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An Analytic Description of Local Intersection
Numbers at Non-Archimedian Places
for Products of Semi-Stable Curves

Johannes Kolb(1)

RÉSUMÉ. — Nous généralisons une formule de Shou-Wu Zhang [8, Thm
3.4.2], qui donne une description en termes d’analyse élémentaire pour le
nombre d’intersections arithmétiques locales de trois diviseurs de Cartier à
support dans la fibre spéciale sur l’auto-produit d’une surface arithmétique
semi-stable. Par un argument d’approximation, Zhang étend sa formule
à une formule pour les nombres d’intersections arithmétiques locaux de
trois fibrés en droites avec des métriques adéliques sur l’auto-produit d’une
courbe sous condition que le fibré en droites sous-jacent soit trivial. En
utilisant les résultats en théorie de l’intersection de [5] nous généralisons
les résultats de Zhang aux d-iemes auto-produits pour un nombre naturel
arbitraire d. Pour que les approximations convergent, nous devons sup-
poser que le nombre naturel d satisfait une certaine condition d’annulation
[5, 4.7]. Cette condition est satisfaite au moins pour d ∈ {2, 3, 4, 5}2

ABSTRACT. — We generalize a formula of Shou-Wu Zhang [8, Thm 3.4.2],
which describes local arithmetic intersection numbers of three Cartier
divisors with support in the special fiber on a self-product of a semi-
stable arithmetic surface using elementary analysis. By an approximation
argument, Zhang extends his formula to a formula for local arithmetic
intersection numbers of three adelic metrized line bundles on the self-
product of a curve with trivial underlying line bundle. Using the results
on intersection theory from [5] we generalize these results to d-fold self-
products for arbitrary d. For the approximations to converge, we have to
assume that d satisfies the vanishing condition [5, 4.7], which is true at
least for d ∈ {2, 3, 4, 5}3

(∗) Reçu le 08/06/2014, accepté le 30/04/2015
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1. Introduction

Let R be a complete discrete valuation ring with algebraically closed
residue field k. We denote the quotient field Quot(R) by K and a uni-
formizing element with π ∈ R. Furthermore let S denote the scheme SpecR
with generic point η and special point s. Let X be a regular strict semi-
stable S-scheme. We denote by CaDivXs(X) the group of Cartier divisors
on X with support in the special fiber Xs. In [5] we studied the pairing

(
CaDivXs(X)

)d+1 → Z,
(C0, . . . , Cd) �→ ldeg(C0 · · · · · Cd).

(1.1)

given by the intersection product and the degree map.

For regular strict semi-stable curves it is easy to give an analytic descrip-
tion of this pairing. Let therefore X be a regular strict semi-stable curve.
The group of Cartier divisors CaDivXs(X) with support in the special fiber
coincides with the free abelian group generated by the vertices of Γ(X),
the reduction graph of X. If we endow the graph Γ(X) with a metric such
that each edge has length 1, we can describe Cartier divisors by continuous
functions fC : |Γ(X)| → R, which are affine on each edge and take only
values from Z on the vertices. We denote the set of functions of this type
by Clin� (Γ(X)).

Thus the intersection pairing induces a bilinear pairing

〈·, ·〉 : Clin� (Γ(X))× Clin� (Γ(X))→ R,
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which is uniquely determined by

〈fC1
, fC2
〉 = ldeg(C1 · C2).

For this pairing we can give an elementary analytic description:

Fact 1.1. — Let X be a proper regular strict semi-stable curve and
f1, f2 ∈ Clin� (Γ,Q). Then

〈f1, f2〉 = −
∫

Γ(X)

(D1f1)(D
1f2) (1.2)

holds. Here we endow the edges of Γ(X) with an arbitrary orientation and
denote by D1f the differential of the function f in the direction of this
orientation.

Using approximation arguments we may continue (1.2) to a pairing of
piecewise smooth functions given by the same equation (note that the dif-
ferential D1 of piecewise smooth functions is defined almost everywhere,
therefore we may still integrate). The aim of this paper is to give a general-
ization of this description for higher-dimensional schemes following an idea
of Zhang ([8, §3]).

We restrict ourselves to d-fold self-products of a smooth curve, since
we can describe a regular strict semi-stable model explicitly for these K-
schemes: If Xη is a smooth curve over K, then the semi-stable reduction
theorem yields a semi-stable model of X (possibly after base change). The
desingularisation of Gross and Schoen yields a uniquely defined regular strict
semi-stable scheme W of Xd (see [5, Thm 3.3]).

We use as generalization of the reduction graph the geometric realization
of the simplicial reduction set |R (W )| = |Γ(X)|d; this is a locally affine
space, which encodes the incidence relations between the components of Ws.
Each Cartier divisor C ∈ CaDivWs

(W ) with support in Ws is a model of
the trivial line bundle, induces therefore a metric on the trivial line bundle,
which corresponds to a piecewise affine function

fC : |Γ(X)|d → R.

We denote the set of these piecewise affine functions by Clin� (Γ(X)d). The
intersection pairing (1.1) thus induces a multi-linear pairing between piece-
wise affine functions

〈·, . . . , ·〉 :
(
Clin� (R (W ))

)d+1

→ R,

defined by 〈fC0
, . . . , fCd〉 = ldeg(C0 · · · · · Cd).
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We see this pairing as the local contribution to the intersection product
of metrized line bundles with underlying trivial line bundles. We want to
extend this pairing to a larger class of metrized line bundles. By approxi-
mation we may continue 〈·, . . . , ·〉 on the set of piecewise smooth functions,
C∞� (Γ(X)d) and give an analytical formula for this pairing, if a certain van-
ishing condition holds. This vanishing condition only depends on the positive
integer d and can be verified explicitly in the cases d = 2, 3. For a piece-wise
smooth function f ∈ C∞� (Γ(X)d) let f (1), f (2), . . . denote a certain approxi-
mation by piece-wise affine functions (see Definition 3.29).

Theorem 1.2.— If d ∈ N satisfies the vanishing condition of Definition
3.31, then for all functions f0, . . . , fd ∈ C∞� (Γd), the limit

〈f0, . . . , fd〉 := lim
n→∞

〈f (n)
0 , . . . , f

(n)
d 〉W,n

exists. It can be calculated by

〈f0, . . . , fd〉 =
∑

P Partition

1

2d+|P|
∑

v0,...,vd∈Fd2 ,∑
α(vi,P)=d+|P|

ldegId(

d∏

i=0

Fvi)

∫

DP

d∏

i=0

Dvi
α(vi,P)(fi).

(1.3)

In this equation the terms Dvi
α(vi,P)(fi) are elementary analytical expres-

sions in the functions fi. The coefficients of the integrals ldegId
( ∏

i Fvi

)

are independent of X and can be calculated using the simplicial calculus of
[5, 4.3].

The case d = 2 was already proved by Zhang in [5, Prop 3.3.1, Prop
3.4.1] for a variant of the Gross-Schoen-desingularisation. Our proof follows
essentially the proof of Zhang, but adds new ideas to the proof: First of all
we use the original method of Gross-Schoen [4] for desingularisation. This
requires more technical effort for the description of the special fiber, but
gives a model with a simpler structure.

In [5, Def 4.22, Prop 4.23] we developed a localization argument which
reduces the computation of intersection to a simple local situation. It reduces
in fact the computation of intersection numbers to (SpecR[x0, x1]/(x0x1−π))

d
,

a simple standard-scheme which is independent of X.

For the derivation of Theorem 3.33 we have to calculate intersection
numbers of divisors which correspond to certain vertices of Γ(X)d. The
vertices serve as nodes for the approximation of piecewise smooth functions
f0, . . . , fd ∈ C∞� (Γ(X)d) from (1.3). To get the limit in Theorem 3.33, Zhang
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uses a laborious investigation. The resulting formula does not contain the
intersection numbers calculated in the first place, which makes the gener-
alization difficult. We are able to simplify the argument by using a Fourier
transform. This explains the terms F(fi), which appear in the calculation.
An elementary argument allows us to show that these Fourier transforms
converge to the generalized differentials Dx

y (f).

Contrary to the method of Zhang we are able to explain the coefficients
of the integrals as intersection numbers ldeg(Fv0 · · · · ·Fvd) of certain divisors
Fv in the standard situation Id.

Especially in the case d = 3 the intersection numbers of the Fv can be
calculated completely, so it is possible to give an explicit description of the
pairing in this case. In order to simplify the exposition in the introduction,
we restrict to the special case of functions which are smooth on each cube
of Γ3, a set denoted by C∞� (Γ3).

Theorem 1.3.— Let f0, . . . , f3 ∈ C∞� (Γ3) be functions smooth on cubes.
Then the limit of the quadruple pairing 〈f0, f1, f2, f3〉 exists and can be
calculated as

lim
n→∞

〈f (n)
0 , f

(n)
1 , f

(n)
2 , f

(n)
3 〉 =

∫

Γ3

∑

v0,v1,v2,v3∈F2

{v0,v1,v2,v3}∈B

3∏

i=0

Dvi
|vi|(fi),

where the set B ⊂ P(F3
2) is defined as follows

B :=
{
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},
{(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)},
{(1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)},
{(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)}

}
.

The author has the strong impression, that the main results are true
not only for the self-product of a semi-stable curve, but also for products of
arbitrary semi-stable curves, i.e. with W = X1 ×X2 × · · · ×Xd where each
Xi is a semi-stable model of a smooth proper curve over S. The elaboration
of the details is left to the interested reader.

It would be an interesting question to determine the largest class of
functions, for which Theorem 3.33 or a variant remains valid, assuming
the vanishing conjecture. Also the dependence of (1.3) on the choice of the
semi-stable model could be interesting for further research.
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This investigation can be seen as a first step to an analytical descrip-
tion of local arithmetic intersection numbers at non-archimedean places in
Arakelov theory. For this interpretation of Theorem 3.33 let (Xη)

an denote
the Berkovich analytification of Xη. By a canonical construction the model
X yields a skeleton of (Xη)

an which coincides with the geometric realization
of R (W ). Thus Theorem 3.33 gives an intersection number for functions on
(Xη)

an, if these functions are induced by metrics on the trivial line bundle
on Xη.

I would like to thank Klaus Künnemann for support and constant en-
couragement and Walter Gubler for precious hints. Also I would like to
express my thanks to the referee of this paper, who gave helpful corrections
and hints. Finally I want to thank the DFG research group 570 ”Algebrais-
che Zykel und L-Funktionen” for financial support.

2. Metrized Line Bundles and The Reduction Map

Let R be a complete discrete valuation ring with uniformizer π, whose
residue field k := R/(π) is algebraically closed. Let S := SpecR = {η, s} be
the corresponding spectrum with generic point η and special point s. Let
X be a proper regular strict semi-stable S-curve, whose generic fiber Xη

is smooth and whose special fiber is a reduced divisor with strict normal

crossings. After choosing a total ordering � on X
(0)
s , the components of Xs

we can define a directed reduction graph Γ(X) and a well-defined Gross-
Schoen desingularization of Xd by the following algorithm:

Algorithm 2.1.— Let d ∈ N and X be a regular strict semi-stable S-

curve with total ordering � on X
(0)
s and Γ(X) be a simplicial set without

multiple simplices. We denote the product by W0 := Xd. Since the com-
ponents of Xs are geometrically integral, we can describe the irreducible
components of (W0)s as product

(W0)
(0)
s = X(0)

s × · · · ×X(0)
s .

