juste besoin du ratio maximal des valeurs prises par le premier vecteur
propre de Dirichlet associé pour se ramener à la situation bien plus étudiée
de la convergence à l’équilibre des processus de Markov finis. On obtient
ainsi des estimées explicites de convergence à la quasi-stationnarité, en
particulier via l’utilisation d’inégalités fonctionnelles. Quand le processus
est de plus réversible, on retrouve le taux optimal de convergence exponen-
tielle donné par le trou spectral entre les deux premières valeurs propres
de Dirichlet. Plusieurs exemples simples illustrent les bornes obtenues.

ABSTRACT. — The quantitative long time behavior of absorbing, finite,
irreducible Markov processes is considered. Via Doob transforms, it is
shown that only the knowledge of the ratio of the values of the under-
lying first Dirichlet eigenvector is necessary to come back to the well-
investigated situation of the convergence to equilibrium of ergodic finite
Markov processes. This leads to explicit estimates on the convergence to
quasi-stationarity, in particular via functional inequalities. When the pro-
cess is reversible, the optimal exponential rate consisting of the spectral
gap between the two first Dirichlet eigenvalues is recovered. Several simple
examples are provided to illustrate the bounds obtained.
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1. Introduction

This paper begins to develop a quantitative theory of rates of conver-
gence to quasi-stationarity, as in the following example. Consider the simple
symmetric random walk on {0, ..., N} with holding 1/2 at N and absorbing
at 0. Let X̄t be the position of the walk at time t ∈ Z+ and T be the absorp-
tion time at 0. Let µt(x) := P[X̄t = x|T > t], for x ∈ {1, ..., N}. Classical
theory, reviewed below, shows that

lim
t→+∞

µt(x) = ν(x) := Z−1 cos

(
(2N + 1− 2x)π

2(2N + 1)

)

with Z−1 := 2 tan
(

π
2(2N+1)

)
, the normalizing constant. The measure ν is

called a quasi-stationary distribution. How large does t have to be so that
these asymptotics are useful? In Section 3, which is devoted to explicit
computations, we prove for the continuous time counterpart of the above
process that for any starting distribution on {1, ..., N} and for all s � 0,

‖µt − ν‖tv � 2
√

2

π2
(1 +O(N−1)) exp(−s) (1.1)

for

t =
5

4π2
N2 ln(N) +

s

2π2
N2

Thus the quasi-stationary asymptotics takes hold for t larger than N2 ln(N).
In (1.1), µt and ν depend on N but the bounds are uniform in N .

We will work mainly in the continuous time setting, which is more con-
venient to deal with. We will come back to the discrete time framework in
Section 4. Generally, a quasi-stationary distribution of an absorbing Markov
process X̄ := (X̄t)t�0 is a probability measure ν on the state space S (where
the absorbing points have been removed) such that starting from this distri-
bution, the time marginal laws L(X̄t) remain proportional to ν on S, for all
t � 0. For nice processes X̄, the quasi-stationary distribution is unique and
starting from any distribution on S, the conditional (to non-absorption) law
µt := L(X̄t|X̄t ∈ S) converges toward ν for large times t � 0. The purpose
of this article is to investigate this convergence quantitatively when S is
finite.

More precisely, the framework is as follows. The whole finite state space
is S̄ := S 
 {∞}, where ∞ is the absorbing point. There is no loss of
generality in assuming there is only one such point, up to lumping together
all the absorbing points. Let L̄ be the generator of the process X̄ on S̄,
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seen as a matrix (L̄(x, y))x,y∈S̄ . To any given probability measure m0 on
S̄, there is a unique (in law) Markov process X̄ whose generator is L̄ and
whose initial distribution L(X̄0) is m0. For any t � 0, let mt = L(X̄t). Using
matrix notation, where measures are seen as row vectors (and functions as
column vectors), we have

∀ t � 0, mt = m0P̄t

where (P̄t)t�0 is the semi-group (exp(tL̄))t�0 associated to L̄. Except if m0

is the Dirac mass on ∞, for any t � 0, mt(S) > 0 and we can define the
probability measures µt as the restriction to S of mt/mt(S). They will be
our main objects of interest here. By definition, we have

∀ t � 0, ∀ f ∈ F , µt[f ] =
µ0[P̄t[f ]]

µ0[P̄t[11S ]]
(1.2)

where F is the space of real functions defined on S, also seen as functions
defined on S̄ which vanish at ∞ (Dirichlet condition at ∞). A probability
measure ν on S is said to be a quasi-stationary measure for L̄ if µ0 =
ν implies that µt = ν for all t � 0. We will recall below a convenient
assumption ensuring there is a unique quasi-invariant measure ν associated
to L̄. The objective of this paper is to quantify the convergence of µt toward
ν for large times t � 0, whatever the initial distribution µ0.

For any x ∈ S, denote V (x) = L̄(x,∞) � 0, the killing rate at x and
recall that by assumption, V does not vanish identically. The symbol V will
designate the function S � x �→ V (x) as well as the S × S diagonal matrix
whose values on the diagonal are given by V , namely the multiplication
operator by V on F . Let L be the Markov generator on S which is such
that the S×S minor of L̄ can be written L−V . Our main assumption is that
L is irreducible. At some point, this hypothesis will be strengthened by a
reversibility assumption, in order to get more explicit results. A traditional
application of the Perron-Frobenius theorem (see for instance the book [7] of
Collet, Mart́ınez and San Mart́ın) to L−V or to the associated semi-group,
seen as operators on measures on S, ensures that there exists a unique
quasi-invariant measure ν associated to L̄. The probability measure ν gives
a positive weight to any point of S. Furthermore there exists λ1 > 0 such
that ν(L − V ) = −λ1ν, λ1 is the eigenvalue of V − L which is strictly less
than the real parts of the remaining eigenvalues (in C). In the same manner,
there exists a unique invariant measure η for L, charging all points of S. To
see the relation between ν and η, consider the operator L∗ which is adjoint
to L in L2(η). As a matrix, it is given by

∀ x, y ∈ S, L∗(x, y) =
η(y)

η(x)
L(y, x)
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The fact that η is invariant is equivalent to the fact that L∗ is a Markovian
generator. We can thus apply the Perron-Frobenius theorem to L∗ − V ,
seen as an operator on F to find a positive function ϕ∗ on S such that
(L∗ − V )[ϕ∗] = −λ1ϕ

∗. Let us renormalize ϕ∗ so that η[ϕ∗] = 1. Then
ν = ϕ∗ · η, the probability measure admitting the density ϕ∗ with respect
to η. Indeed, for any test function f ∈ F , we have

(ϕ∗ · η)[(L− V )[f ]] = η[ϕ∗(L− V )[f ]]

= η[(L∗ − V )[ϕ∗]f ]

= −λ1η[ϕ
∗f ]

= −λ1(ϕ
∗ · η)[f ]

so that (ϕ∗ · η)(L − V ) = −λ1(ϕ
∗ · η) and by consequence (ϕ∗ · η)P̄t =

exp(−λ1t)(ϕ
∗ · η) + (1− exp(−λ1t))δ∞.

This relation implies that if the process X̄ is started from the quasi-
distribution ν, then the absorption time τ := inf{t � 0 : X̄t = ∞} is
distributed as an exponential distribution of parameter λ1. Indeed, we have
for any t � 0,

Pν [τ > t] = νP̄t[S]

= exp(−λ1t)

where Pν is the underlying probability measure, when X̄0 is distributed
according to ν. More generally, from this identity, it is not difficult to deduce
that for any initial distribution m0 not equal to δ∞, we have

lim
t→+∞

ln(Pm0
[τ > t])

t
= −λ1

showing that λ1 is the exponential rate of absorption.

Furthermore, we can find a positive function ϕ ∈ F such that (L−V )ϕ =
−λ1ϕ, but we rather normalize it through the relation η[ϕ2] = 1. For any
positive function f ∈ F , we note f∧ := minx∈S f(x) and f∨ := maxx∈S f(x).

Finally, consider the Markovian operator L̃ on S which is defined by its
off-diagonal entries via

∀ x �= y ∈ S, L̃(x, y) := L(x, y)
ϕ(y)

ϕ(x)
(1.3)

(the diagonal entries are such the row sums vanish).

Let (P̃t)t�0 be the associated Markovian semi-group. Since L̃ is irre-
ducible, it admits an invariant probability η̃. In the next section we will
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check that it is given by

∀ x ∈ S, η̃(x) =
ϕ(x)ϕ∗(x)η(x)∑
y∈S ϕ(y)ϕ∗(y)η(y)

(1.4)

To give a first estimate on the convergence of µt toward ν, let us recall
that the total variation of a signed measure m on S satisfying m(S) = 0 is
given equivalently by

‖m‖tv := 2 sup
A⊂S

|m(A)|

= sup
f∈F, ‖f‖∞�1

m(f)

=
∑

x∈S
|m(x)|

(where as usual, ‖f‖∞ designates the supremum norm of f). Note this
definition differs by a factor of 2 from the probabilist version.

Theorem 1.1.— For any probability measure µ0 on S and for any t � 0,
we have

ϕ∧
2ϕ∨

∥∥∥µ̃0P̃t − η̃
∥∥∥

tv
� ‖µt − ν‖tv � 2

ϕ∨
ϕ∧

∥∥∥µ̃0P̃t − η̃
∥∥∥

tv

where µ̃0 is the probability on S whose density with respect to µ0 is propor-
tional to ϕ. In particular the asymptotic exponential rate of convergence of

‖µt − ν‖tv and
∥∥∥µ̃0P̃t − η̃

∥∥∥
tv

are the same.

Note that in the trivial case where there is no absorption, namely V ≡ 0,
we have ϕ ≡ 1 ≡ ϕ∗, (P̃t)t�0 = (Pt)t�0, the Markovian semi-group generated

by L, ν = η̃ and µt = µ0P̃t for all t � 0, so that the above bounds are
optimal, up to the factor 2.

The ratio ϕ∨/ϕ∧ has already appeared in the literature about absorbing
Markov processes, see for instance Lemma 2.3 of the paper of Jacka and
Roberts [21], where they studied the process conditioned to have never been
absorbed. In a forthcoming paper, we will investigate this quantity ϕ∨/ϕ∧,
providing different upper bounds via path and spectral considerations. This
is a first step toward the extension of the results presented here to certain
denumerable chains.

