


Introduction

Over the last fifteen years, several long-standing open problems in 3-
dimensional topology have been solved. The most celebrated achievement
was the proof of Poincaré’s and Thurston’s geometrization conjectures by
G. Perelman in 2003 [14], [15], [16]. The positive solution to these two
conjectures ensures that each closed 3-manifold can be decomposed into
a finite number of canonical “pieces” that admit one of Thurston’s eight
3-dimensional geometric structures.

Among these structures, hyperbolic geometry is the richest. As such, it
is still a source of a large variety of open problems, of which some have been
solved just recently remarkable advances have been accomplished recently.
For instance, we now know that every closed hyperbolic manifold admits a
finite-sheeted cover that fibres over the circle. This fact, known as Thurston’s
virtually fibering conjecture, was shown to be true by D. Wise [18], [19],
[20] under the assumption that the manifold is Haken, that is, contains
an essential surface. The proof was then completed when I. Agol, building
on work of J. Kahn and V. Markovic [11], proved Waldhausen’s virtually
Haken conjecture, saying that every closed hyperbolic 3-manifold admits a
finite-sheeted cover which is Haken [2].

As for the structure of complete (non closed) hyperbolic 3-manifolds with
finitely generated fundamental group, the tameness theorem, originally con-
jectured by A. Marden in the 1970s, was finally established independently
by I. Agol [1] and D. Calegari–D. Gabai [9]. It states that they are homeo-
morphic to the interior of compact 3-manifolds.

In many cases, the proofs of these results, that greatly improved our
understanding of the structure of 3-dimensional manifolds, relied on new
tools and ideas borrowed from other fields. For instance, Perelman’s result
was established building on work of R. Hamilton about the Ricci flow and
relies heavily on analytical methods. Agol and Wise’s main ingredient to
prove the virtually fibering conjecture is the use of cubulations, a notion
that stems from geometric group theory, and, more precisely, CAT(0) spaces
and groups.

The interplay between low-dimensional topology and other fields of math-
ematics has been fruitful not only because it had led to proofs of open prob-
lems, but also because it has provided new perspectives on the subject and
with them the quest for further insight.

– 1017 –



Introduction

It is worth mentioning at least some of the questions that arise from the
interaction of 3-dimensional topology with other subjects.

• How special are the fundamental groups of 3-manifolds?

It is well-known that any finitely presented group can be realised
as the fundamental group of a 4-manifold. On the other hand, 3-
manifold groups seem to be somehow special, but to what extent?
Is it possible to characterise them? For instance, are there Poincaré
duality groups in dimension 3 that are not 3-manifold groups? Is their
large scale geometry sufficient to classify them? In this vein, one of
the paramount open problems in the field, is Cannon’s conjecture
that a Gromov-hyperbolic group having boundary homeomorphic to
the 2-sphere admits a quotient by a finite group that contains a finite
index Kleinian subgroup.

• Given a knot or link, how is the geometry of its exterior reflected in
its quantum and combinatorial invariants?

For any knot, Kashaev [12] conjectures that the hyperbolic volume of
its complement is determined by the values of its Jones polynomial
at roots of unity. Thus far, most connections between these different
realms remain very elusive. For instance, is it possible to provide
geometric characterisations of alternating knots?

• Given a 3-manifold, what are the relations between its topological
properties, its contact geometry structure, and its Heegaard-Floer
homology?

In this setting, one natural question is to provide a topological charac-
terisation of L-spaces, that is manifolds that have the same Heegaard-
Floer homology of a lens space. S. Boyer, C. McA. Gordon, and
L. Watson conjectured that an irreducile rational homology sphere is
an L-space if and only if its fundamental group is not left-orderable
and that happens if and only if the manifold does not admit a taut
foliation [7]. This is known to be true for Seifert fibred manifolds.

In 2013, on the occasion of Michel Boileau’s 60th birthday, a conference
was organised in Toulouse from the 24th to the 28th of June. Under the
auspices of CIMI (as part of the thematic month on Topology, Symplectic,
and Contact Geometry in Toulouse), IMT, Université P. Sabatier, CNRS,
GDR “Tresses”, GEAR, Région Midi-Pyrénées, and ANR (projects ETTT,
TCGD, and GDS).

Michel Boileau’s research interests cover a number of subjects related to
3-dimensional topology: from knot theory to the study of singularities, from
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properties of Heegaard splittings and 3-manifold groups to geometric struc-
tures. He notably contributed to the geometrization program: He wrote a
complete and self-contained proof of the orbifold theorem in collaboration
with B. Leeb and J. Porti [5] and of the geometrization conjecture in col-
laboration with L. Bessières, G. Besson, S. Maillot, and J. Porti [3]. The
conference provided the opportunity to review the state of the art on all
these subjects and discuss the future challenges.

