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Liberation theory for noncommutative homogeneous
spaces (∗)

Teodor Banica (1)

ABSTRACT. — We discuss the liberation question, in the homogeneous
space setting. Our first series of results concerns the axiomatization and
classification of the families of compact quantum groups G = (GN ) which
are “uniform”, in a suitable sense. We study then the quotient spaces
of type X = (GM × GN )/(GL × GM−L × GN−L), and the liberation
operation for them, with a number of algebraic and probabilistic results.

RÉSUMÉ. — On étudie le problème de liberation, dans le cadre des
espaces homogènes. Notre première série de résultats concerne l’axiomati-
sation et la classification des familles de groupes quantiques compacts G =
(GN ) qui sont « uniformes », dans un sens convenable. On étudie ensuite
les espaces quotient du type X = (GM × GN )/(GL × GM−L × GN−L),
et l’opération de liberation pour ces espaces, avec des résultats de nature
algébrique et probabiliste.

Introduction

The notion of noncommutative space goes back to an old theorem of
Gelfand, stating that any commutative C∗-algebra must be of the form
C(X), for a certain compact space X. In view of this result, one can de-
fine the category of “noncommutative compact spaces” to be the category of
C∗-algebras, with the arrows reversed. The category of usual compact spaces
embeds then covariantly into this category, via X → C(X).

Once again by using the Gelfand theorem, each noncommutative space
X can be thought of as appearing as “liberation” of its classical version
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Xclass, which is obtained by dividing the corresponding algebra C(X) by its
commutator ideal.

We will be interested here in the liberation operation, in the algebraic
manifold context. Given a family of noncommutative polynomials Pi ∈
C〈z1, . . . , zN 〉, the associated noncommutative manifold X, and its classi-
cal version Xclass, are given by:

X = Spec
(
C∗
(
z1, . . . , zN

∣∣∣Pi(z1, . . . , zN ) = 0
))

⋃ ⋃
Xclass =

{
(z1, . . . , zN ) ∈ CN

∣∣∣Pi(z1, . . . , zN ) = 0
}

Here the family of polynomials {Pi} is assumed to be such that the
biggest C∗-norm on the universal ∗-algebra 〈z1, . . . , zN |Pi(z1, . . . , zN ) = 0〉
is bounded.

The liberation operation Xclass → X can be axiomatized in the quantum
group context, the idea being that the category of pairings, which encodes
in an abstract way the commutation relations ab = ba, must be replaced
by a new category of partitions. The theory here, based on Woronowicz’s
fundamental work in [35], [36], on Wang’s free quantum groups [31], [32], on
the Weingarten formula [4], [5], [12], [34], and on the liberation philosophy
in free probability theory [9], [21], [27], [30], was developed in [8].

In the homogeneous space case, where the general study goes back to [10],
[22], [23], some related theory, concerning spaces of type X = GN/GN−M ,
was developed in [6], and then in [7]. Such spaces were shown to have a
number of interesting features, making them potential candidates for an
algebraic manifold extension of [8], provided that the family of compact
quantum groups G = (GN ) producing them satisfies:

(1) The “easiness” condition in [8], stating that we must have SN ⊂ GN ,
for any N ∈ N, with these inclusions being of a certain special type.

(2) The “uniformity” condition, stating that we must have
GN ∩ U+

N−M = GN−M , with respect to the standard embedding
U+
N−M ⊂ U

+
N .

We will review here this work, by using some new ideas, from [1], [2],
[3]. On one hand, we will replace the easiness assumption by a condition of
type HN ⊂ GN , which will allow us to use a twisting parameter q = ±1. On
the other hand, we will study more general quotient spaces, depending on
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parameters L 6M 6 N , as follows:

X = (GM ×GN )
/

(GL ×GM−L ×GN−L).

Our main result will be a verification of the Bercovici–Pata liberation
criterion, for certain variables associated χ ∈ C(X), in a suitable L,M,N →
∞ limit.

There are many questions raised by the present work. Here are some of
them:

(1) A first question concerns the full classification of the quantum groups
satisfying the above conditions. For some recent advances here,
see [15], [25], [28], [29].

(2) A second question concerns the validity in our setting of the quan-
tum isometry group formula G+(X+) = G(X)+, in relation with
the rigidity results in [11], [16].

(3) Yet another question regards the possible applications of the present
formalism to free probability invariance questions, in the spirit
of [13], [18].

(4) Finally, there are as well several interesting questions in relation
with the axiomatization problem for the noncommutative algebraic
manifolds [17].

Finally, regarding the general presentation of the paper:

(1) We use Woronowicz’s quantum group formalism in [35], [36], with
the extra axiom S2 = id. A reference here is the book [20]. Regarding
the noncommutative homogeneous spaces, whose axiomatization is
known to run into several difficulties [7], [10], [14], [22], [23], [26],
we use here a simplified formalism, best adapted to our examples,
that we intend to fully clarify in a forthcoming paper.

(2) The present work is a technical continuation of [1], [2], [3], [6], [7],
with the aim of basically enlarging a list of examples. As already
mentioned, the general theory is not available yet. We have therefore
opted for an “example-first” presentation. This is actually in tune
with the easy quantum group literature, where most of the basic
examples were constructed and studied long before [8].

The paper is organized as follows: in Sections 1–2 we discuss the
orthogonal and unitary cases, in Sections 3-4 we introduce all the quantum
groups that we are interested in, and we study the associated homogeneous
spaces, and in Sections 5–6 we discuss probabilistic aspects.
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1. Partial isometries

In this section and in the next one we discuss the construction of the ho-
mogeneous spaces that we are interested in, in the case where the underlying
groups or quantum groups are ON , UN , or their twists ŌN , ŪN , or their free
versions O+

N , U
+
N .

We begin with the classical case. Best is to start as follows:

Definition 1.1. — Associated to any integers L 6 M 6 N are the
spaces

OLMN =
{
T : E → F isometry

∣∣∣E ⊂ RN , F ⊂ RM ,dimRE = L
}
,

ULMN =
{
T : E → F isometry

∣∣∣E ⊂ CN , F ⊂ CM ,dimCE = L
}
,

where the notion of isometry is with respect to the usual real/complex scalar
products.

As a first observation, at L = M = N we obtain the groups ON , UN . More
generally, at M = N we obtain the various components of the semigroups
ÕN , ŨN of partial isometries of RN ,CN , studied in [2], which are by definition
given by:

ÕN =
N⋃
L=0

OLNN , ŨN =
N⋃
L=0

ULNN .