Theorem 1.1 reduces the study of convergence to quasi-stationarity to
the much more well-studied situation of the convergence to equilibrium. One
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can for instance resort to functional inequality techniques (see for instance
the lecture notes of Saloff-Coste [28]), the simplest of them being the L2

approach. Let L̃� be the additive symmetrization of L̃ in L2(η̃): it is equal

to (L̃ + L̃∗)/2, where L̃∗ is the adjoint operator of L̃ in L2(η̃). This self-

adjointness implies that L̃� is diagonalizable in R. Let λ̃ > 0 stand for the
smallest non-zero eigenvalue of −L̃�. Since L̃� is irreducible, the eigenvalue
0 has multiplicity 1 (with eigenspace consisting of the constant functions)

and λ̃ is the spectral gap of L̃�. Then we get:

Theorem 1.2.— For any t � 0, we have

sup
µ0∈P

‖µt − ν‖tv �
√

η[ϕϕ∗]
(ϕϕ∗η)∧

ϕ∨
ϕ∧

exp(−λ̃t)

where P stands for the set of probability measures on S.

The spectral gap λ̃ is the highest constant such that λ̃ η̃[(f − η̃[f ])2] �
−η̃[fL̃�[f ]] for any f ∈ F . Equivalently, λ̃ = A−1, where A is the smallest
positive constant such that the following Poincaré inequality is satisfied for
all f ∈ F ,

∑

x∈S
(f(x)− η̃[f ])2 ϕ∗(x)ϕ(x)η(x) �

A

2

∑

x,y∈S
(f(y)− f(x))2 ϕ∗(x)ϕ(y)η(x)L(x, y) (1.5)

This variational formulation enables comparison of λ̃ with λ (see for instance
Diaconis and Saloff-Coste [12] and Fill [17]), the spectral gap of the additive
symmetrization of L in L2(η):

λ̃ � ϕ∧ϕ∗∧
ϕ∨ϕ∗∨

λ (1.6)

We will put these considerations into practice in Example 3.4.

Let us now assume that η is reversible for L. Then−(L−V ) is self-adjoint
in L2(η) and so is diagonalizable in R. As was already mentioned for the
general case, its smallest eigenvalue is λ1 > 0. Consider its next eigenvalue
λ2 > λ1 (the strict inequality is a consequence of the irreducibility of L in
the Perron-Frobenius theorem). The next result shows that to get a useful
understanding of the convergence of µt toward ν for large t � 0, only the
knowledge of η, of the ratio of the extrema of ϕ and of λ2 − λ1 is required.
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Theorem 1.3.— Under the reversibility assumption, for any t � 0, we
have

sup
µ0∈P

‖µt − ν‖tv �
√

1

(ϕ2η)∧

ϕ∨
ϕ∧

exp(−(λ2 − λ1)t)

�
√

1

η∧

(
ϕ∨
ϕ∧

)2

exp(−(λ2 − λ1)t)

Note that (1.2) can be written in terms of Feynman-Kac integrals. Let
(Xt)t�0 be a Markov process starting from the initial law µ0 and admitting
L as generator. We have

∀ t � 0, ∀ f ∈ F̄ , µt[f ] =
Eµ0

[
f(Xt) exp

(
−

∫ t

0
V (Xs) ds

)]

Eµ0

[
exp

(
−

∫ t

0
V (Xs) ds

)]

The stability for large times of such expressions have been extensively stud-
ied by Del Moral and his coauthors (see for instance his recent book [9]
and the references given there). They also use estimates on the convergence
to equilibrium of Markov processes. Since their assumptions are based on
Dobrushin type conditions on the underlying Markov process (or on some
of its modifications, see e.g. Del Moral and Miclo [10]), the deduced bounds
are often quite coarse. While we work here in the same spirit, we will rather
resort to spectral techniques, which lead to relatively sharp estimates, as
will be illustrated by several examples. In particular, we obtain in the re-
versible case the optimal asymptotical rate λ2−λ1 (see e.g. the review paper
of Méléard and Villemonais [24], with a non-quantified pre-exponential fac-
tor). Under appropriate conditions, this rate was deduced asymptotically for
birth and death processes by van Doorn [29] (see also van Doorn and Zeif-
man [31] for another example), which are outside the scope of the present
note, because the state space is not finite. We hope that in a future work, we
will be able to extend the above quantitative bounds to more general situa-
tions of appropriate denumerable Markov processes or diffusions, requiring
at least the condition there is a unique quasi-invariant measure (usually this
requires that the process comes in from infinity fast enough, see for instance
Collet, Mart́ınez and San Mart́ın [7]). For Brownian motion absorbed on the
boundary of a compact domain in Euclidean spaces, one may see Gyrya and
Saloff-Coste [18] and Lierl and Saloff-Coste [23]

The literature on quasi-stationarity is substantial and we are able to
call on several comprehensive surveys. One short readable survey, close in
spirit to our paper, is by Van Doorn and Pollett [30] (discrete state space,
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continuous time). More general state spaces and applications in biology are
emphasized by Méléard and Villemonais [24]. A recent book length treat-
ment by Collet, Mart́ınez and San Mart́ın [7] treats all aspects. All of these
review the history (Yaglom, Bartlett, Darroch-Seneta, ...). A most useful
adjunct to these surveys is the annotated online bibliography kept up to
date by Phil Pollett, see
//http://www.maths.uq.edu.au/∼pkp/papers/qsds/qsds.html.

We have not found very much literature on the kind of quantitative
questions treated here. A useful review of previous quantitative efforts is in
Section 4 of Van Doorn and Pollett [30]. This is along the lines of spectral
gap estimates without consideration of the size of the state space or the
starting distribution. Some quantitative bounds are also deduced in the
recent papers of Barbour and Pollett [2, 3], of Cloez and Thai [6] and of
Champagnat and Villemonais [5].

The plan of the paper is very simple: the next section presents the proof
of the above theorems, as well as an alternative bound based on logarithmic
Sobolev inequalities, the next section contains some illustrative examples.
The final section gives further examples in discrete time.

2. Proofs

The following arguments are based on a simple use of Doob’s transforms,
which by a conjugation by ϕ, replace V by a constant killing rate.

2.1. Proof of Theorem 1.1

Let Φ be the diagonal matrix corresponding to the multiplication by ϕ
operating on F . Thus Φ−1 is just the diagonal matrix corresponding to the
multiplication by 1/ϕ. We begin by checking that the generator matrix L̃
defined in (1.3) satisfies

L̃ = Φ−1(L− V + λ1I)Φ (2.1)

where I is the identity matrix. Indeed, the off-diagonal entries of the r.h.s.
coincide with those of Φ−1LΦ which are those of L̃ by (1.3). Thus it is
sufficient to check that the sums of the rows of Φ−1(L− V + λ1I)Φ vanish.
The sum corresponding to the row indexed by x ∈ S is

1

ϕ(x)
(L[ϕ](x)− V (x)ϕ(x)) + λ1 = 0

since by definition, ϕ is an eigenfunction of L−V associated to the eigenvalue
−λ1.

– 980 –



On quantitative convergence to quasi-stationarity

It is now easy to check (1.4): it must be seen that

∀ f ∈ F , η̃[L̃[f ]] = 0

From (2.1), the l.h.s. is equal to

η̃[ϕ−1(L− V + λ1)[ϕf ]] = η[ϕ∗(L− V + λ1)[ϕf ]]/η[ϕϕ∗]

= η[ϕf(L∗ − V + λ1)[ϕ
∗]]/η[ϕϕ∗]

= 0

because ϕ∗ is an eigenfunction of L∗ − V associated to the eigenvalue −λ1.

Next rewrite (2.1) in the form

Φ(L̃− λ1I)Φ
−1 = L− V (2.2)

and exponentiate this identity to find

∀ t � 0, exp(−λ1t)ΦP̃tΦ
−1 = P̄t

(the r.h.s. is to be understood as the restriction of P̄t to F , as explained
after (1.2)). Thus for any µ0 ∈ P and f ∈ F , we have

∀ t � 0, exp(−λ1t)µ0[ϕ]µ̃0[P̃t[f/ϕ]] = µ0[P̄t[f ]]

(recall that µ̃0 is the probability on S whose density with respect to µ0 is
proportional to ϕ). We deduce from (1.2) that

∀ t � 0, µt[f ] =
µ̃0[P̃t[f/ϕ]]

µ̃0[P̃t[1/ϕ]]
(2.3)

Since P̃t converges to η̃ as t goes to infinity, we get that

lim
t→+∞

µt[f ] =
η̃[f/ϕ]

η̃[1/ϕ]

= ν[f ]

due to the proportionality between the measures ν, ϕ∗ · η and ϕ−1 · η̃. Thus
the convergence toward quasi-stationarity has been recovered.

To get an estimate on the speed of convergence, we need the two following
basic lemmas.

On a general measurable space, consider two probability measures µ̃�
ν̃, as well as a measurable function ψ > 0. Define

µ :=
ψ

Zµ̃
· µ̃ with Zµ̃ := µ̃[ψ]

ν :=
ψ

Zν̃
· ν̃ with Zν̃ := ν̃[ψ]
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Let f̃ and f stand for the Radon-Nikodym densities of µ̃ with respect to ν̃
and of µ with respect to ν. Obviously, we have

f =
Zν̃

Zµ̃
f̃

Finally, choose m̃ and m to be medians of f̃ and f with respect to ν̃ and ν.
The following result is well-known.