We endow this product (W0)
(0)
s with the lexicographical order and denote

the elements in ascending order B1, . . . Bk. Now denote by B′1 the irre-
ducible component B1 endowed with the induced reduced structure and set
W1 := BlB′1(W0). Inductively let B′i ⊆ Wi be the strict transform of the
irreducible component Bi endowed with the induced reduced structure and
set Wi+1 := BlB′i(Wi). The last scheme in this chain Wk is also denoted
by W (X,�, d) := Wk. These blowups introduce no new components in the

special fiber (Wk)s, so the lexicographical ordering on (W0)
(0)
s induces also

a total ordering on W (X,�, d).
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We proved in [5, Thm 3.3]:

Theorem 2.2.— The scheme W := W (X,�, d) is a regular strict semi-
stable R-scheme and for the simplicial reduction set the equation

R (W ) = Γ(X)d

holds.

This desingularization is denoted by W and is a regular strict semi-
stable scheme according to the definition of de Jong [2], which means Wη

is smooth, Ws is regular and the components of Ws intersect properly and
with multiplicity 1 (for details see [5, Prop 4.8]).

We are about to describe the intersection pairing as paring of functions
on the reduction set. The relation between these functions and the Chow
group CH1

Ws
(W ) is best described using metrics on line bundles.

Thus we repeat the definition of metrized line bundles on a complete dis-
crete valued field according to [7]. In particular we have to deal with metrics
induced by models of the trivial line bundle. These metrics are in connection
with the irreducible components of the special fiber. Using metrics we find
an alternative description of the reduction map Red : W (K̄) → |R (W )|.
Eventually this allows us to define a bijection between cycles on W and
functions on the special fiber.

2.1. Metrics on Line Bundles

Let R be a complete discrete valuation ring with algebraically closed
residue field and |·| a norm on its quotient field QuotR. In most cases we
normalize |·| by setting |π| = 1/b for a fixed basis b ∈ R>0.

We denote by K̄ an algebraic closure of K and continue the norm |·| on
K̄. Since R is complete the completion is unique. We denote by RK̄ the ring
of integers {a ∈ K̄ | |a| � 1} in K̄.

Definition 2.3.— Let WK be a K-scheme and L a line bundle on WK .
Let x ∈ WK(K̄) be a K̄-rational point. The global sections of x∗(L) are
called geometric fiber of L in x and denoted by L(x) := Γ(Spec K̄, x∗(L)).
A family of morphisms in the geometric fibers (||·||x : L(x)→ R)x∈WK(K̄) is

called metric on L, if the map ||·||x is a (K̄, |·|)-norm for each x ∈Wk(K̄).

Important metrics are given by models of the line bundle L (see
[7, (1.1)]):
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Definition 2.4.— Let W be a proper S-scheme and L a line bundle on
Wη. Let L be a line bundle on W , which is a model of L by the isomorphism
ϕ : Lη → L. Then there is a metric ||·||x on L defined for a geometric point
x ∈ W (K̄) and an element of the geometric fiber l ∈ L(x) as follows: Let
x̃ : S̄ → W be the unique continuation of x : K̄ → W by the valuative
criterion of properness and let ϕ̃ be the canonical isomorphism induced by
ϕ:

ϕ̃ : x̃∗L(S̃η)→ x∗L(Spec K̄)

Localization gives a canonical injection of the R̄-module Γ(S̄,L) into the
K̄-module Γ(S̄η̄,L), which allows us to identify Γ(S̄,L) with a subset of
Γ(S̄η̄,L). We set

||l||x := inf
a∈K̄×

(
|a|

∣∣a−1ϕ̃−1(l) ∈ Γ(S̄,L)
)
.

Remark 2.5. — Let W be a proper S-scheme and D a Cartier divisor
with support suppD ⊆ Ws in the special fiber of W . Then the line bundle
OW (D) can be regarded as model of the trivial line bundle OWη

by the
isomorphism

ϕD : OW (D) |Wη

∼−→ OW |Wη
,

which maps the canonical section sD ∈ OW (D)(Wη) onto 1 ∈ OW |Wη .

In this special case the metrics are given by the values of the one-section,
thus by a function. We will show, that this function plays the role of a
coordinate function:

Definition 2.6.— Let |·| be a norm on K̄, W a proper S-scheme and D
a Cartier divisor on W with suppD ⊆Ws. The model (OW (D), ϕD) of the
trivial line bundle induced by D yields by Definition 2.4 a metric ||·||OW (D)

on OWη . We evaluate this metric on the one section 1 ∈ Γ(Wη,OWη ) to get
a function

f
|·|
D : Wη(K̄)→ R, x �→ − logb(||1||OW (D),x).

It is called the tropical coordinate function of the divisor D. If the norm is
evident by the context we will denote the coordinate function also by fD.

Proposition 2.7.— Let W be a proper S-scheme and D a Cartier di-
visor on W with support in Ws. Let x ∈ W (K̄) be a K̄-rational point and
U ⊆W an open subset, in which x specializes and the Cartier divisor D is
given by a rational function f ∈ KW (U). Then f |Uη∈ OW (Uη) holds and
we have

fD(x) = − logb

(∣∣∣x#
(
f
∣∣
Uη

)∣∣∣
)
,

where x# denotes the canonical map x# : OW (Uη)→ K̄.
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Proof. — Since the support of D is outside of Uη, we have f |Uη∈ OW (Uη).
Furthermore D is a principal divisor on U and therefore allows us to identify
OU with OU (D). Note that this is nevertheless a non-trivial model of OUη ,
since the model morphism ϕ : OU (D) |Uη→ OUη maps the global section
f ∈ Γ(Uη,OU (D)) onto 1 ∈ Γ(Uη,OUη ).

Denote by x̃ : S̄ → U the continuation of x as before. Then the morphism
x̃∗OU (D)(U) → x̃∗OU (D)(Uη) is just the injection R̄ → K̄. The section
1 ∈ OS̄(S̄η) is mapped by the model morphism on x#(f) ∈ K̄. We therefore
get

fD(x) = − logb(||1||OW (D),x) = − logb( inf
a∈K×

{|a| | a−1x#(f) ∈ R})

= − logb(
∣∣x#(f)

∣∣).

Proposition 2.8.— The coordinate function of the trivial Cartier divi-
sor is the zero function. Let D1, D2 be Cartier divisors on W with suppDi ⊆
Ws. Then fD1+D2 = fD1 + fD2 holds.

Proof. — For each point x ∈ W (RK̄) it suffices to examine a neighborhood
U of x which trivializes D. In U the claim follows directly from Proposition
2.7.

Coordinate functions are compatible with base change:

Proposition 2.9.— Let W,V be proper integral S-schemes, g : W → V
a dominant morphism and D a Cartier divisor on V with support in Vs.
According to [3, Prop 11.48] there exists a well-defined Cartier divisor g∗D.
Then for each point x ∈W (K̄) the equation

fD(g(x)) = fϕ∗(D)(x).

holds.

Proof. — Let x ∈W (K̄) a K̄-rational point and x̃ : S̄ →W its continuation
on S̄. We denote its image under g by ỹ := g ◦ x̃. As above it suffices to
prove the claim in an open neighborhood of x̃. Thus we may assume that
the Cartier divisor D is given on V by a rational function f ∈ KV (V ).
By definition g∗D is represented by g∗f and the claim is a consequence of
ỹ#(f) = x̃#(g#(f)) and Proposition 2.7.

Example 2.10.— Let W be a proper S-scheme U ⊆ W an affine open
subset with a dominant morphism f : U → L = SpecR[z0, z1]/(z0z1 − π).

– 27 –



Johannes Kolb

Let D be a Cartier divisor on W with supp(D) ⊆ Ws, which coincides on
U with f∗(div(z0)).

We can describe a geometric point x : Spec K̄ → U of U by its coor-
dinates (f ◦ x)#(z0), (f ◦ x)#(z1). If x ∈ U(K̄) specializes into U , we have
(f ◦x)#(z0), (f ◦x)#(z1) ∈ RK̄ . Since the divisor D is given on U by f#(z0),
Proposition 2.7 implies

fD(x) = − logb(
∣∣(f ◦ x)#(z0))

∣∣).

Thus we get the coordinate function fD by the valuation of the z0-component
of the point x.

2.2. The Reduction Map

Let us now study the reduction map. First we recall the definition of
the reduction map [6, 2.4.2] for curves and define a natural generalization
on products of curves. Then we describe this reduction map using tropical
coordinates.

Definition 2.11 ([6, 2.4.2]).— Let X be a regular strict semi-stable
S-curve having a reduction set without multiple simplices. Let κ denote the
inductive system

κ = {K̃n | n ∈ N,K ⊆ K̃n ⊆ K̄, [Kn : K] = n}.

Then there are canonical isomorphisms

lim−→
K̃n∈κ

|R (XOK̃n )| � lim−→
K̃n∈κ

|sdn R (X)| � |R (X)|.

Denote by RedK̃n : X(K̃n) → R (XOK̃n ) the map which sends a point

x ∈ X(K̃n) to the component C ∈ R (XOK̃n), in which x specializes. The
limit of these maps induces a map

Red : X(K̄) = lim−→X(K̃n)→ lim−→|R (XOK̃n )| � |R (X)|,

which is called the reduction map.

We generalize the reduction map to products of curves:

Definition 2.12.— Let X be a regular strict semi-stable S-curve having
a reduction set without multiple simplices, d ∈ N and W = W (X,<, d) the
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product model constructed in Algorithm 2.1. Then the map Red : W (K̄)→
|R (W )|, which makes the diagram

W (K̄)
Red−−−−→ |R (W )|

pri

� pri

�

X(K̄)
Red−−−−→ |R (X)|

for each i = 1, . . . d commutative, is called the reduction map.

We can give an alternative description of the reduction map using co-
ordinate functions. Let X be a regular strict semi-stable curve having a
reduction set without multiple simplices, d ∈ N and W = W (X,<, d) the
product model of Xη.

We identify the vertices C ∈R (W )0 of the reduction set with irreducible
components of Ws. Since W is regular strict semi-stable, each C ∈R (W )0
represents a Cartier divisor and by Definition 2.6 we get an associated co-
ordinate function, which we denote by fC : Xη(K̄)→ R.

Theorem 2.13. — Let X be a regular strict semi-stable curve, d ∈ N
and W = W (X,<, d) the product model of Xn

η . Let x ∈W (K̄) be a geomet-
ric point. Then the values of the coordinate functions (fC(x))C∈R (W )0 yield
a probability distribution on R (W )0 with support in a simplex of R (W ).
They determine a point p ∈ |R (W )|, which coincides with Red(x) ∈ |R (W )|.

We split the proof in three parts. First let us show that (fC(x))C∈R (W )

gives a probability distribution:

Proposition 2.14. — Let W be a proper regular strict semi-stable S-
scheme having a reduction set without multiple simplices. Let x ∈ W (K̄)
be a geometric point. Then

∑
C∈R (W )0

fC(x) = 1 and fC(x) � 0 for all

C ∈ R (W )0. For each C ∈ R (W )0 the relation fC(x) > 0 holds, iff x
specializes into the component C.

Proof. — The special fiber Ws is given by the principal divisor Dπ = div π.
Since Xs is reduced,

∑
C∈R (X)0

C = Dπ holds and by Proposition 2.8 we

get
∑

C∈R (X)0
fC(x) = fDπ (x). By Proposition 2.7 fDπ (p) = 1 for each p,

which implies the first claim.