Yet another interesting specialization is L = M = 1. Here the elements
of O1

1N are the isometries T : E → R, with E ⊂ RN one-dimensional, and
such an isometry is uniquely determined by the element T−1(1) ∈ RN , which
must belong to the sphere SN−1

R . Thus, we have O1
1N = SN−1

R . Similarly, in
the complex case we have U1

1N = SN−1
C .

In general, the most convenient is to view the elements of OLMN , U
L
MN as

rectangular matrices, and to use matrix calculus for their study:
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Proposition 1.2. — We have identifications of compact spaces

OLMN '
{
U ∈MM×N (R)

∣∣∣UU t = projection of trace L
}
,

ULMN '
{
U ∈MM×N (C)

∣∣∣UU∗ = projection of trace L
}
,

with each partial isometry being identified with the corresponding rectangular
matrix.

Proof. — We can indeed identify the partial isometries T : E → F with
their corresponding extensions U : RN → RM , U : CN → CM , obtained
by setting UE⊥ = 0, and then identify these latter linear maps U with the
corresponding rectangular matrices. �

As an illustration, at L = M = N we recover in this way the usual
matrix description of ON , UN . More generally, at M = N we recover the
usual matrix description of ÕN , ŨN . See [2]. Finally, at L = M = 1 we
obtain the usual description of SN−1

R , SN−1
C .

Now back to the general case, observe that the isometries T : E → F , or
rather their extensions U : KN → KM , with K = R,C, obtained by setting
UE⊥ = 0, can be composed with the isometries of KM ,KN , according to the
following scheme:

KN B∗ // KN U // KM A // KM

B(E) //

OO

E
T //

OO

F //

OO

A(F )

OO

In other words, the groups OM × ON , UM × UN act respectively on
OLMN , U

L
MN . With the identifications in Proposition 1.2 made, the statement

here is:

Proposition 1.3. — We have action maps as follows, which are tran-
sitive,

OM ×ON y OLMN : (A,B)U = AUBt ,

UM × UN y ULMN : (A,B)U = AUB∗,

whose stabilizers are respectively OL × OM−L × ON−L and UL × UM−L ×
UN−L.

Proof. — We have indeed action maps as in the statement, which are
transitive. Let us compute now the stabilizer G of the point U = (1

0
0
0). Since

the elements (A,B) ∈ G satisfy AU = UB, their components must be of the
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form A = (x0 ∗a), B = (x∗ 0
b). Now since A,B are both unitaries, these matrices

follow to be block-diagonal, and we obtain:

G =
{

(A,B)
∣∣∣A =

(
x 0
0 a

)
, B =

(
x 0
0 b

)}
.

We conclude that the stabilizer of U = (1
0

0
0) is parametrized by triples

(x, a, b) belonging respectively to OL × OM−L × ON−L and UL × UM−L ×
UN−L, as claimed. �

Finally, let us work out the quotient space description of OLMN , U
L
MN :

Theorem 1.4. — We have isomorphisms of homogeneous spaces as fol-
lows,

OLMN = (OM ×ON )/(OL ×OM−L ×ON−L) ,
ULMN = (UM × UN )/(UL × UM−L × UN−L) ,

with the quotient maps being given by (A,B)→ AUB∗, where U = (1
0

0
0).

Proof. — This is just a reformulation of Proposition 1.3 above, by
taking into account the fact that the fixed point used in the proof there was
U = (1

0
0
0). �

Once again, the basic examples here come from the cases L = M = N
and L = M = 1, where the quotient spaces at right are respectively ON , UN
and ON/ON−1, UN/UN−1. In fact, in the general L = M case we obtain the
following spaces, considered in [7]:

OMMN = (OM ×ON )/(OM ×ON−M ) = ON/ON−M ,

UMMN = (UM × UN )/(UM × UN−M ) = UN/UN−M .

For some further information on these spaces, we refer to [2], [7].

2. Liberations and twists

We discuss now some noncommutative versions of the above construc-
tions. We use the quantum group formalism of Woronowicz [35], [36], with
the extra axiom S2 = id. In other words, we consider pairs (A, u) consisting
of a C∗-algebra A, and a unitary matrix u ∈MN (A), such that the following
formulæ define morphisms of C∗-algebras:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji .
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These morphisms are called comultiplication, counit and antipode. We
write A = C(G), and call G a compact matrix quantum group. For full
details here, see [20].

We recall from [1], [5] that the compact groups ON , UN can be twisted, by
replacing the commutation relations ab = ba, ab∗ = b∗a between the standard
coordinates uij(g) = gij with the following commutation/anticommutation
relations:

ab× =
{
−b×a for a 6= b on the same row or column of u,
b×a otherwise.

Here b× = b, b∗, and the precise statement is that these relations, when
applied to a matrix u = (uij) which is orthogonal (u = ū, ut = u−1, where
ū = (u∗ij)), respectively biunitary (u∗ = u−1, ut = ū−1) produce quantum
groups ŌN , ŪN . See [1], [5].

We can liberate OLMN , U
L
MN , and then twist them, as follows:

Definition 2.1. — Associated to any integers L 6 M 6 N are the
algebras

C(OL+
MN ) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣u = ū, uut = projection of trace L
)
,

C(UL+
MN ) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣uu∗, ūut = projections of trace L
)
,

and their quotients C(ŌLMN ), C(ŪLMN ), obtained by imposing the twisting
relations.

Observe that the above universal algebras are well-defined, because the
trace conditions, which read

∑
ij uiju

∗
ij =

∑
ij u
∗
ijuij = L, show that we

have ||uij || 6
√
L.

We have inclusions between the various spaces constructed so far, as
follows:

ULMN
// UL+
MN ŪLMN
oo

OLMN
//

OO

OL+
MN

OO

ŌLMN
oo

OO

Indeed, the inclusions at right follow from definitions, and those at left
come from Proposition 1.2, and from the fact that OLMN , U

L
MN are stable by

conjugation.
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At the level of basic examples now, we first have the following result:

Proposition 2.2. — At L = M = 1 we obtain the diagram

SN−1
C

// SN−1
C,+ S̄N−1

C
oo

SN−1
R

//

OO

SN−1
R,+

OO

S̄N−1
R

oo

OO

consisting of the liberations and twists of the spheres SN−1
R , SN−1

C .

Proof. — We recall from [1] that the various spheres are constructed as
follows, with the symbol× standing for “commutative”, “twisted” and “free”,
respectively:

C(SN−1
R,× ) = C∗×

(
z1, . . . , zN

∣∣∣ zi = z∗i ,
∑
i

z2
i = 1

)
,

C(SN−1
C,× ) = C∗×

(
z1, . . . , zN

∣∣∣ ∑
i

ziz
∗
i =

∑
i

z∗i zi = 1
)
.