Lemma 2.1.— We have
∫
|f −m| dν � ‖µ− ν‖tv � 2

∫
|f −m| dν

∫ ∣∣∣f̃ − m̃
∣∣∣ dν̃ � ‖µ̃− ν̃‖tv � 2

∫ ∣∣∣f̃ − m̃
∣∣∣ dν̃

Proof. — Of course it is sufficient to show the bounds for ‖µ− ν‖tv. They
are a consequence of

‖µ− ν‖tv =

∫
|f − 1| dν

and of the following characterization of a median:

∫
|f −m| dν = inf

{∫
|f − r| dν : r ∈ R

}
(2.4)

So the lower bound is immediate and for the upper bound, just note that

|1−m| =

∣∣∣∣
∫

(f −m) dν

∣∣∣∣

�
∫
|f −m| dν

�

The interest of the introduction of the medians comes from:

Lemma 2.2.— We have
∫
|f −m| dν � ψ∧

ψ∨

∫ ∣∣∣f̃ − m̃
∣∣∣ dν̃

and it follows from the previous lemma that

ψ∨
2ψ∧

‖µ̃− ν̃‖tv � ‖µ− ν‖tv � 2
ψ∧
ψ∨
‖µ̃− ν̃‖tv

– 982 –



On quantitative convergence to quasi-stationarity

Proof. — From (2.4), we have

∫ ∣∣∣f̃ − m̃
∣∣∣ dν̃ = inf

{∫ ∣∣∣f̃ − r
∣∣∣ dν̃ : r ∈ R

}

= inf

{∫ ∣∣∣∣
Zµ̃

Zν̃
f − r

∣∣∣∣ dν̃ : r ∈ R
}

=
Zµ̃

Zν̃
inf

{∫
|f − r| Zν̃

ψ
dν : r ∈ R

}

� Zµ̃

Zν̃

Zν̃

esssupν̃ψ
inf

{∫
|f − r| dν : r ∈ R

}

=
Zν̃

esssupν̃ψ

∫
|f −m| dν

� essinf µ̃ψ

esssupν̃ψ

∫
|f −m| dν

� ψ∧
ψ∨

∫
|f −m| dν

�

For any fixed t � 0, it remains to apply these general bounds with ν the
quasi-stationary probability measure, ν̃ := η̃

µ := µt

µ̃ := µ̃0P̃t

ψ := 1/ϕ

Since ψ∧/ψ∨ = ϕ∨/ϕ∧, the conclusion of Lemma 2.2 implies the wanted
bound.

Remark 2.3.— From (2.3), we could have been tempted to write that
for any f ∈ F ,

µt[f ]− ν[f ] =
µ̃0[P̃t[f/ϕ]]

µ̃0[P̃t[1/ϕ]]
− η̃[f/ϕ]

η̃[1/ϕ]

=
1

µ̃0[P̃t[1/ϕ]]
(µ̃0[P̃t[f/ϕ]]− η̃[f/ϕ])

+
η̃[f/ϕ]

η̃[1/ϕ]µ̃0[P̃t[1/ϕ]]
(η̃[1/ϕ]− µ̃0[P̃t[1/ϕ]])

� ϕ∨
∣∣∣µ̃0[P̃t[f/ϕ]]− η̃[f/ϕ]

∣∣∣ +
ϕ2
∨

ϕ∧
‖f‖∞

∣∣∣η̃[1/ϕ]− µ̃0[P̃t[1/ϕ]])
∣∣∣
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Taking the supremum of f ∈ F satisfying ‖f‖∞ � 1, it appears that

‖µt − ν‖tv �
((

ϕ∨
ϕ∧

)
+

(
ϕ∨
ϕ∧

)2
)∥∥∥µ̃0P̃t − η̃

∥∥∥
tv

� 2

(
ϕ∨
ϕ∧

)2 ∥∥∥µ̃0P̃t − η̃
∥∥∥

tv

which is worse than the bound of Theorem 1.1 by a factor ϕ∨/ϕ∧.

2.2. Proof of Theorem 1.2

Since Theorem 1.1 brings us back to the situation of convergence to equi-
librium of Markov processes, it is sufficient to use the argument of Fill [17])
for non-reversible processes. We recall them below for the sake of complete-
ness.

To gain a factor 2, it is in fact better not to use Theorem 1.1, but
to directly make a comparison between L2 quantities. More precisely, for
given µ0 ∈ P and t � 0, denote by ft (respectively f̃t) the density of the

probability µt with respect to ν (resp. µ̃t := µ̃0P̃t with respect to η̃). We
have by the Cauchy-Schwarz inequality,

‖µt − ν‖tv =
∑

x∈S
|ft(x)− 1| ν(x)

�
√
It

where

It :=
∑

x∈S
(ft(x)− 1)2 ν(x)

Let us also define

Ĩt :=
∑

x∈S
(f̃t(x)− 1)2 η̃(x)

It is easy to compare these quantities:

Lemma 2.4.— For any t � 0, we have

It �
(
ϕ∨
ϕ∧

)2

Ĩt
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Proof. — One recognizes in It the variance of ft with respect to ν, so that

It = inf

{∑

x∈S
(ft(x)− r)2 ν(x) : r ∈ R

}

Similarly we have

Ĩt = inf

{∑

x∈S
(f̃t(x)− r)2 η̃(x) : r ∈ R

}

The same arguments as those used in Lemma 2.2 give the conclusion without
difficulty. �

Putting together these estimates, we end up with

‖µt − ν‖tv � ϕ∨
ϕ∧

√
Ĩt (2.5)

To study the evolution of Ĩt with respect to the time t � 0, recall that

∀ x ∈ S, ∀ t � 0, ∂tf̃t(x) = L̃∗[f̃t](x)

This comes from the relation f̃t = P̃ ∗t [f̃0], where P̃ ∗t the adjoint operator of

P̃t in L2(η̃). Thus we get that for all t � 0,

∂tĨt = 2η̃[(f̃t − 1)∂tf̃t]

= 2η̃[(f̃t − 1)L̃∗[f̃t]]

= 2η̃[(f̃t − 1)L̃∗[f̃t − 1]]

= 2η̃[L̃[f̃t − 1](f̃t − 1)]

= 2η̃[L̃�[f̃t − 1](f̃t − 1)] (2.6)

By definition of λ̃, the r.h.s. is bounded above by −2λ̃Ĩt, which leads to the
ordinary differential inequality

∀ t � 0, ∂tĨt � −2λ̃Ĩt

Gronwall’s lemma implies that

∀ t � 0, Ĩt � exp(−2λ̃t)Ĩ0 (2.7)
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so it remains to bound Ĩ0 above. But note that

Ĩ0 = η̃[f̃2
0 ]− 1

� η̃[f̃2
0 ]

= µ̃0[f̃0]

�
∥∥∥f̃0

∥∥∥
∞

� 1

η̃∧

=
η[ϕϕ∗]

(ϕϕ∗η)∧

which, in conjunction with (2.5) and (2.7), lead to the bound of Theorem
1.2.

From

∀ x �= y, L̃∗(x, y) =
η̃(y)

η̃(x)
L̃(y, x)

=
ϕ∗(y)η(y)
ϕ∗(x)η(x)

L(y, x) (2.8)

we deduce that the matrix of the Markov generator L̃� is described by its
off-diagonal entries:

∀ x �= y ∈ S, L̃�(x, y) =
1

2

(
L(y, x)

ϕ∗(y)η(y)
ϕ∗(x)η(x)

+ L(x, y)
ϕ(y)

ϕ(x)

)

The Poincaré formulation (1.5) then comes from the variational characteri-
zation of the eigenvalues and from the equality

∀ g ∈ F , η̃[gL̃�[g]] = η̃[gL̃[g]]

already used in (2.6).

Remark 2.5.— Similarly to the lower bound in Theorem 1.1, we have
also in Lemma 2.4

∀ t � 0, It �
(
ϕ∧
ϕ∨

)2

Ĩt

In particular
√
It and

√
Ĩt have the same asymptotic exponential rate of

convergence. This common rate is the smallest real part of the non-zero
eigenvalues of −L̃, but since this operator is not assumed to be reversible,
this rate may be larger than λ̃.
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Remark 2.6. — It is possible to improve the pre-exponential factor√
η[ϕϕ∗]

(ϕϕ∗η)∧
ϕ∨
ϕ∧

in Theorem 1.2, but at the expense of the rate λ̃, via the

logarithmic Sobolev inequalities associated to the symmetrization L̃� of L̃.

Let α̃ > 0 be the largest constant such that for all g ∈ F ,

α̃
∑

x∈S
g2(x) ln

(
g2(x)

η̃[g2]

)
ϕ∗(x)ϕ(x)η(x) �

∑

x,y∈S
(g(y)− g(x))2 ϕ∗(x)ϕ(y)η(x)L(x, y) (2.9)

Then we have

sup
µ0∈P

‖µt − ν‖tv �
√

2 ln

(
η[ϕϕ∗]

(ϕϕ∗η)∧

)
ϕ∨
ϕ∧

exp(−(α̃/2)t) (2.10)

The proof of this bound has the same structure as the one of Theorem
1.2, with the quantities It and Ĩt replaced by the relative entropies

Jt :=
∑

x∈S
ft(x) ln(ft(x)) ν(x)

J̃t :=
∑

x∈S
f̃t(x) ln(f̃t(x)) η̃(x)

Indeed, Pinsker’s inequality gives the bound

‖µt − ν‖tv �
√

2
√
Jt

Next, taking into account the relations (see Holley and Stroock [19])

Jt = inf

{∑

x∈S
(ft(x) ln(ft(x))− ft(x) ln(r)− ft(x) + r) ν(x) : r ∈ R+

}

J̃t = inf

{∑

x∈S
(f̃t(x) ln(f̃t(x))− f̃t(x) ln(r)− f̃t(x) + r) η̃(x) : r ∈ R+

}

we deduce as in Lemma 2.2 that

∀ t � 0,
ϕ∧
ϕ∨

J̃t � Jt �
ϕ∨
ϕ∧

J̃t
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As a consequence, we get

∀ t � 0, ‖µt − ν‖tv �
√

2
ϕ∨
ϕ∧

√
J̃t

which reduces our task to the investigation of the time evolution of J̃t.