For the second claim let x̃ ∈ X(RK̄) be the continuation of x ∈ X(K̄).
Let U ⊂ X be an open neighborhood of x̃, in which the effective Cartier
divisor C is trivialized by a section h ∈ OU (U). Then Proposition 2.7 implies
fDC (x) = − logb(

∣∣x#h
∣∣) � 0.
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By definition the point x specializes into the component C, iff x̃(s̄) is in
C, this means hx̃(s̄) is in the maximum ideal mx̃(s̄) of the local ring Ux̃(s̄).

Therefore x̃#(h) lies in the maximum ideal {x ∈ RK̄ | |x| < 1} of RK̄ .
According to Proposition 2.7 this is equivalent to fC(x) > 0.

Using Proposition 2.14 we are able to prove Theorem 2.13 for d = 1:

Proposition 2.15.— Let W = X be a proper regular strict semi-stable
S-curve. Let n ∈ N be a natural number, Kn/K a finite field extension of
degree n and Rn := OKn the ring of integers in K. Let x ∈ X(Kn) be a Kn-
rational point. Then Red(x) coincides with the point given by the coordinate
functions (fC(x))C∈R (X)0 .

Proof. — Denote by Xn the model of Theorem 2.18. By Proposition 2.14
it suffices to consider the components of Xs resp. (Xn)s, in which the
point x specializes. Thus we may assume that X has the form X = L :=
SpecR[x0, x1]/ (x0x1−π). Since R (L) has only one edge, the reduction set
R (Xn) = sdn(R (L)) looks like

C ′0 − C ′1 − · · · − C ′n .

Choose i ∈ {0, . . . , n} such that x specializes into C ′i. Then there is a neigh-
borhood of x of the form U := SpecRn[y0, y1] with structure morphism

SpecR[x0, x1]/(x0x1 − π)→ SpecRn[y0, y1]/(y0y1 − π̃),

x0 �→ yi0y
i+1
1 , x1 �→ yn−i0 yn−i−1

1 .

We may assume that C ′i is given on U by div(y0). By Proposition 2.14
we get fC′i(x) = 1. Using Proposition 2.14 again we deduce fC0(x) = i

n ,

fC1
(x) = n−i

n and the claim.

The last part is to consider the product situation W = W (X,<, d):

Proposition 2.16.— Let X be a proper regular strict semi-stable curve,
further W = W (X,<, d) and x ∈W (K̄). Then the point Red(x) ∈ |R (W )| =
|R (X)d| is given by the probability distribution (fC(x))C∈R (W )0 .

Proof. — By Definition 2.12 and Proposition 2.15 it suffices to show that
for each i ∈ {1, . . . d} the diagram

W −−−−→ |R (W )| � |R (X)d|
pri

� pri

�

X −−−−→ |R (X)|
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commutes. Let i ∈ {1, . . . d}. Since pri is a dominant morphism between
reduced local noetherian schemes, there exists a pull-back of Cartier divisors
pr∗i . As W and X are regular strict semi-stable we may identify each element
C ∈R (X)0 with a Cartier divisor and have the equation

pr∗i (C) =
∑

C′∈R (W )0,pri(C
′)=C

C ′.

Then Proposition 2.8 and Proposition 2.9 imply

fC(x) =
∑

C′∈R (W )0,pri(C
′)=C

fC′(x)

which is exactly the description of pri : R (X)d → R (X) in coordinate
functions.

The reduction map allows us to describe vertical Cartier divisors onX by
analytic objects, precisely by functions on |R (X)|, the geometric realization
of the reduction set. We formulate this in the following proposition:

Proposition 2.17.— Let X be a regular strict semi-stable S-curve with

total ordering < on X
(0)
s . Let d ∈ N and W = W (X,�, d) be the product

model constructed in Algorithm 2.1 and let D ∈ CaDivWs
W be a Cartier

divisor with support in Ws. Then the function fD factorizes through the
reduction map. We denote the induced map by f̃D : |R (W )| → R. The
function f̃D is affine in each simplex of R (W ) and therefore uniquely de-
fined by the values on the vertices (f(C)) |C∈R (W )0 . The divisor can be
retrieved by

D =
∑

C∈R (W )0

fD(C)[C].

Proof. — The factorization is trivial: If D is the Cartier divisor of one com-
ponent C ′ ∈R (W )0, then fC′ is itself a coordinate function and therefore
affine on each simplex. Since each Cartier divisor is a linear combination of
divisors of this form, the claim is implied by Proposition 2.8.

Let D =
∑

C∈R (W )0
nC [C]. For each C ′ ∈ R (W )0 we choose a point

x ∈ W (K̄), which specializes only into the component C ′. By Proposition
2.8 and Proposition 2.14 we get

fD(x) =
∑

C∈R (W )0

nCfC(x) = nC′

and the claim is proven.
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2.3. Morphisms Between Models

The coordinate functions fD are useful to construct morphisms between
product models of the type described by Algorithm 2.1 and models arising
from ramified base-change in the following way:

Theorem 2.18. [5, Theorem 3.1]. — Let S := SpecR be the spectrum
of a complete discrete valuation ring. Let Kn/K be a field extension of
degree n ∈ N and Rn the ring of integers in Kn. We denote Sn := SpecRn.
Let X be a regular strict semi-stable S-curve with a total ordering on X(0),
whose simplicial reduction set Γ(X) has no multiple simplices. Let Xn be
the scheme obtained by blowing up X ×S Sn successively in all singular
points, blowing up the resulting scheme successively in all singular points,
and so on �n/2� times. Then Xn is a regular strict semi-stable Sn curve with
(Xn)ηn = (Xη) ×SpecK SpecKn. Furthermore there exists a total ordering
of (Xn)(0) such that there is a canonical isomorphism

Γ(Xn) � sdn(Γ(X)),

which maps the simplicial reduction set of Xn to the canonical n-fold sub-
division sdn(Γ(X)) of the simplicial set Γ(X) (see Definition A.7).

The coordinate functions fD are useful to construct morphisms between
models of the type described by Algorithm 2.1 and

Theorem 2.19.— Let Kn be an algebraic field extension of degree n, Rn

the ring of integers of a finite field extension Kn/K and Sn := SpecRn. Let
X be a regular strict semi-stable S-curve and Xn the model of Xη ×K Kn

constructed in Theorem 2.18. Let W = W (X,<, d) denote the product model
of Xd

η and Wn = W (Xn, <, d) the analogous model of (Xn)dηn . Then there
exists a morphism ϕ : Wn →W .

The proof uses the universal property of blow-up. Its basic idea is the
following:

Lemma 2.20.— Let W be a proper regular strict semi-stable scheme and
D1, D2 two effective Cartier divisors with support in Ws. The scheme theo-
retic intersection D1∩D2 is a Cartier divisor iff the function min(fD1

, fD2
)

is affine on each simplex of R (W ). In this case the Cartier divisor D :=
D1 ∩D2 provides

fD = min(fD1 , fD2).

Proof. — Assume that the scheme theoretic intersection D = D1 ∩D2 is a
Cartier divisor. Then fD is affine on each simplex and it suffices to show
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that fD = min(fD1
, fD2

). Let x̃ ∈ W (RK̄) be a RK̄-valued point of X and
U ⊆ W a trivializing neighborhood of the divisors D,D1, D2. Since the
divisors are effective, they are given by sections r, r1, r2 ∈ Γ(OW , U). The
prerequisite D = D1 ∩D2 implies (r) = (r1, r2) and thus

(x∗(r)) = (x∗(r1), x
∗(r2)).

SinceRK̄ is a principal ideal domain, we have |x∗(r)| = min(|x∗(r1)| , |x∗(r2)|)
and the claim results from Proposition 2.7.

For the converse we may restrict ourself to one simplex. There the propo-
sition implies that one function dominates the other; without loss of gener-
ality fD1

� fD2
. Using Proposition 2.7 the divisor D2 −D1 is effective and

thus D = D1 ∩D2 = D1 is again a Cartier divisor.

Before we can apply Lemma 2.20 in the setting of Theorem 2.19 we show
the following compatibility of reduction sets:

Lemma 2.21.— Let X,Xn,W,Wn be as in Theorem 2.19. Then the di-
agram

Wn(K̄)
�−−−−→ W (K̄)

Red

� Red

�

|R (Wn)| τ−−−−→ |R (W )|
commutes, where τ : |R (Wn)| � |sdn R (W )| → |R (W )| denotes the
canonical morphism of the geometric realization of the n-th subdivision (see
Proposition A.8). Let f : |R (W )| → R be a function which is affine on
each simplex. Then f ◦ τ is affine on each simplex of R (Wn).

Proof. — According to Definition 2.11 and Definition 2.12 the diagram

Wn(K̄) −−−−→ ∏
iXn(K̄) −−−−→ ∏

iX(K̄) −−−−→ W (K̄)
�

�
�

�

|R (Wn)| −−−−→ ∏
i |R (Xn)| −−−−→ ∏

i |R (X)| −−−−→ |R (W )|
commutes and it can be shown that the concatenation of the canonical
isomorphisms in the second line equals τ .

The second claim is an implication of the definition of the canonical
morphism τ (see Proposition A.9).

Proof of Theorem 2.19. — By definition W is constructed as gradual blow-
up of Wd:

W = W [N ] → · · · →W [1] →W [0].
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Obviously there is a morphism ϕ[0] : Wn → W [0]. We verify the universal
property of the blow-up to get morphisms ϕ[i] : Wn →W [i].

Let ϕ[i] : Wn → W [i] be already constructed. According to [5, Lemma
3.6 (iii)] the center C of the next blow-up W [i+1] →W [i] is given by an inter-
section of Cartier divisors C = D1 ∩ · · · ∩Dl. The component C is a Cartier
divisor on W [i+1] and on W = W [N ], thus the functions min(fD1 , . . . fDl)
are affine on each simplex of R (W ) (Lemma 2.20).

By Lemma 2.21 the pull-backs under ϕ[i] are also affine on each simplex
of R (W ) and by Lemma 2.20 the intersection (ϕ[i])−1(C) = (ϕ[i])∗D1 ∩
· · · ∩ (ϕ[i])∗Dl is a Cartier divisor. The universal property of the blow-up
gives the postulated morphism ϕ[i+1] : Wn →W [i+1].

3. Limits of Intersection Numbers

In this last section we combine the theory of metrics with the results of
[5]. This allows us to describe the localized intersection numbers of vertical
divisors by methods of analysis on the simplicial reduction set and use this
description to approximate hermitean metrics on the trivial bundle.

Let R be as usual a complete discrete valuation ring with algebraically
closed residue field and X a proper regular strict semi-stable curve on

S = SpecR with a total ordering < on X
(0)
s . We want to assume that

the reduction set has no multiple simplices. Let W := W (X,<, d) be the
regular strict semi-stable model of the product (Xη)

d as defined in Algo-
rithm 2.1. By Proposition 2.17 there is a bijection between Cartier divisors
on W with support in the special fiber Ws and piecewise affine functions on
|R (W )|. Thus we can view the intersection product as (d+ 1)-fold pairing
between piecewise affine functions on |R (W )|.

We use a limit argument in the spirit of Zhang ([8, Sec. 3]) to continue
this pairing on piecewise smooth functions on |R (W )| and give an analytic
description of this continuation.

3.1. Analysis on Simplicial Reduction Sets

We start with the definition of analytical objects on products of graphs.
Let Γ be a finite graph. By functoriality ([5, Prop. 18]) each edge γ ∈ Γ1

induces an embedding iγ : I → Γ of the standard graph I = ∆[1] into Γ.
In the product we get for each d tuple γ = (γ1, . . . γd) ∈ Γd

1 of edges an
embedding

iγ := iγ1
× · · · × iγd : Id → Γd
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(compare Remark A.2). By functoriality this induces a morphism (iγ)∗ :
|Id| → |Γd| of the d-dimensional “standard cube” |I|d into |Γd|.