Now by comparing with the definition ofO1×
1N , U

1×
1N , this proves our claim. �

We have as well the following result, once again making the link with [1]:

Proposition 2.3. — At L = M = N we obtain the diagram

UN // U+
N ŪNoo

ON //

OO

O+
N

OO

ŌNoo

OO

consisting of the liberations and twists of the groups ON , UN .

Proof. — We recall from [1] that the various quantum groups are con-
structed as follows, with the symbol × standing once again for “commuta-
tive”, “twisted” and “free”:

C(O×N ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = utu = 1
)
,

C(U×N ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗ = u∗u = 1, ūut = utū = 1
)
.
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On the other hand, according to Proposition 1.2 and to Definition 2.1
above, we have the following presentation results:

C(ON×NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = projection of trace N
)
,

C(UN×NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, ūut = projections of trace N
)
.

We use now the standard fact that if p = aa∗ is a projection then q =
a∗a is a projection too. Together with Tr(uu∗) = Tr(utū) and Tr(ūut) =
Tr(u∗u), this gives:

C(ON×NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut, utu = projections of trace N
)
,

C(UN×NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, u∗u, ūut, utū = projections of trace N
)
.

Now observe that, in tensor product notation, and by using the normal-
ized trace, the conditions at right are all of the form (tr ⊗ id)p = 1, with
p = uu∗, u∗u, ūut, utū. We therefore obtain (tr⊗ϕ)(1− p) = 0 for any faith-
ful state ϕ, and it follows that the projections p = uu∗, u∗u, ūut, utū must
be all equal to the identity, as desired. �

Regarding now the homogeneous space structure of OL×MN , U
L×
MN , the sit-

uation here is more complicated in the twisted and free cases than in the
classical case. See [1], [7].

The classical results have, however, some partial extensions. In order to
formulate a result, we use the standard coaction formalism for the compact
quantum groups, as in [7]. Also, given two noncommutative compact spaces
X,Y , we define their product X × Y via the formula C(X × Y ) = C(X)⊗
C(Y ), with the tensor product being the maximal one. Finally, we use the
standard fact that when G,H are compact matrix quantum groups, then so
is their product G×H. For more on these topics, see [7], [20].

With these conventions, we have the following result:

Proposition 2.4. — The spaces UL×MN have the following properties:

(1) We have an action U×M × U
×
N y UL×MN , given by uij →

∑
kl aik ⊗

b∗jl ⊗ ukl.M
(2) We have a map U×M × U

×
N → UL×MN , given by uij →

∑
l6L ail ⊗ b∗jl.

Similar results hold for the spaces OL×MN , with all the ∗ exponents removed.
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Proof. — In the classical case, the transpose of the action map UM ×
UN y ULMN and of the quotient map UM × UN → ULMN are as follows,
where J = (1

0
0
0):

ϕ → ((A,B,U)→ ϕ(AUB∗)) ,
ϕ → ((A,B)→ ϕ(AJB∗)) .

But with ϕ = uij we obtain precisely the formulæ in the statement. The
proof in the orthogonal case is similar. Regarding now the free case, the
proof goes as follows:

(1) Assuming uu∗u = u, with Uij =
∑
kl aik ⊗ b∗jl ⊗ ukl we have:

(UU∗U)ij =
∑
pq

∑
klmnst

aika
∗
qmaqs ⊗ b∗plbpnb∗jt ⊗ uklu∗mnust ,

=
∑
klmt

aik ⊗ b∗jt ⊗ uklu∗mlumt =
∑
kt

aik ⊗ b∗jt ⊗ ukt = Uij .

Also, assuming that we have
∑
ij uiju

∗
ij = L, we obtain:∑

ij

UijU
∗
ij =

∑
ij

∑
klst

aika
∗
is ⊗ b∗jlbjt ⊗ uklu∗st =

∑
kl

1⊗ 1⊗ uklu∗kl = L.

(2) Assuming uu∗u = u, with Vij =
∑
l6L ail ⊗ b∗jl we have:

(V V ∗V )ij =
∑
pq

∑
x,y,z6L

aixa
∗
qyaqz ⊗ b∗pxbpyb∗jz =

∑
x6L

aix ⊗ b∗jx = Vij .

Also, assuming that we have
∑
ij uiju

∗
ij = L, we obtain:∑

ij

VijV
∗
ij =

∑
ij

∑
l,s6L

aila
∗
is ⊗ b∗jlbjs =

∑
l6L

1 = L.

By removing all the ∗ exponents, we obtain as well the orthogonal results.

In the twisted case the proof is similar. Let us first discuss the orthogonal
case. The twisting relations can be written as follows:

uijupq = (−1)δip+δjqupquij .

With this formula in hand, the verification of the extra relations goes as
follows:
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(1) With Uij =
∑
kl aik ⊗ bjl ⊗ ukl we have, as desired:

UijUpq =
∑
klmn

aikapm ⊗ bjlbqn ⊗ uklumn

=
∑
klmn

(−1)δip+δkmapmaik ⊗ (−1)δjq+δlnbqnbjl ⊗ (−1)δkm+δlnumnukl

=
∑
klmn

(−1)δip+δjqapmaik ⊗ bqnbjl ⊗ umnukl = (−1)δip+δjqUpqUij .

(2) With Vij =
∑
l6L ail ⊗ bjl we have as well, as desired:

VijVpq =
∑
l,m6L

ailapm ⊗ bjlbqm

=
∑
l,m6L

(−1)δip+δlmapmail ⊗ (−1)δjq+δlmbqmbjl

=
∑
l,m6L

(−1)δip+δjqapmail ⊗ bqmbjl = (−1)δip+δjqVpqVij .

The proof in the unitary case is similar, by adding ∗ exponents where
needed. �

Let us examine now the relation between the above maps. In the classical
case, given a quotient space X = G/H, the associated action and quotient
maps are given by:{

a : G×X → X : (g, g′H)→ gg′H

p : G→ X : g → gH

Thus we have a(g, p(g′)) = p(gg′). In our context, a similar result holds:

Theorem 2.5. — With G = GM × GN and X = GLMN , where GN =
O×N , U

×
N , we have

G×G m //

id×p

��

G

p

��
G×X a // X

where a, p are the action map and the map constructed in Proposition 2.4.