By differentiation, it appears that

∂tJ̃t =
∑

x∈S
(1 + ln(f̃t(x)))∂tf̃t(x) η̃(x)

=
∑

x∈S
(1 + ln(f̃t(x)))L̃∗[f̃t(x)] η̃(x)

=
∑

x,y∈S
(1 + ln(f̃t(x)))(f̃t(y)− f̃t(x)) η̃(x)L̃∗(x, y)

To proceed, note (cf. for instance Miclo [25]) that for all x, y ∈ S,

(1 + ln(f̃t(x)))(f̃t(y)− f̃t(x)) �

f̃t(y) ln(f̃t(y))− f̃t(x) ln(f̃t(x))−
(√

f̃t(y)−
√
f̃t(x)

)2

and that by invariance of η̃ with respect to L̃∗,

∑

x,y∈S

(
f̃t(y) ln(f̃t(y))− f̃t(x) ln(f̃t(x))

)
η̃(x)L̃∗(x, y) = 0

Thus we end up with the refined Jensen type bound:

∂tJ̃t � −
∑

x,y∈S

(√
f̃t(y)−

√
f̃t(x)

)2

η̃(x)L̃∗(x, y)

= −
∑

x,y∈S

(√
f̃t(y)−

√
f̃t(x)

)2

η̃(y)L̃∗(y, x)

= −
∑

x,y∈S

(√
f̃t(y)−

√
f̃t(x)

)2
ϕ∗(x)ϕ(y)η(x)

η[ϕ∗ϕ]
L(x, y)

where we used (2.8). The logarithmic Sobolev inequality (2.9), with g := ft,

allows comparison of the r.h.s. with J̃t to give the differential inequality

∀ t � 0, ∂tJ̃t � −α̃J̃t

– 988 –



On quantitative convergence to quasi-stationarity

Gronwall’s lemma implies again that

∀ t � 0, J̃t � exp(−α̃t)J̃0

� exp(−α̃t) ln((f̃0)∨)

� exp(−α̃t) ln(1/η̃∧)

The announced bound (2.10) follows.

Despite the deterioration of exponential rate in (2.10), this bound can
be interesting for not too large times t � 0, especially when one looks
for “quasi-mixing times”. Diaconis and Saloff-Coste [13] have shown the
following general bound between the logarithmic Sobolev constant α̃ and
the spectral gap λ̃:

α̃ � 1− 2η̃∧
ln(1/η̃∧ − 1)

λ̃ (2.11)

(where the factor on the r.h.s. is taken to be 1/2 in the particular case
where η̃∧ = 1/2). But this relation is not very pertinent for quasi-mixing
times estimates: if τλ̃ � 0 and τα̃ � 0 are the times t � 0 in Theorem 1.2
and (2.10) such that the corresponding upper bounds are equal to 1, we get

τλ̃ =
1

λ̃
(ln(ϕ∨/ϕ∧) + ln(1/η̃∧)/2)

τα̃ =
1

α̃
(ln(ϕ∨/ϕ∧) + ln(ln(1/η̃∧)) + ln(2))

and the injection of (2.11) leads to the disappointing τλ̃ � τα̃ for small
η̃∧ > 0. Indeed, the interest of (2.10) appears when one has good estimates
on α̃ (by tensorization for instance) and η̃∧ is very small. Simple examples
on product spaces are provided in Subsection 3.5. Nevertheless, we believe
that modified logarithmic Sobolev inequalities (see e.g. the article of Bobkov
and Tetali [4]), namely the consideration of the best constant α̂ > 0 such
that for all g ∈ F ,

α̂
∑

x∈S
g2(x) ln

(
g2(x)

η̃[g2]

)
ϕ∗(x)ϕ(x)η(x)

�
∑

x,y∈S
(|g(y)| − |g(x)|)(ln(|g(y)|)− ln(|g(x)|))ϕ∗(x)ϕ(y)η(x)L(x, y)

is better suited to the above entropic approach.

2.3. Proof of Theorem 1.3

Under the assumption that ν is reversible for L, we have that L∗ = L.
The equations for ϕ and ϕ∗ are thus the same and only the corresponding
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renormalizations are different. If follows that ϕ and ϕ∗ are proportional
and since only ratios enter the pre-exponential factor of Theorem 1.2, it
can be replaced by the pre-exponential factor of Theorem 1.3 (recall the
normalization η[ϕ2] = 1).

But the main advantage of Theorem 1.3 is the explicit rate λ2−λ1. It is
a consequence of the conjugacy relation (2.2). It shows first that L̃ must be
reversible with respect to η̃ (but this can also be checked directly from the

expressions (1.3) and (1.4)) and second that the spectrum of L̃ is obtained
from the spectrum of L− V by subtracting the value λ1. In particular the
spectral gap λ̃ of L̃� = L̃ is equal to λ2 − λ1.

Remarks 2.7.— (a) The fact that the spectrum of L̃ is obtained from
the spectrum of L−V by subtracting the value λ1 is always true, but in the
non-reversible case it is not clear how to use this possibly complex valued
spectrum to deduce a bound on λ̃. In the reversible situation Remark 2.5
can be made more precise: the common asymptotic exponential rate of

√
It

and

√
Ĩt is λ2 − λ1.

(b) The logarithmic Sobolev inequality approach is equally valid in the
reversible case, we get

sup
µ0∈P

‖µt − ν‖tv �
√

2 ln

(
1

(ϕ2η)∧

)
ϕ∨
ϕ∧

exp(−(α̃/2)t)

where α̃ is the logarithmic Sobolev constant associated to the symmetric
operator L̃ in η̃ (in particular (2.11) is satisfied with λ̃ replaced by λ2−λ1).

3. Examples

Several basic examples are provided here, which in particular serve to
illustrate some assertions made in the previous theoretical developments.

3.1. A finite birth and death example with λ1 ≈ λ2 − λ1

This example and the next two are birth and death processes on S̄ :=
[[0, N ]], with N ∈ N, absorbed in 0. So S = [[1, N ]], ∞ = 0 and L gives
positive rates only to the oriented edges (x, x + 1) and (x + 1, x) where
x ∈ [[1, N−1]]. In this one-dimensional setting, L admits a unique reversible
probability η. Let us assume that the killing rate at 1 is 1, namely V (1) =
L̄(1, 0) = 1. The other values of V are taken to be zero.
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Specifically for this example, we choose

∀ x ∈ [[1, N − 2]], L(x, x + 1) := L(x + 1, x) := 1 (3.1)

L(N − 1, N) = 1 and L(N,N − 1) = 2 (3.2)

(the value 2 simplifies the analysis of the reflection at N by replacing the
forbidden jump to N +1 by a supplementary jump at N−1). The reversible
probability η is then given by

∀ x ∈ S, η(x) =

{ 2
2N−1 , if x ∈ [[N − 1]]

1
2N−1 , if x = N

Let ϕ be the function defined by

∀ x ∈ S, ϕ(x) :=
1

Z
sin(πx/(2N)) (3.3)

where Z is the renormalization constant such that η[ϕ2] = 1. Due to the
value 2 in (3.2), it is easy to check that (L− V )[ϕ] = 2(cos(π/(2N))− 1)ϕ.
The positivity of ϕ and Perron-Frobenius theorem imply that ϕ is indeed
the function considered in the introduction and that

λ1 = 2(1− cos(π/(2N)))

The density of the quasi-invariant probability measure ν with respect to η
is proportional to ϕ.

More generally, define for k ∈ [[1, N − 1]], the function ϕk by

∀ x ∈ S, ϕk(x) := sin((2k + 1)πx/(2N))

By straightforward calculation, (L−V )[ϕk] = 2(cos((2k+1)π/(2N))−1)ϕk.
Thus the spectrum of L−V is {2(cos((2k+1)π/(2N))−1) : k ∈ [[0, N−1]]}.
In particular

λ2 − λ1 = 2(cos(π/(2N))− cos(3π/(2N))

= 4 sin(π/N) sin(π/(2N))

= 2
π2

N2
(1 +O(N−2))

as N goes to infinity. Since

λ1 =
π2

4N2
(1 +O(N−2))

in this situation λ1 and λ2−λ1 are of the same order, meaning that absorp-
tion and convergence to quasi-stationarity happen at similar rates.
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From (3.3), we deduce that

ϕ∨
ϕ∧

=
1

sin(π/(2N))

=
2N

π
(1 +O(N−2))

Taking into account the classical Riemann sum approximation, we further-
more get

Z2 =
2

2N − 1

∑

x∈[[1,N−1]]

sin2(πx/(2N)) +
1

2N − 1

= (1 +O(N−1))

∫ 1

0

sin2(πu/2) du

=
1

2
(1 +O(N−1))

The first bound of Theorem 1.3 asserts that

sup
µ0∈P

‖µt − ν‖tv � 4

π2
N5/2 exp

(
−2π2

N2
t(1 +O(N−2))

)
(1 +O(N−1))

(the second bound of Theorem 1.3, which doesn’t need the estimate on Z,
leads to a similar bound with 4 replaced by 4

√
2). It follows that for any

given s > 0, if

t =
5

4π2
N2 ln(N) +

s

2π2
N2

then

sup
µ0∈P

‖µt − ν‖tv � 4

π2
(1 +O(N−1)) exp(−s)

3.2. A finite birth and death example with λ1 � λ2 − λ1

The setting is as in the previous example, except that for some r > 1,
we replace (3.1) and (3.2) by

∀ x ∈ [[1, N − 2]],

{
L(x, x + 1) := r
L(x + 1, x) := 1

(3.4)

L(N − 1, N) = r and L(N,N − 1) = 1 + r (3.5)

The reversible probability η is then given by

∀ x ∈ S, η(x) =

{
r2−1

2rN−r−1
rx−1 , if x ∈ [[N − 1]]

r−1
2rN−r−1

rN−1 , if x = N
(3.6)
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Contrary to the previous example, it seems more difficult to derive explicit
formulas for the eigenvalues and eigenfunctions associated to L − V . To
describe them, consider the rational fraction in X,

PN (X) :=
X2(N+1) −X2N + r1−NX2 − r−N−1

X2 − r−1

Lemma 3.1.— For N � 1, PN is a polynomial which admits 2N distinct
zeros. Denote by R the set of zeros.

Let Λ be the image of R by the mapping

Ψ : ρ �→ (1 + r)ρ− 1− rρ2

ρ

For N > (1 + r)/(r− 1), the spectrum of V −L is Λ and for any λ ∈ Λ, an
associated eigenfunction ϕλ is defined by

∀ x ∈ S, ϕλ(x) := ρx+ − ρx−

where

ρ± :=
1

2r
(r + 1− λ±

√
(λ− 1− r)2 − 4r) (3.7)

(with
√· standing for the principal value of the complex square root) are the

reciprocal images of λ by Ψ.