We see these embeddings (iγ)∗ as charts. To ease the definition of an-
alytical terms we identify |I|d with the standard cube [0, 1]d in Rd. Let
(C0, . . . Ck) ∈ (Id)k be a k-simplex given by its vertices C0, . . . Ck ∈ (Id)0.
Then we denote by [C0, . . . Ck] the closed convex hull of the points C0, . . . Ck

— seen as points in [0, 1]d. A continuous function f : [C0, . . . Ck] → R is
called smooth if it can be continued to a smooth function on an open neigh-
borhood U ⊇ [C0, . . . Ck].

Definition 3.1.—

1. A continuous function f : |Id| � [0, 1]d → R is called

(a) smooth in the cubes if f is smooth on [0, 1]d,

(b) smooth in the simplices if for each k ∈ N and each k-simplex
(C0, . . . Ck) ∈ (Id)k the restriction f |[C0,...,Ck] is smooth,

(c) affine if for each k ∈ N and each k-simplex (C0, . . . Ck) ∈ (Id)k
the restriction f |[C0,...Ck] is affine.

The set of continuous functions on |Id| is denoted by C0(Id), the set of
functions smooth in the cubes by C∞� (Id), the set of functions smooth
in the simplices by C∞� (Id) and the set of affine functions by Clin� (Id).

2. Let Γ be a graph. The set of continuous functions f : |Γd| → R is
denoted by C0(Γd). A function f ∈ C0(Γd) is called smooth in the
cubes (smooth in the simplices, affine), if for each γ ∈ (Γ1)

d the
function (iγ)

∗f = f ◦ iγ : [0, 1]d → R is smooth in the cubes (smooth
in the simplices, affine).

The set of these functions is denoted by C∞� (Γd) (C∞� (Γd), Clin� (γd)).

To define partial derivatives we have to discuss the points on which the
functions from C∞� (Γd) and Clin� (Γd) have singularities. In the standard cube
|Id| these are exactly the points x = (x1, . . . xn) ∈ [0, 1]d where two or more
coordinates coincide. We call sets of this type generalized diagonals:

Definition 3.2.— The points in |Id| \ ∂|Id| are called inner points of
|Id|. Let Γ be an arbitrary graph. Then x ∈ |Γd| is called inner point, if there
is a tuple γ = (γ1, . . . γd) ∈ Γd

1 such that x = (iγ)∗(x′) holds with x′ ∈ |Id|
an inner point. In this case γ and x′ is unique. The set of inner points is
denoted by |Γd|i.

– 35 –



Johannes Kolb

Definition 3.3.—

1. Let x ∈ |Id|i be an inner point in |Id| � [0, 1]d, given by its coordinates
(x1, . . . , xd) ∈ [0, 1]d. We define a partition {1, . . . , d} = A1�· · ·�Al

such that
xi = xj ⇔ ∃h : i, j ∈ Ah

holds. This partition is unique and is denoted by

d(x) := {A1, . . . Al}.

2. Let x ∈ |Γd|i be an inner point in |Γd|. Then there exists a unique
tuple γ ∈ Γd

1 and a unique point x′ ∈ |Id| such that (iγ)∗(x′) = x. We
set

d(x) := d(x′).

The partition d(x) of x ∈ |Id| holds the information which coordinates
of x coincide. For example the points x ∈ |Id| with d(x) = {{1, . . . , d}} are
exactly the points of the usual diagonal {(t, . . . , t) | t ∈ (0, 1)} in [0, 1]d.

Definition 3.4.— Let Γ be a graph and P = {A1, . . . , Ak} a partition
of {1, . . . , d}. We call the subset

DP(Γd) :=
{
x ∈ |Γd|

∣∣∣d(x) = P
}
⊆ |Γd|

generalized diagonal to the partition P.

Remark 3.5. — Let P = {A1, . . . , Al} be a partition of {1, . . . , d} and
I = {i1, . . . , il} with i1 ∈ A1, . . . , il ∈ Al. Then

DP(Id)=
{
x=(x1, . . . , xd)∈|Id|

∣∣∣xj1 =xj2 ⇐⇒∃m ∈ {1, . . . , l} : j1, j2∈Am

}

and by the projection prI on the coordinates i1, . . . , il we get a bijection

cP : DP(Id)→ [0, 1]l, (x1, . . . , xd) �→ (xi1 , . . . , xil).

The chart cP does not depend on the choice of i1, . . . , il.

Since continuous functions are integrable, we are able to define an inte-
gral on Γd and on generalized diagonals D(P).
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Definition 3.6.—

1. Let Γ = I and f ∈ C0(Id) be a continuous function on the standard
cube Id. Then |Id| is canonically homeomorphic to [0, 1]d and we may
define the integral of f by

∫

Id
f :=

∫

[0,1]d
f(x)dµ,

where µ denotes the Lebesgue-measure on [0, 1]d. Let P be a parti-
tion of the set {1, . . . , d}. Then the integral along the diagonal DP is
defined by ∫

DP(Id)

f :=

∫

[0,1]|P|
f ◦ c−1

P dµ,

where cP denotes the chart from Remark 3.5.

2. Let Γ be an arbitrary graph, f ∈ C0(Γd) a continuous function on
Γd and P a partition of {1, . . . , d}. Then the integral of f along Γd

respectively along DP is defined by

∫

Γd
f :=

∑

γ∈(Γ1)d

∫

Id
(f ◦ (iγ)∗),

∫

DP(Γd)

f :=
∑

γ∈(Γ1)d

∫

DP(Id)

(f ◦ (iγ)∗).

For the definition of generalized differential operators on functions smooth
in simplices we use a kind of discrete Fourier transform:

Let v = (v1, . . . , vd) ∈ Fd2 be a vector and denote by |v| the number of
non-trivial coordinates, i.e. |v| = #{i | vi "= 0}. We use these vectors to
index the vertices of Id. For a real number h ∈ R denote by hv ∈ Rd the
point

hv := h · ((−1)v1 , . . . , (−1)vd)

in Rd. For each continuous function f ∈ C0(Id) and each x ∈ |Id|i we study
the values of f in a cube surrounding x:

fhx : Fd2 → R, v �→ f(x+ hv).
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Definition 3.7.—

1. Let f ∈ C0(Id) be a continuous function on Id, x ∈ |Id|i, v ∈ Fd2.
Let h > 0 be small enough, such that x + hw is an inner point for
all w ∈ Fd2. Then we define a function ∆v

hf by the discrete Fourier
transform

∆v
hf : |Id|i → R

x �→ 1

2d

∑

w∈Fd2

(−1)〈v,w〉fhx (w).

2. Let Γ be a graph without multiple edges and f ∈ C0(Γd). Let x ∈ |γd|i
an inner point which is given as image of a point x′ ∈ |Id|i under
(iγ)∗ : |Id| → |Γd| for γ ∈ Γd

1. Let v ∈ Fd2 and h > 0 small enough so
that x′ + hw ∈ |Id|i holds for all w ∈ Fd2. Then define

∆v
hf(x) := ∆v

hf ◦ (iγ)∗.

Since x is an inner point, γ is unique and thus this notation is well-
defined.

Proposition 3.8. — Let f ∈ C0(Γd) a continuous function which is
smooth in a neighborhood of an inner point x ∈ |Γd|i. Then 1

h|v|∆
v
hf(x)

converges to the following differential:

lim
h→0

1

h|v|
∆v
hf(x) = Dvf(x) :=

(
∂

∂x1

)v1

· · ·
(

∂

∂xd

)vd

f(x).

Proof. — It suffices to prove the proposition for the standard graph Γ = I.
We use the multidimensional Taylor series of f in x: Since f is smooth in a
neighborhood of x, we have for each vector w ∈ Fd2, each h ∈ R and l ∈ N:

f(x+ hw) =
∑

λ∈Nd0
0�|λ|�l

(hw)λ

λ!
Dλf(x) + o(||(hw)||l)

=
∑

λ∈Nd0
0�|λ|�l

(−1)〈w,λ mod 2〉h
|λ|

λ!
Dλf(x) + o(hl).

The terms λ!, (hw)λ, |λ| are understood in the usual multi-index notation.
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For the Fourier transform ∆v
hf this implies:

∆v
hf(x) =

1

2d

∑

w∈Fd2

(−1)〈v,w〉f(x+ hw)

=
1

2d

∑

w∈Fd2

(−1)〈v,w〉
∑

0�|λ|�|v|
(−1)〈w,λ mod 2〉h

|λ|

λ!
Dλf(x) + o(h|v|)

=
1

2d

∑

0�|λ|�|v|


 ∑

w∈Fd2

(−1)〈w,v−(λ mod 2)〉


 h|λ|

λ!
Dλf(x) + o(h|v|)

= h|v|Dvf(x) + o(h|v|).

We conclude

lim
h→0

1

h|v|
∆v
hf(x) = Dvf(x) =

(
∂

∂x1

)v1

· · ·
(

∂

∂xd

)vd

f(x).

A similar proposition can be stated for functions, which are smooth on
simplices. For these functions, however, we get a weaker convergence result
on the generalized diagonals.

Proposition 3.9. — Let f ∈ C∞� (Γd) be a function in Γd which is
smooth on simplices. Let v ∈ Fd2 and P = {A1, . . . , Ak} be a partition of
{1, . . . , d}. We set

α = α(P, v) := #{i ∈ {1, . . . , k} | ∃a ∈ Ai : va = 1}.
Then for each point x ∈ DP(Γd) the limit

lim
h→0

1

hα
∆v
hf(x) (3.1)

exists and is continuous in x on DP(Γd).

The proof is very technical. Of course it is enough to show the proposition
for the standard graph Γ = I. In the next lemma we split the sum ∆v

n(f)(x)
from Definition 3.7 into parts such that each part contains only contributions
of one simplex. Then f can be replaced by a smooth function and the
proposition is a consequence of Proposition 3.8.

Let J ⊆ {1, . . . , d} be a subset and H := {1, . . . , d} \ J its complement.
For the proof we denote by VJ (resp. VH) the subspace of V := Fd2 spanned
by the base vectors ei with i ∈ J (i ∈ H). The projections in the direct sum
V = VJ ⊕ VH are denoted by prJ and prH .
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Lemma 3.10.— Let f ∈ C∞� (Id) be smooth on simplices and x ∈ |Id|
with d(x) = {P1, . . . , Pk}. Let J = {j1, . . . , jk} with j1 ∈ P1, . . . , jk ∈ Pk.
Denote by H := {1, . . . d} \ J its complement. Then for each v ∈ V and
v′ ∈ VH there exists an ε > 0, an open neighborhood U ⊆ |Id| of x and a
function F smooth on U such that

∑

vH∈VH
(−1)〈vH ,v′〉∆v+vH

h (f)(x′) =
∑

vH∈VH
(−1)〈vH ,v′〉∆v+vH

h (F )(x′)

holds for all x′ ∈ U with d(x′) = d(x) and all h < ε.