Proof. — At the level of the associated algebras of functions, we must
prove that the following diagram commutes, where Φ, π are morphisms of
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algebras induced by a, p:

C(X) Φ //

π

��

C(G×X)

id⊗π

��
C(G) ∆ // C(G×G)

When going right, and then down, the composition is as follows:

(id⊗ π)Φ(uij) = (id⊗ π)
∑
kl

aik ⊗ b∗jl ⊗ ukl =
∑
kl

∑
s6L

aik ⊗ b∗jl ⊗ aks ⊗ b∗ls .

On the other hand, when going down, and then right, the composition is
as follows, where F23 is the flip between the second and the third components:

∆π(uij) = F23(∆⊗∆)
∑
s6L

ais ⊗ b∗js = F23

(∑
s6L

∑
kl

aik ⊗ aks ⊗ b∗jl ⊗ b∗ls

)
.

Thus the above diagram commutes indeed, and this gives the result. �

In general, going beyond Theorem 2.5 leads to some non-trivial questions.
A first issue comes from the fact that the inclusions GL×GM−L×GN−L ⊂
GM × GN are not well-defined, in the free case. There are as well some
analytic issues, coming from the fact that the maps in Proposition 2.4(2) are
in general not surjective. See [1], [7].

3. Uniform quantum groups

We discuss in this section a generalization of the above constructions. For
this purpose, we first need to axiomatize a suitable class of compact quantum
groups, generalizing the classical groups ON , UN , their twists ŌN , ŪN , and
their free versions O+

N , U
+
N .

Let P (k, l) the set of partitions between an upper row of k points, and
a lower row of l points, with each leg colored black or white, and with k, l
standing for the corresponding “colored integers”. We have the following no-
tion, which appears as a straightforward generalization of the corresponding
orthogonal notion from [8]:
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Definition 3.1. — A category of partitions is a collection of sets D =⋃
klD(k, l), with D(k, l) ⊂ P (k, l), which contains the identity, and is stable

under:

(1) The horizontal concatenation operation ⊗.
(2) The vertical concatenation ◦, after deleting closed strings in the mid-

dle.
(3) The upside-down turning operation ∗ (with reversing of the colors).

Here the vertical concatenation operation assumes of course that the
colors match. Regarding the identity, the precise condition is that D(◦, ◦)
contains the “white” identity |◦◦ . By using (3) we see that D(•, •) contains the
“black” identity |•• , and then by using (1) we see that each D(k, k) contains
its corresponding (colored) identity.

The basic example of such a category is P itself. Yet another basic exam-
ple is the category NC of noncrossing partitions. There are of course many
other examples. We refer to [8] for the uncolored case, and to [28], [29] for
the general colored case.

As explained in [8], [19], [29], such categories produce quantum groups.
In this paper, however, we will need a modification of this construction, in
order to cover as well the twists. We use for this purpose a number of findings
from our recent papers [1], [3].

As explained in [1], [3], in order to cover the twists of the quantum groups
in [8] we must restrict attention to the categories D ⊂ Peven, where Peven ⊂
P is the category of partitions having all blocks of even size. Such partitions
act on tensors, as follows:

Definition 3.2. — Associated to any π ∈ Peven(k, l) are the linear maps

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑

j:ker(i
j
)6π

ej1 ⊗ . . .⊗ ejl
,

T̄π(ei1 ⊗ . . .⊗ eik ) =
∑
τ6π

ε(τ)
∑

j:ker(i
j
)=τ

ej1 ⊗ . . .⊗ ejl
,

where {ei} is the standard basis of CN , and ε : Peven → {−1, 1} is the
signature map.

Here the kernel of a multi-index (ij) = (i1...ikj1...jl
) is the partition obtained

by joining the sets of equal indices. Thus, the condition ker(ij) 6 π simply
tells us that the strings of π must join equal indices. As for the signature
map ε : Peven → {−1, 1}, this is a canonical extension of the usual signature
map ε : S∞ → {−1, 1}, constructed in [1].
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Here are a few examples of such linear maps, taken from [1]:

T∩(1) = T̄∩(1) =
∑
i

ei ⊗ ei , T∪(ei ⊗ ej) = T̄∪(ei ⊗ ej) = δij ,

T/\(ei ⊗ ej) = ej ⊗ ei , T̄/\(ei ⊗ ej) =
{
ej ⊗ ei for i = j ,

−ej ⊗ ei for i 6= j .

In general, Tπ, T̄π can be thought of as coming from a twisting parameter
q = ±1. As explained in [1], for π ∈ NCeven we have τ 6 π =⇒ ε(τ) = 1,
and so Tπ = T̄π. In general, however, the maps Tπ, T̄π are different. We refer
to [1] for full details here.

We have the following “q-easiness” notion, inspired from [8]:

Definition 3.3. — A compact quantum group G ⊂ U+
N is called quizzy

when

Hom(u⊗k, u⊗l) = span
(
Ṫπ
∣∣π ∈ D(k, l)

)
,

for any colored integers k, l, for a certain category of partitions D ⊂ Peven.

Here the dot stands for a fixed value of q = ±1, with the maps Tπ being
used at q = 1, and with the maps T̄π being used at q = −1. Also, the “col-
ored” tensor powers u⊗k, u⊗l are defined by tensoring the corepresentations
u◦ = u and u• = ū.

At the level of basic examples, we have the following result:

Proposition 3.4. — The following are quizzy quantum groups,

UN // U+
N ŪNoo

ON //

OO

O+
N

OO

ŌNoo

OO

with q ∈ {−1, 1} being by definition 1 at left, −1 at right, and ±1 in the
middle.

Proof. — As explained in [1], [8], the above quantum groups appear in-
deed from the following categories of partitions, with q ∈ {−1, 1} being as
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in the statement:

P2

��

NC2

��

//oo P2

��
P2 NC2oo // P2

Here P2 is the set of all pairings, P2 ⊂ P2 is the set of “matching”
pairings, whose upper and lower strings connect ◦−•, and whose through
strings connect ◦−◦ or •−•, and NC2,NC2 are the corresponding subsets of
noncrossing pairings. See [1], [8]. �

Consider now the group Hs
N = Zs oSN , with s ∈ {2, 4, . . . ,∞}, which con-

sists of the permutation matrices σ ∈ SN with nonzero entries multiplied by
elements of Zs. This group has a free analogue, Hs+

N = Zs o∗S+
N , constructed

in [4], as follows:

C(Hs+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣uiju∗ij = u∗ijuij = pij = magic, usij = pij

)
.

Here the “magic” condition states that the entries of p = (pij) are pro-
jections, summing up to 1 on each row and column, and the last condition,
usij = pij , disappears by definition at s = ∞. Observe that the classical
version of Hs+

N is indeed Hs
N . See [4].

