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A rank formula for acylindrical splittings

Richard Weidmann(1)

Dedicated to Michel Boileau on the occasion of his 60th birthday

RÉSUMÉ. — Une formule de rang pour les scindements acylindriques
des groupes est demontrée. On en déduit que le genre de Heegaard d’une
varieté graphée fermée est borné par une fonction linéaire en le rang du
groupe fondamental.

ABSTRACT. — We prove a rank formula for arbitrary acylindrical graphs
of groups and deduce that the Heegaard genus of a closed graph manifold
can be bounded by a linear function in the rank of its fundamental group.

Introduction

Grushko’s Theorem states that the rank of groups is additive under free
products, i.e. that rank A ∗B = rank A+ rank B. The non-trivial claim is
that rank A ∗ B � rank A+ rank B. In the case of amalgamated products
G = A ∗C B with finite amalgam a similar lower bound for rank G can be
given in terms of rank A, rank B and the order of C [25]. For arbitrary
splittings this is no longer true.

It has first been observed by G. Rosenberger [16] that the naive rank
formula rank G � rank A + rank B − rank C does not hold for arbitrary
amalgamated products G = A ∗C B, in fact Rosenberger cites a class of
Fuchsian groups as counterexamples. In [11] examples of Coxeter-groups
where exhibited where rank G1 ∗Z2

G2 = rank G1 = rank G2 = n with
arbitrary n. In [23] examples of groups Gn = An ∗CBn are constructed such
that rank An � n, rank Bn � n and rank C = rank Gn = 2.

(1) Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn
Str. 4, 24098 Kiel, Germany
weidmann@math.uni-kiel.de
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These examples clearly show that no non-trivial analogue of Grushko’s
Theorem holds for arbitrary splittings. If the splitting is k-acylindrical how-
ever, this situation changes. This has been shown in [24] for 1-acylindrical
amalgamated products where it was also claimed that a similar result hold
for arbitrary splittings. In this note we establish such a generalization to ar-
bitrary k-acylindrical splittings. The combinatorics however turn out to be
significantly more involved than those in [24]. The following is an immediate
consequence of our main result, see Section 2 for more details.

Theorem 0.1.— Let A be a k-acylindrical minimal graph of groups with-
out trivial edge groups and finitely generated fundamental group. Then

rank π1(A)� 1

2k+1

( ∑

v∈V A
rank Av−

∑

e∈EA
rankAe+e(A)+b(A)+1+3k−�k/2�

)
.

Here A is the graph underlying A, b(A) its Betti number, e(A) the num-
ber of edge pairs. The vertex groups are the Av and the edge groups the
Ae. Moreover the rank of each edge group is counted twice as Ae = Ae−1

for all e ∈ EA.

Answering a question of Waldhausen, Boileau and Zieschang [4] have
shown that the rank of the fundamental group r(M) of a closed 3-manifold
M can be smaller than its Heegaard genus g(M), this class of examples was
extended in [27]. Since then it has been shown that the difference between
g(M) and r(M) can be arbitrarily large, see [19] and [13]. It is however
still unknown whether there exists a uniform positive lower bound of the
quotient r(M)/g(M). The following implies that such a bound exists for
graph manifolds, it is an almost immediate consequence of Theorem 0.1.

Theorem 0.2.— Let M be a closed orientable graph manifold. Then

g(M) � 28 · r(M).

Similar arguments show that the claim of Theorem 0.2 holds for arbitrary
closed 3-manifolds provided is holds for closed hyperbolic 3-manifolds.

1. Acylindrical splittings

In this section we recall the definition of acylindrical splittings and es-
tablish some basic properties of such actions. We assume familiarity with
the notation of Section 1 of [26].

Following Sela [20] a simplicial G-tree is called k-acylindrical if the
pointwise stabilizer of any segment of length k + 1 is trivial. A splitting
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is called k-acylindrical if the associated Bass-Serre tree is k-acylindrical.
Note that a graph of groups A is k acylindrical iff there exists no vertices
v, v′ ∈ V A, elements gv ∈ Av\{1} and gv′ ∈ Av′\{1} and a reduced A-path
p = a0, e1, . . . , ek+1, ak+1 from v to v′ such that [gv] = [pv][gv′ ][p

−1
v ].

Acylindrical actions occur naturally in geometric group theory and low-
dimensional topology, in particular the various JSJ-decompositions (see [9,
8, 15, 5, 6]) are usually 2-acylindrical or can be made 2-acylindrical. In [20]
it is shown that the complexity of a reduced minimal k-acylindrical splitting
of a group G can be bounded in terms of G and k, in [23] it is shown that
this bound can be chosen to be 2k(rank G− 1) + 1.

Recall that for any r ∈ R the largest integer z ∈ Z such that z � r is
denoted by �r�. We establish two simple lemmas.

Lemma 1.1.— Suppose that T is a k-acylindrical G-tree and that a vertex
v of T is fixed by a non-trivial power gn of some element g ∈ G. Then there
exists a vertex w of T such that d(v, w) � �k/2� and that gw = w.

Proof. Choose a vertex w of T such that gw = w and that d(v, w) is min-
imal. Such a vertex w clearly exists as gn and therefore also g is elliptic.
Note that the minimality assumption implies that [v, w] ∪ [w, gv] is a seg-
ment of length 2d(v, w). Clearly gn fixes the segment [v, w] and therefore
gn = ggng−1 also fixes g[w, v] = [gw, gv] = [w, gv]. It follows that gn fixes
the segment [v, w] ∪ [w, gv]. The acylindricity assumption therefore implies
that k � d(v, w) + d(w, gv) = 2d(v, w), the claim follows.

Lemma 1.2.— Suppose that T is a k-acylindrical G-tree and that two
vertices v and w are both fixed by non-trivial powers of g.

