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Global Well-Posedness of a Non-local Burgers
Equation: the periodic case

Cyril Imbert(1), Roman Shvydkoy(2), Francois Vigneron(3)

RÉSUMÉ. – Cet article est consacré à l’étude d’une équation de Burg-

ers non-locale, pour des données positives bornées et périodiques. Cette

équation s’écrit:

ut − u∣∇∣u + ∣∇∣(u2) = 0.

Pour toute donnée positive régulière, nous construisons une unique so-

lution globale classique. Pout toute donnée positive bornée, nous con-
struisons une solution faible globale et nous démontrons que toute solu-

tion faible devient instantanément C∞. Nous décrivons aussi le comporte-

ment en temps long de toutes les solutions. Nos méthodes s’inspirent de
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plusieurs avancées récentes dans la théorie de la régularité parabolique
des équations intégro-différentielles.

ABSTRACT. – This paper is concerned with the study of a non-local
Burgers equation for positive bounded periodic initial data. The equation

reads

ut − u∣∇∣u + ∣∇∣(u2) = 0.

We construct global classical solutions starting from smooth positive data,

and global weak solutions starting from data in L∞. We show that any

weak solution is instantaneously regularized into C∞. We also describe
the long-time behavior of all solutions. Our methods follow several recent

advances in the regularity theory of parabolic integro-differential equa-

tions.

1. Introduction

Dynamics of fluid motion provide a rich source of evolution laws that
defy a complete well-posedness theory. Apart from the classical three di-
mensional Euler and Navier-Stokes equations, scalar models such as the
super-critical surface quasi-geostrophic (SQG) equation or Darcy’s law of
porous media pose core difficulties, both to the traditional and newly devel-
oped approaches. In recent years, several classes of models have appeared
that either mimic the basic structure of the aforementioned equations or
serve as viable models on their own. For example, in relation to the SQG
model

θt + u ⋅ ∇θ = 0

where the div-free velocity u = R⊥θ is the perpendicular Riesz transform of
θ, A. Cordoba, D. Cordoba, and M. Fontelos [8] have studied an analogous
1D model given by θt+(Hθ)θx = 0, where H denotes the Hilbert transform.
SQG written in divergence form

θt + div(uθ) = 0

received its counterpart in the form of θt + (θHθ)x = 0 which was studied
in [5], as well as convex combinations of the two 1D models above. The
latter combination first appeared in physics literature [1] as a model for a
conservation law such as the classical Burgers equation

ut + 1

2
(u2)x = 0,

but with a non-local flux F = θHθ. In these models the relation between the
drift and the driven scalar is ensured by a Fourier multiplier with an odd
symbol. This sets them apart from other laws such as porous media, Burgers
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or Euler equation or the recent Moffat’s scalar model of magnetostrophic
turbulence of the Earth’s fluid core [23]. In all the later cases, such a relation
is furnished via an even symbol which generally entails a more singular
behavior.

In this paper we study the following model:

ut − u∣∇∣u + ∣∇∣(u2) = 0, x ∈ Rd or Td, (1.1)

where ∣∇∣ = (−∆)1/2 denotes the square root of the Laplacian and has the
symbol ∣ξ∣. With the addition of viscosity, the model ut + u∣∇∣u − ∣∇∣(u2) =
ν∆u was proposed by P.G. Lemarié as a scalar case study of the 3D Navier-
Stokes (note the opposite signs). The works of F. Lelievre [19], [20], [18]
presented the construction of global Kato-type mild solutions for initial data
in L3(R3) and of global weak Leray-Hopf-type solutions for initial data in

L2(R3), L2
uloc(R3) and Ṁ2,3(R3). A local energy inequality obtained for

this model was suggestive of possible uniqueness for small initial data in
critical spaces, in a similar fashion to 3D Navier-Stokes. The focus of the
present paper will be on the inviscid case ν = 0.

Without viscosity the model bears resemblance to some of the “even”
inviscid cases in the sense explained above. For example, dropping the
1/2 factor, the Burgers equation can be written in the form of a commutator:

∂tu = [u, ∂x]u.
Our model replaces ∂x with the non-local operator ∣∇∣ of the same order
(hence our choice of name for (1.1)). The classical incompressible Euler
equation is given by

ut + u ⋅ ∇u +∇p = 0,

where p is the associated pressure given by p = T (u ⊗ u) + local, where
T is a singular integral operator with an even symbol. We thus can draw
an analogy between terms: u ⋅ ∇u ∼ −u∣∇∣u and ∇p ∼ ∣∇∣(u2). Actually,
analogies with Euler or Burgers extend beyond the formal range. Let us
discuss the basic structure of (1.1) in greater detail. In what follows we give
our model (1.1) the name of the Non-local Burgers equation.

At a formal level, (1.1) shares a more intimate connection with other
equations of fluid mechanics. For example, if one applies formally the com-
mutator theorem in the scalar case, even though u might not be smooth
and ∣ξ∣ surely isn’t, one gets:

[u, ∣∇∣] = Op( iξ∣ξ∣ u′(x) + δξ=0 u
′′(x) + . . .) .
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Thus in dimension 1, the equation becomes formally ∂tu = u′Ru+(∫R u)u′′+
. . . where R denotes the Riesz transform. The term u′Ru is a scalar flavor
of the SQG nonlinearity written above.

Let us recall that, in Rd, the operator ∣∇∣ enjoys an integral representation
in terms of convolution with the kernel K(z) = cd∣z∣d+1 for some normalizing

constant cd > 0 depending only on the dimension. The model (1.1) can thus
be rewritten in an integral form:

∂tu = p.v.∫RdK(y − x)(u(y) − u(x))u(y)dy. (1.2)

If u is periodic with period 2π in all coordinates, the representation above
can alternatively be written as

∂tu = p.v.∫TdKper(y − x)(u(y) − u(x))u(y)dy, (1.3)

where Td is the torus and Kper(z) = ∑j∈Zd cd∣z+2πj∣d+1 . More explicitly in 1D,

Kper(z) = 1
4 sin2(z/2) . For periodic solutions, both representations are valid

due to a sufficient decay of K at infinity. The former is more amenable to
an analytical study due to the explicit nature of the kernel and applicability
of known results, while the latter will be more useful in our 1D numerical
simulations presented at the end.

The following basic structure properties of the model can be readily ob-
tained from either representation, at a formal level. Let u be a solution
to (1.1).

(TI) Translation invariance: if x0 ∈ Rd, t0 > 0 then u(x + x0, t + t0) is an-
other solution. In particular, the periodicity of the initial condition
is preserved.

(TR) Time reversibility: if t0 > 0, then −u(x, t0 − t) is a solution too.
(SI) Scaling invariance: for any λ > 0 and α,β ∈ R, λαu(λβx,λα+βt) is

another solution.
(MP) Max/Min principle: if u > 0, then its maximum is decreasing and its

minimum is increasing.
(AMP) Anti-Max/Min principle: if u < 0, then its maximum is increasing

and its minimum is decreasing.
(E) Energy conservation: ∥u(t)∥L2 = ∥u0∥L2 is obtained by testing (1.1)

with u.
(HP) Higher power law: for any p ∈ (2,∞), the following quantity is con-

served:

∥u(t)∥pLp+p2 ∫
t

0
∬

Ω2
u(x)u(y)(∣u(y)∣p−2−∣u(x)∣p−2)(u(y)−u(x))K(x, y)dxdy.
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This equation, obtained by testing (1.1) with ∣u∣p−2u, implies the
decay of those Lp norms when u > 0.

(ML) First momentum law: for either Ω = Rd or = Td, integrating (1.2)

and using the Gagliardo-Sobolevskii representation of the Ḣ
1
2 (Ω)-

norm (see [9]):

∫
Ω
u(x, t′)dx = ∫

Ω
u(x, t)dx + ∫ t′

t
∥u(s)∥2

Ḣ
1
2 (Ω)ds. (1.4)

On Td, one has L2 ⊂ L1 and this property combines nicely with (E)
and ensures that

u ∈ L2(R+; Ḣ1/2(Td)),
regardless of the sign of u0.

For positive solutions u > 0 the right-hand side of (1.2) gains a non-local
elliptic structure of order 1, while for u < 0 the equation behaves like a
backward heat equation. However, with the energy conservation (E), the
model shares common features with conservative systems such as Euler,
giving it a second nature. As a result, for u > 0, we see an accumulation of
energy in the large scales and a depletion of energy on small scales. More
specifically, as seen from from the momentum law (ML), the dissipated
energy from high frequencies gets sheltered in the first Fourier mode. At
least on the phenomenological level, this property parallels what is known
as the backward energy cascade in the Kraichnan theory of 2D turbulence
(see [17] and references therein). This makes our model potentially viable
in studying scaling laws for the energy spectrum, structure functions, etc.