The s = 2,∞ specializations of Hs
N , H

s+
N , denoted respectively HN , H

+
N

and KN ,K
+
N , are the quantum groups in [5], and their complex analogues.

We have:

Proposition 3.5. — The following are quizzy quantum groups, at both
q = ±1,

KN
// K+

N

Hs
N

//

OO

Hs+
N

OO

HN
//

OO

H+
N

OO

where Hs
N = Zs o SN , and where Hs+

N = Zs o∗ S+
N , with s ∈ {2, 4, . . . ,∞}.
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Proof. — As explained in [3], [4], the above quantum groups appear in-
deed, with parameter q = ±1 as in the statement, from the following cate-
gories of partitions:

Peven

��

NCevenoo

��
P seven

��

NCsevenoo

��
Peven NCevenoo

Here P seven ⊂ Peven is the set of partitions having the property that, in
each block, the number of white legs equals the number of black legs, modulo
s, with all legs counted with coefficient + up, and − down. At right we have
the subset NCseven = P seven ∩NC, and the lower and upper objects are the
corresponding specializations at s = 2,∞. �

We recall that the free complexification (G̃, ũ) of a compact matrix quan-
tum group (G, u) is obtained by considering the subalgebra C(G̃) ⊂ C(T) ∗
C(G) generated by the entries of ũ = zu, where z is the standard generator
of C(T). See [24].

With this convention, we have the following extra example, from [29]:

Proposition 3.6. — The quantum group K++
N = K̃+

N appears as an
intermediate object

K+
N ⊂ K

++
N ⊂ U+

N ,

with both inclusions being proper, and is quizzy, equal to its own twist.

Proof. — By composing the canonical inclusion C(K++
N ) ⊂ C(T)∗C(K+

N )
with ε ∗ id we obtain a morphism C(K++

N ) → C(K+
N ) mapping ũij → uij ,

so we have inclusions as in the statement. Since the elements pij = ũij ũ
∗
ij =

zuiju
∗
ijz
∗ and qij = ũ∗ij ũij = u∗ijuij are projections, and are not equal, both

these inclusions are proper.

Regarding the easiness claim, this follows from the general theory of the
representations of free complexifications [24]. To be more precise, as ex-
plained in [29], the associated category NC−even is that of the even noncross-
ing partitions which, when rotated on one line, have alternating colors in
each block. Observe that the inclusions in the statement correspond then to
the inclusions at the partition level, which are as follows:

NCeven ⊃ NC−even ⊃ NC2 ,
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Finally, since NC−even ⊂ NCeven, the quantum group K++
N equals its own

twist. �

The above examples are in fact the only ones that we are interested in,
in the classical/twisted and free cases. In order to axiomatize these objects,
we use:

Proposition 3.7. — For a quizzy quantum group HN ⊂ GN ⊂ U+
N ,

coming from a category of partitions NC2 ⊂ D ⊂ Peven, the following are
equivalent:

(1) D is stable by removing blocks.

(2) GN ∩ U+
N−M = GN−M , for any M 6 N .

If these conditions are satisfied, we call both G = (GN ) and D “uniform”.

Proof. — This was proved in [7] in the orthogonal case, and the proof in
general is similar. Assume that we have a subgroup K ⊂ U+

N−M , with fun-
damental representation v, and consider the N ×N matrix ṽ = diag(v, 1M ).
Then, for any π ∈ Peven, we have:

Tπ ∈ Hom(ṽ⊗k, ṽ⊗l) ⇐⇒ Tπ′ ∈ Hom(v⊗k
′
, v⊗l

′
), ∀π′ ⊂ π .

With this formula in hand, we deduce that given a subgroup G ⊂ U+
N ,

with fundamental representation denoted u, the algebra of functions on K =
G ∩ U+

N−M is given by:

C(K) = C(U+
N−M )

/〈
T ∈ Hom(ṽ⊗k, ṽ⊗l), ∀T ∈ Hom(u⊗k, u⊗l)

〉
.

Thus, we have GN ∩U+
N−M = G′N−M , where G′ = (G′N ) is the easy quan-

tum group associated to the category D′ generated by all the subpartitions
of the partitions in D. In particular GN ∩ U+

N−M = GN−M for any M 6 N
is equivalent to D = D′, as claimed. �

Observe that the quantum groups in Propositions 3.4, 3.5 and 3.6 are all
uniform. We have in fact the following result, where by “classical/twisted”
and “free” we mean \/ ∈ D and D ⊂ NCeven, where D ⊂ Peven is the
associated category of partitions:
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Theorem 3.8. — The uniform classical / twisted and free quantum
groups are

UN , ŪN
))

KN
//

00

K+
N

// K++
N

// U+
N

Hs
N

//

OO

Hs+
N

OO

HN
//

OO

..

H+
N

//

OO

O+
N

OO

ON , ŌN

55

where Hs
N = Zs o SN , Hs+

N = Zs o∗ S+
N , with s ∈ {2, 4, . . . ,∞}, and K

++
N =

K̃+
N .

Proof. — This is a consequence of the recent classification results in [28],
[29], the idea being as follows. First, the diagram in the statement being
obtained by merging the examples in Propositions 3.4, 3.5 and 3.6, all the
above quantum groups are quizzy.

The uniformity condition is clear as well, for each of the quantum groups
under consideration. Finally, all these quantum groups are either classi-
cal/twisted or free.

In order to prove now the converse, in view of the twisting results in [2],
it is enough to deal with the q = 1 case. So, consider a uniform category
of partitions D ⊂ Peven, as in Proposition 3.7. We must prove that in the
classical/free cases, the solutions are:

P2
uu

Peven

��

NCevenoo

��

NC−evenoo NC2oo

oo

��

P seven

��

NCsevenoo

��
Peven NCevenoo NC2

oo

oo

P2

ii

To be more precise, in the classical case, where \/ ∈ D, we must prove that
the only solutions are the categories P2,P2, P

s
even, and that in the free case,

where D ⊂ NCeven, we must prove that the only solutions are the categories
NC2,NC2,NC−even, NCseven.

– 144 –



Liberation theory for noncommutative homogeneous spaces

We jointly investigate these two problems. Let B be the set of all possible
labelled blocks in D, having no upper legs. Observe that B is stable under
the switching of colors operation, ◦ ↔ •. We have two possible situations,
as follows:

(1) B consists of pairings only. Here the pairings in question can be
either all labelled pairings, namely ◦−◦, ◦−•, •−◦, •−•, or just the matching
ones, namely ◦−•, •−◦, and we obtain here P2,P2 in the classical case, and
NC2,NC2 in the free case.