This special volume collects eleven papers by some of the plenary lectu-
rers of the conference and their coauthors. The contents of the papers span
a wide range of diverse topics.

The first step towards the study and classification of manifolds is to
provide ways to construct them and to encode them, possibly via a set of
combinatorial data. It is then necessary to establish when different construc-
tions result in homeomorphic manifolds. It is well-known that every closed
3-manifold can be obtained by gluing together along their boundaries two
handlebodies of the same genus. A decomposition of a 3-manifolds into two
handlebodies is called a Heegaard spliting. It is not difficult to see that any
manifold admits different Heegaard splittings. A classical result of Reide-
meister and Singer says that any two Heegaard splittings of a 3-manifold
can be obtained from one another via a finite sequence of stabilisations and
destabilisations. In his contribution to this volume, L. Siebenmann gives
a self-contained proof of the Reidemeister-Singer theorem. His proof relies
on the operation of “linear bisection”.

Any Heegaard splitting of a manifold also provides a natural presentation
of its fundamental group with a number of generators equal to the genus of
the handlebodies of the splitting. It is thus clear that the minimum genus of a
Heegaard splitting of a manifold, that is the Heegaard genus of the manifold,
gives an upper bound on the rank of its fundamental group. However such an
upper bound is not sharp in general. Boileau and Zieschang in [6] exhibited
the first example, a Seifert fibered manifold, for which the bound is not
sharp. Hyperbolic manifolds with the same property were constructed by
T. Li in [13]. Although the discrepancy between Heegaard genus and rank
can be arbitrary large as a difference, it is still not known whether it can
even be arbitrarly large as a ratio. In his paper, R. Weidmann shows that
for graph manifolds this ratio is always bounded above by a constant. This
result is obtained as a consequence of a formula for the rank of acylindrical
graphs of groups in terms of the ranks of their vertex and edge groups.

The main result in the article by I. Agol and M. Freedman shows
that Heegaard splittings appear in a natural way even when 3-manifolds are
seen as submanifolds of simply connected 4-dimensional manifolds. Indeed,
under weak assumptions, the authors show that a smooth embedding of a
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3-manifold into S3 × R or R4 = R3 × R can be isotoped so that all generic
levels are Heegaard surfaces. Understanding whether a given 3-manifold
admits a smooth embedding into a given 4-manifold and, if it does, de-
termining whether such an embedding is somehow unique, are still largely
open questions that include, as particular cases, the smooth 4-dimensional
Poincaré conjecture and the Schoenflies problem. The contents of Agol and
Freedman’s paper, which includes a condition for a manifold to stably em-
bed in 4-space, can be seen as possible approaches towards a solution of
these open problems.

If Heegaard splittings provide one natural topological presentation of
3-manifolds, triangulations are possibly the most combinatorial way to en-
code them. Since triangulations come equipped with a notion of complexity
(i.e. the number of tetrahedra), they can be used to write algorithms that
enumerate manifolds systematically. Triangulations presenting special fea-
tures may also imply that the manifolds that admit them enjoy special
properties. With this viewpoint in mind, C. Hodgson, H. Rubinstein,
H. Segerman, and S. Tillmann consider essential and strongly essen-
tial triangulations of 3-manifolds that are either closed or compact with
non empty boundary. A triangulation with a single vertex of a manifold
is essential if no edge loop is null-homotopic, and it is strongly essential
if, in addition, no two edge loops are homotopic keeping the vertex fixed.
The authors provide ways to construct triangulations of this type, on one
hand, and algorithms to decide whether a given triangulation is (strongly)
essential on the other hand.

P. Shalen’s contribution to the volume is also somehow concerned with
the problem of enumerating 3-manifolds and orbifolds, namely arithmetic
ones. A result of Borel ensures that the set of volumes of arithmetic orbifolds
is discrete. It should thus be possible to enumerate all arithmetic orbifolds
whose volume is bounded by a given constant. It turns out that the enumer-
ation requires the ability to bound the rank of certain elementary abelian
2-groups that are quotients of the orbifold fundamental group. The author
shows how previous work of his in collaboration with M. Culler allows one
to give bounds on the Z/2-homology rank of manifolds assuming certain
volume bounds. Clearly such bounds are also bounds for the rank of every
quotient of the orbifold group that is an elementary abelian 2-group.

Yet another way of presenting 3-manifolds is via Dehn surgery on links
in the 3-sphere. According to Thurston’s hyperbolic Dehn surgery theorem,
manifolds resulting from Dehn surgery on hyperbolic knots have the nice
property to be hyperbolic except for finitely many of them. There is a vast
literature dedicated to the study of these exceptional, i.e. non hyperbolic,
surgeries. A celebrated result is Culler, Gordon, Lucke, and Shalen’s cyclic
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surgery theorem [10] which gives conditions that must be fulfilled by surgery
slopes in order to give rise to a manifold with cyclic fundamental group. In
a similar vein, a conjecture of Boyer and Zhang [8] states that if a p/q-
surgery on a hyperbolic knot in the 3-sphere yields a manifold with finite
fundamental group, then q = 0, 1. It is known that if p/q is a slope giving rise
to a manifold with finite fundamental group, then |q| � 2 and the equality
case imposes further restrictions on the manifold.