The aim of this paper is to develop a well-posedness theory for the model
and study its long-time behavior. We make use of both sides of its dual na-
ture by way of blending classical techniques relevant to the Euler equation,
such as energy estimates, a Beale-Kato-Mayda criterion, etc [21], with re-
cently developed tools of regularity theory for parabolic integro-differential
equations [4, 7, 10, 11, 13, 22]. Let us give a brief summary of our results
with short references to the methods used. Complete statements are given
in Theorems 2.1, 2.2, 2.4, 2.5, 3.1. First, we declare that all the results are
proved in the periodic setting, except local existence which holds in both
the periodic and the open case. Periodicity provides extra compactness of
the underlying domain which for positive data, due to the minimum prin-
ciple (MP), warrants uniform support from below in space and time, which
further entails uniform ellipticity of the right-hand side of (1.2).

Local existence. For initial data u0 ∈ Hm(Ωd) on Ωd = Rd or Td,
with u0 > 0 pointwise and m > d/2 + 1, there exists a local solution in
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C([0, T );Hm(Ωd)) ∩ C1([0, T );Hm−1(Ωd)). Even for this local existence
result, the positivity of the initial data is essential. We also have a Beale-

Kato-Majda regularity criterion: if ∫ T0 ∥∇u(t)∥L∞dt < 0, the solution extends
smoothly beyond T . The proof goes via a smoothing scheme based on a
desingularization of the kernel.

Instant regularization. Any positive classical solution to (1.1) on a
time interval [0, T ) satisfies the following bounds: for any k ∈ N, there exists
αk ∈ (0,1) such that for any 0 < t0 < T :

∥u∥
C
k+αk,αk
x,t (Td×(t0,T )) ≤ C(d, k, t0, T,minu0,maxu0)

∥∇kxu∥Lip(Td×(t0,T )) ≤ C(d, k, t0, T,minu0,maxu0). (1.5)

To achieve this we symmetrize the right-hand side of (1.2) by multiplying
it by u and then writing the evolution equation for w = u2:

∂tw = p.v.∫ (w(y) −w(x))k(t, x, y)dy (1.6)

k(t, x, y) = 2u(x, t)u(y, t)
u(x, t) + u(y, t) cd∣x − y∣d+1

. (1.7)

The active kernel k is symmetric and satisfies uniform ellipticity bound
Λ−1
∣z∣d+1 < k(z) < Λ∣z∣d+1 . This puts the model within the range of recent results

of Kassmann et al. [2, 15] and of Caffarelli-Chan-Vasseur [4] where Moser
/ De Giorgi techniques were adopted to yield initial Hölder regularity for
w and hence for u by positivity, i.e. estimate (1.5) with the index k = 0.
See also [16, 6]. We then apply our new Schauder estimates for parabolic
integro-differential equations with a general kernel [11], see also [13, 22], to
obtain the full range of bounds (1.5).

Global existence. It readily follows from the Beale-Kato-Majda crite-
rion and the instant regularization property.

Global existence of weak solutions. Since the bounds (1.5) depend
essentially only on the L∞-norm of the initial condition, we can construct
global weak solutions starting from any u0 ∈ L∞(Td), u0 > 0. The solution

belongs to the natural class L2([0, T );H1/2)∩L∞([0, T )×Td) for all T > 0.
The initial data u0 is realized both in the sense of the L∞ weak∗-limit and
in the strong topology of L2. Such a solution satisfies (1.5) instantly. A
surprising difficulty emerged here in recovering the initial data since the
sequence of approximating solutions from mollified data may not be weakly
equicontinuous near time t = 0. A weak formulation of (1.1) does not allow
us to move the full derivative onto the test function. See Section 2.4 for a
complete discussion.
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Finite time blowup for u0 < 0. As follows from the previous discussion
and (TR), a negative solution may start from C∞ data and develop into L∞
in finite time. We don’t know whether a more severe instantaneous blowup
occurs for negative data. Our requirement for local existence certainly sup-
ports this. However, the numerics presented in Section 5 suggests that for
some mostly positive data with a small subzero drop, the positive bulk of
the solution may persevere. The solution gets dragged into positive territory
and exists globally.

Long-time asymptotics. As t → +∞, any weak solution to (1.1) con-

verges to a constant, namely
∥u0∥L2√∣Td∣ , consistent with (E), in the following

strong sense: the amplitude of u(t) tends to 0 exponentially fast with a rate
proportional to minu0. The semi-norm ∥∇u(t)∥L∞ does the same. Thus,
there are no small-scale structures left in the limit. The latter statement
requires more technical proof which relies on an adaptation of the recent
Constantin-Vicol proof of regularity for the critical SQG equation, [7].

The organization of the paper follows the order of the results listed above.
To shorten the notations, we frequently use ∥⋅∥m to denote the Sobolev norm
of Hm and ∣ ⋅ ∣p to denote the Lp-norm.

2. Global well-posedness with positive initial data

2.1. Local well-posedness

We start our discussion with local well-posedness in regular classes. Let
Ωd denote Rd or Td.

Theorem 2.1 (Local well-posedness).— Given a pointwise positive ini-
tial data u0 ∈ Hm(Ωd) where m > d/2 + 1 is an integer, there exists a time
T > 0 and a unique solution to (1.1) with initial condition u0, which be-
longs to the class C([0, T );Hm(Ωd)) ∩ C1([0, T );Hm−1(Ωd)). Moreover,
u(x, t) > 0 for all (x, t) ∈ Ωd × [0, T ), and the maximum maxΩd u(t) is
strictly decreasing in time.

The proof in the case of Rd requires slightly more technical care in the
maximum principle part, while being similar in the rest of the argument.
We therefore present it in Rd only. In the case of the torus Td, however, we
will also obtain a complementary statement for the minimum: minTd u(t)
is a strictly increasing function of time, thus the amplitude is shrinking. In
Section 3 we will elaborate much more on the asymptotic behavior of the
amplitude.
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Proof.— The proof will be split into several steps.

Step 1: Regularization. Let us consider the following regularization of the
kernel

Kδ(z) = cd(δ2 + ∣z∣2) d+12 ,

and the corresponding operator

∣∇∣δu = ∫RdKδ(x − y)(u(x) − u(y))dy = u∫RdKδ(z)dz − Tδu
where Tδ is the convolution with Kδ. The regularized equation takes the
form

∂tu = [u, ∣∇∣δ]u = ∫RdKδ(x − y)(u(y) − u(x))u(y)dy = −[u,Tδ]u. (2.1)

Note that Tδ is infinitely smoothing, i.e. ∥Tδu∥s ≤ cδ,s,s′∥u∥s′ , for any 0 ≤
s′ ≤ s. So, by the standard quadratic estimates, the right-hand side of (2.1)
is quadratically bounded and locally Lipschitz in Hm. Thus, by the Fixed
Point Theorem, there is a local solution u ∈ C1([0, T );Hm) with the same
initial condition u0. Here T depends on ∥u0∥m and δ. For later use, note
that ∣u(t)∣2 = ∣u0∣2 is conserved.

Step 2: Maximum principle. Suppose u0 ∈Hm, u0 > 0, and u ∈ C1([0, T );
Hm) is a local solution to (2.1) with the initial condition u0. As Hm(Rd) ↪
C1(Rd) for m > d/2 + 1 (even better is true), and u(x, t) → 0 as x → ∞,
then u(t) has and attains its maximum M(t) = maxRd u(t). We claim that
u(x, t) > 0, for all (x, t) ∈ Rd × [0, T ), and the maximum function M(t) is
strictly decreasing on [0, T ). Let us prove the first claim first.

Let us fix R > 0 and show that u never vanishes on (0, T ) × BR(0).
Suppose it does. Let us consider

t0 = inf{t ∈ (0, T ) ∶ ∃∣x∣ ≤ R,u(x, t) = 0}.
By the boundedness of (0, T )×BR(0) and the continuity of u, t0 is attained.
Thus, since u0 > 0, then t0 > 0. Let x0 ∈ BR(0) be such that u(x0, t0) = 0.
Evaluating (2.1) at (x0, t0) we obtain

ut(x0, t0) = ∫RdKδ(x0 − y)u2(y)dy > 0.

Observe that the right-hand side is strictly positive since the energy of
solutions to (2.1) is conserved. This shows that for some earlier time t < t0
there exists x ∈ BR(0) where u vanishes, which is a contradiction. Since the
argument holds for all R > 0, the claim follows.

Let us prove the second claim now. Suppose that M(t) is not strictly
decreasing on [0, T ). This implies that there exists a pair of times 0 ≤ t′ <
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t′′ < T such that M(t′) ≤ M(t′′). Let us show that there exists a t0 > t′,
such that M(t0) ≥ M(t) for all t ∈ [t′, t0]. If M(t′) < M(t′′), then by
the continuity of M(t), M attains its maximum on the interval [t′, t′′].
Let t0 ∈ [t′, t′′] be the left outmost point where the maximum of M is
attained. Then t0 > t′, and M(t0) ≥ M(t) for all t′ ≤ t ≤ t0. If, on the
contrary, M(t′) = M(t′′) then either one can shrink the interval to fullfill
the previous assumption or M(t) is constant throughout [t′, t′′]. In either
case, there exists, as claimed, a t0 > t′, such that M(t0) ≥ M(t) for all
t′ ≤ t ≤ t0. Let us consider a point x0 ∈ Rd such that u(t0, x0) =M(t0). Then

∂tu(t0, x0) = ∫RdKδ(x − y)(u(y) − u(x0))u(y)dy < 0. (2.2)

So, at an earlier time t < t0, one must have u(t, x0) >M(t0) in contradiction
with the initial assumption.