Proof. — Let λ be an eigenvalue of V −L and ϕ be an associated eigenfunc-
tion on S. With the convention that ϕ(0) = 0, the values of ϕ satisfy the
recursive formula

∀ x ∈ [[1, N − 1]], ϕ(x + 1) =
(1 + r − λ)ϕ(x)− ϕ(x− 1)

r
(3.8)

It follows that on [[1, N ]], ϕ is necessarily proportional to the functions ϕλ

defined above, where ρ± are the solutions of the quadratic equation in X,

rX2 + (λ− 1− r)X + 1 = 0 (3.9)

except if this equation admits a double solution ρ∗, in which case ϕ must
be proportional to the function ϕ∗ defined by

∀ x ∈ S, ϕ∗(x) := xρx∗

Whatever the case, we have that

∀ x ∈ [[1, N − 1]], (L− V )[ϕ](x) = −λϕ(x)
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This relation is also satisfied at x = N if and only if ϕ(N+1) = ϕ(N−1) (as
in the previous example, this justifies the simplifying choice of L(N,N−1) =
1 + r).

• Let us first consider the situation where (3.9) admits a double solution.
One computes immediately that this corresponds to λ = (1 ± √r)2 and
ρ∗ = ∓1/

√
r. The condition ϕ∗(N + 1) = ϕ∗(N − 1) is equivalent to ρ∗ =

±
√

(N − 1)/(N + 1). The assumption N > (1 + r)/(r − 1) forbids that√
(N + 1)/(N − 1) =

√
r, so that we are led to a contradiction. Only the

next case is possible.

• Assume that (3.9) has two distinct solutions ρ+ and ρ−, they are given
in the statement of the above lemma. The condition ϕ(N + 1) = ϕ(N − 1)
amounts to

ρN+1
+ − ρN−1

+ − ρN+1
− + ρN−1

− = 0

But from (3.9) we see that ρ− = 1/(rρ+), so ρ+ is a solution of

X2(N+1) −X2N + r1−NX2 − r−N−1 = 0

This equation admits two obvious solutions, X = 1/
√
r and X = −1/

√
r, so

that PN is indeed a polynomial. But these values are not allowable for ρ+,
because we would have ρ+ = ρ−. It follows that ρ+ is a root of PN . Note
that if ρ ∈ C is a root of PN , the same is true for 1/(rρ) and that 1/

√
r and

−1/
√
r are the only fixed points of the involutive mapping ξ : C \ {0} �

ρ �→ 1/(rρ). As a consequence, we can group the roots of PN by pairs stable
by ξ, say {ρ1, ξ(ρ1)}, {ρ2, ξ(ρ2)}, ..., {ρN , ξ(ρN )}. Moreover, notice that the
mapping Ψ defined in the above lemma is constant on each of these pairs,
so that the cardinality of Λ := Ψ(R) is at most N . But it appears from
(3.9) and from the previous discussion that all the eigenvalues of V −L are
elements of Λ. From (3.8) we deduce that all the eigenvalues of V − L are
simple and since by reversibility V − L is known to be diagonalizable, it
follows V −L admits N distinct eigenvalues. Thus Λ must be of cardinality
N and exactly consists of the eigenvalues of V − L. It is interesting to
remark that it is relatively difficult to check directly that all the ρ1, ρ2, ...,
ρN are different, or equivalently that all the roots of PN are distinct (try to
compute its discriminant). �

By the Perron-Frobenius theorem, the smallest eigenvalue λ1 of V −L is
characterized by the fact that the associated eigenfunction has a fixed sign.
This observation in conjunction with Lemma 3.1 lead to

Proposition 3.2.— For large N we have

λ1 ∼ 1

2
(r + 1)(r − 1)2

1

rN+1
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moreover, if ϕ is an associated eigenvector,

ϕ∨
ϕ∧

=
r

r − 1
(1 +O(r−N ))

Proof. — With the notation of Lemma 3.1, we have ρ+ρ− = 1/r (recall
(3.9)). So if ρ+ > 0, then we get 0 < ρ− < ρ+. It follows that the mapping
R∗+ � u �→ ρu+ − ρu− does not vanish and in particular ϕλ only takes posi-
tive values. By consequence, the corresponding λ ∈ Λ is the first Dirichlet
eigenvalue λ1. To work out this program, we begin by showing that for N
large enough, there exists ρ1 ∈ R ∩ R+ satisfying

1

r2
� ρ2

1 �
1

r2
+

1

rN+1
(3.10)

It is enough to show that there exists ρ1 ∈ [1/r,
√

1/r2 + r−1−N ] such that

Q(ρ2
1) := ρ

2(N+1)
1 − ρ2N

1 + r1−Nρ2
1 − r−N−1 = 0 (3.11)

Write h1 = rN+1(ρ2
1 − 1/r2) and for all h � 0,

f(h) := r2NQ

(
1

r2
+

h

rN+1

)

=

(
1 +

h

rN−1

)N (
1

r2
− 1 +

h

rN+1

)
+ h

we just need to check that f(0) � 0 and f(1) � 0. The former inequal-
ity is immediate and the latter one is satisfied for N large enough, since
limN→∞ f(1) = 1/r2.
Next, injecting the a priori bound (3.10) in (3.11), it follows that

lim
N→∞

h1 = 1− 1

r2

Replacing ρ1 =
√
r−2 + (1− r−2)r−(N+1)(1 + ◦(1)) = r−1+(1−r−2)r−N (1/2+

◦(1)) in

λ1 =
(1 + r)ρ1 − 1− rρ2

1

ρ1

we deduce the first announced behavior. Let ρ1− and ρ1+ be the correspond-
ing values of ρ− and ρ+, from ρ1−ρ1+ = 1/r, we obtain

ρ1− = ρ1 =
1

r
+O(r−N ) and ρ1+ = 1 +O(r−N ) (3.12)
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Taking into account the expression of ϕ := ϕλ1
given in Lemma 3.1, we get

ϕ∨
ϕ∧

=
ϕ(N)

ϕ(1)

=
ρN1+ − ρN1−
ρ1+ − ρ1−

=
r

r − 1
(1 +O(r−N ))

�

To be in position to use Theorem 1.3, it remains to evaluate λ2 − λ1.

From the previous proof, it appears there is only one eigenvalue λ ∈ Λ
such that ρ− > 0. Moreover there is at most one eigenvalue λ ∈ Λ such
that ρ− < 0. Indeed, in this case we have ρ− < ρ+ < 0 and it follows from
Lemma 3.1 that ϕλ(x) > 0 for x ∈ S odd and ϕλ(x) < 0 for x ∈ S even, in
particular ϕλ has the maximal number of sign changes. The discrete version
of Sturm’s theorem (see for instance Miclo [26]) then implies that λ must
be λN , the largest eigenvalue of V −L. Since R is symmetrical with respect
to zero, −ρ1− and −ρ1+ (with the notation of (3.12)) also belong to R and
this leads to the estimate

λN = 2(1 + r) +O(r−N )

The previous arguments show that except for ρ1−, ρ1+, −ρ1− and −ρ1+,
all the other elements of R are complex numbers which are not real. It follows
from Lemma 3.1 that for λ ∈ Λ \ {λ1, λN},

(λ− 1− r)2 − 4r < 0

so that

λ > 1 + r − 2
√
r = (1−√r)2

In particular, for N > 2, we get

λ2 > (1−√r)2

and as announced, for N large,

λ2 − λ1 ∼ λ2 � λ1

meaning that convergence to quasi-stationarity happens at a much faster
rate than absorption.
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Theorem 1.3 shows that for any t � 0,

sup
µ0∈P

‖µt − ν‖tv �

�

√
2rN − r − 1

r2 − 1

(
r

r − 1

)2

(1 +O(r−N )) exp
(
−(1−√r +O(r−N ))2t

)

�

√
rN

r − 1

(
r

r − 1

)2

(1 +O(r−N )) exp
(
−(1−√r +O(r−N ))2t

)

(where O(r−N ) is with respect to N , uniformly in t � 0). It follows that for
any fixed s � 0, if for N large enough we consider the time

t :=
1

2(1−√r)2 (ln(r)N + 2s)

then

sup
µ0∈P

‖µt − ν‖tv � r2

(r − 1)5/2
(1 + ◦(1)) exp(−s)

Notice that the relaxation time to quasi-stationarity needs to be at least of
order N , since it is already the order of time required by the semi-group
associated to L̃ to get from 1 to N , which supports a non-negligible part
of η̃ (but starting from N , it can be shown that the relaxation time to
quasi-stationarity is bounded independently from N , using Theorem 1.1
and Proposition 3.2).

3.3. A finite birth and death example with λ1 � λ2 − λ1

The setting is as in the previous example, except that r < 1 in (3.4) and
(3.5).

The beginning of Subsection 3.2 is still valid: the reversible probability
η is given by (3.6) and Lemma 3.1 is true, without the condition N >
(1 + r)/(r − 1), which is now void. The difference starts with Proposition
3.2, which must be replaced by

Proposition 3.3.— For N � 4, we have

(1−√r)2 + 4
√
r sin2((1− r)/(4N + 4)) � λ1 � (1−√r)2 + 4

√
r sin2(π/(2N))

(1−√r)2 + 4
√
r sin2(π/(2N)) � λ2 � (1−√r)2 + 4

√
r sin2(π/N)

Furthermore, if ϕ is an eigenvector associated to λ1, we have

ϕ∨
ϕ∧

� r−(N−1)/2 1

sin((1− r)/(2N + 2))
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Proof. — First we show that none of the roots of PN is a real number.
Consider the function

f : R+ � x �→ xN+1 − xN + r1−Nx− r−N−1

According to the arguments of Lemma 3.1, it is sufficient to show that f only
vanishes at 1/r. Its second derivative is given by f ′′(x) = (N + 1)NxN−1 −
N(N − 1)xN−2, for x � 0. Thus f ′′ is negative on (0, (N − 1)/(N + 1)) and
positive on ((N − 1)/(N + 1),+∞). Furthermore, we compute that

f ′
(
N − 1

N + 1

)
= −

(
1− 2

N + 1

)N−1

+ r1−N

This quantity is positive for N � 2. Thus f is increasing on (0,+∞) and
can only vanish at 1/r.