Proof. — We choose ε > 0 small enough such that ε < 1
4 |xi − xj | for all

i, j with xi "= xj and set U ′ = {x′ ∈ |Id| | |x′ − x| � ε}. For each x′ ∈
U ′, d(x′) = d(x) we have

∑

vH∈VH
(−1)〈vH ,v′〉∆v+vH

h (f)(x′) =
∑

vH∈VH
(−1)〈vH ,v′〉 ∑

w∈Fd2

(−1)〈v+vH ,w〉fhx′(w)

=
∑

vH ,wH∈VH
wJ∈VJ

(−1)〈vH ,v′〉+〈v+vH ,wH〉+〈v,wJ 〉fhx′(wJ + wH)

=
∑

wH∈VH
wJ∈VJ

2|H|δv′,wH (−1)〈v,wH〉+〈v,wJ 〉fhx′(wJ + wH)

= 2|H|
∑

wJ∈VJ
(−1)〈v,wJ+v′〉f(x′ + hwJ+v′).

The points occurring in the last term,

Q := {x′ + hwJ+v′ | wJ ∈ VJ , h < ε, x′ ∈ U ′, d(x′) = d(x)},

all lie in the same simplex: For all points q ∈ Q the coordinates q =
(q1, . . . , qd) ∈ Rd satisfy the inequalities

qk1
< qk2

if xk1
< xk2

,

qj � qk if xj = xk, j ∈ H, vj = 1,

qj � qk if xj = xk, j ∈ H, vj = 0.

The coordinates of the points in P can therefore be simultaneously sorted by
one permutation σ ∈ Sd and thus all points of Q are in the corresponding
simplex Sσ ⊆ |Id| (see Proposition A.6). Since f is smooth on simplices,
there is an open neighborhood U ′′ ⊆ Sσ and a smooth continuation F of f .
By choosing U := U ′ ∩ U ′′ we get the proposition.
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Corollary 3.11.— Let f ∈ C∞� (Id), v ∈ Fd2 and x ∈ |Id|. Let J,H ⊆
{1, . . . , d} as in Lemma 3.10. Then there exists an open neighborhood U ⊆
|Id| of x and smooth functions (FvH )vH∈VH on U such that

∆v
h(f)(x′) =

∑

vH∈VH
∆v+vH
h (FvH )(x′)

holds for all x′ ∈ U with d(x′) = d(x).

Proof. — According to Lemma 3.10 there is an open neighborhood U of x,
an ε > 0 and for each wH ∈ VH a smooth function GwH on U such that

∑

vH∈VH
(−1)〈vH ,wH〉∆v+vH

h (f) =
∑

vH∈VH
(−1)〈vH ,wH〉∆v+vH

h (GwH )

holds for each x′ ∈ U with d(x′) = d(x) and each h < ε.

By an application of the Fourier transform we get

∆v
h(f)(x′) = 2|H|

∑

wH∈VH

( ∑

vH∈VH
(−1)〈vH ,wH〉∆v+vH

h (f)(x′)

)

= 2|H|
∑

wH∈VH

( ∑

vH∈VH
(−1)〈vH ,wH〉∆v+vH

h (GwH )(x′)

)

=
∑

vH∈VH
∆v+vH
h

( ∑

wH∈VH
2|H|(−1)〈vH ,wH〉GwH

)
(x′)

=
∑

vH∈VH
∆v+vH
h (FvH )(x′)

with

FvH :=
∑

wH∈VH
2|H|(−1)〈vH ,wH〉GwH .

Proof of Proposition 3.9. — Since x ∈ DP(Γd), we have d(x) = {A1, . . . , Al}.
From each block Ai we choose an element ji ∈ Ai with vji = 1, in case such
an element exists. Otherwise we choose an arbitrary element. The subset
J := {j1, . . . , jl} ⊆ {1, . . . , d} satisfies the conditions of Corollary 3.11.
Therefore there is an open neighborhood U of x and smooth functions FvH
for each vH ∈ VH such that

∆v
h(f)(x′) =

∑

vH∈VH
∆v+vH
h (FvH )(x′)
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holds. The minimal length occurring in the ∆ on the right hand side, i.e. the
value of the set {|v+vH |, vH ∈ VH} is reached only with vH = w := prH(v).
Then |v + w| = α(P, v) = α and by Proposition 3.8 for each x′ ∈ U with
d(x′) = d(x) we get

lim
h→0

1

hα
∆v
h(f)(x′) =

∑

vH∈VH
lim
h→0

1

hα
∆v+vH
h (Fv′)(x

′)

= Dv+w(Fw)(x′)

and thus the proposition.

Motivated by Proposition 3.8 and Proposition 3.9 we define the gener-
alized differential:

Definition 3.12.— Let f ∈ C0(Γd) be a continuous function on |Γd|. If
for x ∈ |Γd|, v ∈ Fd2 and α ∈ N the limit

Dv
α(f)(x) := lim

h→0

1

hα
∆v
h(f)(x)

exists, we call f differentiable at x to v in degree α and Dv
α the generalized

differential of f to v in degree α.

By Proposition 3.9, for each f ∈ C∞� (Id), v ∈ Fd2 and each point x ∈ |Id|i
the generalized differential in degree α := α(d(x), v) exists. For d = 2 we
can give a connection with the term δ(f) defined by Zhang in [8, 3.4]:

Example 3.13. — Let d = 2 and f ∈ C0(I2). By the diagonal D =
D({{1, 2}}) = {(x1, x2) ∈ (0, 1) | x1 = x2} the square (fig. 1) is split into
two triangles S+, S− ⊆ |I2|, on each of which the function f is smooth. By
S+ we denote the upper triangle, see fig. 1.

Figure 1. — Square split into two triangles S+, S− by diagonal D.

As in Zhang [8, 3.4] let f+ and f− denote a continuation of the smooth
function f |S+ resp. f |S− above the diagonal. For each point x ∈ D and
each 0 < h ∈ R small enough, Lemma 3.10 implies

∆
(1,1)
h (f)(x) + ∆

(1,0)
h (f)(x) = ∆

(1,1)
h (f+)(x) + ∆

(1,0)
h (f+)(x),

∆
(1,1)
h (f)(x)−∆

(1,0)
h (f)(x) = ∆

(1,1)
h (f−)(x)−∆

(1,0)
h (f−)(x).
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We conclude

∆
(1,1)
h (f)(x) =

1

2

(
∆

(1,1)
h (f+)(x)+∆

(1,0)
h (f+)(x)+∆

(1,1)
h (f−)(x)−∆

(1,0)
h (f−)(x)

)

=
1

2
∆

(1,1)
h (f+ + f−)(x) +

1

2
∆

(1,0)
h (f+ − f−)(x)

and therefore the following limit converges:

lim
h→0

1

h
∆

(1,1)
h (f)(x) = lim

h→0

1

2h
∆

(1,0)
h (f+ − f−)(x)

=
1

2

∂

∂x1
(f+ − f−)(x).

Using the notation of Zhang δ(f) := ∂
∂x1

(f+ − f−) this means for each
x ∈ D:

D
(1,1)
1 (f)(x) =

1

2
δ(f)(x).

To conclude this section we study a discretization of the generalized
differential. Let n ∈ N. We subdivide the standard cube into cubes with
edges of length 1

n . Let x ∈ [0, 1]d be a point in the standard cube given by
its coordinates x = (x1, . . . xd) ∈ Rd. Let �x� be the vector (�x1�, . . . , �xd�),
where �·� denotes the usual floor function. Then the cube of edge length
1
n surrounding the point x has the center coordinates x̃(n) := 1

n�nx� +
1
2n (1, . . . , 1).

Definition 3.14.—

1. Let f ∈ C0(Id) be a continuous function on [0, 1]d and x ∈ (0, 1)d.
We call the term

∆̃v
nf(x) := ∆v

1/2nf(x̃(n)) = ∆v
1/2nf

( 1

n
�nx�+

1

2n
(1, . . . , 1)

)

the n-th lattice approximation of the derivative to v ∈ Fd2 at x.

2. Let Γ be a graph and f ∈ C0(Γd) a continuous function on |Γd| and
x ∈ |Γd|i an inner point. As in Definition 3.7 there are unique γ ∈ Γd

1,
x′ ∈ (Id)i, such that (iγ)∗(x′) = x. The n-th lattice approximation
of the derivative to v ∈ Fd2 at x is defined by

∆̃v
nf(x) := ∆̃v

n(f ◦ (iγ)∗)(x̃
′).
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Proposition 3.15.— Let f ∈ C∞� Γd be a function smooth on simplices,
x ∈ |Γd|i an inner point and α := α(P(x), v) as in Proposition 3.9, then

lim
n→∞

(2n)α∆̃v
nf(x) = Dv

αf(x)

holds.

Proof. — It suffices to study I = Γ. Let N ∈ N big enough such that the
closed line V := [x̃(N) − 1

2N (1, . . . , 1), x̃(N) + 1
2N (1, . . . , 1)] lies in Id and

d(x′) = d(x) holds for all x ∈ V . Then for each x ∈ V and each n � N we
have x̃(n) ∈ V . By Proposition 3.9 the limit Dv

α(f)(x) = limh→0
1
hα∆v

hf(x)
exists for each x ∈ V and since V is compact this convergence is uniform.
Again by Proposition 3.9 the function Dv

α(f) is continuous on V and thus

lim
n→∞

(2n)α∆v
nf(x̃(n)) = lim

m→∞
lim
n→∞

(2n)α∆v
nf(x̃(m))

= lim
m→∞

Dv
α(f)(x̃(m)) = Dv

α(f)(x).

Lemma 3.16.— Let n ∈ N and f ∈ C0(Γd) be a function with f(x) =
f(x̃(n)) for each x ∈ |Γd|. Then for each partition P of {1, . . . , d} the equa-
tion ∫

Γd
f11{x|P(x̃(n))=P} = n|P|−d

∫

DP
f (3.2)

holds.

Proof. — By definition of the integral it suffices to show this lemma for the
standard graph Γ = I. Since f is constant on the set {x ∈ |I|d | x̃(n) = y}
for each y ∈

(
1
nZ ∩ [0, 1]

)d
, we get

∫

Id
f11{x|P(x̃(n))=P} =

1

nd

∑

x∈( 1
nZ∩[0,1])

d

d(x)=P

f(x).

Using the chart cP : DP → R|P| of the generalized diagonal DP from
Remark 3.5 we conclude∫

Id
f11{x|P(x̃(n))=P} =

1

nd

∑

x∈( 1
nZ∩[0,1])

|P|

f(c−1
P (x))

=
1

nd−|P|

∫

[0,1]|P|
f ◦ c−1

P dµ

=
1

nd−|P|

∫

D(P)

f.
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Let sdnΓ denote the n-fold subdivision of the graph according to Proposi-
tion A.7 and sdn : |Γn| → |Γ| the canonical homeomorphism of the geometric
realizations from Proposition A.8. The d-th power of this homeomorphism
yields (sdn)d : |(Γn)d| → |Γd| and by functoriality there is a homeomorphism

(sdn)∗ : C0(Γd)→ C0((Γn)d).

This morphism maps all subsets of C0(Γd) defined so far on their counter-
parts:

Proposition 3.17.— The homeomorphism (sdn)∗ : C0(Γd)→ C0((Γn)d)
satisfies

(sdn)∗(C∞� (Γd)) ⊆ C∞� (Γd
n),

(sdn)∗(C∞� (Γd)) ⊆ C∞� (Γd
n),

(sdn)∗(Clin� (Γd)) ⊆ Clin� (Γd
n).

(3.3)

The diagram

C0(Γd)
(sdn)∗−−−−→ C0((Γn)d)

∆̃v
n

� ∆̃v
1

�

C0(Γd)
(sdn)∗−−−−→ C0((Γn)d)

(3.4)

commutes and each function f ∈ C0(Γd) satisfies

nd
∫

Γd
f =

∫

Γdn

(sdn)∗f. (3.5)

Proof. — It suffices to proof the claim for Γ = I. The n-fold subdivision of
|Id| is in this case a lattice with distance 1/n in [0, 1]d = |Id|. Since the
image of each simplex of (In)d by (sdn)∗ is contained in one simplex of Id,
the relations (3.3) result immediately.