(2) B has at least one block of size > 4. In this case we can let s ∈
{2, 4, . . . ,∞} to be the length of the smallest ◦ . . . ◦ block, and we ob-
tain in this way the category P seven in the classical case, and the categories
NC−even, NCseven in the free case. See [28]. �

The above occurrence of K++
N is quite an issue, and reminds the “forgot-

ten series” from the orthogonal case [8], found later on, in [33]. Note that this
forgotten series has disappeared in the present setting, due to the uniformity
axiom. In the unitary case, however, it is quite unclear on how to add an
extra axiom, as to avoid K++

N .

In what follows we will rather ignore K++
N , and focus instead on K+

N ,
known since the Bercovici–Pata computations in [4] to be the “correct” lib-
eration of KN .

In general now, the full classification of the uniform quizzy quantum
groups remains an open problem. For the ongoing program here, we refer
to [15], [25], [28], [29].

4. Homogeneous spaces

In this section we associate noncommutative homogeneous spaces, as in
Sections 1 and 2 above, to the quantum groups considered in Section 3. We
will be mostly interested in the quantum groups from Theorem 3.8, so let
us first discuss, with full details, the case of the quantum groups Hs

N , H
s+
N

appearing there. As in [2], we use:

Definition 4.1. — Associated to any partial permutation, σ : I ' J
with I ⊂ {1, . . . , N} and J ⊂ {1, . . . ,M}, is the real/complex partial isome-
try

Tσ : span
(
ei

∣∣∣ i ∈ I)→ span
(
ej

∣∣∣ j ∈ J),
given on the standard basis elements by Tσ(ei) = eσ(i).

– 145 –



Teodor Banica

We denote by SLMN the set of partial permutations σ : I ' J as above,
with range I ⊂ {1, . . . , N} and target J ⊂ {1, . . . ,M}, and with L = |I| =
|J |. See [2].

In analogy with the decomposition result Hs
N = Zs o SN , we have:

Proposition 4.2. — The space of partial permutations signed by ele-
ments of Zs,

HsL
MN =

{
T (ei) = wieσ(i)

∣∣∣σ ∈ SLMN , wi ∈ Zs
}
,

is isomorphic to the quotient space (Hs
M ×Hs

N )/(Hs
L ×Hs

M−L ×Hs
N−L).

Proof. — This follows by adapting the computations in the proof of
Proposition 1.3 above. Indeed, we have an action map as follows, which
is transitive:

Hs
M ×Hs

N y HsL
MN : (A,B)U = AUB∗,

The stabilizer of the point U = (1
0

0
0) follows to be the groupHs

L×Hs
M−L×

Hs
N−L, embedded via (x, a, b)→ [(x0 0

a), (x0 0
b)], and this gives the result. �

In the free case now, the idea is similar, by using inspiration from the
construction of the quantum group Hs+

N = Zs o∗ S+
N in [4]. The result here

is as follows:

Proposition 4.3. — The noncommutative space HsL+
MN associated to the

algebra

C(HsL+
MN ) = C(UL+

MN )
/〈

uiju
∗
ij = u∗ijuij = pij = projections, usij = pij

〉
has an action map, and is the target of a quotient map, as in Theorem 2.5
above.

Proof. — We must show that if the variables uij satisfy the relations in
the statement, then these relations are satisfied as well for the following
variables:

Uij =
∑
kl

aik ⊗ b∗jl ⊗ ukl , Vij =
∑
l6L

ail ⊗ b∗jl .

Since the standard coordinates aij , bij on the quantum groups Hs+
M , Hs+

N

satisfy the relations xy = xy∗ = 0, for any x 6= y on the same row or column
of a, b, we obtain:

UijU
∗
ij =

∑
klmn

aika
∗
im ⊗ b∗jlbjm ⊗ uklu∗mn =

∑
kl

aika
∗
ik ⊗ b∗jlbjl ⊗ uklu∗kl ,

VijV
∗
ij =

∑
l,r6L

aila
∗
ir ⊗ b∗jlbjr =

∑
l6L

aila
∗
il ⊗ b∗jlbjl .
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Thus, in terms of the projections xij = aija
∗
ij , yij = bijb

∗
ij , pij = uiju

∗
ij ,

we have:

UijU
∗
ij =

∑
kl

xik ⊗ yjl ⊗ pkl , VijV
∗
ij =

∑
l6L

xil ⊗ yjl .

By repeating the computation, we conclude that these elements are pro-
jections. Also, a similar computation shows that U∗ijUij , V ∗ijVij are given by
the same formulæ.

Finally, once again by using the relations of type xy = xy∗ = 0, we have:

Usij =
∑
krlr

aik1 . . . aiks
⊗ b∗jl1 . . . b

∗
jls ⊗ uk1l1 . . . uksls =

∑
kl

asik ⊗ (b∗jl)s ⊗ uskl ,

V sij =
∑
lr6L

ail1 . . . ails ⊗ b∗jl1 . . . b
∗
jls =

∑
l6L

asil ⊗ (b∗jl)s .

Thus the conditions of type usij = pij are satisfied as well, and we are
done. �

Let us discuss now the general case. We use the Kronecker symbols δπ(i) ∈
{−1, 0, 1} from [1], depending on a twisting parameter q = ±1, constructed
as follows:

δσ(i) =
{
δker i6σ (untwisted case)
ε(ker i)δker i6σ (twisted case).

With this convention, we have the following result:

Proposition 4.4. — The various spaces GLMN constructed so far appear
by imposing to the standard coordinates of UL+

MN the relations∑
i1...is

∑
j1...js

δπ(i)δσ(j)ue1
i1j1

. . . ues
isjs

= L|π∨σ| ,

with s = (e1, . . . , es) ranging over all the colored integers, and with π, σ ∈
D(0, s).

Proof. — According to the various constructions in Section 1 and 2 and
in the beginning of this section, the relations defining GLMN can be written
as follows, with σ ranging over a family of generators, with no upper legs, of
the corresponding category of partitions D:∑

j1...js

δσ(j)ue1
i1j1

. . . ues
isjs

= δσ(i) .
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We therefore obtain the relations in the statement, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)ue1
i1j1

. . . ues
isjs

=
∑
i1...is

δπ(i)
∑
j1...js

δσ(j)ue1
i1j1

. . . ues
isjs

=
∑
i1...is

δπ(i)δσ(i) =
∑

τ6π∨σ

∑
ker i=τ

(±1)2

=
∑

τ6π∨σ

∑
ker i=τ

1 = L|π∨σ| .