Then there exists a vertex y fixed by g such that

d(v, y) + d(y, w) � k + [k/2]

and d(v, y)+d(y, w) � k if G is torsion-free. In particular d(v, w) � k+[k/2]
and d(v, w) � k if G is torsion-free.

Proof. — Suppose first that g fixes no vertex of the segment [v, w]. Choose
vertices y and y′ that are fixed under the action of g and that are in minimal
distance of v and w, respectively. As the set of all points fixed by g is a
subtree of T that is disjoint from [v, w] it follows that y = y′. It follows
from Lemma 1.1 that d(y, v) � �k/2� and d(y, w) � �k/2� which clearly
implies the assertion.

We can therefore assume that g fixes a vertex of [v, w]. Thus it suffices
to show the second claim of the lemma, i.e that d(v, w) � k + �k/2� and
d(v, w) � k if G is torsion-free.
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Choose n,m ∈ Z such that gnv = v, gmw = w where gn �= 1 and
gm �= 1. We can assume that d(v, w) � k as there is nothing to show
otherwise. Choose vertices x, y ∈ [v, w] such that d(v, x) = d(w, y) = �k/2�.
If follows as in the proof of Lemma 1.1 that g fixes x and y and therefore
also [x, y] point-wise. Thus gn fixes the segment [v, y] which implies that
d(v, y) � k. It follows that d(v, w) � d(v, y) + d(y, w) � k + �k/2�.

If G is torsion-free then gmn �= 1, gmnv = v and gmnw = w. Thus gmn

fixes the segment [v, w]. The acylindricity assumption then implies that
d(v, w) � k.

We will record a useful consequence of the above lemmas. In the following
we assume familiarity with the theory of A-graphs and folds as presented
in [26]. Note that an A-graph B (as introduced in [10]) encodes a morphism
from an associated graph of groups B to A that is injective on vertex groups,
see [1] for a discussion of morphisms.

If A is a graph of groups and if C is a subgraph of the underlying graph
A then we call the graph of groups with underlying graph C whose edge
groups, vertex groups and vertex morphisms coincide with those of A the
subgraph of groups corresponding to C and denote it by C. If the Bass-
Serre tree of a graph of groups A is non-trivial, i.e. has no global fixed
point, then it contains a unique minimal invariant subtree. In this case A
contains a unique minimal subgraph of groups such that the inclusion map
is π1-injective. We call this subgraph of groups the core of A and write
core A.

If the Bass-Serre tree has global fixed points then the global fixed points
form an invariant subtree. This subtree injects into A under the quotient
map and the corresponding subgraph of groups consists of those vertices
and edges for which the inclusion of the vertex, respectively edge, group is
an isomorphism. We again call this subgraph of groups the core of A and
write core A.

In the second case we say that the core is a simple core. Note that A
must be a tree if A has a simple core.

Proposition 1.3. — Let A be a k-acylindrical graph of groups and B
be an A-graph (with associated graph of groups B). Suppose that B admits
no move of type IA, IB, IIIA or IIIB and that all vertex groups of B are
non-trivial. Let B′ := core B. Then the following hold:

1) dH(B,B′) � k where dH denotes the Hausdorff distance in B.

2) If B′ is a simple core then dH(B, v) � k for any vertex v ∈ V B′.
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3) If π1(B) is cyclic with simple core then dH(B,B′) � �k/2�.

4) If π1(B) is cyclic with simple core then for any two vertices v, w ∈ B
there exists a tree Y ⊂ B with at most k + �k/2� + 1 vertices such
that v, w ∈ Y and Y ∩B′ �= ∅.

5) If π1(A) is torsion-free then Y can be chosen to have at most k + 1
vertices.

6) If d(v, w) > 2�k/2� in (4) or (5) then [v, w] contains an edge of B′.

Proof. — Let v be a vertex of B and g ∈ Bv − 1. By the definition of the
core there exists a vertex w ∈ B′ and g′ ∈ Gw such that [g] = [p][g′][p−1]
where p = [1, e1, 1, . . . , 1, el, 1] is a reduced B-path whose underlying path
q = e1, . . . , el in B is also reduced. To show (1) it clearly suffices to show
that l � k.

As q is reduced and as B admits no move of type IA, IIIA, IB or IIIB it
follows that the A-path µ(p) is reduced. As

[g] = [µ(g)] = [µ(p)][µ(g′)][µ(p)−1] = [µ(p)][g′][µ(p)−1]

it follows from the k-acylindricity of A that l � k.

The same argument shows (2). Using similar arguments (3) now follows
from Lemma 1.1 and (4) and (5) follow from Lemma 1.2. (6) follows from
the proof of Lemma 1.2.

2. Formulation of the main result

Let A be a graph of groups with finitely generated fundamental group.
We establish the notion of the relative rank of a vertex group Av, which we
denote by relrank Av.

Let G be a group and U ⊂ G a subgroup. We say that the corank of U
in G is k if k ∈ N0 is minimal such that there exist elements g1, . . . , gk ∈ G
with G = 〈U, g1, . . . , gk〉. If no such k exists then we say that the corank is
infinite. We denote the corank of U in G by corank (U,G). Let v ∈ V A be
a vertex. We denote by Ev ⊂ EA the set of edges e ∈ EA with α(e) = v.
We then define

relrank Av := min
g:Ev→Av

(
corank

(
〈 ∪
e∈Ev

g(e)αe(Ae)g(e)
−1〉, Av

))
.

Thus the relative rank of a vertex group Av is the minimal number of
elements needed to generated the vertex group in addition to appropriate
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conjugates of the adjacent edge groups. It is natural to allow conjugation of
the edge groups as the boundary monomorphisms are only determined up
to conjugation for a given isomorphism class of graphs of groups. It is not
difficult to see that the relative rank of all vertex groups is finite as π1(A)
is assumed to be finitely generated. We further define

Σ(A) :=
∑

v∈V A
relrank Av.