Step 3: δ-independent bounds. Let us observe the following representation

formula that follows easily from u(x)−u(y) = ∫ 1
0 ∇u((1−λ)x+λy)⋅(x−y)dλ :

∣∇∣δu = ∫ 1

0
Rλδ(∇u) dλ,

where Rγ is the smoothed (vector) Riesz transform given by a convolution

with the kernel Φγ(z) = z

(γ2+∣z∣2) d+12 . Let us notice that Φγ(z) = 1
γd

Φ1 ( z
γ
),

while Φ1 is the z-multiple of the Poisson kernel. Therefore, on the Fourier
side,

Φ̂γ(ξ) = iξ∣ξ∣e−γ∣ξ∣.
Since these symbols are uniformly bounded, the family of operators {Riγ}i,γ
is uniformly bounded in L2 and any Sobolev space Hk. Thus, we have
uniform estimates

∥∣∇∣δu∥k ≤ C(d, k)∥∇u∥k, (2.3)

for all k ≥ 0. Finally, note that, in any space dimension, the full symbol of∣∇∣δ is given by

Sym ∣∇∣δ = ∣ξ∣ ∫ 1

0
e−λδ∣ξ∣dλ = 1

δ
(1 − e−δ∣ξ∣). (2.4)

Let s be a multi-index of order ∣s∣ =m. Differentiating (2.1), we obtain

∂t∂
su = ∑

0≤α<s∂
s−αu∣∇∣δ∂αu+u∣∇∣δ∂su−2∣∇∣δ(u∂su)− ∑

0<α<s ∣∇∣δ(∂αu∂s−αu).
- 731 -
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Let us test with ∂su. We have:

1

2
∂t∣∂su∣22 = ∫ ∂su ∑

0≤α<s∂
s−αu∣∇∣δ∂αu + ∫ u∂su∣∇∣δ∂su − 2∫ ∂su∣∇∣δ(u∂su)

− ∫ ∂su ∑
0<α<s ∣∇∣δ(∂αu∂s−αu).

(2.5)

The middle two terms of (2.5) contain derivatives of order m+1. By symme-
try however, they add up to −∫ u∂su∣∇∣δ∂su. By the positivity of u, a bound
for this term follows from the elementary identity −a(a − b) ≤ − 1

2
(a2 − b2):

−∫ u∂su∣∇∣δ∂su = −∬ u(x)∂su(x)(∂su(x) − ∂su(y))Kδ(x − y)dxdy
≤ −1

2
∬ u(x)(∂su(x)2 − ∂su(y)2)Kδ(x − y)dxdy

= −1

2
∫ u∣∇∣δ(∂su)2 = −1

2
∫ (∣∇∣δu)(∂su)2.

One thus gets, using (2.3) for the last step:

−∫ u∂su∣∇∣δ∂su−1

2
∫ (∣∇∣δu)(∂su)2 ≲ ∣∣∇∣δu∣∞∥u∥2

m ≲ ∥∣∇∣δu∥m−1∥u∥2
m ≲ ∥u∥3

m

where all the constants in the inequalities are independent of δ.

The rest of the expression (2.5) is simpler to deal with as it does not
contain any other derivatives of order m + 1. To estimate the first sum we
use the Gagliardo-Nirenberg inequalities:

∣∂iu∣ 2r∣i∣ ≤ ∣u∣1− ∣i∣r∞ ∥u∥ ∣i∣rr , 0 ≤ ∣i∣ ≤ r. (2.6)

So, for any 0 ≤ α < s, we have

∫ ∣∂su∂s−αu∣∇∣δ∂αu∣ ≤ ∣∂su∣2∣∂s−αu∣ 2(m−1)
m−∣α∣−1 ∣∣∇∣δ∂αu∣ 2(m−1)∣α∣

≤ ∥u∥m∣∇u∣1−m−∣α∣−1
m−1∞ ∥∇u∥m−∣α∣−1

m−1
m−1 ∣∣∇∣δu∣1− ∣α∣

m−1∞ ∥∣∇∣δu∥ ∣α∣
m−1
m−1≲ ∥u∥3

m.

Using (2.3), we also estimate each term of the last sum of (2.5). For 0 < α < s,
one has:

∫ ∂su∣∇∣δ(∂αu∂s−αu) ≲ ∫ ∣∂su∣2∣∇(∂αu∂s−αu)∣2. (2.7)

We have ∣∇(∂αu∂s−αu)∣2 ≤ ∣∂α∇u∂s−αu∣2 + ∣∂αu∂s−α∇u∣2. We estimate the
first term exactly as previously. For the second term we obtain, again using
Gagliardo-Nirenberg inequalities,

∣∂αu∂s−α∇u∣2 ≤ ∣∂αu∣ 2(m−1)∣α∣−1 ∣∂s−α∇u∣ 2(m−1)
m−∣α∣ ≤ ∥u∥2

m.
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We thus have obtained a Riccati-type differential inequality ∂t∥u∥3
m ≤

C∥u∥3
m which boils down to

∂t∥u∥m ≤ C∥u∥2
m,

with a constant C independent of δ. This shows that the solution can be
extended to a time of existence T independent of δ as well. Namely, we have
the bound

∥u(t)∥m ≤ ∥u0∥m
1 −Ct∥u0∥m ,

and so the critical time is T ∗ = (C∥u0∥m)−1.

Step 4: Limit. For each δ > 0, let uδ be the solution to (2.1) with the same
initial data u0. By the previous reasoning, uδ ∈ C([0, T );Hm) uniformly in
δ for any fixed time T < T ∗. Let us fix T < T ∗. Then, since Hm−1 is a Banach
algebra, we estimate the right-hand side of (2.1) by:

∥uδ ∣∇∣δuδ − ∣∇∣δ(u2
δ)∥m−1 ≤ ∥uδ∥m−1∥uδ∥m + ∥uδ∥2

m ≲ ∥uδ∥2
m.

This shows that uδ ∈ C1([0, T );Hm−1) uniformly in δ.

We now turn to the convergence issue. Instead of relying on the Lions-
Aubin compactness lemma, which only provides a limit for a subsequence,
we show a more robust convergence statement for the family uδ as δ → 0.
We claim that the family is a Cauchy sequence in C([0, T );L2). As a

consequence of the interpolation inequality ∥f∥m′ ≤ ∥f∥1−m′/m
0 ∥f∥m′/m

m , for
m′ < m, it also means that the sequence is a Cauchy sequence in any

C([0, T );Hm′) for any m′ < m. To prove our claim, we need another es-
timate on the difference of operators ∣∇∣δ. Let us fix δ, ε > 0. The symbol of
the difference is

Sym(∣∇∣δ − ∣∇∣ε) = ∣ξ∣ ∫ 1

0
(e−λδ∣ξ∣ − e−λε∣ξ∣)dλ,

which is bounded uniformly in ξ by ∣ξ∣2∣δ − ε∣. Therefore we obtain the
following bound:

∥(∣∇∣δ − ∣∇∣ε)u∥k ≤ C ∣δ − ε∣∥u∥k+2. (2.8)

Writing the equation for the difference, we obtain

(uε − uδ)t = (uε − uδ)∣∇∣εuε + uδ(∣∇∣ε − ∣∇∣δ)uε + uδ ∣∇∣δ(uε − uδ)− (∣∇∣ε − ∣∇∣δ)(u2
ε) − ∣∇∣δ(u2

ε − u2
δ).
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Testing with (uε − uδ) we further obtain

1

2

d

dt
∣uε − uδ ∣22 =∫ (uε − uδ)2∣∇∣εuε + ∫ uδ(uε − uδ)(∣∇∣ε − ∣∇∣δ)uε

+ ∫ uδ(uε − uδ)∣∇∣δ(uε − uδ) − ∫ (uε − uδ)(∣∇∣ε − ∣∇∣δ)(u2
ε)

− ∫ (uε + uδ)(uε − uδ)∣∇∣δ(uε − uδ),
where in the last term we swapped ∣∇∣δ onto (uε−uδ). We see that the third
term uδ(∣∇∣ε − ∣∇∣δ)uε(uε − uδ) cancels with part of the last, and we have,
using the same trick as above:

−∫ uε(uε − uδ)∣∇∣δ(uε − uδ) ≤ −1

2
∫ uε∣∇∣δ(uε − uδ)2

= −1

2
∫ (uε − uδ)2∣∇∣δ(uε) ≲ ∣uε − uδ ∣22,

in view of the uniform bound on uε in Hm. The rest of the terms can be
estimated using (2.8). Note that m > d/2+1 and being an integer, m ≥ 2 for
any dimension d ≥ 1. So, Hm ↪H2. We thus have

d

dt
∣uε − uδ ∣22 ≤ C(∣uε − uδ ∣22 + ∣δ − ε∣∣uε − uδ ∣2),

where C depends only on the initial conditions and other absolute dimen-
sional quantities, but on ε and δ. Given that the solutions start with the
same initial condition, the Grönwall inequality implies

∣uε(t) − uδ(t)∣2 ≤ C ∣δ − ε∣(eCt − 1)
for all t < T . This proves the claim.