To proof the commutativity of (3.4) it suffices to note that the edges of
(In)d are mapped by sdn onto the points with rational coordinates [0, 1/n, . . . ,
n/n]d.

Equation (3.5) is an easy implication of integration theory.

3.2. The Intersection Pairing

Let X be a proper regular strict semi-stable S-curve with total ordering
< on X(0). Let its reduction graph Γ(X) be without multiple edges. We
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denote by W = W (X,<, d) the model of (Xη)
d constructed in Algorithm

2.1. The norm |·| is chosen such that |π| = 1/b for a fixed b ∈ R>0.

Let CHi
Ws

(W ) denote the Chow group of cycles of codimension i in W
with support in Ws. By intersection theory there is an intersection product

· : CHi
Ws

(W )× CHj
Ws

(W )→ CHi+j
Ws

(W )Q,

and since the special fiber Ws is proper over a field we have also a local
degree map

ldeg : CHd+1
Ws

(W ) = CH0(Ws)
deg−−→ Z.

(For details see [5, Def 4.6]). We view this local intersection product of divi-
sors with support in Ws as pairing between affine functions on the reduction
set Clin� (Γ(X)d) using the following isomorphism:

Definition 3.18.— Let X be proper regular strict semi-stable curve and
d � 2. We denote by CaDivWs

(W )R the tensor product CaDivWs
(W )⊗Z R

and by φ
|·|
1 the morphism

φ
|·|
1 : CaDivWs

(W )R → Clin� (Γ(X)d)

given by

C ⊗ r �→ rf
|·|
C .

By Proposition 2.17 this is an isomorphism.

Remark 3.19.— Since the intersection product

ldeg(·, . . . , ·) :
(
CaDivWs

(W )
)d+1 → Q,

(D0, . . . , Dd) �→ ldeg(D0 · · · · ·Dd)

is a multi-linear mapping, we can continue it by linearity on CaDivWs(W )R.
We denote this continuation again by ldeg:

ldeg(·, . . . , ·) :
(
CaDivWs

(W )R
)d+1 → R.

Definition 3.20.— By

〈·, . . . , ·〉W,1 : Clin� (Γd)d+1 → R,

(f0, . . . , fd) �→ ldegWs
((φ
|·|
1 )−1(f0), . . . , (φ

|·|
1 )−1(fd))

a multi-linear pairing is defined on Clin� (Γd), the set of piecewise affine func-
tions on the reduction set. This pairing is called the intersection pairing.
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By the bijection (sdn)∗ : C0(Γd) → C0(Γd
n) of (3.3) the set Clin� (Γd

n) can
be seen as subset of C0(Γd) containing Clin� (Γd). We continue the intersection
pairing to functions of Clin� (Γd

n). Let Kn/K be an algebraic field extension
of degree n, Rn the ring of integers in Kn and Sn := SpecRn. By Xn we
denote the regular strict semi-stable model of Xη×S Sn defined in Theorem
2.18. Similarly we denote by Wn := W (Xn, <, d) the model of (Xη)

d ×S Sn
defined in Algorithm 2.1. Since the reduction sets R (Xn) and R (Wn) are
determined combinatorially, they are independent of the choice of Kn. We
denote by |·| also the unique continuation of the valuation |·| : K → R to
Kn.

In this situation Proposition 2.17 yields again an isomorphism of R-alge-
bras by Proposition 2.17,

φ|·|n : CaDiv(Wn)s(Wn)R → Clin� ((Γ(X)n)d),

defined by

C ⊗ r �→ rf
|·|
C .

Definition 3.21.— By

〈·, . . . , ·〉W,n : Clin� (Γd
n)d+1 → R,

(f0, . . . , fd) �→ 1/n ldegWs

(
(φ|·|n )−1(f0), . . . , (φ

|·|
n )−1(fd)

)

a multi-linear pairing is defined on Clin� (Γd
n). Since local intersection numbers

depend only on the structure of R (Wn), 〈·, . . . , ·〉W,n is independent of the
choice of Kn.

Proposition 3.22.— The pairing from Definition 3.21 is a continuation
of the pairing from Definition 3.20: Let f0, . . . , fd ∈ Clin� (Γd) be functions
affine on the simplices of Γd. Then

〈f0, . . . , fd〉W,n = 〈f0, . . . , fd〉W,1

holds.

Proof. — By linearity we may assume that there are Cartier divisors

D′0, . . . D
′
d ∈ CaDivWs

(W ), such that fi = f
|·|
D′i

for each i. By Theorem 2.19

there is a morphism g : Wn → W between the models. The pull-back divi-

sors g∗Di satisfy φ
|·|
n (g∗Di) = fi by Proposition 2.8, thus 〈f0, . . . , fd〉W,n =

ldegWn
(g∗(D0) · · · · · g∗(Dd)). As g : Wn → W is generic flat and (Wn)η =

Wη ×Sη (Sn)η we may apply [5, Lemma 4.7]:

ldegW (D0 · · · · ·Dd) = n ldegWn
(g∗(D0) · · · · · g∗(Dd)).

This proofs the proposition.
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We may also apply Definition 3.20 directly to a model Xn on Sn. The
pairing defined in this way is denoted by 〈·, . . . , ·〉Wn,1 and coincides with
Definition 3.21 up to a constant factor:

Proposition 3.23.— For f0, . . . , fd ∈ Clin� (Γd
n) the equation

〈f0, . . . , fd〉W,n = nd〈f0, . . . , fd〉Wn,1

holds.

Proof. — Let πn denote a uniformizer of the discrete valuation ring Rn.
To define 〈·, . . . , ·〉Wn,1 one has to use the valuation |·|n on Rn which is
normalized by |πn| = 1/e. Therefore we have |·|n = (|·|)n and thus for each
Cartier divisor C ∈ CaDiv(Wn)s(Wn)R:

f
|·|n
C = nf

|·|
C .

We have
(φ|·|n )−1(fi) = Di = (φ

|·|n
1 )−1(nfi).

This implies

〈f0, . . . , fd〉W,n =
1

n
ldegWn

(D0, . . . , Dd) =
1

n
〈nf0, . . . , nfd〉Wn,1

= nd〈f0, . . . , fd〉Wn,1
.

For our further calculation we need a more explicit description of the
Chow ring CH1

Ws
(W ). We use the combinatorial Chow ring of [5, Def 4.12]

defined as:

Definition 3.24.— Let Γ be a finite graph without multiple edges and Γd

be the d-fold product. We denote with Z(Γd) the polynomial ring Z(Γd) :=
Z[C | C ∈ (Γd)0] generated by the 0-simplices. It is supplied with the usual
grading, which gives all generators C ∈ (Γd)0 degree one.

We define a graded ideal Rat(Γd) on Z(Γd) generated by the polynomials

C1 · · · · · Ck for {C1, . . . , Ck} "∈ (Γd)S , (3.6)
( ∑

C′∈(Γd)0

C ′
)
C1, (3.7)

∑

C′∈(Γd)0
pri(C

′)=pri(C2)

C1C2C
′ for i ∈ {1, . . . , d} with pri(C1) "= pri(C2). (3.8)
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We call Rat(Γd) the ideal of cycles rationally equivalent to zero.

The graded ring

C(Γd) := Z(Γd)/Rat(Γd)

is called the combinatorial Chow ring.

The combinatorial Chow ring has the following properties:

Theorem 3.25.—

1. There exists a morphism of Z-modules

ldegΓd : C(Γd)→ Z

such that for each set {C0, . . . , Cd} of d + 1 distinct vertices, which
form a simplex of Γd, the degree ldegΓd(C0 · . . . · Cd) = 1.

2. The local degree map can be calculated locally: By Remark A.2 we
associate to each γ = (γ1, . . . , γd) with γ1, . . . , γd ∈ Γ(X)1 an embed-
ding iγ : Id → Γd. This gives a covering of Γd and the local degree
satisfies

ldegΓd(α) =
∑

γ∈(Γ1)d

ldegId(i
∗
γα),

where i∗γ : C(Γd)→ C(Id) denotes the morphism given by functoriality
of C.

Proof. — [5, 4.4]

In the local situation Γ = I we can describe the situation more precisely:

Let the vertices of I = ∆[1] be denoted by C0 and C1 with the ordering
C0 < C1. Then the vertices of Id can be described using vectors v ∈ Fd2:
For each vector v = (v1, . . . , vd) let Cv ∈ (Id)0 denote the vertex with
pri(Cv) = Cvi . The set {Cv | v ∈ Fd2} is a generating set for C(Id)Q. Using
Fourier transforms we get yet another generating set:

Fv :=
∑

w∈Fd2

(−1)〈v,w〉Cw.

It turns out that the generating set {Fv | v ∈ Fd2} of C(Id) is appropriate
for the further calculations. We first note the following isomorphism:
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Theorem 3.26.— Consider C(Id) with the generating sets {Cv | v ∈ Fd2}
and {Fv | v ∈ Fd2} as defined above. There is an isomorphism of graded rings

ψ : C(Id) ∼−→ C(Id),

which is uniquely determined by ψ(Cv) = Cv+(1,...,1). The equation

ψ(Fv) = (−1)〈v,(1,...,1)〉Fv.

holds and ψ is compatible with the local degree ldegId .

Proof. — [5, Prop 4.30]

The combinatorial Chow ring can be compared with the Chow ring of
W :

Theorem 3.27. ([5, Prop 4.14, Prop 4.23]) . — Let d ∈ N, X be a

proper regular strict semi-stable curve over S with a fixed ordering of X
(0)
s .

Let X be the Gross-Schoen desingularization of Xd by Algorithm 2.1. Then
there exists a morphism of graded rings

ϕ : C(R (W ))→ CHWs(W )Q

such that ϕ is an isomorphism in degree 1 and the equation

ldegW (ϕ(α)) = ldegR (W )(α)

holds for each α ∈ C(R (W ))d+1.

We may now formulate the intersection pairing in analytical terms using
the n-th lattice approximation of the functions f0, . . . , fd.

Proposition 3.28.— Let n ∈ N and f0, . . . , fd ∈ Clin� (Γn)d. Then

〈f0, . . . , fd〉W,n = n2d
∑

v0,...,vd∈Fd2

ldegId(

d∏

i=0

Fvi)

∫

Γd

d∏

i=0

∆̃vi
n (fi) (3.9)

holds.

Proof. — Case 1: n = 1.

Denote by ϕW : C(Γ(X)d)→ CHWs
(W ) the canonical morphism of the

combinatorial Chow ring to CHWs(W ) of Theorem 3.27. By linearity we

may assume fi = f
|·|
Di

for Cartier divisors D′0, . . . D
′
d ∈ CaDivWs(W ). These

divisors are in the image of ϕW and we choose pre-images D0, . . . Dd ∈
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C(Γ(X)d) such that D′i = ϕW (Di). By Theorem 3.27 we may calculate the
local degree in C(Γ(X)d) and get together with Theorem 3.25(2)

ldegW (ϕW (D0 · · · · ·Dd)) =
∑

γ∈Γ1(X)d

ldegId ◦i∗γ(D0 · · · · ·Dd).

Therefore both sides of (3.9) are additive on cubes and it suffices to deal
with the case R (X) = I.

