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Approximation of weak geodesics and subharmonicity
of Mabuchi energy

XiuXiong Chen(1), Long Li(2), Mihai Păuni(3)

RÉSUMÉ. – Dans cet article nous obtenons des résultats concernant
l’approximation des géodésiques qui connectent deux métriques kählerien-

nes dans la même classe de cohomologie. Comme corollaire, nous obtenons

une preuve de la convexité de la fonctionnelle de Mabuchi le long des
géodésiques. C’est un théorème obtenu récemment par Berman-Berndtsson,

et nos arguments représentent une version “globale” de leur démonstration

originale.

ABSTRACT. – In this paper we are interested in the approximation of
weak geodesics connecting two Kähler metrics in the same cohomology

class. As a consequence, we derive the convexity of the Mabuchi energy

along geodesics. This important result was obtained recently by Berman-
Berndtsson, and our approach can be seen as a “global version” of their

original proof.

1. Introduction

In a recent paper [4], R. Berman and B. Berndtsson established the
convexity of the Mabuchi energy functional M along the so-called weak
geodesics, answering (affirmatively) to a conjecture proposed by the first
named author of this article. Given two Kähler metrics in the same coho-
mology class, it is well-known (cf. [16], [10]) that in general one cannot find a
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smooth geodesic connecting them: this is a major source of difficulties while
dealing e.g. with the aforementioned convexity question.

In this article we explore in a systematic way two techniques of approx-
imation of weak geodesics. The first and most natural one is given by the
ε-geodesics, obtained in [7]. The second one consists in using a fiberwise
approximation of weak geodesics via a family of well-chosen Monge-Ampère
equations. A corollary of the second technique is an alternative proof of the
result in [4]. Roughly speaking, our proof can be seen as a “global version”
of the local Bergman kernel arguments, so morally we follow the original
ideas of [4]; nevertheless, we feel that our approach might be useful in other
contexts. For example, the method we are using here allows us to establish
the convexity ofM more directly than in the original article, where the first
step is to show convexity of M in the sense of distributions.

We equally infer that the Mabuchi functional is continuous up to the
boundary when evaluated on a weak geodesic. The proof of this second
statement is based on semi-continuity properties of the entropy functional.

Another theorem we will establish here is the almost-convexity of the
regularized Mabuchi energy along the ε-geodesics cf. [7]. Actually, our hope
is that this latter result could be also used in order to provide a proof of
the convexity of M along weak geodesics. We refer to the comments at the
end of this note for further support concerning this belief.

This article is organized as follows. We start by recalling the important
result of Xiuxiong Chen in [7] concerning the existence of C1,1 solutions
of the MA equation describing the geodesic between two Kähler metrics.
After a preliminary discussion about the strategy of the proof, the convexity
and the continuity of M are obtained in section 4 via the approximation
procedure mentioned above. Finally, the convexity of M along ε-geodesics
and some other results/expectations are treated in section 5.

Acknowledgement. — It is our privilege to thank the referee for her/his
insightful comments and constructive criticism about this article.

2. Geodesics

Let X be a compact Kähler manifold; we denote by K its Kähler cone.
Let {ω} ∈ K be a Kähler class of X; the notation above means that the
representative ω is non-singular and positive definite. Let ω0, ω1 ∈ {ω} be
two positive definite representatives of the same cohomology class. A weak
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geodesic between ω0 and ω1 is a semi-positive definite (1,1)-current

G := ω + ddcϕ (2.1)

on the product X×Σ of the manifold X with the annulus Σ ⊂ C, such that
the following requirements are satisfied.

(a) The function ϕ is C1,1 on X ×Σ; in particular, the coefficients of G
are bounded.

(b) We have Gn+1 = 0.

(c) The current G is rotationally invariant, and it equals ω0 and ω1 on
the boundary of Σ, respectively.

The existence of G with the properties stated above was first established
in [7]. The results obtained by Z. Blocki in [5], [6], are equally crucial in this
circle of ideas.

3. What is to be proved

Let u be a smooth function on X, such that ωu := ω + ddcu is a Kähler
metric. The energy functional is given by the expression

E(u) :=

n∑

j=0

∫

X

uωn−ju ∧ ωj . (3.1)

Given a (1,1)-form α, one introduces the following version of the energy
functional

Eα(u) :=

n−1∑

j=0

∫

X

uωn−j−1
u ∧ ωj ∧ α. (3.2)

For a smooth path ωt := ω + ddcut of Kähler metrics depending on the
parameter t ∈ Σ, one rapidly computes

ddcE(t) =

∫

X

Ωn+1, ddcEα(t) =

∫

X

Ωn ∧ α, (3.3)

where Ω := ω + ddcu is a (1,1)-form on X × Σ, and the integration is
understood as the push-forward of an (n + 1, n + 1) form to Σ (we use
the same notation for ω and its inverse image on X × Σ). An important
observation (cf. [8], [4] and the references therein) is that the equalities
(3.3) still hold true in the sense of distributions if the path (ut) is only
assumed to be continuous.