So, the family uδ converges strongly to some u in all C([0, T );Hm′),
m′ < m. Moreover, ∂tuδ converges distributionally to ∂tu, and in view of

the uniform bound in Hm−1, it does so strongly in any Hm′−1. This shows
that the limit u solves (1.1) classically with initial condition u0. Passing
also to a weak limit for a subsequence shows that u ∈ Cw([0, T );Hm) which
is the space of weakly continuous Hm-valued functions. The argument to
prove strong continuity in Hm now follows line by line that of [21, Theorem
3.5] as we have all the same estimates. Finally, u ∈ C1([0, T );Hm−1) follows
as before for uδ, directly from the equation.

Note that for the solution u that we constructed, the maximum principle
proved earlier for uδ still holds. The argument is the same, due to the
positivity of the kernel. �
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2.2. A Beale-Kato-Majda criterion

We now state the classical BKM criterion for our model.

Theorem 2.2 (A Beale-Kato-Majda criterion).— Suppose

u ∈ C([0, T );Hm(Ωd)) ∩C1([0, T );Hm−1(Ωd))
is a positive solution to (1.1), where m > d/2 + 1. Suppose also that

∫ T

0
∣∇u(t)∣∞ dt < ∞. (2.9)

Then u can be extended beyond time T in the same regularity class.

Remark 2.1. — We will see that ∫ T0 ∣∣∇∣u(t)∣∞dt < ∞ is also a BKM
criterion.

The proof relies on a version of the log-Sobolev inequality à la Brézis [3]
adapted to our setting. In order to state it, let us first recall some definitions.
Let u ∈ L2. Then u admits a classical Littlewood-Paley decomposition u =∑∞q=−∞ uq. Let us denote the large-scale part by u<0 = ∑q<0 uq and the small-
scale part by u≥0 = ∑q≥0 uq. Recall the classical (homogeneous) Besov norm

Ḃsr,∞:

∥u∥Ḃsr,∞ = sup
q∈Z 2sq ∣uq ∣r.

Lemma 2.2 (A log-Sobolev inequality).—

∣∇u∣∞ + ∣∣∇∣u∣∞ ≲ ∣u∣2 + ∥u≥0∥Ḃ1∞,∞(1 + log+ ∥u∥m) + 1. (2.10)

Proof. Bernstein’s inequalities imply ∣∇uq ∣∞ ∼ 2q ∣uq ∣∞, uniformly for all q.
In particular, we get

∣∇u∣∞ + ∣∣∇∣u∣∞ ≲ ∞∑
q=−∞2q ∣uq ∣∞.

Then for q < 0 we use another Bernstein inequality: 2q ∣uq ∣∞ ≲ 2q(1+ d2 )∣uq ∣2.

Clearly, ∣uq ∣2 ≤ ∣u∣2 and thus ∑−1
q=−∞ 2q ∣uq ∣∞ ≲ ∣u∣2. For the small-scale com-

ponent, we obtain, for every Q ≥ 0,

∞∑
q=0

2q ∣uq ∣∞ = Q∑
q=0

2q ∣uq ∣∞ + ∞∑
q=Q+1

2q ∣uq ∣∞ ≤ Q∥u≥0∥Ḃ1∞,∞ + ∞∑
q=Q+1

2q(1+ d2−m)2qm∣uq ∣2
≤ Q∥u≥0∥Ḃ1∞,∞ + 2−Q(m− d2−1)∥u∥m.
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Minimizing the above over Q (and recalling that m > d/2+1), the small-scale
component is bounded by

∥u≥0∥Ḃ1∞,∞
⎛⎝1 + log

∥u∥m∥u≥0∥Ḃ1∞,∞

⎞⎠ .
One observes next that −x logx ≤ 1 on R+ and that log y ≤ log+ y. Thus the
small-scale component is overall bounded by 1 + ∥u≥0∥Ḃ1∞,∞(1 + log+ ∥u∥m),
as claimed. �

We now turn to the proof of Theorem 2.2.

Proof of Theorem 2.2.— Let u be such that

∫ +∞
0

∥u≥0(t)∥Ḃ1∞,∞dt < +∞. (2.11)

According to the classical Bernstein inequalities, ∣∇uq ∣∞ ∼ 2q ∣uq ∣∞, uni-
formly for all q, and by continuity of the Littlewood-Paley projections,∣∇uq ∣∞ ≲ ∣∇u∣∞. Hence (2.9) implies (2.11). Similarly, since there exist ∣∇∣-
versions of Bernstein’s inequalities: ∣∣∇∣uq ∣∞ ∼ 2q ∣uq ∣∞, the condition in Re-
mark 2.1 also implies (2.11).

Performing exactly the same estimates as on Step 3 of the proof of The-
orem 2.1 but now with ∣∇∣ instead of ∣∇δ ∣, we arrive at the following a priori
bound

∂t∥u∥2
m ≲ ∥u∥2

m

M∑
i=1

∣∇u∣1−µi∞ ∣∣∇∣u∣µi∞ , (2.12)

where M depends on m and each of the µi satisfies 0 ≤ µi ≤ 1. Indeed, in
(2.5), the estimate of the symmetrized term of highest order gives µi = 1.
The estimate of the first sum gives µi = ∣α∣/(m − 1) for 0 ≤ α < s and the
specific terms from the last sum are dealt with simply with µi = 0.

Combining (2.12) with the log-Sobolev inequality (2.10), we arrive at

∂t∥u∥2
m ≲ ∣u∣2∥u∥2

m + ∥u≥0∥Ḃ1∞,∞(1 + log+ ∥u∥m)∥u∥2
m + ∥u∥2

m. (2.13)

Applying Grönwall’s lemma twice, one gets a double-exponential estimate
of the form:

log
⎛⎜⎝

log ∥u(t)∥m
log ∥u0∥m + t + ∣u0∣2t + ∫ t0 ∥u≥0∥Ḃ1∞,∞

⎞⎟⎠ ≤ ∫ t

0
∥u≥0∥Ḃ1∞,∞ .

Theorem 2.2 follows immediately. �
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2.3. From local to global through regularity

We now study the question of the global existence and regularity of
positive weak solutions starting from arbitrary L∞-data.

Suppose that we are given a classical solution u ∈ C([0, T );Hm)∩ C1([0, T );Hm−1) on the torus Td which is strictly positive u > 0. Let
T ∗ be its maximal time of existence. We will show that T ∗ = ∞. Let us
assume, on the contrary, that it is finite. In what follows we apply the De
Giorgi regularization result of [4] to our model. Since u is a classical solution,
the formal passage from the u-equation (1.1) to the w = u2-equation (1.6)
holds true. The active kernel k given by (1.7) is symmetric with respect to(x, y) and satisfies

Λ(t)−1

∣x − y∣d+1
≤ ∣k(t, x, y)∣ ≤ Λ(t)∣x − y∣d+1

, (2.14)

for all x ≠ y, t > 0, and

Λ(t) = Cdmax{∣u(t)∣∞, ∣u−1(t)∣∞}.
By the max/min principle, we see that Λ(t) can be replaced with Λ(0) = Λ,
uniformly for all time, and thus depends only on ∣u0∣∞. Equation (1.6) is
exactly of the kind studied in [4]. It was natural in [4], in the context of
an Euler-Lagrange problem, to assume the finiteness of the global energy,
i.e. w ∈ L2(Rd). The main technical result of [4] however uses no such
assumption and only requires w to have locally finite energy (Corollary 3.2
of [4] gives a global L∞ bound in terms of the global L2 norm, which in our
case is not necessary as w remains bounded by the maximum principle). So,
[4] applies verbatim to our periodic solutions, unfolded on the whole space
Rd. Specifically, the result states that there exists an α > 0 which depends
only on Λ and d such that for any 0 < t0 < T ∗ we have w ∈ Cα,αx,t (Td×(t0, T ∗))
with the bound

∥w∥Cα,αx,t (Td×(t0,T ∗)) ≤ C(t0, ∣w0∣∞,Λ, d).
The next step is to prove Schauder estimates. It can be done for a general
integro-differential equations of type (1.6) and was recently obtained in [11].