In their paper E. Li and Y. Ni prove that if a p/2-surgery on K
contradicts Boyer and Zhang’s conjecture then the knot Floer homology of
K is prescribed, p can only assume a finite number of explicit values, and
the resulting manifolds can be determined.

As remarked above, exteriors of hyperbolic knots represent a well-behaved
and much studied class of 3-manifolds. Nonetheless, several natural ques-
tions about this class remain unanswered. One of these is a conjecture of
Reid and Walsh [17] : Is it true that a commensurability class of cusped hy-
perbolic manifolds can contain at most three knot exteriors? It was shown
by M. Boileau, S. Boyer, R. Cebanu, and G. Walsh [4] that the only
possible counterexamples to the conjecture must be knots with hidden sym-
metries. So far, only three knots with hidden symmetries are known, and
conjecturally they are the only ones.

In order to corroborate this latter conjecture, the same four authors
consider covers of reflection orbifolds. Indeed, if a knot exterior covers a
reflection orbifold, then it has hidden symmetries. A detailed analysis of
covers of small reflection orbifolds is carried out in their paper for this
volume, leading to a verification that no counterexample to the conjecture
arises in this way. This implies in particular that the conjecture is satisfied
by any knot having the property that every closed essential surface in its
exterior contains an accidental parabolic.

Properties of specific knots in higher dimensions are the subject of S.
Friedl and P. Orson’s paper. They give a new proof of a result of Zeeman
about k-twist spun knots stating that the exteriors of such knots fibre over
the cirle. A consequence of this fact is that any knot of the form K� −K,
that is which decomposes as the connected sum of a knot and of its opposite,
is doubly slice.

As mentioned before, every closed 3-manifold has a canonical decom-
position into pieces that admit a geometric structure, modelled on one of
Thurston’s eight geometries of dimension 3. In dimension 2, the situation
is simpler and each closed surface admits one among three possible geome-
tries: Euclidean, spherical, and hyperbolic. Moreover, in dimension 2, every
surface admits a projective structure, that is every surface is the quotient
of some open subset of the projective plane. One might wonder whether a
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similar result could hold in dimension 3, notably if all closed 3-manifolds
could be modelled on one single geometry. Of course, keeping in mind what
happens in dimension 2, one could ask whether every 3-manifold admits
a (real) projective structure. In their paper, D. Cooper and W. Gold-
man give the first known example of a connected 3-manifold that cannot
admit a real projective structure; it is the connected sum of two copies of
real projective 3-space. Although this fact can be deduced from Y. Benoist
classification of manifolds admitting a real projective structure with abelian
holonomy, the authors furnish here a direct proof.

F. Guéritaud’s result in his contribution to this volume, can also be
seen as a study of geometric structures but in dimension 2. The author
is concerned with understanding the effect of infinitesimal deformations of
some hyperbolic metric on a given surface perhaps with singularities or
cusps, and more specifically how the lengths of geodesics vary under the de-
formation. The case considered in the paper is that of a torus with one punc-
ture. The author determines which deformations either increase or shrink
the lengths of all geodesics.

Left-orderable groups enjoy a variety of nice properties. It is still quite
unclear how left-orderability of a 3-manifold group is reflected in the topo-
logical properties of the manifold and vice-versa. In their paper, D. Cale-
gari and D. Rolfsen provide a class of examples of left-orderable groups by
showing that ifG is the group of orientation-preserving PL-homeomorphisms
of a connected n-manifold M fixing point-wise a codimenson-1 closed and
non-empty submanifold K (e.g. its boundary) then G is left-orderable (in
fact locally indicable). If all the above hypotheses are fulfilled except that K
is now supposed to have codimension 2, then the authors prove that G sat-
isfies a weaker property, namely it is circularly orderable. The authors con-
centrate their attention on the special case in which M is the n-dimensional
cube and K its boundary. These groups are of special interest because ev-
ery right-angled Artin groups embeds in one of them. For these groups they
observe that their cyclic subgroups are at most exponentially distorted.
Analogous results are obtained for the groups of C1-diffeomorphisms, while
it is observed that the case of homeomorphisms is still open. Note that in the
case of 1-dimensional cubes the group of PL-homeomorphism is biorderable,
while the group of homeomorphisms cannot be so, since it contains every
left-orderable group. Finally, as a corollary, it is shown that the group of
C1-diffeomorphisms of a hyperbolic knot which are orientation-preserving
and isotopic to the identity is left-orderable.
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