The Mabuchi functional M along G is defined as follows
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M(t) =
S

n+ 1
E(ϕt)− ERicω (ϕt) +

∫

X

log
Gnt
ωn
Gnt (3.4)

where Gt := ω + ddcϕt is the restriction of G to the slice X × {t} ⊂ X ×Σ,
and S is the average of the scalar curvature of (X,ω). Unlike the original
definition of M, the expression (3.4) first introduced in [8], has a meaning
even if the regularity of ϕ is only C1,1. We recall further that the convexity
of M along weak geodesics was conjectured in [8].

Ideally, the convexity of M would follow provided that one is able to
produce the following objects.

Let (Θε)ε>0 ⊂ {ω} be a family of closed positive (1,1) currents on X × Σ,
such that for each positive ε we have:

(a) The potential φε of each Θε is of class C1,1.

(b) The logarithm of the fiberwise determinant of Θε is of class C1.

(c) The determinant of Θε|X×{t} converges a.e. to Gn|X×{t}.

As explained in [4], it is enough to show that we can find (Θε)ε>0 as above,
such that moreover we have

ddc log
Θn
ε

ωn
∧ Gn ≥ Ricciω ∧Gn (3.5)

where the quantity log
Θn
ε

ωn
denotes (slightly abusively) a function on X×Σ.

Indeed, given the relations (3.3), the inequality (3.5) implies the convexity
in the sense of distributions of the following functional

M(ε, t) :=
S

n+ 1
E(ϕt)− ERicω (ϕt) +

∫

X

log
Θn
ε

ωn
Gnt . (3.6)

By the condition (b) the functionalM(ε, t) is continuous; therefore its con-
vexity in weak sense implies convexity in usual sense. The condition (c)
would imply the same property for M, by letting ε→ 0.

An excellent candidate for the family Θε would be the approximation of
G contained in the proof of X.X. Chen, i.e. the ε-geodesics. Indeed, the
properties (a) and (b) are direct consequences of [7], and the inequality (3.5)
can be checked to hold true on the set ΛA,ε where Θε is uniformly bounded
from below by exp(−A)ω via a direct computation (this would be enough
to conclude, by letting A → ∞ at the end). However, it does not seem to
be so easy to establish the crucial property (c) (we refer the the paper [9],
section 6, in order to have a glimpse at the difficulties/consequences of such
a statement).
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In order to overcome this issue, we will consider in the next paragraph a
different approximation of G, obtained by solving a family of MA equations.

A version of the convexity of M along the ε-geodesics will be treated in
the last part of our note.

4. Fiberwise approximation of G

In order to construct the family of currents (Θε)ε>0 with the properties
stated in the previous section we will need the following result.

Theorem 4.1. ([17]). — Let p : X → Y be a holomorphic submersion.
We consider a semi-positive class {β} ∈ H1,1(X,R), such that the adjoint
class c1(KXy ) + {β}|Xy is Kähler for any y ∈ Y . Then the relative adjoint
class

c1(KX/Y ) + {β}
contains a closed positive current Ξ, whose restriction to each fiber Xy is a
positive definite form.

We specialize here to the case of the trivial submersion X ×Σ→ Σ, so the
relative canonical bundle equals the inverse image of KX .

As a consequence of the previous result we infer the next statement; we
recall that G denotes the (weak) geodesic between the two metrics ω0 and
ω1.

Theorem 4.2. — For each t ∈ Σ and for each 0 < ε � 1, we consider
the equation

(
Θω(KX) + ε−1G + ddcφt,ε

)n
= ε−n exp(φt,ε)ω

n; (4.1)

on X×{t}. It has a unique C1,1
(
X×{t}

)
-solution φt,ε; the resulting function

φε on X × Σ is continuous on the interior points of X × Σ, and moreover
we have

Θω(KX) + ε−1G + ddcφε ≥ 0 (4.2)

on the product manifold X × Σ.

Proof.— We proceed in a very standard manner, namely by an approxima-
tion argument. Let (Gδ) be a family of (1,1)-forms on the open set

X × Σ′ ⊂ X × Σ

obtained by considering the convolution of the potential ϕ with a convo-
lution kernel Kδ, cf. e.g. [11]. Here Σ′ stands for a compact subset of the
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annulus Σ. The resulting (1,1)-forms are approximating our weak geodesic
G, as follows.

(i) The forms Gδ are non-singular, and we have

Gδ ≥ −Cδ(ω +
√
−1dt ∧ dt)

on X × Σ′.

(ii) The coefficients of Gδ are uniformly bounded, and they converge in
Lp norm to the coefficients of G, so that if we write

Gδ := ω + ddcϕδ

then we have

|ddcϕδ − ddcϕ|Lp(X×{t}) → 0

as δ → 0, uniformly with respect to t ∈ Σ′ and for any p.

(iii) We have
sup
t∈Σ′
‖ϕδ − ϕ‖C1(X×{t}) → 0

as δ → 0.

The properties (ii) and (iii) of the approximation family (Gδ) hold true
thanks to the explicit construction of (Gδ) by using the convolution of the
potential of G with a regularizing kernel ([11]), combined with the fact that
the potential of G is C1,1.

For each η := (ε, δ) such that ε and δ are positive and small enough we
define the semi-positive form

βη :=
1

ε

(
Gδ + Cδ(ω +

√
−1dt ∧ dt)

)
. (4.3)

The class c1(KX) + {βη}|X×{t} is clearly Kähler; by the classical result of
S.-T. Yau we infer that there exists a function φt,η such that we have

Θω(KX) + βη|X×{t} + ddcφt,η > 0 (4.4)

together with
(
Θω(KX) + βη + ddcφt,η

)n
= ε−n exp(φt,η)ωn (4.5)

on the fiber X × {t}.