Theorem 2.3 ([11]).— Let us consider a classical solution on Rd×[0,2]
of

∂tw = p.v.∫Rd m(x, y, t)∣x − y∣d+1
(w(y) −w(x))dy + f(x, t)

where the weight m is bounded from above and below on R2d × [0,2]
0 < λ ≤m(x, y, t) ≤ Λ
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and m and f satisfy Hölder conditions for (x, t), (x′, t′), . . . ∈ Rd × [0,2]
Λα = sup∣x−x′∣+∣y−y′∣+∣t−t′∣<1

∣m(x, y, t) −m(x′, y′, t′)∣∣x − x′∣α + ∣y − y′∣α + ∣t − t′∣α < ∞

Mf = ∥f∥L∞(Rd×[0,2]) + sup∣x−x′∣+∣t−t′∣<1

∣f(x, t) − f(x′, t′)∣∣x − x′∣α + ∣t − t′∣α < ∞.
Then for any β < α2, there exists a constant C > 0 depending only on
d, λ,Λ,Λα and ε = α2 − β such that

∥w∥C1+β,β
x,t (Rd×[1,2]) + ∥w∥C1,1

x,t(Rd×[1,2]) ≤ C [∥w∥C0,α
x,t (Rd×[0,2]) +Mf ] .

Obviously, the assumptions of this theorem are satisfied by our equa-
tion (1.6), extended periodically to Rd. By the Beale-Kato-Majda criterion,
w, and hence u, can be extended smoothly beyond T ∗, resulting in a con-
tradiction. Moreover, the higher regularity bounds (1.5) for w and hence for
u follow from a further application of the bootstrap argument of [11] and is
also detailed there in a more general setting.

For the convenience of our readers, let us recall from [11] the main steps
in the proof of Theorem 2.5. All details can be found there and full credit
should be given to [11]. One can write (1.6) as ∂tw = −m(x,x, t)∣∇∣(w) +
J(m,w). The kernel of the linear operator ∂t + m(x,x, t)∣∇∣ satisfies the
assumptions of [14, Corollary 2.6] which provides a bound of the linear flow
in Hölder classes, assuming only initial data in L∞. Next, treating J as a
source term, the Duhamel’s principle allows to control w in C1−ε,0

x,t , away
from t = 0, for arbitrary ε > 0. Further Hölder estimates of the nonlocal
operator J(m,w) allow one to apply [14, Corollary 2.7] and provide control
of higher order spatial regularity of w first, and then regain control of its
time regularity too. The particular connection between w and m is crucial:
a given regularity of w implies the same regularity of m. This allows to
bootstrap the procedure and obtain higher order Hölder estimates on w,
from which the bounds (1.5) follow.

We thus have established the following result.

Theorem 2.4 (Global well-posedness).— Under the assumptions of The-
orem 2.1, the solution exists globally in time. Furthermore, the solution is
regularized instantly and satisfies the bounds (1.5).
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2.4. Weak solutions from positive bounded data

The bounds (1.5) depend on the initial data only through the minimum
and maximum value. This allows us to construct weak solutions from ar-
bitrary positive data in L∞ and for which similar regularization properties
will hold. However it is not obvious how to restore the initial data and one
should be cautious of the topology used for the limit t→ 0.

Theorem 2.5 (Global weak solution).— For any initial data u0 ∈ L∞(Td),
u0 > 0, there exists a global weak solution to (1.1) in the class

L∞(R+ ×Td) ∩L2(R+; Ḣ1/2) ∩C0(R+;L2).
Its initial value u0 is realized in the sense of the L∞ weak∗ limit and in the
strong L2 sense. The energy is conserved, the momentum ∫Td u(x, t)dx is

continuous on R+ and (1.4) is satisfied for any (t, t′) ∈ R2+. Furthermore,
u satisfies the instant regularization estimates (1.5) and for all t > 0, the
original equation (1.1) is satisfied in the classical sense.

Remark 2.3. — If uniqueness was to fail in Theorem 2.5, it could only
do so at t = 0. However, the continuity of the momentum at t = 0 prevents
any concentration of the Ḣ1/2 norm in our weak solution.

Proof of Theorem 2.5.— Let u0 ∈ L∞ be such a positive initial condition.
We start the construction by taking standard mollifications (u0)ε of u0. In
view of Theorem 2.4, there exists a global classical solution uε from each
of those mollified initial conditions. Let us fix T > 0. In accordance with
(1.5), the family {uε} satisfies uniform regularity starting from any t0 > 0.
Invoquing the Arzelà-Ascoli compactness theorem together with Cantor’s
diagonal argument to successively reduce the value of t0, we can pass to the
limit and find a classical solution on the interval (0, T ]. In addition, as we
already pointed out in the introduction, the energy equality on the whole
time interval [0, T ] combines with the momentum law to ensure that uε
belongs to L∞([0, T ) × Td) ∩ L2([0, T );H1/2) uniformly. As L∞ ∩H1/2 is
an algebra, wε = u2

ε enjoys the same uniform property. Passing to the weak
limit in the Sobolev space, we conclude that

u,w ∈ L∞([0, T ) ×Td) ∩L2([0, T );H1/2). (2.15)

For all t > 0, since we also have a limit in the classical sense, w(t) = u(t)2.
The only remaining problem is to restore the initial data and a weak formu-
lation of the equation near t = 0. Indeed, once a solution is constructed on[0, T ], one can invoque Theorem 2.4 one last time, starting with the smooth
initial data u(T ) and therefore claim the existence of a global solution on
R+.
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Let us restore the initial data for w first. Let us write (1.6) in the weak
form, for the smoothed solutions: for any φ ∈ C∞([0, T ) ×Td),
∫Td wε(x, t)φ(x, t)dx−∫Td wε(x,0)φ(x,0)dx−∫

t

0
∫Td wε(x, t)∂tφ(x, s)dxds

= 1

2
∫ t

0
∫Td k(s, x, y)(wε(y, s) −wε(x, s))(φ(x, s) − φ(y, s))dxdyds.

(2.16)

Let us write (2.16) as Aε − Bε − Cε = Dε with the respective designation
of each term. As we pass to the limit ε → 0, we trivially have Aε → A0.
The convergence Bε → B0 holds because (u0)ε → u0 strongly in L2 and
hence wε(t = 0) = (u0)2

ε → w0 in L1 and thus weakly. The convergence
Cε → C0 results from the uniform L∞ bound on wε (in an arbitrary small
neighborhood of t = 0) joined with the uniform convergence on the rest of
the time interval. Finally, one splits the last term as:

Dε = ∫ t

δ
+∫ δ

0
=D′

ε,δ +D′′
ε,δ. (2.17)

We have D′
ε,δ → D′

0,δ by classical convergence and, by Cauchy-Schwarz

and (2.15),

∣D′′
ε,δ ∣ ≤ ∥wε∥L2([0,δ);H1/2)∥φ∥L2([0,δ);H1/2) ≤ C√

δ (2.18)

uniformly in ε. This shows that Dε →D0. We have thus proved that (2.16)
is satisfied in the limit as ε→ 0, i.e. for w itself. Taking then φ independent
of t and passing to t→ 0 shows that w(t) ⇀ w0 weakly∗ in L∞.

At this point let us make a cautionary remark because u(t)2 ⇀ u2
0 does

not imply u(t) ⇀ u0 in general. A simple example is provided by the se-
quence un = 1 + 1

2
rn, where rn(x) = sign(sin 2nπx) are Rademacher func-

tions. Then un > 0, un ⇀ 1 and yet u2
n ⇀ 5

4
≠ 12. A progressively mollified

sequence (un)1/nn would provide a similar counter-example in the class C∞,
as in our case. However, one can observe on this example that the function√

5/4, whose square is the limit of squares, dominates the limit of un itself,
which is 1. This is true in general.

Lemma 2.4.— Suppose that a sequence of functions {un} ⊂ L∞, bounded
away from zero, enjoys both limits un ⇀ u′ and u2

n ⇀ u2
0 in the weak∗

topology. Then u0 ≥ u′.
Proof.— The proof of this lemma is simple. Let φ > 0 be a test function.
Then trivially

∫ (un − u0)2φdx ≥ 0,
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for all n. Let us expand,

∫ (un − u0)2φdx = ∫ (u2
n − 2unu0 + u2

0)φ
→ ∫ (u2

0 − 2u′u0 + u2
0)φ = 2∫ u0(u0 − u′)φ ≥ 0.

Since u0 > 0 and the above holds for an arbitrary φ > 0 in L1, the lemma
follows. �

Let us go back to restoring the initial condition for u. Reverting to the
original equation (1.3), its weak formulation for the smooth sequence reads,
with test functions independent of t:

∫Td uε(x, t)φ(x)dx − ∫Td uε(x,0)φ(x)dx =
1

2
∫ t

0
∫Td φ(x)(uε(y, s) − uε(x, s))2Kper(y − x)dydxds

+ 1

2
∫ t

0
∫Td uε(x, s)(φ(x) − φ(y))(uε(y, s) − uε(x, s))Kper(y − x)dydxds.