Since we know that the roots of PN are given by (3.7) for λ ∈ Λ ⊂ R,
we deduce that

∀ λ ∈ Λ, (λ− 1− r)2 < 4r

It follows that the modulus of ρ± in (3.7) is given by 1/
√
r, independently

of λ ∈ Λ. More precisely, there exists a set Θ ⊂ (0, π), such that the roots
of PN are given by

{
1√
r

exp(±iθ) : θ ∈ Θ

}

By using the mapping Ψ of Lemma 3.1, we get that the spectrum of L is

Λ = {l(θ) := 1 + r − 2
√
r cos(θ) : θ ∈ Θ}

and that corresponding eigenvectors are given by

∀ x ∈ [[1, N ]], ϕθ(x) = r−x/2 sin(θx) (3.13)

for θ ∈ Θ (note the slight modification of notation with respect to Lemma
3.1, indexing by elements of Θ instead of Λ). Ordering Θ into 0 < θ1 < θ2 <
· · · < θN < π, it appears that

λ1 = l(θ1) and λ2 = l(θ2) (3.14)

From [26], we deduce that ϕθ1 is non-decreasing and that ϕθ2 changes sign
once (more generally ϕθk changes sign k − 1 times, for k ∈ [[1, N ]]). This
remark and (3.13) lead to the bounds

θ1 � π/N and π/N � θ2 � 2π/N (3.15)
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Taking into account that

∀ θ ∈ Θ, l(θ) = (1−√r)2 + 2
√
r(1− cos(θ))

= (1−√r)2 + 4
√
r sin2(θ/2)

and that sinus is positive and increasing on (0, π/2), we get that for N � 4,

λ1 � (1−√r)2 + 4
√
r sin2(π/(2N))

(1−√r)2 + 4
√
r sin2(π/(2N)) � λ2 � (1−√r)2 + 4

√
r sin2(π/N)

To obtain a lower bound of the same kind for λ1, recall that the elements
θ ∈ Θ satisfy the equation

1

rN+1
exp(i2(N + 1)θ)− 1

rN
exp(i2Nθ) +

1

rN
exp(i2θ)− 1

rN+1
= 0 (3.16)

and in particular g(θ) = 0, where the mapping g is defined by

∀ θ ∈ R, g(θ) := sin(2(N + 1)θ)− r sin(2Nθ) + r sin(2θ)(3.17)

One computes that g′(0) = 2N(1− r) + 2 + 2r and that

∀ θ ∈ R, |g′′(θ)| � 8(N + 1)2 (3.18)

By consequence, the first zero of g after 0 is larger than (2N(1 − r) + 2 +
2r)/(4(N + 1)2) and in particular

θ1 � 2(1− r)(N + 1)

4(N + 1)2

=
1− r

2(N + 1)
(3.19)

leading to the announced lower bound on λ1.

Furthermore, if ϕ := ϕθ1 , we have

ϕ∨
ϕ∧

=
ϕθ1(N)

ϕθ1(1)

� r−(N−1)/2 1

sin(θ1)

� r−(N−1)/2 1

sin((1− r)/(2N + 2))

�
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Working for fixed r ∈ (0, 1) in the asymptotic N →∞, we deduce that

(1−√r)2 +

√
r(1− r)2

4

1

N2
(1 + ◦(1)) � λ1 � (1−√r)2 +

π2
√
r

N2
(1 + ◦(1))

(1−√r)2 +
π2
√
r

N2
(1 + ◦(1)) � λ2 � (1−√r)2 +

4π2
√
r

N2
(1 + ◦(1))

and

ϕ∨
ϕ∧

� 2N

(1− r)r(N−1)/2
(1 + ◦(1))

In particular, we get

λ2 − λ1 � 16π2 − (1− r)2

4N2

√
r(1 + ◦(1))

λ1 ∼ (1−√r)2

and, as announced, for N large,

λ2 − λ1 � λ1

meaning that absorption happens at a much faster rate than convergence
to quasi-stationarity.

To exhibit a quantitative estimate for the latter convergence, we need a
lower bound on λ2 − λ1.

Lemma 3.4.— For N large enough, we have

λ2 − λ1 � (1− r)2
√
r

2N2
(1 + ◦(1))

Proof. — With the notation of the proof of Proposition 3.3, let us begin by
obtaining a lower bound on θ2 − θ1. Considering the function g defined in
(3.17), θ2 is larger than the zero of g following θ1. We have

g′(θ1) := 2(N + 1) cos(2(N + 1)θ1)− r2N cos(2Nθ1) + 2r cos(2θ1)

From (3.16), we also obtain

cos(2(N + 1)θ1)− r cos(2Nθ1) + r cos(2θ1)− 1 = 0

so that

g′(θ1) = 2N(1− r cos(2θ1)) + 2 cos(2(N + 1)θ1) + 2r cos(2θ1)

� 2N(1− r)− 2(1 + r)
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Taking into account (3.18), we deduce that

θ2 − θ1 � N(1− r)− (1 + r)

2(N + 1)2

=
1− r

2N
(1 + ◦(1))

Next, we have (recall (3.15)),

− cos(θ2) � − cos(θ1) + min
θ∈[θ1,θ2]

sin(θ)(θ2 − θ1)

= − cos(θ1) + (1 + ◦(1))θ1(θ2 − θ1)

� − cos(θ1) +
1− r

2(N + 1)

1− r

2N
(1 + ◦(1))

where we used (3.19). The announced bound is now a consequence of (3.14).
�

Putting together the previous estimates, with η∧ ∼ (1− r)rN−1/(r+1),
we get

sup
µ0∈P

‖µt − ν‖tv�
4
√
r + 1N2

(1− r)5/2r3(N−1)/2
(1 + ◦(1)) exp

(
− (1− r)2

√
r

2N2
(1 + ◦(1))t

)

In particular, for any given ε > 0, if we consider

tN := 4(1 + ε)
N2 ln(N)

(1− r)2
√
r

then

lim
N→∞

sup
µ0∈P

‖µtN − ν‖tv = 0

3.4. A non-reversible example

Let N ∈ N be fixed. We consider S̄ = S 
 {∞}, with S = ZN . The
generator L̄ allows with rate 1 jumps adding 1 in ZN and a jump at rate 1
from 0 ∈ ZN to ∞, the absorbing point. Namely, the generator L is given
by

∀ x, y ∈ ZN , L(x, y) :=





1 , if y = x + 1
−1 , if y = x
0 , otherwise

whose invariant probability measure η is the uniform distribution. The po-
tential V takes the value 1 at 0 and 0 otherwise. The spectral decomposition
of the highly non-reversible operator L− V is given by:
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Lemma 3.5.— Let C be the set of (complex) solutions of the equation
XN + XN−1 − 1 = 0. Its cardinality is N (i.e. all the solutions of the
equation are distinct), the set of eigenvalues of L−V is {c−1 : c ∈ C} and
corresponding eigenvectors are given by the functions ϕc, for c ∈ C, defined
by

∀ x ∈ [[0, N − 1]], ϕc(x) :=

{
1 , if x = 0
cx−N , otherwise

(where ZN is naturally identified with [[0, N − 1]]).

Proof. — We begin by checking that all the roots of the polynomial XN +
XN−1−1 are simple. Indeed, if c ∈ C had multiplicity at least two, it would
also satisfy NcN−1 + (N − 1)cN−2 = 0, namely c = (1−N)/N (because 0
does not belong to C). The equation cN + cN−1 = 1 could then be rewritten

1

N

(
1−N

N

)N−1

= 1

but this is impossible, because the absolute value of the l.h.s. is strictly less
than 1.

Next we compute that for c ∈ C,

∀ x ∈ ZN , L[ϕc](x) =

{
c1−N − 1 , if x = 0
(c− 1)ϕc(x) , otherwise

Note that

c1−N − 1 = c1−N − c + (c− 1)ϕc(0)

= 1 + (c− 1)ϕc(0)

= V (0)ϕc(0) + (c− 1)ϕc(0)

Thus it appears that on ZN ,

(L− V )[ϕc] = (c− 1)ϕc

which is the wanted result, since we have exhibited exactly N eigenvalues.
�

Necessarily C contains some real numbers, due to the Perron-Frobenius
theorem which asserts that the smallest eigenvalue λ1 of V − L satisfies

λ1 = 1−max{c : c ∈ C ∩ R}
By the strong irreversibility of L, the set C ∩R is in fact very restricted, an
observation which enables easy deduction of the asymptotic behavior of λ1

for N large:
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Lemma 3.6.— If N is odd, C ∩ R = {1 − λ1} and if N is even, C ∩ R
consists of two points. In both cases, C ∩R+ = {1− λ1} and we have for N
large

λ1 ∼ ln(2)

N

Proof. — Consider the function

g : R � x �→ xN + xN−1 − 1

The study of its variations leads to the two first announced results by differ-
entiating it twice. Indeed, if N is odd, g is increasing on (−∞, (1−N)/N),
decreasing on ((1 − N)/N, 0) and increasing on (0,+∞). As was already
seen in the proof of the previous lemma, g((1 − N)/N) < 0, so that g
admits a unique real root contained in (0,+∞). For N even, g is de-
creasing on (−∞, (1 − N)/N) and increasing on ((1 − N)/N,+∞). Since
g((1−N)/N) < 0 and lim±∞ g = +∞, g admits two real roots, the largest
one being the unique one belonging to (0,+∞), since g(0) = −1.

Let y > 0 be given and for N > y consider xN = 1 − y/N . It appears
that

lim
N→∞

g(xN ) = 2 exp(−y)− 1

It follows that the unique root cN of g in (0,+∞) satisfies for N large

cN − 1 ∼ − ln(2)

N

which amounts to the last announced result. �

Let ϕ = ϕ1−λ1
, with the notation of Lemma 3.5, be an eigenvector

associated to λ1. We have, for N large

ϕ∨
ϕ∧

=
ϕ(1)

ϕ(0)

= (1− λ1)
1−N

∼ exp(ln(2)) = 2

In addition, note that L∗, the dual operator of L in L2(η), is given by

∀ x, y ∈ ZN , L∗(x, y) :=





1 , if y = x− 1
−1 , if y = x
0 , otherwise
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It corresponds to the conjugation of L with the involutive transformation of
ZN given by ι : ZN � x �→ −x (or [[1, N − 1]] � x �→ N −x and ι(0) = 0). It
follows that the function ϕ∗ considered in the introduction is proportional
to ϕ◦ ι, so that the mapping ϕϕ∗ is constant. In particular the probability η̃
defined in (1.4) is equal to η, the uniform distribution on ZN . Furthermore,

we compute that the generator L̃ defined in (1.3) is given by

∀ x, y ∈ ZN , L̃(x, y) :=





(1− λ1) , if x �= 0 and y = x + 1
−(1− λ1) , if x �= 0 and y = x
(1− λ1)

1−N , if x = 0 and y = 1
−(1− λ1)

1−N , if x = 0 and y = 0
0 , otherwise

Its additive symmetrization L̃� in L2(η) gives the rate (1 − λ1)/2 to any
oriented edge (x, x + 1) or (x + 1, x) of ZN , except to the edges (0, 1) and
(1, 0), which have the rate (1 − λ1)

1−N/2. By comparison with the usual

continuous-time random walk on ZN , we deduce that the spectral gap λ̃ of
L̃� satisfies

(1− cos(2π/N))(1− λ1) � λ̃ � (1− cos(2π/N))(1− λ1)
1−N

namely, asymptotically for N large,

2π2

N2
(1 + ◦(1)) � λ̃ � 4π2

N2
(1 + ◦(1))

Relying on (1.6), we would have obtained

λ̃ � 1 + ◦(1)

4
λ

where λ is the spectral gap of the additive symmetrization of L in L2(η),
which is the usual continuous-time random walk on ZN , so that λ ∼ 2π2/N2.