Let Γ(X) = I. The center of the standard cube |Γ(X)d| = |Id| = [0, 1]d

is denoted by xM := 1/2(1, . . . , 1). We describe the vertices of Id as usual
by {Cv | v ∈ Fd2} and study for each function f ∈ C0(Id) the associated
divisor by Proposition 2.17:

Df := φ−1
1 (f) =

∑

v∈Fd2

fi(Cv)Cv.

The coordinates of Cv as point in Id are given by xM − 1/2(−1)v, where
(−1)v = ((−1)v1 , . . . , (−1)vd) for v = (v1, . . . , vd). We have xM−1/2(−1)v =

xM + (1/2)(−1)v+(1,...,1) and thus f(Cv) = f
1/2
xM (v + (1, . . . , 1)). Using the

morphism ψ : C(Id) → C(Id), Cv �→ Cv+(1,...,1) from Theorem 3.26 we
calculate:

Df =
∑

v∈Fd2

f1/2
xM (v + (1, . . . , 1))Cv =

∑

v∈Fd2

f1/2
xM (v)ψ(Cv)

= ψ


 ∑

v∈Fd2

1

2d
f1/2
xM (v)Cv




= ψ


 ∑

v∈Fd2

( 1

2d

∑

w∈Fd2

(−1)〈v,w〉f1/2
xM (w)

)( ∑

w∈Fd2

(−1)〈v,w〉Cw

)



=
∑

v∈Fd2

∆v
1/2(f)(xM )ψ(Fv).

Putting this into the definition of the intersection paring we get

〈f0, . . . , fd〉 = ldegId


 ∑

v0,...,vd∈Fd2

(
d∏

i=0

∆vi
1/2(f)(xM )ψ(Fvi)

)


=
∑

v0,...,vd∈Fd2

ldegId(

d∏

i=0

Fvi)

d∏

i=0

∆vi
1/2(fi)(xM ).
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We used hereby that the degree is invariant under ψ (Theorem 3.26). By
the definition of the lattice approximation ∆̃ we finally get

d∏

i=0

∆vi
1
2

(fi)(xM ) =

∫

Γd1

d∏

i=0

∆̃vi
1 (fi),

the claim in the case n = 1.

Case 2: n > 1

By Proposition 3.23 we have

〈f0, . . . , fd〉W,n = nd〈f0, . . . , fd〉Wn,1

and by (3.5) for each function f ∈ C0(Γd)

nd
∫

|Γd|
f =

∫

|Γdn|
f

holds. Using Proposition 3.17 and the claim in the case n = 1 we conclude

〈f0, . . . , fd〉W,n = nd〈f0, . . . , fd〉Wn,1

= nd
∑

v0,...,vd∈Fd2

ldegId(

d∏

i=0

Fvi)

∫

Γdn

d∏

i=0

∆̃vi
1 (fi)

= n2d
∑

v0,...,vd∈Fd2

ldegId(

d∏

i=0

Fvi)

∫

Γd

d∏

i=0

∆̃vi
n (fi).

This description of the intersection pairing is used to generalize onto a
bigger set of functions. For this purpose we use the following approximation
of continuous functions by piecewise affine functions.

Definition 3.29.— Let f ∈ C∞� (Γd) and n ∈ N. The function f (n) ∈
Clin� (Γd

n) which is uniquely defined by f (n)(p) = f(p) for each p ∈ (γdn)0 is
called the n-th standard approximation of f .

Remark 3.30.— To calculate ∆̃v
n(f) we need only the values of f on the

vertices of the n-th subdivision. Thus we have for each v ∈ Fd2
∆̃v
n(f) = ∆̃v

n(f (n)).

We can now formulate a general convergence result for the standard
approximation of functions in C0(Γd). As guarantee for all results we need
the vanishing condition from [5, 4.7]:
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Definition 3.31.— Let d ∈ N. We say d satisfies the vanishing condi-
tion, if for each partition P of the set {1, . . . , d} and each v0, . . . , vd ∈ Fd2
the relation

∑d
i=0 α(P, vi) < d+ |P| implies the equation

ldegId(

d∏

i=0

Fvi) = 0 (3.10)

in the combinatorial Chow ring C(Id).

By explicit calculations of the intersection numbers we have already
shown in [5, Cor 4.36]:

Lemma 3.32.— For d = 2 and d = 3 the vanishing condition in Defini-
tion 3.31 is satisfied.

Theorem 3.33.— If d ∈ N satisfies the vanishing condition in Definition
3.31, then for any choice of the functions f0, . . . , fd ∈ C∞� (Γd) the limit

〈f0, . . . , fd〉 := lim
n→∞

〈f (n)
0 , . . . , f (n)

n 〉W,n

exists. It can be calculated by

〈f0, . . . , fd〉 =
∑

P Partition

1

2d+|P|
∑

v0,...,vd∈Fd2 ,∑
α(vi,P)=d+|P|

ldegId(

d∏

i=0

Fvi)

∫

DP

d∏

i=0

Dvi
α(vi,P)(fi).

Proof. — We use the description of the intersection pairing from Proposition
3.28,

〈f (n)
0 , . . . , f

(n)
d 〉 = n2d

∑

v0,...,vd

ldegId(

d∏

i=0

Fvi)

∫

Γd

d∏

i=0

∆̃vi
n (fi). (3.11)

Since the sum of the characteristic functions
∑

P Partition

11{x∈|Γ|d|d(x̃n)=P} is

the constant function 11Γd , we may split the integral of (3.11) into compo-
nents along the different “pixelated diagonals” (fig. 2) and apply Lemma
3.16:

Figure 2. — The “pixelated diagonal” {x | d(x̃(n)) = P} with n = 5 and P = {{1, 2}}.
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n2d

∫

Γd

d∏

i=0

∆̃vi
n (fi) =

∑

P Partition

n2d

∫

Γd
11{d(x̃(n))=P}

d∏

i=0

∆̃vi
n (fi)

=
∑

P Partition

nd+|P|
∫

DP
11{d(x̃(n))=P}

d∏

i=0

∆̃vi
n (fi).

Together with (3.11) this implies

〈f (n)
0 , . . . , f

(n)
d 〉 =

∑

P Partition

1

2d+|P|
∑

v0,...,vd∈Fd2

ldegId(

d∏

i=0

Fvi)

∫

DP
Tn(P, v0, . . . , vd)

with

Tn(P, v0, . . . , vd) := (2n)d+|P|11{d(x̃(n))=P}

d∏

i=0

∆̃vi
n (fi).

We study the convergence of the terms Tn(. . .): By the vanishing conjec-
ture (3.10) we only have to deal with terms where

∑
α(P, vi) � d + |P|.

By dominated convergence it suffices to show that all Tn(P, v0, . . . , vd) are
globally bounded and converge to

T (P, v0, . . . , vd) :=

{
0 if

∑
α(vi,P) > d+ |P|,∏d

i=0D
vi
α(vi,P)(fi) if

∑
α(vi,P) = d+ |P|.

For this purpose we rewrite Tn as

Tn(P, v0, . . . , vd)=11{d(x̃(n))=P}·
(
(2n)d+|P|−

∑
α(vi,P)

)
·
( d∏

i=0

(2n)α(vi,P)∆̃vi
n (fi)

)

and discuss each part individually. By Proposition 3.15 the function
(2n)α(vi,P)∆̃vi

n (fi) is bounded and converges to Dvi
α(P,vi). The characteristic

function 11{P(x̃(n))=P} is obviously bounded and converges to 11{x|D(x)=P} =

11D(P). Finally the behavior of the term nd+|P|−
∑

α(vi,P) yields the conver-
gence

lim
n→∞

Tn(P, v0, . . . , vd) = T (P, v0, . . . , vd).
�

Since the vanishing condition is true for d = 2 and d = 3 (Lemma 3.32),
we are able to give a definitive formulation of the intersection pairing for
d = 2 and d = 3. The case d = 2 yields the result of Zhang [8, Prop 3.3.1,
Prop 3.4.1]:
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Corollary 3.34.— Let d = 2 and f0, f1, f2 ∈ C∞� (Γ2) be continuous

functions which are smooth on simplices. Let f
(n)
i be the standard approx-

imation of fi. Then the limit of the triple pairing limn→∞〈f (n)
0 , f

(n)
1 , f

(n)
2 〉

exists and can be calculated by

lim
n→∞

〈f (n)
0 , f

(n)
1 , f

(n)
2 〉 = 〈f0, f1, f2〉sm + 〈f0, f1, f2〉sing

where

〈f0, f1, f2〉sm =
∑

v0,v1,v2∈F2
2

{v0,v1,v2}={(1,0),(0,1),(1,1)}

∫

|Γ2|
Dv0
|v0|(f0)D

v1
|v1|(f1)D

v2

|v2|(f2),

〈f0, f1, f2〉sing =
∑

v0,v1,v2∈F2
2

{v0,v1,v2}={(1,0),(0,1),(1,1)}

2

∫

D
Dv0

1 (f0)D
v1
1 (f1)D

v2
1 (f2)

− 4

∫

D
D(1,1)

1 (f0)D
(1,1)

1 (f1)D
(1,1)

1 (f2).

Proof. — Recall the intersection numbers calculated in [5, Thm 4.32],

ldeg(Fv1
Fv2

Fv3
) =





−32 if v1 = v2 = v3 = (1, 1),

16 if {v1, v2, v3} = {(1, 0), (0, 1), (1, 1)},
0 otherwise.

The result is a direct consequence of Theorem 3.33: The summand with
P = {{1}, {2}} yields the non-singular part 〈·, . . . , ·〉sm. Since for v0 = v1 =
v2 = (1, 1) the equation

∑

i=0

2α(vi,P) =

2∑

i=0

|vi| = 6 > 4 = d+ |P|

holds, we only have to deal with elements v0, v1, v2 ∈ Fd2 where {v0, v1, v2} =
{(1, 0), (0, 1), (1, 1)}.

For the summand with P = {{1, 2}} we must take all non-trivial in-
tersections Fv0Fv1Fv2 into account. The resulting term gives exactly the
singular part 〈·, . . . , ·〉sing in above formula. �
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Remark 3.35.— The exact formulation of [8] is obtained using Example
3.13, i.e., by identifying

D
(1,0)
1 (f)(x) =

∂f

∂x1
(x),

D
(0,1)
1 (f)(x) =

∂f

∂x2
(x),

D
(1,1)
2 (f)(x) =

∂2f

∂x1∂x2
(x) if x "∈ D,

D
(1,1)
1 (f)(x) =

1

2

∂

∂x1
(f+ − f−)(x) =

1

2
δ(f)(x) if x ∈ D.

Then the formula for the smooth resp. singular part becomes

〈f0, f1, f2〉sm =

∫

Γ2\D

∂f0

∂x1
(x)

∂f1

∂x1
(x)

∂2f2

∂x1∂x2
(x)+ permutations,

〈f0, f1, f2〉sing =

∫

D

(
∂f0

∂x1
(x)

∂f1

∂x2
(x)δ(f2)(x)+ permutations

)

−
∫

D

(
1

2
δ(f0)(x)δ(f1)(x)δ(f2)(x)

)
.

A similar formula is deducible from Theorem 3.33 in the case d = 3.
For clarity reasons we only calculate the non-singular part of the pairing.
This is achieved by calculating the intersection pairing only of functions
f ∈ C∞� (Γ3), i.e., functions smooth on cubes. For these functions the singular
part vanishes.