(2.19)

Passing to the limit on the left-hand side and in the last integral on the
right presents no difficulty as one can use estimates similar to (2.17)-(2.18).

However there are no a-priori bounds that guarantee the smallness near
the time t = 0 of the first integral on the right-hand side. Specifically, a
possible concentration of the H1/2 norm near t = 0 (or equivalently by (1.4),
an initial discontinuity in the first momentum) could prevent (2.19) from
withstanding the limit.

Using only the positivity of the first integrand of the right-hand side, we
obtain instead, for all φ ≥ 0:

∫Td u(x, t)φ(x)dx − ∫Td u0(x)φ(x)dx ≥
1

2
∫ t

0
∫Td u(x, s)(φ(x) − φ(y))(u(y, s) − u(x, s))Kper(y − x)dydxds.

(2.20)

In the limit t → 0, the right-hand side of the previous inequality vanishes
by (2.18), and hence, any weak∗ limit of a subsequence of (u(t))t>0 would
converge to a function u′ satisfying u′ ≥ u0 a.e. On the other hand, by the
lemma above, u0 ≥ u′. This proves that the weak∗ limit u(t) ⇀ u0 holds as
t→ 0 for any subsequence and therefore also as a function of the continuous
time parameter. In particular, testing this weak∗ limit with φ ≡ 1 ensures
that the momentum ∫Td u(x, t)dx is continuous at t = 0.
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Let us now recall that the L2 norm is also continuous at time zero and
therefore overall preserved. Indeed, one can for example use φ ≡ 1 as a test
function in the weak∗ limit w(t) ⇀ w0 or directly notice that ∣uε(t)∣2 =∣(u0)ε∣2 for ε > 0 and that this identity passes to the limit ε→ 0, on the left-
hand side because of the uniform convergence at time t > 0 and on the right-
hand side because it is a standard property of mollified sequences. Next,
as u0 ∈ L2 ⊂ L1 is an admissible test function for the weak∗ convergence
u(t) ⇀ u0, one gets

∣u(t) − u(0)∣22 = 2∣u0∣2 − 2∫Td u(x, t)u0(x)dx→ 0.

Therefore u ∈ C(R+;L2).
Finally, to restore the weak formulation of the original equation, we first

write it on a time interval [t0, t] with t0 > 0, where it is also satisfied in the
classical sense:

∫Td u(x, t)φ(x, t)dx−∫Td u(x, t0)φ(x, t0)dx−∫
t

t0
∫Td u(x, s)∂tφ(x, s)dxds

= 1

2
∫ t

t0
∫Td φ(x, s)(u(y, s) − u(x, s))2Kper(y − x)dydxds

+ 1

2
∫ t

t0
∫Td u(x, s)(φ(x, s)−φ(y, s))(u(y, s)−u(x, s))Kper(y −x)dydxds.

(2.21)

Passing to the limit as t0 → 0 is now within reach. On the left-hand side,
the L2 continuity ensures the convergence of the middle term while the L∞
bound tackles the third term. On the right-hand side, the last integral is
controled in the same fashion as (2.18) because of (2.15). The troublesome
first term on the right-hand side is bounded effortlessly; for any 0 < t1 < t0:

∣∫ t0

t1
∫Td φ(x, s)(u(y, s) − u(x, s))2Kper(y − x)dydxds∣ ≤ C∫ t0

t1
∥u(s)∥2

Ḣ1/2ds.
(2.22)

Applying (1.4) on [t1, t0], where the equation is already satisfied in a clas-
sical sense, the right-hand side equals C ∫Td u(x, t0) − u(x, t1)dx. As the
momentum is continuous, the right-hand side is arbitrarily small as t0 → 0,
uniformly for t1 ∈ [0, t0]. One can thus first let t1 → 0 in (2.22) and then pass
to the limit t0 → 0 in (2.21). Finally, taking φ ≡ 1 in the weak formulation of
the equation shows that (1.4) still holds at t = 0. This finishes the complete
construction of a weak solution on [0,∞) and the proof of Theorem 2.5. �
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2.5. Blowup in finite time for some smooth negative data

In view of the time reversibily property (TR) mentioned page 726, if u
is a positive solution to (1.1), then −u(t∗ − t) is a negative solution. Thus
starting with positive data u0 ∈ L∞(Td)/C(Td) we obtain a solution u
which becomes C∞ instantaneously. Then −u(t∗) serves as negative initial
data that develops a singularity at time t = t∗.

Corollary 2.5 (Finite time blow-up).— For any t∗ > 0, there exists a
negative initial condition u0 ∈ C∞(Td), u0 < 0 and there exists a classical
solution to (1.1) that develops into a discontinuous solution at time t∗ i.e.
u(t∗) ∈ L∞(Td)/C(Td).

3. Long-time behavior

In this section we will show that the long-time dynamics of the model
converges to a constant state consistent with the conservation of energy,
namely,

u(t, x) Ð→
t→+∞

∥u0∥L2√∣Td∣ ⋅
As the solution is squeezed by the maximum and minimum principles, it is
expected that such behavior would be a consequence of a steady decay of
the amplitude. We will show indeed in Lemma 3.1 that the amplitude tends
to zero exponentially fast. However, this first property alone still leaves
room for non-trivial oscillations like a non-vanishing ∣∇u∣∞. We will exclude
such residual oscillations using the method that Constantin and Vicol [7]
developed recently to prove, among other things, the global regularity for
the critical SQG equation. In short, the long-time dynamics of our model is
a convergence to a constant state, both at large and small scales.

Subsequently, we use the following notations:

m(t) = min
x∈Td u(x, t), M(t) = max

x∈Td u(x, t), A(t) =M(t) −m(t)
and m0 =m(0), M0 =M(0), A0 = A(0).

Lemma 3.1 (Exponential decay of space oscillations).— Let u ∈ L∞(Td×[0,∞)) be a weak solution to (1.2) with a positive initial condition as stip-
ulated in Theorem 2.5. Then A(t) ≤ A0e

−cm0t holds for all t > 0 with some
c > 0 independent of u.

Proof.— This proof relies on an idea from [12]. Let x̄(t) denote a point where
M(t) = u(x̄(t), t) and let x(t) denote a point where m(t) = u(x(t), t). Let
us unfold the 2π-periodic solution on Rd ; without loss of generality, we can
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assume that x̄, x ∈ [−π,π]d. The gradient ∇u(⋅, t) vanishes both at x̄(t) and
x(t). Then we have, for instance in the viscosity sense of Crandall-Lions,

M ′(t) ≤ ∫ u(y)(u(y) − u(x̄))K(y − x̄)dy
≤m0 ∫∣y−x̄∣≥1,∣y−x∣≥1

(u(y) − u(x̄))K(y − x̄)dy
≤m0 ∫∣y−x̄∣≥1,∣y−x∣≥1

(u(y) − u(x̄))min (K(y − x̄),K(y − x))dy.
We dropped the reference to time in the right-hand sides for readibility.
Similarly, we have

m′(t) ≥m0 ∫∣y−x̄∣≥1,∣y−x∣≥1
(u(y) − u(x))min (K(y − x̄),K(y − x))dy.

This implies that

A′(t) ≤ −m0A(t)∫∣y−x̄∣≥1,∣y−x∣≥1
min (K(y − x̄),K(y − x))dy ≤ −cm0A(t)

where c = ∫∣y∣≥1+π√d cddy(∣y∣+π√d)d+1 . Lemma 3.1 follows by Grönwall’s lemma.

�

Theorem 3.1 (Asymptotic behavior at all scales). — Let u ∈ L∞(Td ×[0,∞)) be a weak solution to (1.1) with a positive initial condition as stip-
ulated in Theorem 2.5. Then m(t) is increasing, M(t) is decreasing and
both A(t) and ∣∇u(t)∣∞ decay to zero exponentially fast. Consequently, the
solution converges to a constant at an exponential rate.

Remark 3.2.— Combining this asymptotic with (1.4) allows us to com-
pute the total increase of momentum as the defect in the Cauchy-Schwartz
inequality for u0 :

∫ ∞
0

∥u(t)∥2
Ḣ1/2dt = √∣Td∣∣u0∣2 − ∫Td u0(x)dx.

Lemma 3.1 indicates that the stabilization of the largest scales starts right
away. The following proof will establish that the time-scale of the transitory
regime that precedes the stabilization of the lowest scales does not exceed
T ∗ ≃ 1

m0
log+(A0/Cm0).

Proof.— Let us take the gradient of the integral form (1.2) and multiply
by ∇u. After elementary manipulations we obtain pointwise (the integrals
being understood as principal values):

1

2
∂t∣∇u(x, t)∣2 +∇u(x) ⋅ ∫ (∇u(x) − ∇u(x + z))u(x + z)K(z)dz

= ∇u(x) ⋅ ∫ (u(x + z) − u(x))∇u(x + z)K(z)dz.
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Inside the first integral let us use the identity

∇u(x) ⋅ (∇u(x) − ∇u(x + z))u(x + z) = 1

2
[∣∇u(x)∣2 − ∣∇u(x + z)∣2]u(x + z)

+ 1

2
∣∇u(x) − ∇u(x + z)∣2u(x + z).