According to the proof of Theorem 4.1, we infer that

Ξη := Θω(KX) + βη + ddcφη ≥ 0, (4.6)

as a smooth form on X × Σ′–actually, this is the only reason why we need
to consider the regularization of G with respect to the parameter “t” as
well. Actually that this is exactly how the current Ξ in Theorem 4.1 is
constructed, so (4.6) is a direct consequence of this result.
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We show next that the family φη is equicontinuous for each ε fixed ; prior
to this, we introduce a few notations.

Let τη := εφη + ϕδ; it is a smooth function defined on X × Σ′. Then for
each t0, t1 ∈ Σ′ we have
(
Ψt0,η + ddc(τη(t1)− τη(t0))

)n
= e

1
ε (τη(t1)−τη(t0)−ϕδ(t1)+ϕδ(t0))Ψn

t0,η (4.7)

where Ψt,η := εΞη|X×{t}.

The maximum principle, combined with the property (iii) above (con-
cerning the uniformity properties of the sequence ϕδ on X×Σ′) shows that
we have

sup
x∈X
|φη(t0, x)− φη(t1, x)| ≤ Cε−1|t0 − t1|. (4.8)

The same kind of arguments (i.e. the maximum principle applied on fibers
X × {t}) shows that in fact we have

|φη(t0, x0)− φη(t1, x1)| ≤ Cε−1(|t0 − t1|+ dist(x0, x1)) (4.9)

where C is a constant independent of η = (ε, δ). This proves the claimed
equicontinuity.

As a consequence, the limit φε := limδ→0 φε,δ is continuous on the interior
of X × Σ, and we have

Θω(KX) +
1

ε
G + ddcφε ≥ 0, (4.10)

which finishes the proof of Theorem 4.2, except for the C1,1
(
X × {t}

)
-

regularity of the solution φt,ε; this will be treated next. �

In our next statement we will use another type of regularization of the
geodesic G, borrowed from [3]. We define G′δ := ω + ddcϕδ on X × Σ, such
that for each t ∈ Σ, the function ϕδ is the regularization of ϕ|X×{t} by a
global convolution kernel. The properties of the resulting form which will
be relevant for us are as follows.

(1) The forms G′δ are non-singular when restricted to each fiber X×{t},
and moreover there exists a constant C > 0 such that we have

|ddcϕδ| ≤ C
for any δ > 0. We equally have

G′δ ≥ −Cδ(ω +
√
−1dt ∧ dt)

on X × Σ.
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(2) The coefficients of G′δ are uniformly bounded, and they converge in
Lp norm to the coefficients of G, so that if we write

G′δ := ω + ddcϕδ

then we have

|ddcϕδ − ddcϕ|Lp(X×{t}) → 0

as δ → 0, uniformly with respect to t ∈ Σ and for any p.

(3) We have

lim ‖ϕδ − ϕ‖C0(X×Σ) = 0

as δ → 0.

We consider the Monge-Ampère equation
(
Θω(KX) + β′η + ddcφt,η

)n
= ε−n exp(φt,η)ωn (4.11)

on the fiber X × {t}, where

β′η :=
1

ε

(
G′δ + Cδ(ω +

√
−1dt ∧ dt)

)
. (4.12)

The regularity/uniformity properties of the functions (φt,η)η are stated in
the following result.

Theorem 4.3.— The following assertions hold true.

(a) For each fixed ε, the family φη obtained by piecing together the fiber-
wise solutions φt,η is equicontinuous.

(b) There exists a constant C > 0, independent of η such that

sup
X
φε,δ ≤ C, −ε inf

X
φε,δ ≤ C, |εddcφε,δ| ≤ C.

on the fiber X × {t}.
(c) Therefore for each fixed ε > 0, we can extract a limit

lim
δ→0

φε,δ = φε,

strongly in C0, where the restriction of φε to X × {t} is the unique
C1,1 solution of the degenerate Monge-Ampère equation

(
Θω(KX) + ε−1G + ddcφt,ε

)n
= ε−n exp(φt,ε)ω

n (4.13)

on the fiber X × {t}.
(d) The measures

exp(φt,ε)ω
n

are converging to G|nX×{t} weakly in Lp for any p, as ε→ 0.
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Proof.— Except maybe for the point (d), the arguments of the proof rely
on basic results in MA theory, so we will be very sketchy.

The point (a) was basically discussed during the proof of Theorem 4.2.
In addition, we remark that by the same procedure we obtain the equicon-
tinuity of (φη) on X×Σ up to the boundary of X×Σ: this is a consequence
of the property (2) of G′δ.

Concerning the point (b), the upper bound of the potentials is a conse-
quence of the maximum principle since we can rewrite the equation (4.11)
as (

εΘω(KX) + Gδ + ddc(εφt,η)
)n

= exp(φt,η)ωn, (4.14)

then take φt,η(p) = maxX φt,η, which implies ddcφt,η(p) 6 0. But notice
that the form εΘω(KX)+Gδ is strictly positive at the point p thanks to the
inequality (4.4), hence

φt,η 6 φt,η(p) 6 log
(εΘω(KX) + Gδ)n

ωn
(p) 6 C.