In the following we denote the Betti number of A by b(A) and the number
of edge pairs by e(A). Our main result is the following:

Theorem 2.1.— Let A be a k-acylindrical minimal graph of groups with-
out trivial edge groups. Suppose that π1(A) is finitely generated. Then

rank π1(A) � 1

2k + 1
(Σ(A) + e(A) + b(A) + 1 + 3k − �k/2�) .

If π1(A) is torsion-free then

rank π1(A) � 1

2k + 1
(Σ(A) + e(A) + b(A) + 1 + 3k + η) .

where η = 0 if k is odd and η = 1 if k is even.

If all edge groups are finitely generated we clearly get the inequality

relrank Av � rank Av −
∑

e∈Ev
rank Ae

and therefore
Σ(A) �

∑

v∈V A
rank Av −

∑

e∈EA
rank Ae.

Thus we obtain the following immediate consequence of Theorem 2.1.
Recall that every edge-group is counted twice as every edge occurs with
both orientations.

Corollary 2.2 (Theorem 0.1). — Let A be a k-acylindrical minimal
graph of groups with finitely generated non-trivial edge groups and finitely
generated fundamental group. Then

rank π1(A) �

1

2k + 1

( ∑

v∈V A
rank Av −

∑

e∈EA
rank Ae + e(A) + b(A) + 1 + 3k − �k/2�

)
.
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It is clear that the analogous statement can be made for torsion-free
groups. The following two corollaries illustrate Corollary 2.2 by spelling out
its content in the important case of 1-acylindrical amalgamated products
and HNN-extensions. In the case of 1-acylindrical amalgamated products
we recover the main theorem of [24].

Recall that a subgroups U ⊂ G is called malnormal in G if gUg−1∩U = 1
for all g ∈ G− U . An amalgamated product A ∗C B is 1-acylindrical if and
only if C is malnormal in A and B which is the same as saying that C is
malnormal in A ∗C B.

Corollary 2.3. [24]. — Let G = A ∗C B with C �= 1 malnormal in A
and B. Then

rank G � 1

3
(rank A+ rank B − 2rank C + 5).

In the case of a HNN-extension 〈H, f |fU1f
−1 = U2〉 the splitting is

1-acylindrical if the associated subgroups U1 and U2 are malnormal and
conjugacy separated in H. Recall that two subgroups V1, V2 of G are con-
jugacy separated if gV1g

−1 ∩ V2 = 1 for all g ∈ G.

Corollary 2.4.— Let G = 〈H, f |fU1f
−1 = U2〉 where U1 and U2 are

non-trivial, conjugacy separated and malnormal in H. Then

rank G � 1

3
(rank H − 2rank U1 + 6).

3. The proof of the rank formula

One way of proving Grushko’s theorem, i.e. to show the non-trivial in-
equality rankA∗B � rank A+rankB, is to start with a wedge of rank (A∗B)
circles and fold it onto the graph of groups corresponding to the free prod-
uct. One then merely needs to observe that for the sequence of graphs of
groups one obtains the complexity that is the sum of the ranks of the vertex
groups and the Betti number of the underlying graph does not increase. The
proof of the main theorem follows a similar strategy however the complexity
is less obvious.

The complexity is defined via the free decomposition and free complexity
of a graph of groups: For a graph of groups A we denote the maximal
subgraphs of groups that have no trivial edge groups the free factors, the
free rank of A is the Betti number of the graph obtained from A by collapsing
all edges with non-trivial edge group. If A has r free factors and free rank
n then we call the pair (r, n) the free complexity of A which we denote by
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cf (A), see also Section 1.2 of [26]. The free factors will play the role of the
vertex groups in the complexity in the proof of Grushko’s theorem.

Let A be a graph of groups and A′ := core A. We say that a subgraph of
groups D of A carries π1(A) if the injection of π1(D) into π1(A) is bijective.
We denote the set of subgraphs of groups of A that carry π1(A) by C(A).
The following is trivial:

1) If A′ is a simple core then D ∈ C(A) if and only if D ∩A′ �= ∅.

2) If A′ is not a simple core then D ∈ C(A) if and only if A′ ⊂ D.

We define

c̃1(D) := Σ(D) + e(D) + b(D)

and

c1(A) := min
D∈C(A)

c̃1(D).

Lemma 3.1.— Let A be a graph of groups with π1(A) �= 1. Suppose that
A has a simple core A′ and that A′ does not consist of a single vertex.

Then c1(A) = 1. Moreover c̃1(D) = 1 for some D ∈ C(A) if and only if
one of the following holds:

1) D consists of a single edge of A′.

2) π1(A) is cyclic and D consists of a single vertex of A′.

Proof. — Choosing D to be the subgraph of groups whose underlying graph
is an arbitrary edge of A′ yields c̃1(D) = 1 as both vertex groups of D have
trivial relative rank. This shows that c1(A) = 1 as by assumption π1(A) �= 1
and therefore c1(D) � 1 for all D ∈ C(A).

It is further clear that c̃1(D) = 1 implies that D contains at most one
edge. If it contains no edge then the single vertex group must be a cyclic
vertex group of the core which implies that π1(A) is cyclic. If D consists
of one edge that is not contained in A′ then the vertex group of the vertex
lying in A′ must be of relative rank at least 1 which implies that c̃1(D) � 2.
The claim follows.

This implies the following useful fact:

Corollary 3.2.— Suppose that A has a simple core A′. Let v be a vertex
of A′. Then there exists D ∈ C(A) such that v ∈ V D and that c1(A) = c̃1(D).
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The following lemma shows that c1 behaves well when moves (folds) are
applied. It is one of the keys to the proof of the rank formula. Recall that
cf (A) denotes the free complexity of A.

Lemma 3.3. — Let A be a graph of groups, B an A-graph and B̄ an
A-graph obtained from B by a move. Suppose that cf (B) = (1, 0). Then

c1(B̄) � c1(B).