Theorem 3.36.— Let f0, . . . , f3 ∈ C∞� (Γ3) be functions smooth on cubes.
Then the limit of the quadruple pairing 〈f0, f1, f2, f3〉 exists and can be cal-
culated as

lim
n→∞

〈f (n)
0 , . . . , f

(n)
3 〉 =

∫

Γ3

∑

v0,v1,v2,v3∈F2

{v0,v1,v2,v3}∈B

d∏

i=0

Dvi
|vi|(fi),

where the set B ⊂ P(F3
2) is defined as follows

B :=
{
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},
{(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)},
{(1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)},
{(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)}

}
.
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Proof. — Let v0, . . . , v3 ∈ F3
2. By [5, Thm 4.33] {v0, v1, v2, v3} ∈ B holds

iff ldegC(I3)

(∏3
i=0 Fvi

)
"= 0 and

∑3
i=0 |vi| = 6 hold. For these elements

we have ldegC(I3)(
(∏3

i=0 Fvi

)
= 26 and thus the term in Theorem 3.33

belonging to P = {{1}, {2}, {3}} is given by

∑

v0,v1,v2,v3∈F2

{v0,v1,v2,v3}∈B

d∏

i=0

Dvi
|vi|(fi). (3.12)

If P is another partition of {1, 2, 3}, then there exists for each v0, . . . , v3 ∈
F3

2 at least one i ∈ {0, 1, 2, 3} such that α(vi,P) < |vi|. This implies
Dvi
α(vi,P)(fi) = 0 since the functions are smooth.

Furthermore all functions are defined on |Γ(X)3| and |Γ(X)3|\D{{1},{2},{3}}
is a zero-set, thus the claim is proven. �

By Theorem 3.33 one could think that the intersection pairing converges
also for a broader set of functions. Then there is a meaningful definition
of positivity needed (cp. [7]). Convergence without conditions can not be
expected, as the following example shows.

Example 3.37.— Let X = ProjR[x0, x1, z]/(x0x1 − z2π) be the projec-
tive completion of the standard scheme L with the usual ordering < of the
components of Ls and W = W (X,<, 2) the product model according to
Algorithm 2.1. We identify as always |R (W )| = |Γ(X)|2 = [0, 1]2 and set

ϕn : [0, 1]→ R,

x �→ 1

2

n∑

i=0

(−1)i max(0,
1

n
− |x− i

n
|).

The function ϕn describes a triangle wave with amplitude 1 and length 2
n .

We define the following sequence of functions

f0,n := ϕn(x),

f1,n := ϕn(y),

f2,n := ϕn(x− y).

They are bounded and lie in Clin� (sdn(Γ)). We have however

〈f0,n, f1,n, f2,n〉 = n.
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By introducing a factor f ′i,n := n1/3fi,n we get functions which converge
uniformly to 0, but whose triple pairing is constant:

〈f ′0,n, f ′1,n, f ′2,n〉 = 1.

Proof. — Obviously the differential of the function ϕn satisfies

ϕ′n(x) =

{
1 if x ∈ ( 2i

n ,
2i+1
n ),

−1 if x ∈ ( 2i+1
n , 2i+2

n ).

This gives for the generalized differentials

D
(1,0)
1 (f0,n)(x, y) = ϕ′n(x),

D
(0,1)
1 (f1,n)(x, y) = ϕ′n(y),

D
(1,0)
1 (f2,n)(x, y) = ϕ′n(x− y),

D
(0,1)
1 (f2,n)(x, y) = −ϕ′n(x− y).

Furthermore

D
(0,1)
1 (f0,n) = D

(1,0)
1 (f1,n) = D

(1,1)
2 (fi,n) = 0.

The diagonals of the n-fold subdivision are given by the points (x, y) ∈ [0, 1]2

with |x− y| = i
n . At this point only f2,n has a singularity and we get

D
(1,1)
1 (f2,n)(x, y) = (−1)i for |x− y| = i

n
.

We may now apply the formula from Corollary 3.34: Since D
(1,1)
2 (fi,n) =

0 outside of the diagonal for each i = 0, 1, 2, it suffices to calculate the
singular part. This is given by

〈f0,n, f1,n, f2,n〉 =

∫

D
D

(1,0)
1 (f0,n)D

(0,1)
1 (f1,n)D

(1,1)
1 (f2,n)

=

∫

D
1 = n.

�
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Appendix

A. The geometric realization of simplicial sets
and their subdivision

As in [5] we need some basic facts about simplicial sets. To recall the
definition and notation of simplicial sets, the standard-n-simplex, degenerate
simplices please see the appendix of [5, Appendix A].

Definition A.1. — Let k ∈ N. With si, for each i ∈ {0, . . . , k}, the
morphism

si : [0]→ [k], 0 �→ i

is denoted. A simplicial set R is called simplicial set without multiple sim-
plices, if the map

ϕ :
∞∐

k=0

Knd
k → P(K0), t ∈ Knd

k �→ {K(s0)(t), . . . ,K(sk)(t)}

is a monomorphism. If this is true, we denote the image of ϕ by

R S := Im(ϕ) ⊆ P(R 0).

Remark A.2.— Let Γ be a graph without multiple simplices. By functo-
riality we identify the 1-simplices γ1 ∈ Γ1 with morphisms iγ1 : ∆[1] → Γ.
Since Γ is without multiple simplices, the iγ1

are injective for each non-
degenerate 1-simplex γ1. Let now γ := (γ1, . . . γd) ∈ (Γnd

1 )d be a d-tuple of
1-simplices. The product

iγ := (iγ1 × · · · × · · · × iγd) : Id → Γd

is injective as well and denoted by iγ . By [5, Prop 4.18] the set of all iγ
gives a covering of Γd.

Definition A.3. — Let n ∈ N0. Then |∆[n]| denotes the topological
standard-n-simplex, i.e., the space

{(t0, . . . , tn) ∈ Rn+1 |
∑

i

ti = 1, ti � 0} ⊆ Rn+1.

Let n,m ∈ N0 and ϕ : [n]→ [m] be a morphism in the category ∆. Then ϕ
induces a continuous morphism

|∆[ϕ]| : |∆[n]| → |∆[m]|,
(t0, . . . , tn) �→ (t′0, . . . t

′
m)
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where t′j :=
∑

ϕ(i)=j ti. This makes |∆[·]| : ∆ → Top a covariant functor.
For each simplicial set R · we call the topological space

|R | := colim
∆ R ·

|∆[n]|

geometric realization of R ·. As colimit this construction is functorial in
R ·.

For simplicial sets without multiple simplices we have the following more
explicit description of the geometric realization:

Proposition A.4.— Let R · be a simplicial set without multiple sim-
plices. The geometric realization is the subspace |K| ⊆ homset(R 0,R) con-
sisting of the probability distributions on R 0 (with respect to the counting
measure) with support in a simplex of R ·. An element of |K| is therefore a
function f : R 0 → [0, 1] with

∑

v∈R 0

f(v) = 1 and supp(f) ∈R S (A.1)

with R S defined as in Definition A.1.

If ϕ : R · → R
′
· is a morphism of simplicial sets without multiple sim-

plices, the induced morphism ϕ∗ : |K| → |K ′| is given on probability distri-
butions as follows: Let f ∈ |K| be as in (A.1). Then f ′ = ϕ∗(f) is given by
the map f ′ : R

′
0 → R with

f ′(s′) =
∑

s∈ϕ−1
0 (s′)

f(s).

Proof. — Denote the set of probability distributions by PD(K). For the
standard simplices ∆[n] and morphisms of standard simplices the isomor-
phism is obvious. We therefore get a continuous map |K| → PD(K). It is
easy to see that this map is open. Therefore it is enough to show that the
map is also bijective. We calculate the inverse: Let f : R 0 → R be a prob-
ability distribution as in (A.1). Since the simplicial set R · has no multiple
simplices, there is an unique non-degenerate simplex s : ∆[j] → R · with
supp(f) = Im(s). Then there is a morphism f ′ : ∆[j]0 → R with f = s∗(f ′)
and we map f onto the point |s|(f ′).

Example A.5.— For the standard-1-simplex ∆[1] we have ∆[1]0 � {0, 1}
and ∆[1]S � P({0, 1}). Thus there is a canonical isomorphism between the
geometric realization |∆[1]| and the interval [0, 1].
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Proposition A.6.— Let I denote the standard-1-simplex I := ∆[1] and
Sd the symmetric group of degree d. Then there is a canonical bijection

ψ : Sd → (Id)nd
d

between non-degenerate d-simplices in the product Id and Sd. The geometric
realization of the simplex ψ(σ) is given in Id = [0, 1]d by

{x = (x1, . . . , xd) ∈ [0, 1]d | xσ(1) � xσ(2) � · · · � xσ(d)}.

Proof. — Since the product Id is defined component by component, we have

Id([n]) �
∏

d

homPoset([n], [1]) � homPoset([n], [1]d),

where the product [1]d is calculated in the category of sets with partial order
(see [5, Cor A.7]). To identify the d-simplices of Id we use

(Id)d � hom([d], [1]d).

An element ϕ ∈ hom([d], [1]d) is non-degenerate iff ϕ(0) < ϕ(1) < · · · < ϕ(d)
holds with < being the product ordering on [1]d. Then there exists a unique
permutation σ ∈ Sd such that

ϕ(i) = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
i

)σ

holds for each i ∈ {0, . . . , d}.

In the geometric realization [0, 1]d the vertices of the simplex ϕ are given
by the values of ϕ(i). Each point of this simplex is a convex combination of
these points, thus x = (x1, . . . , xd) ∈ |Id| is in the simplex ϕ iff

xσ(1) � · · · � xσ(d)

holds.

For the description of ramified base-change we need a subdivision of
simplicial sets. This can also described completely categorical:

Definition A.7.—

1. Let k ∈ N. We denote by s̃dk the functor

s̃dk : ∆→ ∆

– 61 –



Johannes Kolb

given on objects by

[n] �→ [(n+ 1) · k − 1]

and on morphisms by

HomsSet([n], [m]) % ϕ �→ (ak + b �→ ak + ϕ(b) for 0 � b < k) .

2. The functor induces by s̃dk

sdk : sSet→ sSet,R · �→ s̃dk ◦R ·

is called the k-fold subdivision functor.

Proposition A.8. — For each simplicial set X· there is a canonical
isomorphism

Sdn : |sdn(X)| � |X|.

For X· = I· = ∆[1] and with the description of the geometric realization of
Proposition A.4 this isomorphism is given by the mapping

[f : (sdn(I))0 → R] �→ [f ′ : I0 → R]

where

f ′(0) =

n∑

i=0

1

n
f(ϕki ).

Proof. — The construction of this mapping is given in [1, Lemma 1.1].

Proposition A.9.— Let R · be a simplicial set and t : ∆ → sdn(K) a
simplex of sdn(K). Then there is a simplex s : ∆ → R · in R · such that
the image of |t| under the canonical morphism

|sdn(K)| � |K|

lies completely in Im(|s|).

Proof. — Let i ∈ N such, that t ∈ (sdk(K))i holds. By the definition of the
subdivision we have (sdk(K))i � R (i+1)k−1 and we choose s ∈ R (i+1)k−1

as image of t under this isomorphism. Then t allows a factorization of the
form

t : ∆[i]
t̃−→ sdk(∆[i])

sdk(s)−−−−→ sdk(K)
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and therefore the following diagram commutes:

|∆[i]|

|t̃|
�

|sdk(∆[i])| �−−−−→ |∆[(i+ 1)k − 1]|
|sdk(s)|

� |s|
�

|sdk(K)| �−−−−→ |K|.

This finishes the proof.
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