On the other hand, the lower bound is obtained by considering

(ω + εΘω(KX) + ddcτt,η)n = e
1
ε (τt,η−ϕδ)ωn (4.15)

where τt,η = εφt,η + ϕδ, so by choosing τt,η(q) = minX τt,η, the minimum
principle says

εφt,η + ϕδ ≥ ε log
(ω + εΘω(KX))n

ωn
(q) + ϕδ(q) > −εC + ϕδ(q),

hence εφt,η > −C for some uniform constant C. Now the bound of ddcτt,η
follows from the usual Laplacian estimate for the Monge-Ampère equations,
cf. [5]. For fixed η, let ωε = ω + εΘω(KX), and notice that it is a smooth

non-degenerate approximation of ω, then we can write ∆τ = gjk̄ε τjk̄, and
set

α := log(n+ ∆τ)−Aτ,
where A > 0 is some constant determined later. Consider the point p where
the maximum of α is attained, and take u = Gε + τ , where the function
Gε is the local potential of ωε in a normal coordinate ball of p, then the
standard maximum principle argument implies at the point p

0 > 1

∆u

{
−B∆u

∑

p

1

upp̄
+ ∆φt,η − S

}
+A

∑

p

1

upp̄
− nA, (4.16)

where −B < 0 is the lower bound of bisectional curvature, and S is the
upper bound of scalar curvature of (X,ωε). Now take A = B, then we have

nB∆u+ S ≥ 1

ε
∆(τ − ϕδ),
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hence

n+ ∆ϕδ + Sε ≥ (1− εnB)∆u,

and finally

∆u(p) ≤ C

1− εnB < 2C

for some uniform constant C, when ε < 1
2nB . Then suppose there is some

uniform constant C ′ such that osc(τ) < C ′, we infer

∆u ≤ 2Ce2BC′

The statement (c) is a consequence of the elliptic regularity results, cf.
[12]. Moreover, since the solution φt,ε belongs to the space C1,1 we infer that
the equality (4.13) holds almost everywhere on X ×{t} (in the sense of L∞

functions).

In order to establish the point (d), we rewrite the equation (4.13) as
follows

(ω + εΘω(KX) + ddcτε)
n = e

1
ε (τε−ϕ)ωn (4.17)

where we recall that G = ω + ddcϕ. In the relation (4.17), we denote
τε := εφε + ϕ, so we will be done if we can prove that

εφε → 0.

In any case, thanks to the estimates (b), there exists some function ρ ∈ C1,1

such that we have

εφε → ρ (4.18)

strongly in C1,α for any α < 1 as ε→ 0, so that the limit τ extracted from
τε verifies the inequality

τ ≤ ϕ (4.19)

as it is clear from the second part of estimate (b).

In particular, the convergence statement in (4.18) implies that we have

(ω + εΘω(KX) + ddcτε)
n → (ω + ddcτ)n (4.20)

in weak sense in Lp for any p (this is due to the fact that all currents in the
concern have uniformly bounded coefficients).

Let Ωδ := {τ < ϕ − δ}; it is an open subset of X, and we claim that
Gn|Ωδ = 0, for each δ > 0. Indeed, by the comparison principle [15], [14] we
have ∫

Ωδ

Gn ≤
∫

Ωδ

(ω + ddcτ)n. (4.21)
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However, as we can see from equation (4.17), we have

∫

Ωδ

(ω + ddcτ)n = 0,

simply because on the set Ωδ we have the inequality
τε − ϕ
ε

< − δ

2ε
as soon

as ε is small enough – remark that this is a consequence of the uniform
convergence in (4.18) – so our claim is proved.

But then it follows that Gn|Ω = 0, where Ω is the closure of the open set

{τ < ϕ} ⊂ X. Indeed, the set Ω \ Ω has measure zero, and the coefficients
of G are bounded. We infer that we have

Gn = (ω + ddcτ)n (4.22)

since the complement of Ω is an open set where τ coincides with ϕ.

We invoke next the uniqueness result in [15] concerning the solutions of
MA equations whose right hand side member has a density in Lp, for p > 1,
so that ρ = 0 and the point (d) of our lemma follows. �

Remark 4.4. — The fiberwise convergence (d) was proved in [1] in a
slightly different setting; the main argument in that article relies on the
variational approach developed in [2]. However, we have chosen to give a
direct proof here, for the sake of variation.

4.1. Convexity

Let t0, t1, t2 ∈ [0, 1] be three arbitrary points. By the property (d) com-
bined with a result due to Banach-Saks one can find a sequence εk → 0 as
k →∞ such that

1

k

k∑

j=1

exp(φtp,εj )→
Gn
ωn
|X×{tp}

in L2(X × {tp}), for each p = 0, 1, 2. The sequence (εk) depends on the
triple (tp), but fortunately this does not matter for the rest of the proof.

For each t ∈ Σ, let ωt,k ∈ {ω} be the Kähler metric such that

ωnt,k =
1

k

k∑

j=1

exp(φt,εj )ω
n. (4.23)

LetMk be the Mabuchi functional evaluated on the weak geodesic G, with
the entropy term modified by using logωnt,k instead of log Gn, i.e.