Proof. — Let p : B → B̄ be the map induced by the elementary move. Note
that D ∈ C(B) implies that the subgraph of groups D̄ of B̄ with underlying
graph D̄ := p(D) lies in C(B̄) as it carries the fundamental group of B̄. In
order to show that c1(B̄) � c1(B) it therefore suffices to show that c̃1(D̄) �
c̃1(D) for all D ∈ C(B) where D̄ is defined as before. It is easily verified that
we only need to consider the case where all edges involved in the move lie
in D as otherwise D̄ = D and therefore c̃1(D̄) = c̃1(D).

Recall the following facts: If the move is of type IA, IB, IIIA or IIIB then
e(D̄) = e(D)−1 and if it is of type IIA or IIB then e(D̄) = e(D). If the move
is of type IIIA or IIIB then b(D̄) = b(D) − 1 and in the remaining cases
b(D̄) = b(D). In order to prove the lemma it therefore suffices to establish
the following three statements:

1) If the move is of type IA or IB then Σ(D̄) � Σ(D) + 1.

2) If the move is of type IIA or IIB then Σ(D̄) � Σ(D).

3) If the move is of type IIIA or IIIB then Σ(D̄) � Σ(D) + 2.

We give the argument for moves of type IA, IIA and IIIA, the argument
for moves of type IB, IIB and IIIB is analogous.

Suppose first that the move is of type IA. Let f1, f2 ∈ ED with x =
α(f1) = α(f2) be the edges that are identified by the move. Let f = p(f1) =
p(f2) ∈ ED̄ be their image in D̄.

In this case Dx = D̄p(x). The two edges f1 and f2 adjacent to x are re-
placed by a single edge f adjacent to p(x) with edge group Df = 〈Df1 , Df2〉.
Now the two conjugates of Df1 and Df2 that occur in the realization of the
minimal corank in the definition of the relative rank of Dx can clearly be
replaced by two conjugates of Df and therefore by one conjugate of Df and
one more (conjugating) element. Thus relrank D̄p(x) � relrank Dx + 1.

The vertices y = ω(f1) and z = ω(f2) are replaced by the vertex p(y) =
p(z) with vertex group 〈Dy, Dz〉 whose adjacent edge groups coincide with
those of y and z except that Df1 and Df2 are replaced with Df . As in
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the definition of the relative ranks of Dy and Dz the conjugacy factors of
Df1 and Df2 can be chosen to be trivial it follows that relrank D̄p(y) �
relrank Dy + relrank Dz.

As the relative ranks of the remaining vertex groups are trivially pre-
served it follows that Σ(D̄) � Σ(D) + 1.

Suppose now that the move is of type IIA. Let f ∈ ED be the edge in-
volved, x := α(f) and y := ω(f). Thus we have Dx = D̄p(x). As one adjacent
edge groups increases it is obvious that relrank D̄p(x) � relrank Dx.

The vertex group Dy increases but only by as much as the edge group
of f , thus relrank D̄p(y) � relrank Dy. It follows that Σ(D̄) � Σ(D).

Suppose now that the move is of type IIIA. As in the case of a move
of type IA it follows that relrank D̄p(x) � relrank Dx + 1 and it remains to
show that relrank D̄p(y) � relrank Dy +1. Clearly D̄p(y) = 〈Dy, h〉 for some
h ∈ D̄p(y). The analysis of the fold further shows that h can be chosen such
that ωf2(Df2) ⊂ hωf (D̄f )h

−1. It now follows similar to the case of a move
of type IA that relrank D̄p(y) � relrank Dy + 1.

We can now define the needed complexity which we denote by c2 and
by c̄2 in the torsion-free case.

Suppose that A has free complexity (r, n) with free factors Ai for 1 �
i � r. Suppose further that q of the free factors have cyclic fundamental
group (and therefore a simple core). After reordering we can assume that
the free factors with cyclic fundamental group are the factors A1, . . . ,Aq.

For any k ∈ Z we define ηk := 1+(−1)k

2 , thus ηk = 0 if k is odd and
ηk = 1 if k is even. Recall that this is the η occurring in the statement of
the main result.

We assume that π1(A) is not cyclic which implies that the free complexity
A cannot be of type (0, 0), (0, 1) or of type (1, 0) with q = r = 1. The
definitions of c2 and c̄2 are as follows:

If r = q then n+ r � 2 as we assume that π1(A) is not cyclic and we put

c2(A) = 1 + k + �k/2�+ (2k + 1)(n+ r − 2)

and

c̄2(A) = 1 + k + ηk + (2k + 1)(n+ r − 2).
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If r > q, i.e. if there exist free factors with non-cyclic fundamental group,
then

c2(A) = c̄2(A) =

r∑

i=q+1

c1(Ai) + 2k(r − q − 1) + (2k + 1)(n+ q).

The main task will be to prove the following Proposition which almost
immediately implies Theorem 2.1:

Proposition 3.4.— Let G be a finitely generated group and A be a non-
trivial, minimal k-acylindrical graph of groups with π(A) ∼= G and without
trivial edge groups. Then there exists a sequence B1, . . . ,Bm of A-graphs
with associated graphs of groups B1, . . . ,Bm such that the following hold:

1) φ : π1(Bi)→ π1(A) is surjective for 1 � i � m.

2) For 1 � i � m− 1 Bi+1 is obtained from Bi by a single move.

3) The free complexity of B1 is (0, rank G), thus π1(B1) ∼= Frank G.

4) Bm has no trivial edge groups and the map [.] : Bm → A is bijective.

5) c2(Bi) � c2(Bi+1) for 1 � i � m− 1.

6) If G is torsion-free then c̄2(Bi) � c̄2(Bi+1) for 1 � i � m− 1

The main step is the following lemma. It implies that the complexity of
an A-graph (with k-acylindrical A) does not increase if certain moves are
applied. The difficult cases are those moves that change the free complexity.
This can happen in three different ways:

1) A move of type IIIA or IIIB occurs in such a way that it adds a
(possibly trivial) element to a trivial vertex group. If this element is
non-trivial then a new free factor with cyclic fundamental group and
consisting of a single vertex emerges while the remaining free factors
remain unaffected. In this case the number of free factors increases
by at most one and the free rank decreases by one.