Thus it only leads to a slight deterioration on the estimate of λ̃ obtained by
working directly with (1.5).

For large N , Theorem 1.2 leads to

sup
µ0∈P

‖µt − ν‖tv � 2
√
N(1 + ◦(1)) exp

(
2π2

N2
(1 + ◦(1))t

)

In particular, for any given ε > 0, if we consider

tN := (1 + ε)
N2 ln(N)

4π2

then

lim
N→∞

sup
µ0∈P

‖µtN − ν‖tv = 0
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3.5. A product example

Let us first come back to the general setting of the introduction (which
is then tensorized). Let d ∈ N, be given. On Sd, consider the Markovian
generator

L(d) :=
1

d

∑

k∈[[1,d]]

Lk

where Lk acts like L on the k-th coordinate of Sd. Define furthermore the
potential V (d) by

∀ x := (x1, ..., xd) ∈ Sd, V (d) :=
1

d

∑

k∈[[1,d]]

V (xk)

Note that the associated L̄(d) is not of the form (1/d)
∑

k∈[[1,d]] L̄k, because

the underlying state space would be (S̄)d and not Sd 
 {∞} as it should
be. One recovers the subMarkovian generator L(d) − V (d) by modifying
(1/d)

∑
k∈[[1,d]] L̄k so that all the points of {x := (x1, ..., xd) ∈ (S̄)d : ∃ k ∈

[[1, d]] with xk = ∞} become absorbing.

The invariant measure η(d) associated to L(d) is η⊗d and we have

L(d) − V (d) =
1

d

∑

k∈[[1,d]]

(L− V )k

It appears in particular that the first eigenvalue of V (d) − L(d) is λ1, the
same as that of V −L and the associated quasi-stationary distribution (re-

spectively first eigenfunction) is ν⊗d (resp. ϕ⊗d). It follows that L̃(d), the
Doob transform of L(d) − V (d) by ϕ⊗d, satisfies

L̃(d) =
1

d

∑

k∈[[1,d]]

L̃k

and that its invariant probability η̃(d) is η̃⊗d. In a similar way, we have that

L∗(d) =
1

d

∑

k∈[[1,d]]

L∗k

and the first eigenvector of −L∗(d) is (ϕ∗)⊗d. Finally L̃�(d), the additive

symmetrization of L̃(d) in L2(η̃⊗d), is equal to (1/d)
∑

k∈[[1,d]] L̃
�
k, so that its

spectral gap λ̃ (respectively its logarithmic Sobolev constant α̃) is equal to
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that of L̃� (for such tensorization properties, see for instance the book [1]
of Ané et al.).

With obvious notation, Theorem 1.2 then leads to the fact that for any
t � 0, we have

sup
µ

(d)
0 ∈P(d)

∥∥∥µ(d)
t − ν⊗d

∥∥∥
tv
�

(√
η[ϕϕ∗]

(ϕϕ∗η)∧

ϕ∨
ϕ∧

)d

exp(−λ̃t)

Under the reversibility condition of Theorem 1.3, we get that for any t � 0,

sup
µ

(d)
0 ∈P(d)

∥∥∥µ(d)
t − ν⊗d

∥∥∥
tv
�

(√
1

η∧

(
ϕ∨
ϕ∧

)2
)d

exp(−(λ2 − λ1)t)(3.20)

The bound (2.10) can be rewritten in the form

sup
µ

(d)
0 ∈P(d)

∥∥∥µ(d)
t − ν⊗d

∥∥∥
tv
�

√
2d ln

(
η[ϕϕ∗]

(ϕϕ∗η)∧

) (
ϕ∨
ϕ∧

)d

exp(−(α̃/2)t)

or under the reversibility condition,

sup
µ

(d)
0 ∈P(d)

∥∥∥µ(d)
t − ν⊗d

∥∥∥
tv
�

√
2d ln

(
1

η∧ϕ2
∧

) (
ϕ∨
ϕ∧

)d

exp(−(α̃/2)t)(3.21)

It is easy to construct an example showing that (3.21) can lead to a
better estimate than (3.20). Take

S := {1, 2}, L :=

(
−1 1
1 −1

)
, V :=

(
1
1

)

for which ϕ ≡ 1, η = (1/2, 1/2), λ2 − λ1 = 2 and α̃ = 1 (recall the con-
vention after (2.11), which is an equality in this two-points case, see Dia-
conis and Saloff-Coste [13]). The r.h.s. of (3.20) and (3.21) are respectively
2d/2 exp(−2t) and

√
2d ln(2) exp(−t/2). The first bound leads to a mixing

time (the first time t > 0 the quantity sup
µ

(d)
0 ∈P(d)

∥∥∥µ(d)
t − ν⊗d

∥∥∥
tv

goes be-

low a fixed level such as 1) of order d, while the second bound rather gives
order ln(d).
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For a little less artificial example, one can come back to Subsection 3.3,
with N = 2 and r > 0 very small. Indeed, one computes that

λ2 − λ1 = 2
√
r(1 + r)

ϕ∨
ϕ∧

=

√
1− r

r

η∧ =
r

1 + r

η̃∧ =
1− r

2

It follows from (2.11) that for 0 < r � 1,

α̃ � r

ln((1 + r)/(1− r))
(λ2 − λ1)

∼ λ2 − λ1

2

For r > 0 small, we get from (3.20) and (3.21) that the leading term in
d ∈ N in the deduced upper bounds on the mixing time are respectively
3d/(4

√
r) ln(1/r) and d/(2

√
r) ln(1/r), showing thus a little advantage for

the estimate coming from (3.21).

4. Some discrete time models

Of course the theory can be developed in discrete time as well. We briefly
carry this out here and treat some higher dimensional examples where all
the spectral information is available. Let S̄ := S 
 {∞} be the extended
state space with ∞ the absorbing state. Denote by N the cardinality of S.
The transition matrix Q̄ can be written

Q̄ =




1 0 · · · 0
a1

... Q

aN




with Q an N ×N matrix, here assumed to be irreducible. Let ψ and ϕ be
positive left and right eigenvectors of Q with eigenvalue β > 0 of largest
size. Set

∀ x, y ∈ S, K(x, y) := Q(x, y)
ϕ(y)

βϕ(x)
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This is a Markov transition matrix on S with stationary distribution π given
by

∀ x ∈ S, π(x) :=
ϕ(x)ψ(x)∑
y∈S ϕ(y)ψ(y)

It has the probabilistic interpretation of the transition probabilities for
the original chain conditioned on non-absorption (for all time). The quasi-
stationary distribution is given by

∀ x ∈ S, ν(x) :=
ψ(x)∑
y∈S ψ(y)

observe that the ratio r := ϕ∨/ϕ∧ allows the bounds

∀ x ∈ S, r−1ν(x) � π(x) � rν(x)

If Q above is diagonalizable, with right eigenfunctions (fi)i∈[[N ]] and
left eigenfunctions (gi)i∈[[N ]] for eigenvalues (βi)i∈[[N ]], normalized so that∑

x∈S gi(x)fj(x) = δi,j for any i, j ∈ [[N ]], then

∀ l ∈ Z+, ∀ x, y ∈ S, Ql(x, y) =

N∑

k=1

βl
kfk(x)gk(y)

thus

P [Xl = y|X0 = x, T > l] =
Ql(x, y)

Ql(x)

with Ql(x) =
∑

y∈S Q
l(x, y) and where (Xn)n∈Z+

is the underlying absorb-
ing Markov chain and T is its absorbing time.

The argument for Theorem 1.1 works in the discrete case just as well.
With notation as above, it shows for any starting state x,

∀ l ∈ Z+,
ϕ∧
2ϕ∨

∥∥Kl(x, .)− π
∥∥

tv
�

∥∥Ql(x, .)− ν
∥∥

tv
� 2ϕ∨

ϕ∧

∥∥Kl(x, .)− π
∥∥

tv

Explicit diagonalizations are available surprisingly often. For example,
for a birth and death chain on {0, 1, ..., 2N}, symmetric with respect to
N , take the starting point to be zero and the absorbing point to be N . If
(ϕi)i∈[[0,2N ]] are the right eigenvectors of the original chain, often available
as orthogonal polynomials, ϕ1, ϕ3, ..., ϕ2N−1 all vanish at N and so restrict
to the needed (fi)i∈[[N ]]. Because birth and death chains are reversible, these
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determine the family (gi)i∈[[N ]] and the ingredients for analysis are available.
The Ehrenfest urn and the example at the end of this section are two cases
where we have carried this approach out to get sharp answers (matching
upper and lower bounds for convergence to quasi-stationarity). It is only
fair to report that the analysis involved can require substantial effort.

4.1. Example of rock breaking

In this example the matrix Q is not irreducible, nevertheless the above
results can be applied, because the function ϕ is (strictly) positive. To justify
this observation, for ε ∈ (0, 1), replace Q by (1− ε)Q + εJ , where J has all
its entries equal to 1/N , apply the previous results and let ε go to zero.