Mk(t) =
S

n+ 1
E(ϕt)− ERicω (ϕt) +

∫

X

log
ωnt,k
ωn
Gn (4.24)
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Then we have the following statement.

Lemma 4.5.— For each k ≥ 1 the functionalMk is a continuous convex
function on [0, 1].

Proof.— Our first observation is that the functional Mk is continuous. In-
deed, this is the case given the regularity we have already established in
Theoren 4.3 for each φk, combined with the stability theorem due to S.
Kolodziej, cf. [15]; we do not give further details here.

It is therefore enough to show thatMk is convex in weak sense; this boils
down to the inequality

ddc log
(1

k

k∑

j=1

exp(φεj )
)
∧ Gn ≥ Ricciω ∧Gn. (4.25)

This is immediately seen to be true, as follows. We have

ddc log
1

k

k∑

j=1

exp(φεj ) ≥
k∑

j=1

exp(φεj )∑k
i=1 exp(φεi)

ddcφεj (4.26)

by a direct computation, and moreover Theorem 4.2 shows that we have

−Ricciω +ε−1
j G + ddcφεj ≥ 0. (4.27)

By using this inequality in (4.26), we obtain

ddc log
1

k

k∑

j=1

exp(φεj ) ∧ Gn ≥
k∑

j=1

exp(φεj )∑k
i=1 exp(φεi)

Ricciω ∧Gn (4.28)

which proves the lemma. �

Corollary 4.6.— The Mabuchi functional M is a convex function on
the interval [0, 1].

Proof.— We intend to use the convexity of Mk (cf. preceding lemma) to-
gether with a limit argument. To this end, we first consider the following
“truncated version” of Mk.

Mk,A(t) :=
S

n+ 1
E(ϕt)− ERicω (ρε,t) +

∫

X

max
(

log
ωnt,k
ωn

, log
hA
ωn

)
Gn

(4.29)
where A is a constant, and hA = e−AdV is a continuous volume element,
such that its associated curvature is greater than −CG.
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The inequality (4.25) combined with the choice of hA show that

ddc log max
(ωnt,k
ωn

,
hA
ωn

)
∧ Gn ≥ Ricciω ∧Gn (4.30)

for any k,A. In conclusion, the functionalMk,A is convex (and continuous).

Let tp ∈ [0, 1] be three arbitrary points; we can apply the convexity
inequality for each Mk,A corresponding to the points (tp)p=0,1,2 and we
first let k →∞, and then we let A→∞. The first limit equals

MA(t) :=
S

n+ 1
E(ϕt)− ERicω (ϕt) +

∫

X

max
(

log
Gn
ωn

, log
hA
ωn

)
Gn (4.31)

by dominated convergence. The limit A → ∞ in (4.31) is precisely M, so
the convexity of Mabuchi functional follows. �

Remark 4.7.— The preceding truncation procedure is taken from [4]. It
might be possible to prove directly that Mk converges to M, by using the
fact that the sequence of functions

log
ωnt,k
ωn

(4.32)

is almost subharmonic with respect to G, cf. (4.25), and uniformly bounded
from above. This should imply the convergence statement mentioned above
(by analogy to the case of psh functions).

Remark 4.8. — Actually one can choose the volume element hA above
as follows. We recall that ϕ is the ω-potential of the geodesic G. Let C � 0
be a large constant, such that Cω ≥ Ricciω. We define

hA := e−Cϕ−Aωn

and then we have the following relation ddc log hA ≥ −CG as well as

ddc log
hA
ωn
≥ −CG.

4.2. Continuity at the boundary

Given that M is a convex function, it is automatically continuous on
the open interval ]0, 1[. In this subsection we will show that the continuity
property holds up to the boundary.

To this end we recall next a few well-known facts concerning the entropy
functional H, defined as

H(ϕ) :=

∫

X

fϕ log fϕdµ,
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where

fϕ =
ωnϕ
ωn

is an L∞ function provided that the potential ϕ ∈ C1,1, and the probability
measure dµ equals ωn.

The following semi-continuity property of H is well-known, cf. [9], [2] and
the references therein.

Lemma 4.9. — Let ϕi, ϕ and fi, f be as above, and suppose f, fi are
uniformly bounded non-negative functions, such that fi → f weakly in L1,
then

lim
i

∫

X

(fi log fi − f log f)dµ > 0.

In the same spirit, we state next a version of the previous lemma, which will
be very useful later on. The set-up is as follows: χ is a continuous function,
and hA = exp(χ − A). We consider the following truncated version of the
entropy functional

HA(ϕ) :=

∫

X

fi log max(fi, hA)dµ.

Our claim is as follows.

Lemma 4.10.— The truncated entropy functional has the following weak
semi-continuity type property

lim
i
HA(ϕi)−HA(ϕ) ≥ −δ(A)

for some uniform constant δ(A) > 0 such that δ(A) → 0 as A tends to
∞. The sequence (fi) is assumed to verify the hypothesis of the preceding
lemma.

We will not detail here the arguments for the proof of Lemma 4.10, because
they are completely similar to the classical case, cf. Lemma 4.9.