2) There exists a subgraph of groups of free complexity (1, 1) whose
image under the move has free complexity (1, 0). We say that an
HNN-move occurs. The following situations are possible:

(a) A move of type IA or IB identifies vertices that belong to the
same free factors and at least one of the edge involved has a
trivial edge group.
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(b) A move of type IIA or IIB is applied to an edge e with trivial
edge group and α(e) and ω(e) belong to the same free factor.

(c) A move of type IIIA or IIIB is applied, at least one edge group
involved is trivial and the vertex group to which an element is
added is non-trivial.

3) There exists a subgraph of groups of free complexity (2, 0) whose
image under the move has free complexity (1, 0). We say that an
amalgamation move occurs. The following situations are possible:

(a) A move of type IA or IB identifies vertices that belong to distinct
free factors.

(b) A move of type IIA is applied to an edge e with trivial edge
group and α(e) and ω(e) belong to distinct free factors.

Lemma 3.5.— Let A be a minimal k-acylindrical graph of groups and B
be an A-graph that admits no fold of type IA, IB, IIIA or IIIB that restricts
to a free factor of B.

Suppose that B′ is an A-graph such that one of the following holds:

1) B′ is obtained from B by a move of type IA, IB, IIIA or IIIB.

2) B admits no move of type IA, IB, IIIA or IIIB and B′ is obtained
from B by a move of type IIA or IIB.

Then c2(B′) � c2(B) and c̄2(B′) � c̄2(B).

Proof. — As before we only give the argument for moves of type IA, IIA and
IIIA, the same argument also applies for moves of type IB, IIB and IIIB.

Case 1: B′ is obtained from B by a move of type IA: If the free
complexity does not change then the move must involve at least one edge
with trivial edge group as the move is assumed to not restrict to a free
factor. It is then easily verified that all free factors are being preserved by
the move, thus the claim is immediate. We therefore only need to check the
cases that the move is an HNN-move or an amalgamation move.

Subcase 1A: Suppose that the move is an HNN-move. Thus there exists
a free factor Bi of B and vertices y �= z ∈ V Bi that are identified under the
fold. Moreover at least one of the edge groups involved is trivial. We may
assume that B′i is the free factor of B′ that contains the image of Bi under
the move.

We first argue in the case that Bi does not have a simple core. Choose
D ∈ C(Bi) such that c̃1(D) = c1(Bi). Recall that core Bi ⊂ D. It follows
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from Proposition 1.3 that d(y, core Bi) � k and d(z, core Bi) � k. Choose
x1, x2 ∈ V D such that d(y, x1) = d(y,D) � k and d(z, x2) = d(z,D) � k.
Put

D̄ := D ∪ [x1, y] ∪ [x2, z]

and let D̄ be the corresponding subgraph of groups of Bi. As at most 2k
vertex groups with trivial relative rank are added when going from D to D̄
it follows that

c̃1(D̄) � c̃1(D) + 2k.

Let D′ := p(D̄) ⊂ B′i, thus D′ is the image of D̄ under the move. Note that
the sum of the relative ranks of the vertex groups does not change as the
vertex group of the vertex p(y) = p(z) has trivial relative rank. It follows
that c̃1(D′) � c̃1(D̄)+1 as the Betti number increases by one. It follows that

c̃1(D′) � c̃1(D) + 2k + 1 = c1(Bi) + 2k + 1.

As D′ ∈ C(B′i) it follows that c1(B′i) � c̃1(D′) � c1(Bi) + 2k+ 1. As the free
rank of B′ is one less than the free rank of B and as all other free factors
are unchanged it follows that c̄2(B′) = c2(B′) � c2(B) = c̄2(B).

Next we consider the case that Bi has simple core with non-cyclic fun-
damental group. Choose D ∈ C(Bi) as before. Choose x ∈ V D such that v is
also contained in core Bi. By Lemma 1.3(2) we know that d(x, y), d(x, y) �
k, thus we can argue as in the first case with x = x1 = x2.

If Bi has simple core with cyclic fundamental group then Proposition 1.3
implies that there exists a tree D̄ ⊂ Bi containing y and z such that D̄
contains at most k+�k/2� edges (k if G is torsion-free) and that D̄ ∈ C(Bi).
Note that all edge groups of D̄ have trivial relative rank if D̄ contains more
than 2�k/2� edges as in this case D̄ contains an edge of core Bi. Otherwise
one vertex group can be of relative rank 1. Define D′ and D′ as before. It
follows that c̃1(D′) � k+�k/2�+1 and that c̃1(D′) � 2�k/2�+2 = k+1+ηk if
π1(A) is torsion free. It follows that c2(B′) � c2(B) and that c̄2(B′) � c̄2(B).

Subcase 1B: Suppose that the move is an amalgamation-move. The argu-
ment is very similar to the HNN-case. There exist free factors Bi1 and Bi2
of B and vertices y ∈ V Bi1 and z ∈ V Bi2 that are identified by the move.
Let B′i be the free factor of B′ that contains the image of Bi1 and Bi2 .

Suppose first that not both Bi1 and Bi2 have cyclic fundamental group.
For j = 1, 2 we can choose Dj ∈ C(Bij ) such that c̃1(Dj) = c1(Bij ) and
that d(y,D1) � k and d(z,D2) � k. Thus we can choose x1 ∈ V D1 and
x2 ∈ V D2 such that d(y, x1) = d(y,D1) � k and d(z, x2) = d(z,D2) � k.
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Put D′1 = D1 ∪ [x1, y] and D′2 = D2 ∪ [x2, z] and let D′1 and D′2 be the
corresponding subgraphs of groups of B. Clearly

c̃1(D′j) � c̃1(Dj) + k = c1(Bij ) + k

for j = 1, 2 as at most k edges and vertices with trivial relative rank are
added.