Let n ∈ N be given and S̄ := P(n), the set of all partitions of n. Thus if
n = 4, S̄ = {4, 31, 22, 211, 1111}. An absorbing Markov chain on S̄, modeled
on a rock breaking Markov chain studied by Kolmogorov, is developed in
Diaconis, Pang and Ram [11]. Briefly, if λ = (λ1, λ2, ..., λl), with λ1 � λ2 �
· · · � λl > 0, λ1 + · · ·+λl = n, the chain proceeds from λ by independently

choosing, for i ∈ [[1, l]], binomial variables λ
(1)
i of parameters (λi, 1/2), so

that we can write λi λ
(1)
i + λ

(2)
i . Next, after discarding any zeros and

reordering the λ
(1)
i , λ

(2)
i , for i ∈ [[1, l]], we get the new position of the chain.

It is absorbing at (1n). The natural starting place is (n).

In [11], the eigenvalues are shown to be 1, 1/2, 1/4, ..., 1/2n, with 1/2n−l

having multiplicity p(n, l), the number of partitions of n into l parts. In
particular the second eigenvalue is 1/2, with multiplicity 1. The eigenvectors
are given explicitly and these restrict to give explicit left and right eigenbases
of Q. With notation as above, for β = 1/2, for all λ = (λ1, λ2, ..., λl) ∈ P(n),

ϕ(λ) =
∑

i∈[[1,l]]

(
λi
2

)

ψ(λ) =

{
1 , if λ = (1n−2, 2)
0 , otherwise

Thus ϕ∨/ϕ∧ =
(
n
2

)
/1 =

(
n
2

)
. When n = 4, the original transition matrix is

14 122 22 13 4
14

122
22

13
4




1 0 0 0 0
1/2 1/2 0 0 0
1/4 1/2 1/4 0 0
0 3/4 0 1/4 0
0 0 3/8 1/2 1/8



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The left (right) eigenvectors are given as the rows (columns) of the two
arrays




1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 0 1 0
1 6 3 4 1







1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
2 −3 0 1 0
−6 12 −3 −4 1




So ψ = (1, 0, 0, 0), ϕ = (1, 2, 3, 6)t. The adjusted transition matrix K is
given by

122 22 13 4
122
22

13
4




1 0 0 0
1/2 1/2 0 0
1/2 0 1/2 0
0 1/4 1/2 1/4




The reader may check that discarding the top row and first column of the
eigenvector arrays gives the eigenvectors of K.

In this example the quasi-stationary distribution ν is the stationary dis-
tribution π of K, both are the Dirac mass at 1n−22. The chain K is itself
absorbing. This rock breaking chain is a special case of a host of explicitly
diagonalizable Markov chains derived from Hopf algebras [11]. Some other
algebraic constructions leading to explicit quasi-stationary calculations may
be found in Defosseux [8] (fusion coefficients and random walks in alcoves
of affine Lie algebras). Symmetric function theory, in various deformations
(Sekiguchi-Debiard operators) leads to further explicit diagonalizations in
the work of Jiang [22]. Turning either of these last sets of examples into
sharp bounds seems like a fascinating research project.

4.2. Geometric theory

The basic path arguments of Holley and Stroock [19], Jerrum and Sinclair
[20] and Diaconis and Stroock [16] can be applied to absorbing chains. This
was done in a sophisticated context in Miclo [27]. The following paragraph
develops a simple version in the discrete context. Let S be a finite set, ∞
an absorbing point and Q̄ a Markov chain on S̄ := S 
{∞}. We suppose as
above that the chain is absorbing with probability one and that the chain re-
stricted to S is connected. Suppose that q is a probability on S and consider
L2(q) endowed with its usual inner product 〈f, g〉q :=

∑
x∈S f(x)g(x)q(x),

for f, g ∈ L2(q). Suppose too that q(x)Q̄(x, y) = q(y)Q̄(y, x) for x, y ∈ S.
When needed, define q(∞) = 0 and the functions from L2(q) are extended
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on S̄ by making them vanish at ∞. Let β1 be the largest eigenvalue of Q
the restriction of Q̄ to S. The minimax characterization gives

Lemma 4.1.— If the Poincaré inequality ‖f‖2q � A 〈(I −Q)f, f〉q holds

for all f ∈ L2(q), then β1 � 1− 1/A.

Remark 4.2. Of course, the analogue λ1 of Section 1 satisfies λ1 = 1−β1.

Define a Dirichlet form E on L2(q), by

∀ f ∈ L2(q), E(f, f) :=
1

2

∑

x,y∈S̄
(f(y)− f(x))2 q(x)Q̄(x, y)

Lemma 4.3. For f ∈ L2(q), we have

E(f, f) = 〈(I −Q)f, f〉q −
1

2

∑

x∈S
f2(x)q(x)Q̄(x,∞)

� 〈(I −Q)f, f〉q

Proof. — This is simple by directly computing both sides of the equality,
separating the cases where x, y ∈ S from the cases where x ∈ S and y =∞.
�

To bring in geometry, for x ∈ S, let γx be a path starting at x and ending
at ∞ with steps possible with respect to Q̄. If there are many absorbing
points, γx may connect x to any of them. Thus γx = (x0 = x, x1, ..., xl =∞)
with Q̄(xi, xi+1) > 0 for 0 � i � l−1. Let the length l of the path be denoted
|γx|.

Proposition 4.4.— With the notation as above, A in Lemma 4.1 may
be taken as

A = max
x∈S, y∈S̄ :K(x,y)>0

2

q(x)Q̄(x, y)

∑

z∈S : (x,y)∈γz
|γz| q(z)

Proof. — Let x ∈ S be given and write γx = (x0, x1, ..., xl). The idea is to
expand

f2(x) = ((f(x0)− f(x1)) + (f(x1)− f(x2)) + · · ·+ (f(xl−1)− f(xl)))
2

� |γx|
l−1∑

i=0

(f(xi)− f(xi+1))
2
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Thus for f ∈ L2(q),

∑

x∈S
f2(x)q(x) =

∑

x∈S

( ∑

e∈γx
f(e−)− f(e+)

)2

q(x)

�
∑

x∈S
|γx| q(x)

∑

e∈γx
(f(e−)− f(e+))2

=
∑

x∈S, y∈S̄ :K(x,y)>0

(f(x)− f(y))2
q(x)Q̄(x, y)

q(x)Q̄(x, y)

∑

z∈S : (x,y)∈γz
|γz| q(z)

� AE(f, f)

�
Remark 4.5. Path technology has evolved: with many choices of paths,

one may choose randomly, see Diaconis and Saloff-Coste [14], weights may
be used in the Cauchy-Schwarz bound, as in Diaconis and Saloff-Coste [15].
This can be important when the stationary distributions varies a lot. Paths
may be used locally, see Diaconis and Saloff-Coste [14]. Any such variation
is easy to adapt in the above proposition.

4.3. Other examples in discrete time

The following calculations are classical. The neat form presented here
is borrowed from the thesis work of Zhou [32] and provides an alternative
approach to Examples 3.1, 3.2 and 3.3. Consider a birth and death chain
on [[0, N ]] with transition matrix




r 1− r
p 0 q

. . .

p 0 q
1− s s




with p ∈ (0, 1), q = 1− p, r, s ∈ [0, 1].

Proposition 4.6. — The eigenvalues and right eigenfunctions are of
form

β := 2
√
pq cos(θ), ∀ x ∈ [[0, N ]], ϕ(x) :=

(
p

q

)x/2

cos(θx + c)

where θ and c are determined by the boundary values:

rϕ(0) + (1− r)ϕ(1) = βϕ(0)

(1− s)ϕ(N − 1) + sϕ(N) = βϕ(N)
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Proof. — This follows from the trigonometric identity

∀ α, β ∈ R, cos(α) + cos(β) = 2 cos

(
α + β

2

)
cos

(
α− β

2

)

Since for any θ, c ∈ R,

q

(
p

q

)(x+1)/2

cos(θ(x + 1) + c) + p

(
p

q

)(x−1)/2

cos(θ(x− 1) + c)

= 2
√
pq cos(θ)

(
p

q

)x/2

cos(θx + c)

Zhou [32] has shown that the above boundary conditions lead indeed to
N + 1 eigenvalues. �

As an example, take p = q = 1/2 = r, s = 1. This gives the simple ran-
dom walk on [[0, N ]] absorbing at N with holding at 0. The above proposition
gives the equations

cos(c) + cos(θ + c) = 2 cos(θ) cos(c), cos(Nθ + c) = 0 or θ = 0

These have solutions c = θ/2, θ = jπ/(2N + 1), for j = 0, 1, 3, ..., 2N − 1.
It follows that the chain has eigenvalues βj := cos(jπ/(2N + 1)), for j =
0, 1, 3, ..., 2N − 1 with right eigenfunctions ϕj given by

∀ x ∈ [[0, N ]], ϕj(x) := cos

(
(2x + 1)jπ

2(2N + 1)

)

The left eigenfunctions are ψ0(x) = δN (x) and for j = 1, 3, ..., 2N − 1,

∀ x ∈ [[0, N ]], ψj(x) :=

{
ϕj(x) , if x ∈ [[0, N − 1]]
(−1)(j+1)/2

2 cot
(

jπ
2(2N+1)

)
, if x = N

In particular, the quasi-stationary distribution has probability density given
by

∀ x ∈ [[0, N − 1]], ν(x) :=
ψ1(x)∑

y∈[[0,N−1]] ψ1(y)

= 2 tan

(
π

2(2N + 1)

)
cos

(
(2x + 1)π

2(2N + 1)

)

Consider the geometric bound from Proposition 4.4. From the discussion
above,

β1 = cos

(
π

2N + 1

)
= 1− π2

2(2N + 1)2
+O

(
1

N4

)
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The reversing probability q on [[0, N − 1]] is the uniform distribution. There
is a unique choice of (not self-intersecting) paths from x to N . The quantity
A is obviously maximized at the edge (N − 1, N). Then, it is

A =
4N

N

∑

x∈[[0,N−1]]

N − x = 2N(N + 1)

This gives β1 � 1 − 1
4N(N+1) which compares reasonably with the correct

answer.

In this problem, ϕ∨/ϕ∧ is of order N and our bounds show that order
N2 ln(N) steps suffice for convergence to quasi-stationarity. Using all of the
spectrum, classical analysis shows that order N2 steps are necessary and
sufficient. Zhou [32] gives similar exact formulae for reflecting and absorb-
ing boundaries at zero. He also derives the exact spectral data for some
absorbing birth and death chains from biology (Morans model with various
types of mutation).
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