(3.1)

Assuming that x is the point of the maximum of ∣∇u∣, the first term on the
right-hand side of this last identity is non-negative, while in the second term
we can simply use the bound from below u(x + z) ≥m. We thus obtain the
estimate

∂t∣∇u(x, t)∣2 +m0 ∫ ∣∇u(x + z) − ∇u(x)∣2K(z)dz
≤ 2∫ ∇u(x) ⋅ ∇u(x + z) (u(x + z) − u(x))K(z)dz.

Let us denote the integrals respectively by I and J :

∂t∣∇u(x, t)∣2 +m0I ≤ J. (3.2)

We split the integral J depending on whether ∣z∣ < ρ or ∣z∣ > ρ and write
J = J<ρ + J>ρ. We estimate J>ρ after rewriting it in the following form

J>ρ = 2∇u(x) ⋅ ∫∣z∣>ρ∇z(u(x + z) − u(x))(u(x + z) − u(x))K(z)dz
= ∇u(x) ⋅ ∫∣z∣>ρ∇z(u(x + z) − u(x))2K(z)dz
= (d + 1)∇u(x) ⋅ ∫∣z∣>ρ z(u(x + z) − u(x))2 cddz∣z∣d+3

+∇u(x)
⋅ ∫∣z∣=ρ νz(u(x + z) − u(x))2 cddσ(z)

ρd+1
⋅

Thus,

∣J>ρ∣ ≤ c2∣∇u∣∞A2

ρ2
.

As to J<ρ, we use the first order Taylor formula for the increment of u:

J<ρ = 2∫ 1

0
p.v.(∫∣z∣<ρ∇u(x) ⋅ ∇u(x + z)∇u(x + λz) ⋅ zK(z)dz)dλ

= 2∫ 1

0
∫∣z∣<ρ∇u(x) ⋅ ∇u(x + z)(∇u(x + λz) − ∇u(x)) ⋅ zK(z)dzdλ

+ 2∫ 1

0
∫∣z∣<ρ∇u(x) ⋅ (∇u(x + z) − ∇u(x))∇u(x) ⋅ zK(z)dzdλ

= J1<ρ + J2<ρ.
- 745 -



Cyril Imbert, Roman Shvydkoy, Francois Vigneron

We get an upper bound of J1<ρ by Cauchy-Schwarz:

∣J1<ρ∣ ≤ 2∣∇u∣2∞ ∫ 1

0
(∫∣z∣<λρ ∣∇u(x + z) − ∇u(x)∣∣z∣d cddz)dλ

≤ 2∣∇u∣2∞ ∫∣z∣<ρ ∣∇u(x + z) − ∇u(x)∣
√
K(z) ⋅ √

cd∣z∣ d−12 dz

≤ 2∣∇u∣2∞√
cdωdIρ ≤ m0

4
I + c3 ∣∇u∣4∞

m0
ρ.

The estimate for J2<ρ is completely analogous (without the λ-integral). Thus,

J<ρ ≤ m0

2
I + c4 ∣∇u∣4∞

m0
ρ.

Incorporating the estimates already obtained back into (3.2), we arrive at

∂t∣∇u(x, t)∣2 + m0

2
I ≤ c2∣∇u∣∞A2

ρ2
+ c4 ∣∇u∣4∞

m0
ρ.

The choice ρ = (m0A
2)1/3/∣∇u∣∞ optimizes the right-hand side:

∂t∣∇u(x, t)∣2 + m0

2
I ≤ c5 ( A

m0
) 2

3 ∣∇u∣3∞. (3.3)

Next, we estimate I from below using an argument analogous to that of
P. Constantin and V. Vicol [7] but in which we incorporate the amplitude.
For an arbitrary r > 0, we write

I = ∫ ∣∇u(x) − ∇u(x + z)∣2K(z)dz ≥ ∫∣z∣>r ∣∇u(x) − ∇u(x + z)∣2K(z)dz
I ≥ ∫∣z∣>r ∣∇u(x)∣2K(z)dz − 2∇u(x) ⋅ ∫∣z∣>r∇u(x + z)K(z)dz

therefore

I ≥ c6 ∣∇u(x)∣2
r

− 2∇u(x) ⋅ ∫∣z∣>r ∇z(u(x + z) − u(x))∣z∣d+1
cddz

= c6 ∣∇u(x)∣2
r

− 2(d + 1)∇u(x) ⋅ ∫∣z∣>r z(u(x + z) − u(x)) cddz∣z∣d+3

+ 2∇u(x) ⋅ ∫∣z∣=r νz(u(x + z) − u(x))cddσ(z)rd+1
⋅

It follows

I ≥ c6 ∣∇u(x)∣2
r

− c7∣∇u(x)∣A
r2

and choosing r = 2c7A
c6∣∇u(x)∣ provides

I ≥ 2c8
∣∇u(x, t)∣3

A
⋅ (3.4)
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As x is a point of maximum of ∇u(t), combining (3.3) with (3.4) yields

∂t∣∇u∣2∞ + c8m0

A
∣∇u∣3∞ ≤ c5 ( A

m0
) 2

3 ∣∇u∣3∞. (3.5)

In view of Lemma 3.1, there exists a time T ∗ ≃ 1
m0

log+(A0/Cm0) such that

for t ≥ T ∗,

c5 ( A

m0
) 2

3 ≤ c8m0

2A
⋅

This implies that for t ≥ T ∗,

∂t∣∇u∣2∞ + c8m0

2A
∣∇u∣3∞ ≤ 0

or equivalently,

∂t∣∇u∣∞ + c8m0

4A
∣∇u∣2∞ ≤ 0.

Using the precise estimate from Lemma 3.1, we further get

∂t∣∇u∣∞ + c8m0

4A0
ecm0t∣∇u∣2∞ ≤ 0.

This finally implies for t ≥ T ∗
∣∇u(t)∣∞ ≤ ∣∇u(T ∗)∣∞

1 + c9∣∇u(T ∗)∣∞
A0

(ecm0t − ecm0T ∗) = ∣∇u(T ∗)∣∞e−cm0t

1 + c9∣∇u(T ∗)∣∞
A0

(1 − e−cm0(t−T ∗)) ⋅
The proof of Theorem 3.1 is now complete. �

4. Local well-posedness in analytic classes

In the last section we plan to explore numerically what happens, in terms
of existence or blow-up, to solutions when the initial condition is unsigned or
even negative. Since for such data we do not even have a local existence re-
sult in Sobolev spaces, we find it necessary to prove a generic local existence
result, at least in analytic classes. Since our numerical data obviously has a
finite Fourier spectrum, it will ensure the minimal solid ground required to
run the numerical scheme.

We rely on a not so well-known fixed point theorem by Nishida and
Nirenberg, [24]. Let us recall it. Let us define the following spaces, for ρ > 0,

Xρ = {u ∶ ∣u∣ρ = ∑
k∈Z3

e∣k∣ρ∣û(k)∣ < ∞}, (4.1)

Yρ = {u ∶ ∥u∥ρ = ∣u∣ρ + ∣∇u∣ρ}. (4.2)

Notice that Xρ is a Banach algebra. Also notice that for any ρ′ > ρ one has

∣∇u∣ρ = ∣∣∇∣u∣ρ ≤ C

ρ′ − ρ ∣u∣ρ′ , (4.3)

for some absolute C > 0.
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Theorem 4.1 (Nishida and Nirenberg, [24]). — Suppose a functional
F = F (u) satisfies the following condition: F ∶ Yρ′ → Yρ for all ρ′ > ρ, and
for any R > 0 there is a CR such that for all ∥u,u1, u2∥ρ′ < R and for all
ρ < ρ′ the following holds:

(i) ∥F (u)∥ρ ≤ CR
ρ′−ρ∥u∥ρ′ ,

(ii) ∥F (u1) − F (u2)∥ρ ≤ CR
ρ′−ρ∥u1 − u2∥ρ′ .

Then the Cauchy problem ⎧⎪⎪⎨⎪⎪⎩
du
dt

= F (u),
u(0) = u0

(4.4)

is locally well-posed in the following sense: for any u0 ∈ Yρ′ and any ρ < ρ′,
there exists T and a unique solution u ∈ C1((−T,T );Yρ) to (4.4).