Note that B′i has underlying graph B′i = p(Bi1 ∪ Bi2). Let further
D′ = p(D′1 ∪ D′2) and D′ the corresponding graph of groups. It is clear
that D′ ∈ C(B′i). As in the proof of Lemma 3.3 we see that

c1(B′i) � c̃1(D′) � c̃1(D′1) + c̃1(D′2) � c1(Bi1) + k + c1(Bi2) + k

= c1(Bi1) + c1(Bi2) + 2k.

The remaining free factors are left unchanged and the free rank is preserved.

If neither Bi1 nor Bi2 have cyclic fundamental group it follows that
c̄2(B′) = c2(B′) � c2(B) = c̄2(B) as in the definition of c2 = c̄2 the sum
increases by at most 2k, r decreases by one and n and q are unchanged.

If Bi2 has cyclic fundamental group and Bi1 does not, the argument
shows that c1(B′i) � c1(Bi1)+c1(Bi2)+2k � c1(Bi1)+2k+1. It follows that
c̄2(B′) = c2(B′) � c2(B) = c̄2(B) as the sum increases by at most 2k + 1, r
and q decrease by one and n remains unchanged.

Suppose now that both Bi1 and Bi2 have cyclic fundamental group. In
this case it follows from Proposition 1.3(3) that we can choose D1, D2,
x1 ∈ V D1 and x2 ∈ V D2 such that d(y, x1) = d(y,D1) � �k/2� and
d(z, x2) = d(z,D2) � �k/2�. Defining D′1, D

′
2 and D′ as before and applying

the same arguments we get

c1(B′i) � c1(Bi1)+c1(Bi2)+2�k/2� � 2+2�k/2� = 1+k+ηk � 1+k+�k/2�.

It is easily verified that this implies that c2(B′) � c2(B) and that c̄2(B′) �
c̄2(B).

Case 2: B′ is obtained from B by a move of type IIA and B admits
no move of type IA, IB, IIIA or IIIB: Thus there exists an edge
e ∈ EB\EBi with Be = 1 such that the move adds a non-trivial element of
Bα(e) to the edge group. Put x := α(e) and y := ω(e).

Note first that if the move does not affect the free complexity then it
restricts to a subgraph of groups of free complexity (1, 0) and therefore does
not change the free complexity by Lemma 3.3. Thus we may assume that
the move is an HNN-move or an amalgamation move.
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Subcase 2A: Suppose first that the move is an HNN-move, i.e. that x, y ∈
V Bi for some free factor Bi of B. Let B′i be the free factor of B′ that contains
the image of Bi (and of e) under the move.

Suppose first that Bi does not have a cyclic fundamental group. Choose
D ∈ C(Bi) such that c̃1(D) = c1(Bi) and choose x1, x2 ∈ V D such d(x, x1) =
d(x,D) and d(y, x2) = d(y,D). Note that d(y, x2) � k by Proposition 1.3
and that d(x, x1) � k−1 as the move at x is possible. Put D̄ = D∪ [x1, x]∪
[x2, y]. Clearly D̄ is obtained from D by adding at most d(x,D) + d(y,D) �
2k − 1 edges and vertices with trivial relative rank. It follows that

c̃1(D̄) � c̃1(D) + d(x,D) + d(y,D) = c1(Bi) + d(x,D) + d(y,D).

Let further D̂ be the graph obtained from D̄ by adding the edge e.
Clearly c̃1(D̂) = c̃1(D̄) + 2 as the relative rank of all vertex groups is pre-
served, one edge is added to D̄ and b(D̂) = b(D̄) + 1. As c̃1(D) = c1(Bi)
follows that

c̃1(D̂) � c̃1(D) + d(x,D) + d(y,D) = c1(Bi) + d(x,D) + d(y,D) + 2.

Let D′ = p(D̂) and D′ the corresponding subgraph groups of B′. The
proof of Lemma 3.3 implies that

c̃1(D̂) � c̃1(D′) � c1(B′i)

where the second inequality holds as D′ ∈ C(B′i). Thus

c1(B′i) � c1(Bi) + d(x,D) + d(y,D) + 2 � c1(Bi) + 2k + 1

which proves the claim.

If Bi has cyclic fundamental group then precisely the same arguments
yield the assertion together with the various claims of Proposition 1.3.

Subcase 2B: Suppose now that the move is an amalgamation move. Thus
there exist free factors Bi1 and Bi2 such that x = α(e) ∈ V Bi1 and y =
ω(e) ∈ V Bi2 . Denote the free factor of B′ that contains the images of Bi1
and Bi2 by B′i.

Suppose first that not both Bi1 and Bi2 have cyclic fundamental group.
Choose D1 and D2 as before. Choose x1 ∈ D1 and x2 ∈ D2 such that
d(x, x1) = d(x,D1) and d(y, x2) = d(y,D2). As in subcase 2A we see that
d(y, x2) � k and that d(x, x1) � k − 1. Define D̄ := D1 ∪ D2 ∪ [x, x1] ∪
[y, x2] ∪ e. It follows as before that

c̃1(D̄) = c̃1(D1) + c̃1(D2) + d(x, x1) + d(y, x2) + 1 � c̃1(D1) + c̃1(D2) + 2k

which implies the claim.
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If both Bi1 and Bi2 have cyclic fundamental group then the same argu-
ment together with the discussion in case 1B proves the claim.

Case 3: B′ is obtained from B by a move of type IIIA. Thus there
are edges f1 and f2 with x = α(f1) = α(f2) and y = ω(f1) = ω(f2) and the
move identifies f1 and f2 and adds an element to By. We may assume that
at least one edge group is trivial as otherwise the move restricts to a free
factor.