The Mabuchi functional can be written as

M(ϕ) = E(ϕ) +H(ϕ) (4.33)

where E is the energy part of the Mabuchi functional, and H is the en-
tropy part. As a consequence of our previous results, we establish here the
following statement.
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Theorem 4.11.— The Mabuchi functionalM(ϕ(t)) is a continuous con-
vex function on [0, 1].

Proof.— The proof results immediately from our previous considerations.
Indeed, since M is a convex function, we automatically have

M(0) ≥ lim sup
t→0
M(t) (4.34)

On the other hand, the semi-continuity properties of the entropy functional
in Lemma 4.9 show that in fact we have

M(0) ≤ lim inf
t→0
M(t) (4.35)

and the proof of Theorem 4.11 is completed. Indeed, the energy part of
the Mabuchi functional is continuous, given the regularity of the potential
of G. �

5. Almost convexity along ε-geodesics

In [7], the geodesic G is obtained by the continuity method, and as a by-
product of the proof, for each ε > 0 one has a smooth, positive (1,1)-form

ωε := ω + ddcρε (5.1)

on X × Σ such that the next identity holds

ωn+1
ε = ε

√
−1dt ∧ dt ∧ ωn. (5.2)

LetMε,A : Σ→ R be the regularization of the Mabuchi functional evaluated
on ωε. By definition, this equals

Mε,A(t) =
S

n+ 1
E(ϕt)− ERicω (ρε,t) +

∫

X

max
(

log
ωnε
ωn

, log
hA
ωn

)
ωnε (5.3)

where hA is a volume element on X whose associated curvature is greater
than −CG for some positive constant C.

Then Hessian of Mε,A reads as follows
∫

Σ

Mε,Add
cτ =

∫

X×Σ

τ(ωn+1
ε − Ric(ω) ∧ ωnε ) (5.4)

+

∫

X×Σ

log max
(ωnε
ωn

,
hA
ωn
)
ωnε ∧ ddcτ

= ε−
∫

X×Σ

Ric(ω) ∧ ωnε +

∫

X×Σ

τddc log max
(ωnε
ωn

,
hA
ωn
)
ωnε .

where τ is any test function on Σ.
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The main result of this second part of our article is the following.

Theorem 5.1.— For each positive constant A� 0, the function

MA := lim
ε→0
Mε,A (5.5)

is convex.

Proof.— It would be enough to prove that for any A � 0 there exists a
constant CA such that we have

∫

X×Σ

τddc max
(

log
ωnε
ωn

, log
hA
ωn

)
∧ ωnε ≥

∫

X×Σ

τ Ricciω ∧ωnε

− εCA

∫

Σ

τ
√
−1dt ∧ dt

− CA

∫

X×Σ

τG ∧ ωnε (5.6)

for any positive test function τ on Σ. Indeed, if we could establish (5.6), the
convexity of MA would follow by (5.4) given that ωε → G as ε→ 0 so that
we have ∫

X×Σ

τG ∧ ωnε →
∫

X×Σ

τGn+1 = 0

as ε → 0. The inequality (5.6) will be shown to hold true in the next
paragraph by a direct computation.

To this end, we recall the following technical statement, which will justify
some of the calculations below.

Lemma 5.2.— Let u and v be two smooth functions on a complex mani-
fold Z, and let ω be a Kähler metric on Z. We assume that v is subharmonic
with respect to ω, and that we equally have ∆ω(u) ≥ 0 on the set u > v− 1.
Then the ω-Laplacian of the function max(u, v) is positive.

Indeed this follows from the fact that a smooth function is subharmonic if
and only if it satisfies the mean value inequality (is this context, the usual
Lebesgue measure is replaced with the harmonic measure on balls); we refer
to [13] and the references therein for a complete account of these facts. In
the next section we will have to deal with functions whose Laplacian is
greater than −C. Then we have a similar statement, since locally we can
construct functions with strictly positive Laplacian (e.g. the potential of the
metric ω).
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5.1. The computation

In order to simplify the notations, we define the function fε : X×Σ→ R
by the equality

ωnε
ωn
∣∣
X×{t} = efε(t,·). (5.7)

We introduce the set

Ωε,A :=
{

(z, t) ∈ X × Σ such that fε(t, z) > log
hA
ωn

(t, z)
}

(5.8)

so that we have

max
(

log
ωnε
ωn

, log
hA
ωn

)
= fε(t, z) (5.9)

on Ωε,A. This reveals the importance of considering the functionalMε,A: on
the set Ωε,A the distortion function fε is bounded from below by a quantity
which is independent of ε. This simple remark will play a crucial role in the
next considerations.

We will proceed next to the evaluation of the top form

dνε :=
(
ddcfε − Ricciω

)
∧ ωnε (5.10)

pointwise on the set Ωε,A – this will be sufficient for us, by Lemma 5.2
together with the choice of hA.

We fix now a few notations: locally near a point (z, t) ∈ X ×Σ we write
the metric ωε as follows

ωε =
√
−1gttdt ∧ dt+

√
−1gtαdt ∧ dzα +

√
−1gαtdz

α ∧ dt
+
√
−1gγαdz

γ ∧ dzα (5.11)

where the coefficients g in the expression above depend on ε as well.