In our case, F (u) = u∣∇∣u − ∣∇∣(u2). Let us fix an R > 0 and assume that∥u∥ρ′ < R and ρ < ρ′. Using the algebra property of Yρ and (4.3) we estimate
(absolute constants may change from line to line)

∣F (u)∣ρ ≤ ∣u∣ρ∣∣∇∣u∣ρ + C

ρ′ − ρ ∣u2∣ρ′ ≤ CR

ρ′ − ρ ∣u∣ρ′ ≤ CR

ρ′ − ρ∥u∥ρ′ ,
and

∣∇F (u)∣ρ ≤ ∣∇(u∣∇∣u)∣ρ + 2∣∣∇∣(u∇u)∣ρ
≤ C

ρ′ − ρ(∣u∣ρ′ ∣∣∇∣u∣ρ′ + ∣u∣ρ′ ∣∇u∣ρ′) ≤ C

ρ′ − ρ∥u∥2
ρ′ ≤ CR

ρ′ − ρ∥u∥ρ′ .
Thus, ∥F (u)∥ρ ≤ CR

ρ′−ρ∥u∥ρ′ . The Lipschitzness condition is verified analo-

gously.

5. Numerical simulations and perspectives

In this last section, let us illustrate briefly with some numerical simula-
tions the main analytical results of our paper, in dimension d = 1.

5.1. Smooth positive data

Positive smooth data satisfy the assumptions of our main Theorem. We
computed the solution using a direct integration of the singular-integral
form of (1.2). Given a time step τ > 0 and a spatial discretization sequence
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(xi)1≤i≤N of T1 ≃ [−π,π] with a uniform mesh size δ = xj+1 − xj , the value
Ui,k representing u(kτ, xi) is computed with a forward numerical scheme:

Uk+1,i = Uk,i + τδ∑
j≠i

(Uk,j −Uk,i)Uk,j
4 sin2(xj−xi

2
) ⋅ (5.5)

The code runs well as long as one makes sure to respect a CFL (τ is
small enough) and that each term stays well within the limit of exact com-
puter arithmetic (to compute accurately the compensations i.e. the principal
value).

Figure 1 shows the evolution from u0(x) = 2 + sin(x) + 3
10

cos(5x) and
the profile of the solution for various time-slices. As expected in view of
Theorems 2.4 and 3.1, the solution converges rapidly towards the theoretical
limit ∥u0∥L2√

2π
= 3

10

√
101

2
≃ 2.1319.

The maximum and minimum principle are clearly visible.

Figure 1. — Evolution from various data. Left: u0(x) =
2 + sin(x) + 3

10
cos(5x). Right: u0(x) = 1/2 if x ∈ [−π,0)

and 1 − x
2π

if x ∈ (0, π].
5.2. Evolution from discontinuous data

Figure 1 shows also the evolution from a positive initial condition with
a single discontinuity:

u0(x) = ⎧⎪⎪⎨⎪⎪⎩
1/2 if x ∈ [−π,0)
1 − x

2π
if x ∈ (0, π].
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Even though the numerical scheme (5.5) is not particularly refined, we did
not observe any numerical instability. This observation is consistent with
the instant smoothing effect of our Theorem 2.5 and is a timid but positive
point to support the conjecture that only one weak solution arises from
positive bounded data. We pushed the test further and Figure 2 shows the
evolution from non-smooth numerical data cooked up to simultaneously
be non-derivable at ±π and −1, have a jump at 0 followed by a chirp-like
oscillation

√
x sin(1/x). The energy spectra (modulus of Fourier modes, in

log-log scale) of various time-slices attest to the reality of the smoothing
effect over 2 decades and beyond.

5.3. Evolution from negative data

Figure 3 shows the evolution starting from

u0(x) = −2 − sin(x) − 3

10
cos(5x),

i.e. the opposite of the positive data of paragraph 5.1. The first time-slices
remain smooth as one could expect from the local well-posedness in analytic
classes of Section 4. The (AMP) principle is clearly visible as well. The last
time-slice shows the emergence of the first singularity: a highly oscillatory
singularity forms around the minimum value of u0, while the rest of the
solution remains relatively stable. A secondary instability is also barely
discernible near the second lowest value of the data.
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Figure 2. — Evolution from non-smooth data (non-
derivable at ±π and −1, a jump at 0 followed by a chirp√
x sin(1/x)) and energy spectrum.
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Figure 3. — Evolution from negative data and evolution
of the Fourier Spectrum showing the emergence of a singu-
larity.
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5.4. Evolution from unsigned data with a positive average

Let us write the Non-local Burgers equation (1.1) in a form that separates
the average value of the solution from its fluctuations around it. To this end,
we introduce the zero-average function

v(t, x) = u(t, x) − 1∣Td∣ ∫Td u(t, y)dy.
The average value can be recovered from v by the momentum law (ML)

∫Td u(t, y)dy = ∫Td u0(x)dx + ∫ t

0
∥v(τ)∥2

Ḣ1/2dτ.

Note that the average of u is globally bounded from above and below by:

1∣Td∣ ∫Td u0(x)dx ≤ 1∣Td∣ ∫Td u(t, y)dy ≤ ( 1∣Td∣ ∫Td u0(x)2dx)1/2
.

The zero-average fluctuations v evolve according to

∂tv + ( 1∣Td∣ ∫Td u(t, y)dy) ∣∇∣v = [v, ∣∇∣]v − 1∣Td∣ ∫Td v∣∇∣v. (5.6)

Therefore, if the initial condition has a positive average, equation (5.6) con-
tains a uniform smoothing term on the left-hand side, while the right-hand
side is a non-local, quadratic but energy preserving non-linearity of order 1
i.e., formally:

∥v(t)∥2
L2 + 2∫ t

0
( 1∣Td∣ ∫Td u(τ, y)dy)∥v(τ)∥Ḣ1/2dτ = ∥v0∥2

L2 .

Figures 4, 5 and 6 show numerical simulations starting from different
unsigned data but with a positive average. For the first one, the slight
incursion in negative values does not seem to affect the solution. The second
one shows a localized transient singularity (which might have been smoothed
out by the finite size of the mesh). The Fourier spectra at various time slices
show the emergence and the subsequent vanishing of the singularity.

Figure 6 displays an interesting feature of those transient instabilities:
they appear to be localized along the negative local minima of the data.
Their sequence of development seems also to start from the one with the
highest absolute value and then proceed in order towards the ones of lower
magnitude.
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Figure 4. Evolution from u0 = 1 + sin(x) + 1
10

cos(20x).
Remark. — In its form (5.6), the Non-local Burgers equation reveals

some similarity with the incompressible Navier-Stokes equation that can be
written as

∂tu − ν∆u = −u ⋅ ∇u −∇p
with divu = 0. We already pointed out the similarity of our model with the
Euler part of NSE, especially if one computes the pressure in term of u. For
the fluctuation v we also consider that the active “viscosity” term on the
left-hand side of (5.6) is similar to the kinematic viscosity in NSE. Despite
this similarity with the notorious counterpart, we were able to prove global
existence for our model. Of course, in our case this boils down to knowing
extra structure, e.g. the maximum principle. This once again highlights the
importance of finding additional structural properties of the NSE in any
attempt to approach its celebrated global regularity problem.

5.5. Global simulation with a finite element method

To minimize the effects of time-discretization, we did numerical simula-
tions of (1.2) using finite elements, based on piecewise linear functions. The
resulting problem is an ODE of the form AU ′ = J(U,U) where U(t) ∈ Rn
represents the value of (u(t, xi))1≤i≤n, A is a Toepliz matrix and J is an
n-dimensional vector of quadratic forms. As energy is also preserved for the
ODE (tUAU = Cte), it is globally well posed for all times t ∈ R (forwards
and backwards).

As a happy coincidence due to the special structure of the non-linearity,
diagonalizing the Toepliz matrix A drastically simplifies each quadratic form
in J , which then allows for a direct computation of the solution.
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Figure 5. — Evolution from u0 = 1
2
+ sin(x) + 1

10
cos(7x)

and Fourier sprectrum.

Figure 6. — Evolution from u0 = 2
10
+ 1

2
sin(19x) + 1

2
cos(20x).
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Figure 7 shows two solutions obtained in that manner with 20 grid-points.
The interesting point of that simulation is that the flow seems to connect a
negative constant ground state to a positive one and that all the oscillations
occur in the non sign-definite region. The level-sets of that region are shown
above the 3D perspective.

Figure 7. Global FEM simulations.

5.6. Perspective: the Frozen Non-local Burgers model

As the previous numerical simulations have shown, the most interesting
and mathematically challenging region is when u is non sign-definite. We
feel that it is worth mentioning that the Non-local Burgers equation (1.1)
comes with a natural twin in which the average value is frozen instead of
memorizing the Ḣ1/2 past norm. The Frozen Non-local Burgers equations
reads:

∂tv = [v, ∣∇∣]v − 1∣Td∣ ∫Td v∣∇∣v. (5.7)

This equation should be compared with the previous equation (5.6) of the
fluctuations v of the solution of (1.2). Formally, (5.7) conserves momentum∫Td v(t, x)dx = Cte. The previous intuition suggests that it would be most
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interesting to study it for vanishing average data, in which case it formally
conserves the L2-norm too.
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