Suppose first that By is trivial. Then the Betti number decreases by one
and a new free factor with cyclic fundamental group emerges. In this case
the complexities c2 and c̄2 are clearly preserved.

Suppose now that By is non-trivial. Let Bi be the free factor containing
y and B′i the free factor of B′ containing the image of Bi under the move.
Choose D ∈ C(Bi). We may choose D such that d(D, y) � k and that
d(D, y) � �k/2� if Bi has cyclic fundamental group. Choose z ∈ V D such
that d(y, z) = D(y,D) and put D̄ = D ∪ [y, z]. Clearly c̃1(D̄) � c̃1(D) + k
and c̃1(D̄) � c̃1(D) + �k/2� = 1 + �k/2� if Bi has cyclic fundamental group.
Let now D′ = p(D̄). Now D′ emerges from D̄ by adding one generator to
a vertex group. Thus c̃1(D′) � c̃1(D̄) + 1 � c̃1(D) + k + 1 and c̃1(D′) �
c̃1(D̄) + 1 � �k/2� + 2 if Bi has cyclic fundamental group. As D′) ∈ C(B′i)
it follows that c1(B′i) � c1(Bi) + k + 1 and that c1(B′i) � �k/2� + 2 if
Bi has cyclic fundamental group. It follows that c2(B′) � c2(B) and that
c̄2(B′) � c̄2(B).

Proof of Proposition 3.4. The existence of an A-graph B1 satisfying (1) and
(3) has been established in [10] (see also [26]), it is simply the S-wedge
corresponding to a minimal generating set S of π1(A), see also Remark 1.3
of [26]. It now suffices to establish the existence of A-graphs B2, . . . ,Bm
such that (2), (4), (5) and (6) are satisfied. Indeed (1) will be automatically
satisfied as the surjectivity of φ is preserved under moves.

Having constructed Bi we construct Bi+1 by applying a move of type
IA, IB, IIIA, IIIB that restricts to a free factor of Bi if possible. In this
case the other free factors and the free rank are unchanged and therefore
c2(B) = c2(B′) and c̄2(B) = c̄2(B′) if π1(A) is torsion free by Lemma 3.3.

If no such move is possible we construct Bi+1 by applying an arbi-
trary move of type IA, IB, IIIA, IIIB. In this case the claim follows from
Lemma 3.5.

If no move of type IA, IB, IIIA, IIIB is possible we construct Bi+1 by
applying a move of type IIA or IIB, again the claim follows from Lemma 3.5.
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Note that in any such sequence the number of moves of type IA, IB, IIIA
and IIIB is bounded from above by the number of edges of B1. It remains
to argue that we can find such a sequence such that (4) holds. This however
follows from the Proposition in [2] where it is shown that edges of Bi that
get mapped to the same edge in A get identified by finitely many folds and
that any element of an edge group Ae can be added to any edge group of
Bi with finitely many folds. The first implies that we can find moves that
make p : Bi → A injective, the second guarantees that we can find moves
such that the resulting A-graph has no trivial edge groups.

Note that that under the hypothesis of Proposition 3.4 the group π1(A)
is non-cyclic as the splitting is non-trivial and as all edge groups are assumed
non-trivial.

The last ingredient in the proof of Theorem 2.1 is the following simple
observation:

Lemma 3.6.— Let A be a minimal graph of groups with finitely generated
fundamental group and without trivial edge groups. Let B be an A-graph such
that the associated morphism [.] : B → A is bijective, that B has no trivial
edge groups and that φ : π1(B, u0)→ π1(A, [v0]) is surjective. Then

c2(A) � c2(B) and c̄2(A) � c̄2(B).

Proof. — As both A and B have only non-trivial edge groups it follows that
both graphs of groups have free complexity (1, 0). As A is minimal and
φ is surjective it follows that B is also minimal. Thus C(A) = {A} and
C(B) = {B}. It follows that c2(A) = c̄2(A) = c1(A) = c̃1(A) and that
c2(B) = c̄2(B) = c1(B) = c̃1(B). In order to prove the lemma it therefore
suffices to show that relrank Bv � relrank A[v] for all v ∈ V B.

Let v ∈ V B and put k := relrank Bv. Thus there exist g1, . . . , gk ∈ Bv
and ge ∈ Bv for all e ∈ Ev such that

Bv = 〈g1, . . . , gk, ∪
e∈Ev

geαe(Be)g
−1
e 〉 = 〈g1, . . . , gk, ∪

e∈Ev
geeαα[e](Be)e

−1
α g−1

e 〉.

To conclude the proof of the lemma it clearly suffices to show that

A[v] = 〈g1, . . . , gk, ∪
e∈Ev

geeαα[e](A[e])e
−1
α g−1

e 〉.

Suppose that g ∈ A[v]. It now follows as in the proof of the proposition
on page 455 of [2] that there exist a finite sequence of folds of type IIA or
IIB (only those are possible) that can be applied to B that add g to Bv.
Denote the resulting A-graph by B′ and denote the natural map from B to
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B′ by p. We may assume that the labels of the edges are unchanged. By the
proof of Lemma 3.3 it follows that

g ∈ 〈g1, . . . , gk, ∪
e∈Ev

geαp(e)(Ap(e))g
−1
e 〉 =

〈g1, . . . , gk, ∪
e∈Ev

geeαα[e](Ap(e))e
−1
α g−1

e 〉⊂〈g1, . . . , gk, ∪
e∈Ev

geeαα[e](A[e])e
−1
α g−1

e 〉,

the lemma is proven.

We now have all the tools necessary to give the proof of the rank formula.