The equation (5.7) satisfied by ωε can be written in local coordinates as

c(ϕε) := gtt − gγαgγtgtα
= εe−fε . (5.12)

Let

v :=
∂

∂t
− gγαgtα

∂

∂zγ
(5.13)

be the gradient of the t derivative of ϕε.
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Remark 5.3. — We will give here a few explanations about the compu-
tations to follow. The (1,1)–form

Θε := ddcfε − Ricciω (5.14)

represents the curvature of the relative canonical bundle KX×Σ/Σ endowed
with the determinant of the metric ωε. Then we have the formula

Θε(v, v) = |∂v|2 + ∆ωεc(ϕε) (5.15)

(which will be established at the end of this paragraph) showing that modulo
the Laplacian of the the term c(ϕε), the form Θε is positive in the direction
v. In order to analyze the quantity we have to deal with in (5.10), we will
write the metric ωε as the sum of two positive forms, cf. (5.17) below, such
that the vector v belongs to the kernel ρε plus an “error” term. The point
is that the integral ∫

X

Θε ∧ ρnε√
−1dt ∧ dt (5.16)

is positive, by (5.15).

Given this, we rewrite locally the metric ωε as follows

ωε = c(ϕε)
√
−1dt ∧ dt+ ρε (5.17)

where ρε has the same expression as ωε, except that we replace gtt with
gγαgγtgtα. We note that although ρε may not be closed, it is positive definite
on each slice X × {t} and it satisfies

ρn+1
ε = 0. (5.18)

We have the equality

ωnε = ρnε + nc(ϕε)
√
−1dt ∧ dt ∧ ρn−1

ε (5.19)

which is the same as

ωnε = ρnε + nc(ϕε)
√
−1dt ∧ dt ∧ ωn−1

ε (5.20)

by the definition of the form ρε.

• The “error” factor

nc(ϕε)
(
ddcfε − Ricciω

)
∧
√
−1dt ∧ dt ∧ ωn−1

ε (5.21)

is analyzed as follows.

We observe that we have

nc(ϕε)dd
cfε ∧

√
−1dt ∧ dt ∧ ωn−1

ε = c(ϕε)∆ωε(fε)
√
−1dt ∧ dt ∧ ωnε (5.22)
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and by the equality (5.12) we have

nc(ϕε)dd
cfε ∧

√
−1dt ∧ dt ∧ ωn−1

ε = ε∆ωε(fε)
√
−1dt ∧ dt ∧ ωn. (5.23)

The other term in the equality (5.21) is bounded in L1 norm by εCA, given
that on the set Ωε,A∩X×{t} the eigenvalues of ωε are bounded from below
(and above) by a constant independent of ε, so that the trace of Ricciω with
respect to ωε is bounded by some constant CA.

Therefore, we have

nc(ϕε)

(
ddcfε − Ricciω

)
∧
√
−1dt ∧ dt ∧ ωn−1

ε√
−1dt ∧ dt ∧ ωn0

≥ ε∆ωε(fε)− εCA (5.24)

This can be rewritten in the following way

nc(ϕε)
(
ddcfε − Ricciω

)
∧
√
−1dt ∧ dt ∧ ωn−1

ε ≥ ∆ωε(fε)ω
n+1
ε

− CAω
n+1
ε . (5.25)

• The evaluation of the main term
(
ddcfε − Ricciω

)
∧ ρnε (5.26)

goes as follows.

(
ddcfε − Ricciω

)
∧ ρnε =

(
ddcfε − Ricciω

)
(v, v)

√
−1dt ∧ dt ∧ ρnε . (5.27)

Indeed, this is a matter of liner algebra: we have

β1 ∧ βn2 =
β1(v, v)

λ(v, v)
λ ∧ βn2

on a vector space of dimension n+ 1, where λ, βj are (1,1)-forms, such that
v is in the kernel of β2, and such that λ(v, v) 6= 0.

A straightforward calculation which we will detail in a moment shows
that we have (

ddcfε − Ricciω
)
(v, v) ≥ ε∆ωε

(
e−fε

)
. (5.28)

Since we have ∆ωε

(
e−fε

)
≥ −e−fε∆ωε(fε), the inequality (5.28) combined

with (5.25) finishes the proof. Indeed, we first remark that we have
√
−1dt ∧ dt ∧ ρnε =

√
−1dt ∧ dt ∧ ωnε ;

by (5.28) we obtain
(
ddcfε − Ricciω

)
(v, v) ≥ −ε∆ωε(fε)

√
−1dt ∧ dt ∧ ωn (5.29)
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and we observe that the right hand side of (5.29) is nothing but

−∆ωε(fε)ω
n+1
ε .

Thus, we infer the inequality

ddc max
(

log
ωnε
ωn

, log
hA
ωn

)
∧ ωnε ≥ −CA

(
ωn+1
ε + G ∧ ωnε

)
(5.30)

globally on X×Σ. We remark that the term G∧ωnε appears in (5.30) thanks
to the curvature properties of hA, cf. Remark 4.8.

We prove next the inequality (5.28); before that, we remark that the follow-
ing approach is quite standard in the theory of the homogeneous Monge-
Ampère equations, cf. [7], [8], [9]... Also, the inequality (5.28) is very similar
to the positivity of the curvature along the leaves of the foliation (which
does not exist in our case...), cf. [9].