As for the converse, this follows by using the relations in the statement,
by keeping π fixed, and by making σ vary over all the partitions in the
category. �

In the general case now, where G = (GN ) is an arbitary uniform quizzy
quantum group, we can construct spaces GLMN by using the above relations,
and we have:

Theorem 4.5. — The spaces GLMN ⊂ U
L+
MN constructed by imposing the

relations ∑
i1...is

∑
j1...js

δπ(i)δσ(j)ue1
i1j1

. . . ues
isjs

= L|π∨σ| ,

with π, σ ranging over all the partitions in the associated category, having
no upper legs, are subject to an action map/quotient map diagram, as in
Theorem 2.5.

Proof. — We proceed as in the proof of Proposition 2.4. We must prove
that, if the variables uij satisfy the relations in the statement, then so do
the following variables:

Uij =
∑
kl

aik ⊗ b∗jl ⊗ ukl , Vij =
∑
l6L

ail ⊗ b∗jl .

Regarding the variables Uij , the computation here goes as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)Ue1
i1j1

. . . Ues
isjs

=
∑
i1...is

∑
j1...js

∑
k1...ks

∑
l1...ls

δπ(i)δσ(j)ae1
i1k1

. . . aes

isks

⊗ (bes

jsls
. . . be1

j1l1
)∗ ⊗ ue1

k1l1
. . . ues

ksls

=
∑
k1...ks

∑
l1...ls

δπ(k)δσ(l)ue1
k1l1

. . . ues

ksls
= L|π∨σ| .
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For the variables Vij the proof is similar, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)V e1
i1j1

. . . V es
isjs

=
∑
i1...is

∑
j1...js

∑
l1,...,ls6L

δπ(i)δσ(j)ae1
i1l1

. . . aes

isls
⊗ (bes

jsls
. . . be1

j1l1
)∗

=
∑

l1,...,ls6L

δπ(l)δσ(l) = L|π∨σ| .

Thus we have constructed an action map, and a quotient map, as in
Proposition 2.4 above, and the commutation of the diagram in Theorem 2.5
is then trivial. �

The above results generalize some of the constructions in [3]. As explained
in [3], there are many interesting questions regarding such spaces, and their
quantum isometry groups. In what follows we will advance on some related
topics, of probabilistic nature.

5. Integration theory

In the remainder of this paper we discuss the integration over GLMN ,
with a number of explicit formulæ. Our main result will be the fact that the
operations of type GLMN → GL+

MN are indeed “liberations”, in the sense of
the Bercovici–Pata bijection [9].

The integration over GLMN is best introduced as follows:

Definition 5.1. — The integration functional of GLMN is the compo-
sition

tr : C(GLMN )→ C(GM ×GN )→ C
of the representation uij →

∑
l6L ail ⊗ b∗jl with the Haar functional of

GM ×GN .

Here we use the standard fact, proved by Woronowicz in [35], that any
compact quantum group G has a Haar integration functional,

∫
G

: C(G)→
C, which is by definition the unique positive unital trace subject to the
following invariance relations:(∫

G

⊗id
)

∆ϕ =
(
id⊗

∫
G

)
∆ϕ =

∫
G

ϕ .

Observe that in the case L = M = N we obtain the integration over
GN . Also, at L = M = 1 we obtain the integration over the sphere. More
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generally, at any L = M we obtain the integration over the corresponding
row algebra of GM , discussed in [7].

In the general case now, we first have the following result:

Proposition 5.2. — The integration functional tr has the invariance
property

(id⊗ tr)Φ(x) = tr(x)1,

with respect to the coaction map given by Φ(uij) =
∑
kl aik ⊗ b∗jl ⊗ ukl.

Proof. — We restrict the attention to the orthogonal case, the proof in
the unitary case being similar. We must check the following formula:

(id⊗ tr)Φ(ui1j1 . . . uisjs
) = tr(ui1j1 . . . uisjs

) .

Let us compute the left term. This is given by:

X = (id⊗ tr)
∑
krlr

ai1k1 . . . aisks
⊗ b∗j1l1 . . . b

∗
jsls ⊗ uk1l1 . . . uksls

=
∑
krlr

∑
mr6L

ai1k1 . . . aisks

⊗ b∗j1l1 . . . b
∗
jsls

∫
GM

ak1m1 . . . aksms

∫
GN

b∗l1m1
. . . b∗lsms

=
∑
mr6L

∑
kr

ai1k1 . . . aisks

∫
GM

ak1m1 . . . aksms

⊗
∑
lr

b∗j1l1 . . . b
∗
jsls

∫
GN

b∗l1m1
. . . b∗lsms

.

By using now the invariance property of the Haar functionals of GM , GN ,
we obtain:

X =
∑
mr6L

(
id⊗

∫
GM

)
∆(ai1m1 . . . aisms

)⊗
(
id⊗

∫
GN

)
∆(b∗j1m1

. . . b∗jsms
)

=
∑
mr6L

∫
GM

ai1m1 . . . aisms ⊗
∫
GN

b∗j1m1
. . . b∗jsms

=
(∫

GM

⊗
∫
GN

) ∑
mr6L

ai1m1 . . . aisms
⊗ b∗j1m1

. . . b∗jsms
.

But this gives the formula in the statement, and we are done. �
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We will prove now that tr is in fact the unique positive unital invariant
trace on C(GLMN ). For this purpose, we will need the Weingarten formula.
We recall from Section 4 above that the generalized Kronecker symbols are
constructed as follows:

δσ(i) =
{
δker i6σ (untwisted case)
ε(ker i)δker i6σ (twisted case).

With this convention, the integration formula is as follows:

Theorem 5.3. — We have the Weingarten type formula∫
GL

MN

ui1j1 . . . uisjs =
∑
πστν

L|σ∨ν|δπ(i)δτ (j)WsM (π, σ)WsN (τ, ν) ,

where WsM = G−1
sM , with GsM (π, σ) = M |π∨σ|.

Proof. — We make use of the usual quantum group Weingarten formula,
for which we refer to [1], [8]. By using this formula for GM , GN , we obtain:∫

GL
MN

ui1j1 . . . uisjs

=
∑

l1...ls6L

∫
GM

ai1l1 . . . aisls

∫
GN

b∗j1l1 . . . b
∗
jsls

=
∑

l1...ls6L

∑
πσ

δπ(i)δσ(l)WsM (π, σ)
∑
τν

δτ (j)δν(l)WsN (τ, ν)

=
∑
πστν

( ∑
l1...ls6L

δσ(l)δν(l)
)
δπ(i)δτ (j)WsM (π, σ)WsN (τ, ν) .