Proof of Theorem 2.1. — Choose a sequence of A-graphs B1, . . . ,Bm as in
Proposition 3.4. It follows in particular that c2(B1) � c2(Bm). As Bm has
no trivial edge group and therefore free complexity (1, 0) it follows from
Lemma 3.6 that c2(Bm) � c2(A). Thus c2(B1) � c2(A). As A contains
no trivial edge groups it follows that A has free complexity (1, 0). As A
is minimal we further have that core A = A. This implies that c2(A) =
c1(A) = c̃1(A) = Σ(A) + e(A) + b(A). It follows that

c2(B1) � Σ(A) + e(A) + b(A).

The conclusion follows as B1 has free complexity (0, rank π1(A)) and there-
fore c2(B1) = 1 + k + [k/2] + (rank π1(A)− 2)(2k + 1).

If π1(A) is torsion-free the same argument shows that

c̄2(B1) � c̄2(A) = c2(A) = Σ(A) + e(A) + b(A)

and the conclusion follows as c̄2(B1) = 1 + k + (rank π1(A)− 2)(2k + 1) +
ηk.

4. Rank versus genus

This section is dedicated to the proof of the following theorem, recall that
we denote the Heegaard genus of a 3-manifold M by g(M) and the rank
of its fundamental group by r(M). We assume that the reader is familiar
with Heegaard splittings and amalgamation of Heegaard splittings, for our
purposes [17] is a good source.

Theorem 4.1. [Theorem 0.2]. — Let M be a closed orientable graph
manifold. Then

g(M) � 28 · r(M).
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Proof. — Let M be a closed orientable graph manifold. Let A be the graph
underlying the JSJ-decomposition, for any v ∈ V A we denote the Seifert
piece corresponding to v by Mv. Let A be the graph of groups corresponding
to the JSJ, in particular π1(M) = π1(A) and Av = π1(Mv) for all v ∈ V A.

In the following we denote the orientable circle bundle over the Möbius
band by Q. Q is a Seifert manifold with two distinct Seifert fibrations.
Moreover the subgroup of the fundamental group of Q corresponding to
the boundary is of index 2 and therefore normal. This makes π1(A) behave
differently if M has pieces anthropomorphic to Q. If no Seifert piece is
anthropomorphic to Q then the graph of groups A is 2-acylindrical and
unless M consists of two Seifert pieces both homeomorphic to Q it is 3-
acylindrical; this follows from the discussion in Section 3 of [3]. If M consists
of two pieces homeomorphic to Q then the action on the Bass-Serre tree is
dihedral with infinite kernel, in particular it is not k-acylindrical for any k.
As in the later case g(m) � 4 and r(M) � 2 the claim holds. Thus we may
assume that A is 3-acylindrical.

We will use the following facts:

1) For any v ∈ V A we have relrank (Av) � rank Av−|Ev|−1. This holds
as for function g : Ev → Av the subgroup 〈 ∪

e∈Ev
g(e)αe(Ae)g(e)

−1〉 is

generated by |Ev|+1 elements, namely the element corresponding to
the fiber and one more element from each subgroup g(e)αe(Ae)g(e)

−1.

2) g(Mv) � r(Mv) = rank Av for any v ∈ V A. This holds as any vertical
Heegaard splitting is of genus r(Mv), see [17] for Seifert manifolds
with orientable base space and [14] for Seifert manifolds with non-
orientable base space.

3) g(M) �
∑

v∈V A
g(Mv) − e(A) + b(A), this follows as the splitting ob-

tained from amalgamating minimal genus Heegaard splittings of the
Seifert pieces is of genus

∑
v∈V A

g(Mv)− e(A) + b(A).

It now follows from Theorem 2.1 that

r(M) = rank π1(M) = rank π1(A) � 1

7
(Σ(A+ e(A) + b(A) + 10) =

=
1

7

( ∑

v∈V A
relrank Av +

1

2

∑

v∈V
|Ev|+ b(A) + 10

)

where the last equality holds as any (oriented) edge occurs in precisely one
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set Ev and as e(A) counts edge pairs. With fact (1) we conclude that

r(M) >
1

7

( ∑

v∈V A
max(0, rank Av − |Ev| − 1) +

1

2

∑

v∈V A
|Ev|+ b(A)

)
=

=
1

7

( ∑

v∈V A

(
max(0, rank Av − |Ev| − 1) +

1

2
|Ev|

)
+ b(A)

)
.

We claim that max(0, rank Av−|Ev|−1)+ 1
2 |Ev| � 1

4 rank Av for all v ∈ V A.

If rank Av − |Ev| − 1 < 0 then |Ev| > rank Av − 1 > 1
2 rank Av as

rank Av � 2 and therefore

max(0, rank Av − |Ev| − 1) +
1

2
|Ev| = 0 +

1

2
|Ev| �

1

4
rank Av.

If rank Av − |Ev| − 1 � 0 then 1
2 |Ev| � 1

2 rank Av − 1
2 . It follows that

max(0, rank Av − |Ev| − 1) +
1

2
|Ev| = rank Av −

1

2
|Ev| − 1 �

� rank Av − 1−
(

1

2
rank Av −

1

2

)
=

1

2
(rank Av − 1) � 1

4
rank Av.

Thus the claim is proven. Thus

r(M) � 1

7

( ∑

v∈V A

1

4
rank Av + b(A)

)
=

1

28

∑

v∈V A
rank Av +

1

7
b(A).

Using fact (2) and (3) this implies that

r(M) � 1

28

∑

v∈V A
g(Mv)+

1

7
b(A) >

1

28

( ∑

v∈V A
g(Mv) + b(A)− e(A)

)
� g(M).

This concludes the proof.

The bound given in the above proof is probably far from being sharp and
with more care it is probably possible to get a significantly smaller constant
than 28. However getting to significantly better constant would require an
analysis of the folding sequence used in the proof of Theorem 2.1 which
would certainly be extremely technical.

If the manifold is not a graph manifold but has non-trivial JSJ then the
argument given above will show that the quotient g(M)/r(M) is uniformly
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bounded provided it is bounded for the pieces. Thus it is bounded if it is
bounded for hyperbolic pieces.
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