The next computations are done with respect to a geodesic coordinate
system at (X, z); we have

∂ log det(gαβ) = gαβgαβ,tdt+ gαβgαβ,γdz
γ (5.31)

and thus

∂∂ log det(gαβ) =
(
gαβ,t gαβ,t + gαβgαβ,tt

)
dt ∧ dt

+ gαβgαβ,γtdz
γ ∧ dt+ gαβgαβ,tγdt ∧ dzγ (5.32)

+ gαβgαβ,γτdz
γ ∧ dzτ .

Since the metric ωε is locally given by the Hessian of a function, the following
commutation relations

gαβ,tt = gtt,αβ (5.33)

hold true on X. Given that

gαβ,t = −gαγgδβgδγ,t (5.34)

the equality (5.32) becomes

∂∂ log det(gαβ) =
(
gαβgtt,αβ − gαγgδβgδγ,tgαβ,t

)
dt ∧ dt

+ gαβgαβ,γtdz
γ ∧ dt+ gαβgαβ,tγdt ∧ dzγ (5.35)

+ gαβgαβ,γτdz
γ ∧ dzτ .
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We evaluate this in the v-direction, and we get

∂∂ log det(gαβ)(v, v) = gαβgtt,αβ − gαγgδβgγδ,tgαβ,t
− gαβgαβ,γtg

γµgtµ − gαβgαβ,tγgµγgµt (5.36)

+ gαβgαβ,γτg
γµgρτgtµgρt.

The equation satisfied by the metric ωε reads as

gtt − gpqgptgtq = εe−fε (5.37)

so that we have

gαβgtt,αβ − ε∆ωε(e
−fε) = gαβgpq

,αβ
gptgtq

+ gαβgpqgpt,αβgtq + gαβgpqgptgtq,αβ (5.38)

+ gαβgpqgpt,αgtq,β + gαβgpqgpt,βgtq,α.

By combining (5.38) with (5.36) we obtain

∂∂ log det(gαβ)(v, v) = |∂v|2 + ε∆ωε(e
−fε) (5.39)

and the inequality (5.28) follows. �

5.2. Further results and comments

It is very likely that the convexity of M in the sense of distributions
can be derived by the techniques we have developed in the previous section,
i.e. using ε–geodesics. One of the motivations to do so is that the resulting
proof would be more “self-contained”.

However, we encounter a rather severe difficulty: we ignore whether the
fiberwise sequence of volume elements

ωnε

corresponding to the ε-geodesics is converging almost everywhere to the
volume element of the geodesic G.

Nevertheless, we strongly believe that this holds true, based on the fol-
lowing considerations. On the set Ωε,A we have

C(A)ω < ωε < Cω (5.40)

where C(A) is a constant depending on A, but uniform with respect to ε,
and C is a fixed constant, independent of ε,A. Indeed, this is a consequence
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of the results in [7]. The relation (5.40) is a uniform Laplacian estimate for
the metrics ωε|Ωε . Hence, via Evans-Krylov theory one might hope that it is
possible to obtain a higher regularity estimate for the family (ϕε|Ωε,A)ε>0.
The problem is that as ε→ 0, the set Ωε,A converges eventually towards a
set which is only measurable, and it is a-priori unclear how to implement
Evans-Krylov theory in this setting.

However, we show here that the continuity of M at the endpoints 0 and 1
can be also obtained as a consequence of the results we have established in
the previous section (i.e. without knowing a-priori the convexity of M).

Theorem 5.4. — The Mabuchi functional M(t) is continuous at the
boundary points 0 and 1.

Proof.— We identify in what follows τ and its real part t = Re(τ), since
all the functionals involved in the proof only depends on the real part of τ .
Also, we will only prove the continuity at 0.

A first observation is that we have

lim
t→0
M(t) ≥M(0) (5.41)

thanks to the entropy property recalled in Lemma 4.9.

Next, we observe that the lim sup of a sequence of convex functions which
are locally bounded from above is still convex (unlike subharmonic func-
tions). Hence if we define

lim sup
ε→0

Mε,A :=MA,

thenMA is a convex function on [0, 1] by theorem (5.1). And by construction
we have MA(0) =M(0) for any value of the regularization parameter A.

Now for every point τ ∈ (0, 1), we have MA(τ) ≥M(τ)− δ(A), since

lim sup
ε→0

HA(ϕε) > HA(ϕ)− δ(A),

by Lemma 4.10.

We define a new functional

lim sup
A→+∞

MA := M̃,

and then t → M̃(t) is a convex function on [0, 1] which still verifies the

equality M̃(0) =M(0).

Then we have M̃(0) ≥ limt→0 M̃(t) by convexity, as well as the inequality

M̃(τ) ≥ M(τ) for each τ ∈ (0, 1), thanks to the considerations above. We
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therefore infer that
lim
t→0
M(t) ≤M(0) (5.42)

and Theorem 5.4 is proved. �
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morphic discs, Publications Mathématiques de l’IHES, Vol 107, p. 1-107 (2008).

[10] Darvas (T.), Lempert (L.). — Weak geodesics in the space of Kähler metrics,
Math. Res. Lett. 19, no. 5, p. 1127-1135 (2012).

[11] Demailly (J.-P.). — Regularization of closed positive currents of type (1,1) by the

flow of a Chern connection, Actes du Colloque en l’honneur de P. Dolbeault (Juin
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