Let us compute now the coefficient appearing in the last formula. Since
the signature map takes ±1 values, for any multi-index l = (l1, . . . , ls) we
have:

δσ(l)δν(l) = δker l6σε(ker l) · δker l6νε(ker l) = δker l6σ∨ν .

Thus the coefficient is L|σ∨ν|, and we obtain the formula in the
statement. �

We can now derive an abstract characterization of tr, as follows:

Proposition 5.4. — The integration functional tr constructed above is
the unique positive unital C∗-algebra trace C(GLMN )→ C which is invariant
under the action of GM ×GN .
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Proof. — We use the method in [7], the point being to show that tr has
the following ergodicity property:(∫

GM

⊗
∫
GN

⊗id
)

Φ = tr( . )1 .

We restrict the attention to the orthogonal case, the proof in the unitary
case being similar. We must verify that the following holds:(∫

GM

⊗
∫
GN

⊗id
)

Φ(ui1j1 . . . uikjk
) = tr(ui1j1 . . . uikjk

)1 .

By using the Weingarten formula, the left term can be written as follows:

X =
∑
k1...ks

∑
l1...ls

∫
GM

ai1k1 . . . aisks

∫
GN

bj1l1 . . . bjsls · uk1l1 . . . uksls

=
∑
k1...ks

∑
l1...ls

∑
πσ

δπ(i)δσ(k)WsM (π, σ)

×
∑
τν

δτ (j)δν(l)WsN (τ, ν) · uk1l1 . . . uksls

=
∑
πστν

δπ(i)δτ (j)WsM (π, σ)WsN (τ, ν)
∑
k1...ks

∑
l1...ls

δσ(k)δν(l)uk1l1 . . . uksls .

By using now the formula in Theorem 4.5 above, we obtain:

X =
∑
πστν

L|σ∨ν|δπ(i)δτ (j)WsM (π, σ)WsN (τ, ν) .

Now by comparing with the formula in Theorem 5.3, this proves our
claim.

Assume now that τ : C(GLMN )→ C satisfies the invariance condition. We
have:

τ

(∫
GM

⊗
∫
GN

⊗id
)

Φ(x) =
(∫

GM

⊗
∫
GN

⊗τ
)

Φ(x)

=
(∫

GM

⊗
∫
GN

)
(id⊗ τ)Φ(x)

=
(∫

GM

⊗
∫
GN

)
(τ(x)1) = τ(x) .

On the other hand, according to the formula established above, we have
as well:

τ

(∫
GM

⊗
∫
GN

⊗id
)

Φ(x) = τ(tr(x)1) = tr(x) .

Thus we obtain τ = tr, and this finishes the proof. �
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6. Probabilistic aspects

We discuss now the precise computation of the laws of certain
linear combinations of coordinates. A set of coordinates {uij} is called
“non-overlapping” if each horizontal index i and each vertical index j appears
at most once. With this convention, we have:

Proposition 6.1. — For a sum χE =
∑

(ij)∈E uij of non-overlapping
coordinates we have∫

GL
MN

χsE =
∑
πστν

K |π∨τ |L|σ∨ν|WsM (π, σ)WsN (τ, ν) ,

where K = |E| is the cardinality of the indexing set.

Proof. — In terms of K = |E|, we can write E = {(α(i), β(i))}, for
certain embeddings α : {1, . . . ,K} ⊂ {1, . . . ,M} and β : {1, . . . ,K} ⊂
{1, . . . , N}. In terms of these maps α, β, the moment in the statement is
given by:

Ms =
∫
GL

MN

(∑
i6K

uα(i)β(i)

)s
.

By using the Weingarten formula, we can write this quantity as follows:

Ms =
∫
GL

MN

∑
i1...is6K

uα(i1)β(i1) . . . uα(is)β(is)

=
∑

i1...is6K

∑
πστν

L|σ∨ν|δπ(α(i1), . . . , α(is))δτ (β(i1), . . . , β(is))

×WsM (π, σ)WsN (τ, ν)

=
∑
πστν

( ∑
i1...is6K

δπ(i)δτ (i)
)
L|σ∨ν|WsM (π, σ)WsN (τ, ν) .

But, as explained in the proof of Theorem 5.3, the coefficient on the left
in the last formula equals K |π∨τ |. We therefore obtain the formula in the
statement. �

We can further advance in the classical/twisted and free cases, where
the Weingarten theory for the corresponding quantum groups is available
from [1], [4], [8]. The result here, which justifies our various “liberation”
claims, is as follows:
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Theorem 6.2. — In the context of the liberation operations OLMN →
OL+
MN , ULMN → UL+

MN , HsL
MN → HsL+

MN , the laws of the sums of non-over-
lapping coordinates,

χE =
∑

(ij)∈E

uij ,

are in Bercovici–Pata bijection, in the |E| = κN,L = λN,M = µN,N →∞
limit.

Proof. — We use the general theory in [1], [4], [8]. According to Propo-
sition 6.1 above, in terms of K = |E|, the moments of the variables in the
statement are given by:

Ms =
∑
πστν

K |π∨τ |L|σ∨ν|WsM (π, σ)WsN (τ, ν) .

We use now two standard facts, namely the fact that in the N →∞ limit
the Weingarten matrix WsN is concentrated on the diagonal, and the fact
that we have |π ∨ σ| 6 |π|+|σ|2 , with equality precisely when π = σ. See [8].
In the regime K = κN,L = λN,M = µN,N → ∞ from the statement, we
therefore obtain:

Ms '
∑
πτ

K |π∨τ |L|π∨τ |M−|π|N−|τ |

'
∑
π

K |π|L|π|M−|π|N−|π|

=
∑
π

(
κλ

µ

)|π|
.

In order to interpret this formula, we use general theory from [4], [21]:

(1) ForGN = ON , ŌN/O
+
N , the above variables χE follow to be asymptot-

ically Gaussian/semicircular, of parameter κλ
µ , and hence in Bercovici–Pata

bijection.

(2) For GN = UN , ŪN/U
+
N the situation is similar, with χE being asymp-

totically complex Gaussian/circular, of parameter κλµ , and in Bercovici–Pata
bijection.

(3) Finally, for GN = Hs
N/H

s+
N , the variables χE are asymptotically

Bessel/free Bessel of parameter κλ
µ , and once again in Bercovici–Pata bijec-

tion. �

The convergence in the above result is of course in moments, and we do
not know whether some stronger convergence results can be formulated. Nor
do we know whether one can use linear combinations of coordinates which
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are more general than the sums χE that we consider. These are interesting
questions, that we would like to raise here.
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